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Abstract: This paper deals with real-time control of a thermo-optical device. A
polynomial approximation of the optimal Model Predictive Control (MPC) feedback
law is employed as a controller. Such an approximate controller enjoys the key benefits
of MPC schemes, namely it provides all-time constraint satisfaction and closed-loop
stability guarantees. The main advantage of the proposed approximation scheme is
that it can be implemented in real time using very limited computational resources.
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1. INTRODUCTION

MPC is a leading strategy in the control in-
dustry which offers optimal management of pro-
cesses and, equally important, meets satisfaction
of plant constraints (Maciejowski, 2002; Camacho
and Bordons, 1999). Based on the process model,
MPC approach foresees the future behavior of the
process and searches for the best possible control
inputs. This process is repeated every time as new
process measurements arrive. As the search for
best inputs is achieved by solving an optimiza-
tion problem, process constraints can be easily
handled which makes MPC superior to traditional
proportional-integral-derivative (PID) controllers.

Since the general introduction of predictive con-
trol by Clarke et al. (1987), numerous MPC
techniques have been established and most of
them ended as commercially available products
(Qin and Badgewell, 2003). This variety of MPC
schemes can be separated in two groups, depend-
ing on how the particular optimization problem is
solved. In the first group the optimization problem

is solved on-line, that is, as the plant is under
operation. This case applies to the majority of the
processes in chemical industry with slow dynamics
where there is enough time and computational re-
sources for the optimization to terminate in time.

In the second group the optimization problem is
solved off-line, that is, before plant’s start-up.
This approach is appealing especially for sim-
ple plants with fast dynamics, e.g. from electro-
technical industry (Geyer et al., 2008; Mariethoz
et al., 2008a). This approach is often referred to as
explicit MPC and for a recent survey see Alessio
and Bemporad (2008). In the explicit MPC ap-
proach, most of the computational burden arising
from optimization is shifted before the implemen-
tation phase, and the resulting controller is pre-
computed for all admissible operating conditions.
The controller takes of a form of a piecewise affine
(PWA) function mapping the initial conditions
to the optimal sequence of control inputs. The
implementation of such controllers then consists
of a mere evaluation of such a function for the
currently measured value of plant states. However,
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the complexity of the solution (and hence the
complexity of the implementation phase) grows,
in the worst case, exponentially withe the problem
size (Zeilinger et al., 2008).

Up to date the best implementation scheme for
evaluation of a PWA functions is the translation
to a binary search tree, where the implementation
complexity is logarithmic in the number of regions
(Tøndel et al., 2003). However, when consider-
ing application where the sampling frequency is
very high, even the binary search tree algorithm
can be of prohibitive computational complexity.
An alternative approach based on polynomial ap-
proximation of the explicit MPC control law has
been developed recently Kvasnica et al. (2008).
This method offers a suboptimal replacement of
PWA function by a polynomial control law which
significantly reduces requirements for storage and
on-line evaluation. So far this method has been
tested on a model of a DC-DC buck converter
(Mariethoz et al., 2008b). This paper presents a
benchmark experiment for this method where the
controlled plant is represented by a thermo-optical
device with fast dynamics and rapid sampling.

2. DEVICE DESCRIPTION

The uDAQ28/LT thermal-optical system is an
experimental device aimed primarily for education
purposes Huba et al. (2006). The device allows for
real time measurement and control of temperature
and light intensity. It can be connected to a
personal computer via an universal serial bus
(USB) without requiring an input-output card
(Fig. 1). Data acquisition and real-time control
of the uDAQ28/LT device is carried out in the
Matlab/Simulink environment which allows very
easy manipulation with the device.

The plant represents a dynamical system which
combines slow and fast dynamics. The slow pro-
cess is characterized by a heat transfer and the
fast process corresponds to light emission. Both
processes are caused by an embedded light bulb
which is controlled by an input voltage signal. In
general, the plant is characterized by five inputs
and eight outputs whereas only three controlled
inputs and three measured outputs are of interest.
A precise description of these signals is given in
Tab. 1.

The construction of the device suggests offers two
main control loops. The primal loop regulates the
light bulb intensity by manipulating the input
voltage (or input voltage to LED 1 diode). The
second loop maintains the inner temperature in
safety limits by manipulating the revolutions of
a cooling fan. Presence of physical constraints

1 Light Emitting Diode

on manipulated and controlled variables makes
the control task challenging and the device has
often been used for benchmark of constrained PID
control approaches (Huba and Vrančič, 2007).

Fig. 1. Front view on a thermo-optical device
uDAQ28/LT.

Table 1. Description of measured and
controlled signals.

Signal Name Range

Input voltage to light bulb 0-5V

Input voltage to cooling fan 0-5V

Input voltage to LED 0-5V

Inner temperature 0-100 deg C

Light intensity not given

Revolutions of the cooling fan 0-6000 rpm

3. IDENTIFICATION AND PWA MODEL

In the sequel, only the optical channel of the light-
bulb is considered. This decision is motivated by
the fact that this channel is represented by a fast
dynamics, which makes real-time implementation
of a control system a challenging task. Due to very
fast responses of the light channel, the sampling
rate was selected the lowest admissible by Win-
dows, i.e. Ts = 0.05 s. As the optical channel is
sampled, it immediately suggests identification of
input-output relations in discrete time.

Input-output relations of the optical channel have
been identified with the help of IDTOOL Toolbox
(Čirka et al., 2006) as a second order discrete
transfer function

G(z−1) =
bz−2

1 + a1z−1 + a2z−2
(1)

where b, a1, a2 are constant parameters and
z−1 is a discrete time delay operator (Mikleš
and Fikar, 2007). IDTOOL toolbox contains the
recursive least squares method of Kulhavý and
Kárný (1984) which provides very good estimates
of the unknown parameters. However, as transfer
function is valid only locally, the identification
was performed over four operating points and
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Table 2. Identification data over four
operation points.

input output b a1 a2

(1) 1.3 6.84 2.03 -1.07 0.46

(2) 2.5 19.46 3.56 -0.97 0.43

(3) 3.5 32.09 4.51 -0.91 0.41

(4) 4.5 45.86 5.39 -0.87 0.40

the results are summarized in Tab. 2. For the
use in explicit MPC scheme, the input-output
representation (1) is transformed to a discrete
state-space model. It is achieved by introducing
state variables with discrete time instant k, i.e.
v1(k) = y(k − 1), v2(k) = y(k − 2) and the state
space model reads

v1(k + 1) = −a1v1(k)− a2v2(k) + bw(k) (2a)
v2(k + 1) = v1(k) (2b)

y(k) = v2(k). (2c)

In (2) w(k) represents the input voltage applied
directly to the plant and y(k) is the measured
output. Voltage input is constrained

w(k) ∈ [0, 5]V (3)

and the measured output lies inside the interval

y(k) ∈ [0, 55] (4)

of light intensity units (are not given in the ref-
erence manual). The overall input-output behav-
ior of the optical channel can be recovered by
aggregation of the local linear models (2) which
forms piecewise linear or PWA model. Here, the
operating area is first split into regions and local
linear models are assigned to each such region.
The overall behavior of PWA model is then driven
by switching between the locally valid models
using logical IF-THEN rules. To perform parti-
tioning of the operating area according to lin-
earization points in Tab. 2, a Voronoi diagram
(Aurenhammer, 1991) is constructed, which di-
rectly returns partitions of the state space as
a sequence of convex polytopes. This operation
was executed using one of the routines included
in MPT toolbox (Kvasnica et al., 2004) and it
returned following regions:

R1 = {v(k) | 0 ≤ v2(k) ≤ 13.15} (5a)
R2 = {v(k) | 13.15 ≤ v2(k) ≤ 25.77} (5b)
R3 = {v(k) | 25.77 ≤ v2(k) ≤ 38.97} (5c)
R4 = {v(k) | 38.97 ≤ v2(k) ≤ 55} (5d)

To each of the regions (5), a corresponding local
linear dynamics (2) is assigned, and it forms over-
all PWA model. Although PWA models are, in
general, still non-linear, the underlying piecewise
linearity allows for somewhat simpler controller
design compared to full non-linear setups. Specif-
ically, MPC problems based on PWA models can
be solved explicitly, where the solution is obtained
as a look-up table, easily implementable in real
time.
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Fig. 2. Verification of the PWA model.

The output from PWA model has been compared
to the real measured output from the plant and
the result is depicted in Fig. 2. For the given
scenario PWA model follows correctly the plant’s
output, thus the accuracy of the model is verified.
It can be noticed that at the beginning there is
larger mismatch between the plant and the model.
It is caused by physical properties of a filament
in bulb which requires certain time to incandesce
from a cold startup. As this phase is over, the
PWA model correctly captures the optical channel
of the plant and it can be employed for MPC
design.

4. CONSTRAINED PREDICTIVE CONTROL

MPC is an optimization-based approach which
requires solving an optimization problem every
time as new measurements are known. Informa-
tion about the controlled plant are included into
optimization problem by a process model upon
which the future behavior is estimated. Control
input is then picked as the one from all possible
future realizations which fulfills specified criteria,
e.g. constraint satisfaction, and it is applied to
the plant. By this way an optimal operation of
the plant can be attained. Solving of optimization
problem at each sampling instant is, however,
limited by a computational resources available for
particular implementation scheme. Especially, if
the process has a very fast dynamics, which is the
case here, it might be not possible to solve MPC
within one sampling instant, i.e. 0.05 s. Therefore
the optimization problem needs to be pre-solved
for all possible feedback information and this the
core of multiparametric solutions to MPC or ex-
plicit MPC. This section applies the explicit MPC
approach based on PWA models. For more details,
the reader is referred to Borrelli (2003) and Baotić
et al. (2006).
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Table 3. Matrices of the normalized
model (8).

A1 B1 f1

A2 B2 f2

A3 B3 f3

A4 B4 f4

=

1.072 -0.464 0.277 -1.492

1 0 0 0

0.969 -0.431 0.485 -0.642

1 0 0 0

0.913 -0.410 0.616 0

1 0 0 0

0.868 -0.402 0.735 0.471

1 0 0 0

4.1 Prediction Model

In order to prevent numerical issues when em-
ploying the PWA model for MPC synthesis, it is
advised to perform coordinate transformation and
normalization. This can be achieved by introduc-
ing normalized variables x1, x2 and u as follows:

x1(k) =
v1(k)− v1,ref

v̄1
, (6a)

x2(k) =
v2(k)− v2,ref

v̄2
, (6b)

u(k) =
w(k)− wref

w̄
. (6c)

The suffix “ref” represent the desired steady state
value, i.e.

v1,ref = 32.09, v2,ref = 32.09, wref = 3.5 (7)

which is basically the linearization point of the
third dynamics (see Tab. 2) and v̄1 = 3.67,
v̄2 = 3.67, v̄ = 0.5 are constants. Applying the
normalization, the transformed PWA model yields

fPWA(x(k), u(k)) = Aix(k) + Biu(k) + fi (8)

where i = 1, 2, 3, 4 and state update matrices are
given in Tab. 3. The state space model (8) is
associated with the following regions

D1 = {x(k) | − 8.75 ≤ x2(k) ≤ −5.16} (9a)
D2 = {x(k) | − 5.16 ≤ x2(k) ≤ −1.72} (9b)
D3 = {x(k) | − 1.72 ≤ x2(k) ≤ 1.88} (9c)
D4 = {x(k) | 1.88 ≤ x2(k) ≤ 6.25} (9d)

Besides the dynamics as in (8), the following
constraints are assumed to be imposed on the
behavior of the prediction model:

X = {x(k) | − 8.75 ≤ x1(k) ≤ 6.25, (10a)
− 8.75 ≤ x2(k) ≤ 6.25}

U = {u(k) | − 7 ≤ u(k) ≤ 3}. (10b)

State constraints X are derived from the operating
range of light intensity (4) and input constraints
U represent the saturation limits (3).

4.2 Control Problem

The aim of the control strategy is to find an
optimal sequence of control inputs such that all

system states are driven to a desired equilibrium.
The equilibrium is given by the linearization point
for the third PWA dynamics (8) and in the trans-
formed coordinates (6) it is exactly the origin, i.e.
x1(k) = 0, x2(k) = 0, u(k) = 0. Mathematically,
the problem can be formulated as to find a se-
quence of future control moves U = [u(k), u(k +
1), . . . , u(k+N−1)] up to horizon N ∈ N+ which
steer the system states/input to the origin while
satisfying constraints (10). More precisely,

min
U

N−1∑

j=0

|Qx(k + j)|1 + |Ru(k + j)|1 (11a)

s.t. x(k + 1) = fPWA(x(k), u(k)) (11b)
x(k + N) ∈ Xf (11c)
x(k + j) ∈ X (11d)
u(k + j) ∈ U (11e)

where x(k) = [x1(k), x2(k)]T represents the state
vector, the function fPWA(·) describes the PWA
model defined in (8) and the sets X , U are the
constraints on input and state variables given by
(10). The set Xf is introduced to obtain closed-
loop stability guarantees (Mayne et al., 2000).
The index 1 in the cost function (11a) denotes
the 1-norm of given expression (sum of absolute
values of vector components), matrices Q and R
represent weighing factors.

Due to the presence of switching rules in the PWA
model (8), the overall optimization problem (11)
can be cast, using additional binary variables,
as a mixed-integer linear program (MILP) (Be-
mporad and Morari, 1999). To solve the MILP
problem (11) for all admissible initial conditions,
the problem is solved using multiparametric pro-
gramming Borrelli (2003), implemented in freely
available tools (Kvasnica et al., 2004).

4.3 Explicit MPC Synthesis

Solving problem (11) in a multiparametric fash-
ion a closed form solution u(k) as PWA function
which maps x(k) onto U . In particular, as was
shown by Borrelli (2003), we have u(k) = Fix(k)+
Gi if x(k) ∈ Pi for i = 1, . . . , nreg. Here, Pi =
{x(k) |Hix(k) ≤ Ki} are polyhedral sets (regions)
of the state-space. Similarly, a closed-form expres-
sion for the optimal cost function (11a) is again a
PWA function of the state, i.e. V (k) = Mix(k) +
Li if x(k) ∈ Pi.

The problem (11) has been solved with parameters
N = ∞, Q = I, R = 0.5 with the help of the MPT
toolbox (Kvasnica et al., 2004). The choice of
N = ∞ guarantees that the obtained MPC feed-
back law will provide closed-loop stability (Baotić
et al., 2006).The resulting PWA control law builds
a look-up table divided into 118 regions, defined
in variables x1(k), x2(k), and these regions are
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plotted in Fig. 3(a). Over each one of these re-
gions a local feedback law is defined as illustrates
Fig. 3(b). Similarly, the cost function is shown in
Fig. 3(c). Note that in the case of multiparametric
MILP solutions, the resulting PWA control law
can be discontinuous (Fig. 3(b)) and defined over
a nonconvex set. This is a consequence of using
binary variables to encode the IF-THEN rules
which describe behavior of the PWA prediction
model.

To implement the resulting look-up table in the
on-line experiment, one has to store and evaluate
the data. While storing part is limited by the
available memory, the evaluation task is limited by
the sampling time. The complexity of both tasks
depend on the number of regions nreg. Assuming
that we have enough memory to store the look-up
table, one have to still evaluate the PWA law. In
fact, this task comprises of two steps

(1) region identification
(2) evaluation of PWA law

from which the first part consumes the most time.
Even with the use of binary search tree algo-
rithm, where the evaluation time is logarithmic
in nreg (Tøndel et al., 2003), the scheme can still
be prohibitive for implementation. Motivated by
this fact, the goal is to apply the approximation
scheme of Kvasnica et al. (2008) where the whole
look-up table is replaced by one polynomial, which
is very cheap to implement. To do so, we have to
find the set of all perturbations of the control law
under which the closed loop renders stability. This
will be explained in the next section.

4.4 Stability Tubes

As was shown by Christophersen (2007), the ex-
plicit feedback law described in the previous sec-
tion is just one of many stabilizing feedbacks.
Specifically, based on the explicit solution to (11),
one can compute the family of controllers which
all stabilize the control model (8). This family is
characterized by sets in the state and input space
and is called stability tubes.

Definition 1. (Christophersen (2007)). Let V (x) be
a Lyapunov function for the system (8) with x ∈
X under a stabilizing controller u(x) ∈ U . Then
the set

S(V, β) := {x(k) ∈ X , u(k) ∈ U , (12)
V (x(k + 1))− V (x(k)) ≤ −β(‖x(k)‖)} .

is called a stability tube.

In other words, stability tubes are sets where
the given Lyapunov value function V (x) for sys-
tem (8) decreases with a factor β(‖x(k)‖) =

(a) Regions of the look-up table.

(b) Local control laws over each region.

(c) Value function.

(d) Stability tubes.

Fig. 3. Explicit solution to Problem (11) consists
of PWA map defined over 118 regions.
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β‖x(k)‖p ∈ R, β > 0, p = {1,∞}. Any control
input from within the stability tube will ensure
that the closed loop will be stable and constraints
on variables won’t be violated. Precisely,

Theorem 2. (Christophersen (2007)). Let the as-
sumptions of Definition 1 be fulfilled. Then every
control law u(x(k)), x(k) ∈ X , (also any sequence
of control samples u(k)) fulfilling

(x(k), u(k)) ∈ S(V, β) (13)

asymptotically stabilizes the system (8) to the
origin, ∀x(k) ∈ ⋃

i Pi.

Algorithm for computing the stability tubes and
all the relating routines are included in the MPT
Toolbox. Firstly, one has to find a piecewise affine
Lyapunov function for the closed loop system.
As the optimal solution is computed with the
infinite horizon, the value function in Fig. 3(c)
is a Lyapunov function. Secondly, one can apply
routines for computing the stability tubes and the
result is a collection of polyhedrals in the joint x-u
space and it is shown in Fig. 3(d).

4.5 Polynomial Approximation

Using the approximation scheme of Kvasnica et al.
(2008), the goal is to find a polynomial control law
of the form

µ(x) =[a11, a12]
[
x1

x2

]
+ (14)

[a21, a22]
[
x2

1

x2
2

]
+ [a31, a32]

[
x3

1

x3
2

]

which, when applied as a state feedback, guar-
antees closed-loop stability and constraint satis-
faction. Theorem 2 provides a sufficient condition
for existence of such a polynomial feedback law in
the sense that if (x, µ(x)) ∈ S(V, β), ∀x ∈ ⋃

i Pi,
then µ(x) will provide closed-loop stability and
constraint satisfaction. Therefore the search for
suitable polynomial coefficients aij of (14) can be
cast as the following optimization problem:

min
a11,...,a32

∑

j

‖(u(x)− µ(x))‖ (15a)

s.t. (x, µ(x)) ∈ S(V, β). (15b)

From all possible choices of µ(x) which satisfy
(15b), cost function (15a) is used to select the
coefficients which provide best approximation of
the optimal feedback law u(x). As was shown in
Kvasnica et al. (2008), optimization problem (15)
can be formulated as a semidefinite programming
problem, which can be solved using off-the-shelf
tools.

The main advantage of the polynomial feedback
law (14), compared to the MPC controller based

Table 4. Coefficients of the approxi-
mated polynomial (14).

a11, a12 -0.8718, -0.0007

a21, a22 -0.0519, 0.0004

a31, a32 0.0019, 0.0001
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x
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µ

optimal
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Fig. 4. Cross-section of the control laws through
x2 = 0.

on evaluating PWA feedback law, is reduction of
the total implementation and storage cost. On the
storage side, only the coefficients aij need to be
recorded in the memory, compared to storing the
regions Pi and the feedback laws Fi and Gi for the
PWA feedback law. The on-line implementation
cost is also greatly reduced, as only polynomial
evaluation for a given x need to be performed to
obtain a stabilizing control action.

The approximation scheme has been applied to
obtain polynomial control law of type (14) with
help of YALMIP (Löfberg, 2004). Computed co-
efficients are given in Tab. 4. Illustration of the ap-
proximation scheme is shown in Fig. 4 which rep-
resents a cross-section in stability tubes along the
coordinate x2 = 0. The polyhedral sets in Fig. 4
demonstrate the space of the stability tubes where
there exist a stabilizing control law according to
Theorem 2. Inside this space the approximated
polynomial (14) has been fitted and it is shown in
Fig. 4 with a dashed line while the optimal control
law is depicted with solid line.

5. REAL-TIME IMPLEMENTATION

In this section computational requirements are
evaluated for the optimal and approximated con-
troller. Both controllers are applied in the real-
time experiment and measured performance is
discussed.
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5.1 Computational Demands

Implementation of the optimal controller in the
on-line experiment is limited by the sampling time
Ts = 0.05 s. If the look-up table, obtained pre-
viously and consisting of 118 regions, is stored
and evaluated using the binary search tree algo-
rithm (Tøndel et al., 2003), the number of floating
point operations per second (FLOPS) which are
required to evaluate such a controller for a given
initial condition is at most 41. The memory re-
quirements are 2832 bytes for the control law and
1536 bytes for the search tree which gives a total
of 4368 bytes.

In the polynomial approximation scheme, the
number of FLOPS depend on the degree of ap-
proximated polynomial and on the polynomial
degree. By considering the polynomial (14) with
degree of three, the upper bound for evaluation
FLOPS is 14, less than a half of the runtime for
the binary search tree. More prominent, however,
is the drop in memory consumption. As state
above, the explicit MPC solution with 118 regions
requires 4368 bytes of memory storage, while to
store the polynomial feedback law (14), mere 24
bytes of memory are required (6 polynomial co-
efficients, each of them consuming 4 bytes when
represented as floating point numbers).

5.2 Experimental Data

The optimal explicit MPC controller as well as
the polynomial feedback strategy have been im-
plemented in real time and obtained results are
shown in Figs. 5(a), 5(b) and 5(c). The plots
represent the transition from the initial condition
x0 = [−8.7,−8.7]T to the origin. Input signal
generated by the optimal controller immediately
jumps to the upper limit and then gently ap-
proaches the origin. In the polynomial controller
this effect is different, the controller is slightly
slower, but the same stabilizing effect is achieved.
State and input profiles converge to desired steady
state, hence the control objective was met with
both approaches. It is interesting to note that
a polynomial controller acts better (in the sense
of the selected performance criterion (11a)) than
the optimal one. In particular, (11a) evaluates to
146.34 when the optimal MPC controller is used as
a feedback, compared to value of (11a) amount-
ing to 142.96 for the case where the polynomial
controller was used. This small difference can be
attributed to the fact that the optimal controller is
more sensitive to changes of the states. Neverthe-
less, the difference is small enough to say that both
controllers share roughly the same performance
while the approximated controller is significantly
cheaper than the optimal one.

Performance of both controllers has not been
tested on disturbance attenuation because this
effect cannot be fully compensated by any of
the used controllers since they do not contain an
integration part. Moreover, these effects are too
small to satisfactory evaluate the performance of
both controllers while showing their advantages
(e.g. constraint satisfaction).

5.3 Conclusion

Main motivation of this paper was to demon-
strate a cheap alternative to explicit MPC scheme
based on polynomial approximation of the optimal
feedback law. Control of the optical channel of
uDAQ28/LT device is considered as a benchmark
example to polynomial approximation scheme of
Kvasnica et al. (2008). The process is identified as
a second order linear discrete time system around
four operating points. Based on the identification
data, PWA model is constructed and deployed
for MPC design. The MPC problem is solved
in the multiparametric fashion, i.e. precomput-
ing the controller for whole possible operating
conditions, and the result is stored as a look-up
table. The properties of the explicit solution are
further exploited and a family of all stabilizing
controllers is constructed. From this family, one
controller of a special polynomial structure has
been selected, which implementation cost is the
cheapest. The polynomial controller has been ex-
perimentally tested in the closed loop, and has
shown good results.
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June 9–12, 2009, Štrbské Pleso, Slovakia Le-Th-1, 082.pdf

339



with nonlinear inductor. In IEEE COMPEL
Workshop on Control and Modeling for Power
Electronics, Zurich, Switzerland, August 2008b.

D. Q. Mayne, J. B. Rawlings, C. V. Rao, and
P. O. M. Scokaert. Constrained model predic-
tive control: Stability and optimality. Automat-
ica, 36:789–814, 2000.
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