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Abstract: Possibility to stabilize open-loop unstable processes using robust static
output feedback controllers was studied. The non-iterative algorithm based on solving
of linear matrix inequalities was used for design of robust PID like controllers.
The design procedure guaranteed with sufficient conditions the closed-loop robust
quadratic stability and the guaranteed cost of control. Possibility to use robust PI
and PID controllers for stabilization of a continuous stirred tank reactor was verified
by simulations. Considered reactor with one first order exothermic reaction had two
uncertain parameters: reaction rate constant and the reaction enthalpy. Furthermore,
the reactor had multiple steady states and it was stabilized in the surroundings
of its open-loop unstable steady state. Simulation results confirmed that presented
procedure can be successfully used for the design of robust stabilizing PID controllers.

Keywords: Robust stabilization, static output feedback, PID controller, continuous
stirred tank reactor, multiple steady states.

1. INTRODUCTION

Continuous stirred tank reactors are ones of the
most important plants in process industry and
exothermic reactors are very interesting systems
from the control viewpoint because of their poten-
tial safety problems and the possibility of exotic
behavior such as multiple steady states, see e.g.
Molnár et al. (2002). Furthermore, operation of
chemical reactors is corrupted by many different
uncertainties. Some of them arise from varying or
not exactly known parameters, as e.g. reaction
rate constants, reaction enthalpies, heat trans-
fer coefficients, etc. Operating points of reactors
change in other cases. All these facts can cause
poor performance or even instability of closed-
loop control systems. Optimal control strategies,
which are often used for reactor control design,
can fail in the presence of uncertainties. Appli-
cation of robust control approach is one way for

overcoming all these problems, as it is shown e.g.
in Alvarez-Ramirez and Femat (1999), Gerhard
et al. (2004), Bakošová et al. (2005), Tlacuahuac
et al. (2005) and others.

Robust control has grown as one of the most
important areas in modern control design since
works by Doyle and Stein (1981), Zames and
Francis (1983) and many others. One of the solved
problems is also the problem of robust static out-
put feedback control (RSOFC), which has been
till now an important open question in control
engineering, see e.g. Iwasaki et al. (1994), Syrmos
et al. (1997) and references therein. Various ap-
proaches have been used to study two aspects of
the robust stabilization problem.

The first aspect is related to conditions under
which the linear system described in the state
space can be stabilized via output feedback. The
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necessary and the sufficient conditions for stabi-
lization of a linear continuous-time invariant sys-
tem via static output feedback can be found e.g.
in Kučera and de Souza (1995) and for stabiliza-
tion of an uncertain affine linear systems e.g. in
Veselý (2004). Recently, it has been shown that an
extremely wide array of robust controller design
problems can be reduced to the linear matrix
inequality (LMI) problems. Especially, the LMIs
in semi-definite programming attract a big inter-
est because of their ability to describe non-trivial
control design problems integrating various spec-
ifications such as robustness, structural and per-
formance constraints, as well as their suitability
for efficient numerical processing through various
available solvers, see e.g. Boyd et al. (1994) and
references therein.

The second aspect of the robust stabilization
problem is related to a procedure for obtaining
a stabilizing or robustly stabilizing control law.
Most of recent works present iterative algorithms
in which sets of LMI problems are repeated until
certain convergence criteria are met, see e.g. Cao
and Sun (1998), J. Bernussou and Korogui (2005).

The necessary and the sufficient conditions for
stabilization of an uncertain polytopic system
using static output feedback are formulated in
this paper at first. The polytopic uncertainty is
considered, while it is recognized as one of the
most difficult structured uncertainties. Then the
problem of robust controller design is transformed
to the LMI problems. A computationally simple
LMI based non-iterative algorithm is presented,
which enables designing robust static output feed-
back PID like controllers. The design procedure
assures with sufficient conditions the quadratic
stability of the closed-loop system and the guar-
anteed cost of control. Designed robust controllers
are used for stabilization of the open-loop unstable
continuous-time stirred tank reactor (CSTR) with
two uncertain parameters.

2. ROBUST STATIC OUTPUT FEEDBACK
CONTROL

2.1 Static output feedback, quadratic stability and
guaranteed cost

Consider a linear time-invariant (LTI) system
given by the state-space representation

ẋ(t) = Ax(t) + Bu(t), x(t0) = x0

y(t) = Cx(t) (1)

where x(t) ∈ Rn is the state, u(t) ∈ Rm is the
control, y(t) ∈ Rr is the output and matrices A,
B, C have appropriate dimensions.

2.1.1. Static output feedback with P controller
For the system (1), it is necessary to find a static
output feedback

u(t) = Fy(t) (2)

with F ∈ Rm×r such that the closed-loop system

ẋ(t) = (A + BFC)x(t) = ACLx(t) (3)

is stable, i.e. eigenvalues of ACL have negative
real parts.

Finding of F is important when the state matrix
A is unstable since having F leads to a stabilizing
static output feedback.

But, the output feedback (2) does not have an
integral action. One way of forcing an integral
action to the output feedback is to put a set of
integrators at the output of the plant, see e.g.
Mikleš et al. (2006), Puna and Bakošová (2007).
Forcing of derivative action to the output feedback
has analogous basement.

2.1.2. Static output feedback with PI controller
For the system (1), it is necessary to find a static
output feedback

u(t) = F1y(t) + F2

∫ t

0

y(τ)dτ (4)

with F 1, F 2 ∈ Rm×r.

Let us define a new state z(t) = [zT
1 (t), zT

2 (t)]T ,
where z1(t) = x(t) and z2(t) =

∫ t

0
y(τ)dτ . The

dynamics of the newly defined system can by
described as follows

ż1(t) = ẋ(t) = Az1(t) + Bu(t), x(t0) = x0(5)

ż2(t) = y(t) = Cz1(t) (6)

or

ż(t) = Az(t) + Bu(t), (7)

where

A =
(

A 0
C 0

)
, B =

(
B
0

)
. (8)

The output of the newly defined system can by
described as follows

y(t) = Cz(t), (9)

where

C =
(

C 0
0 I

)
(10)

with I ∈ Rr×r.
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So, the design of the static output feedback PI
controller (4) is transformed to the design of a
static output feedback P controller F = [F 1 F 2]
for the system (7) and (9).

2.1.3. Static output feedback with PID controller
For the system (1), it is necessary to find a static
output feedback

u(t) = F 1y(t) + F 2

∫ t

0

y(τ)dτ + F 3
dy(t)

dt
(11)

with F 1, F 2, F 3 ∈ Rm×r.

Let us define a new state z(t) = [zT
1 (t), zT

2 (t)]T ,
where z1(t) = x(t) and z2(t) =

∫ t

0y(τ)dτ . Using
z(t) and (1) leads to

y(t) = Cz1(t) =
(
C 0

)
z(t), (12)

∫ t

0

y(t)dt = z2(t) =
(
0 I

)
z(t), (13)

dy(t)
dt

= Cẋ(t) = CAx(t) + CBu(t) =
(
CA 0

)
z(t) + CBu(t). (14)

After the substitution (12), (13) and (14) into
(11) and under the assumption that the matrix
F 4 = (I − F 3CB)−1 exists, we obtain

u(t) = F 1y1(t) + F 2y2(t) + F 3y3(t) (15)

where yi(t) = Ciz(t), i = 1, 2, 3, C1 = (C 0),
C2 = (0 I), C3 = (CA 0), F 1 = F 4F 1,
F 2 = F 4F 2 and F 3 = F 4F 3.

Defining

F =
(
F 1 F 2 F 3

)
, (16)

y(t) =
(
yT

1 (t) yT
2 (t) yT

3 (t)
)T

, (17)

C =
(

C
T

1 C
T

2 C
T

3

)T

, (18)

we obtain a new dynamic system

ż(t) = Az(t) + Bu(t)

y(t) = Cz(t) (19)

with

u(t) = Fy(t) (20)

and

A =
(

A 0
C 0

)
, B =

(
B
0

)
, C =




C 0
0 I

CA 0


 .(21)

So, the design of a static output feedback PID
controller is transformed to the design of a static

output feedback P controller for the system (19).
After finding the P controller described by F =(
F 1 F 2 F 3

)
, we obtain the PID controller (11)

as follows

F 3 = F 3(I + CBF 3)−1 (22)

F 2 = (I − F 3CB)F 2 (23)

F 1 = (I − F 3CB)F 1 (24)

2.1.4. Quadratic stability The sufficient condi-
tion for the asymptotic stability of the system
(3) is feasibility, i.e. the existence of a quadratic
Ljapunov function

V (x) = x(t)T Px(t), P > 0 (25)

such that
dV (x(t))

dt
= xT (t)[(A + BFC)T P (26)

+ P (A + BFC)]x(t) < 0

along all state trajectories. If a positive definite
matrix P satisfying (26) exists, the system (3) is
quadratically stable.

The necessary and the sufficient condition for
quadratic stability of (3) is

AT
CLP + PACL < 0, P > 0, P = P T . (27)

For S = P−1, (27) can be rewritten as

SAT
CL + ACLS < 0, S > 0, S = ST . (28)

The problem of solving the matrix inequality (28)
is difficult because it is not jointly convex problem.

2.1.5. Guaranteed cost Suppose the cost func-
tion associated with the system (1) in the form

J =
∫ ∞

0

[
x(t)T Qx(t) + u(t)T Ru(t)

]
dt (29)

where Q = QT ≥ 0 and R = RT > 0 are matrices
of appropriate dimensions.

If there exist a control law u∗(t) and a positive
scalar J∗ such that the closed loop system (3) is
stable, and the cost function (29) satisfies J ≤ J∗,
then J∗ is said to be guaranteed cost, and u∗(t)
is said to be guaranteed cost control law for the
system (1), see e.g. Veselý (2002).

2.2 Robust static output feedback, robust quadratic
stability and guaranteed cost

Consider again the linear time-invariant system

ẋ(t) = Ax(t) + Bu(t), x(t0) = x0

y(t) = Cx(t) (30)

Suppose further that the system (30) is a polytop
of linear time-invariant systems
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ẋ(t) = Aix(t) + Biu(t), x(t0) = x0

y(t) = Cix(t) (31)

i = 1, . . . , N

which represent vertices of (30) and matrices A,
B, C are convex envelopes of matrices Ai, Bi,
Ci, respectively, i = 1, . . . , N . The number of
vertex systems N = 2p , where p is the number of
uncertain parameters of (30).

Consider also an uncertain polytopic closed-loop
system

ẋ(t) = (A + BFC)x(t) = ACLx(t) (32)

with a static output feedback controller F , where
ACL is a convex envelope of a set of linear time
invariant matrices ACLi

ACLi = Ai + BiFCi, i = 1, . . . , N. (33)

System (32) is quadratically stable if and only if
there exists a positive definite matrix P > 0 such
that following inequalities hold

AT
CLiP + PACLi < 0, P > 0, i = 1, . . . , N.

(34)

Consider the uncertain polytopic system (30).
Then according to Veselý (2002), the following
two statements are equivalent.

(1) The system (30) is robust static output feed-
back quadratically stabilizable.

(2) There exist a positive definite matrix P =
P T > 0 and a matrix F satisfying the
following matrix inequalities

(Ai + BiFCi)T P + P (Ai + BiFC i) < 0

i = 1, . . . , N. (35)

Consider the uncertain polytopic system (30).
Then according to Veselý (2002), the following
three statements are equivalent.

(1) The system (30) is simultaneously static out-
put feedback stabilizable with guaranteed
cost

∫ ∞

0

[
x(t)T Qx(t) + u(t)T Ru(t)

]
dt ≤

x0(t)T Px0(t) = J∗, P > 0. (36)

(2) There exist matrices P > 0, Q > 0, R >
0 and a matrix F such that the following
inequalities hold

(Ai + BiFCi)T P + P (Ai + BiFCi) + Q

+ CT
i F T RFC i < 0, i = 1, . . . , N. (37)

(3) There exist matrices P > 0, Q > 0, R >
0 and a matrix F such that the following
inequalities hold

AT
i P + PAi − PBiR

−1BT
i P

+ Q ≤ 0, i = 1, . . . , N (38)

(BT
i P + RFC i)φ−1

i (BT
i P + RFC i)T

−R ≤ 0, i = 1, . . . , N (39)

where

φi =− (AT
i P + PAi − PBiR

−1BT
i P

+ Q), i = 1, . . . , N. (40)

2.3 Robust static output feedback controller design

The design procedure for simultaneous static out-
put feedback stabilization of the system (30) with
guaranteed cost (36) is according to Veselý (2002)
based on statements formulated in previous sec-
tions.

Using the Schur complement formula and defining
S = P−1, the inequalities (38) are transformed to
the following LMIs

[
SAT

i + AiS −BiR
−1BT

i S
√

Q√
QS −I

]
≤ 0

γI < S, i = 1, . . . , N (41)

where γ > 0 is any non-negative constant.

Using P = S−1, the inequalities (39) can be
rewritten to the following LMIs

[
−R BT

i P + RFC i

(BT
i P + RFCi)T −φi

]
≤ 0

i = 1, . . . , N. (42)

The algorithm for static output simultaneous sta-
bilization of the system (30) with the guaranteed
cost (36) is following.

(1) Compute S = ST > 0 from the LMIs (41).
(2) P = S−1.
(3) Compute F from the LMIs (42).
(4) If the solution of (41) is not feasible, the

system (30) is not simultaneously stabilizable
by a static output feedback. If the solution
of (42) is not feasible, the closed-loop system
(32) is not quadratically stable with guaran-
teed cost. Then change Q, R or γ in order
to find feasible solutions. If the solutions of
(41), (42) are feasible, then the system (30)
is simultaneously stabilizable and the system
(32) is quadratically stable with guaranteed
cost J∗ = xT

0 Px0.

There are two parameters in the presented al-
gorithm, which can be called tuning parameters.
They are weighting matrices Q and R in (36). The
choice of γ in (41) also influences the solution, but
γ is only a LMI variable.
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3. CONTROLLED CSTR

Hydrolysis of propylene oxide to propylene gly-
col in a continuous stirred tank reactor (CSTR)
(Molnár et al. (2002)) was chosen as a controlled
process. The reaction is as follows

C3H6O + H2O −→ C3H8O2 (43)

and it is of the first order with respect to propylene
oxide as a key component. The dependence of the
reaction rate constant on the temperature in the
CSTR is described by the Arrhenius equation

k = k∞e−
Ea

RTr (44)

where k∞ is the pre-exponential factor, Ea is the
activation energy, R is the universal gas constant
and Tr is the temperature of the reaction mixture.
Assuming usual simplifications (Ingham et al.
(1994)), the mass balance for any species j in the
reactor is

Vr
dcj

dt
= qr (c0j − cj) + νjrVr (45)

The simplified enthalpy balance of the reaction
mixture is

VrρrCPr
dTr

dt
= qrρrCPr (Tr0 − Tr)

−UA (Tr − Tc) + rVr(−∆rH
o) (46)

and the simplified enthalpy balance of the cooling
medium is

VcρcCPc
dTc

dt
= qcρcCPc (Tc0 − Tc)+UA (Tr − Tc)

(47)

In previous balances, V is the volume, c is the
molar concentration, q is the volumetric flow rate,
ν is the stoichiometric coefficient, r = kcC3H6O is
the molar rate of the chemical reaction, T is the
temperature, ρ is the density, CP is the specific
heat capacity, ∆rH

o is the reaction enthalpy, U
is the overall heat transfer coefficient and A is
the heat exchange area. The subscripts denote:
0 the feed, r the reaction mixture, c the cooling
medium, and j the j–th component. The values
of constant parameters and steady-state inputs of
the CSTR are summarized in Table 1.

Model uncertainties of the CSTR follow from the
fact that there are two physical parameters in this
reactor, which values are known within intervals:
the reaction enthalpy and the pre-exponential fac-
tor (Table 2). The nominal values of these pa-
rameters are mean values of the intervals. The
minimum and the maximum values of the inter-
vals are used for obtaining models, which create
the vertex systems (31) of the uncertain polytopic
system (30).

Table 1. Constant parameters and
steady-state inputs of the CSTR

Variable Value Unit
Vr 2.407 m3

Vc 2 m3

ρr 947.19 kg m−3

ρc 998 kg m−3

CPr 3.7187 kJ kg−1K−1

CPc 4.182 kJ kg−1K−1

AU 120 kJ min−1K−1

Ea/R 10183 K
qr 0.072 m3min−1

qc 0.6307 m3min−1

cC3H6O,0 0.0824 kmol m−3

cC3H8O2,0 0 kmol m−3

Tr0 299.05 K
Tc0 288.15 K

Table 2. Uncertain parameters in the
CSTR

Parameter Unit Minimal Value Maximal Value
∆rHo kJ kmol−1 −5.28× 106 −5.64× 106

k∞ min−1 2.4067× 1011 3.2467 × 1011

4. SIMULATION RESULTS

4.1 Steady-state and open-loop analysis

The steady-state behavior of the chemical reactor
with nominal values and also with all 4 com-
binations of minimal and maximal values of 2
uncertain parameters was studied at first. It can
be stated the reactor has always three steady
states, two of them are stable and one is unstable.
The situation for the nominal model is shown in
Figure 1, where the curve QGEN (red line) is
the heat generated by the reaction and the line
QOUT (blue line) is the heat withdrawn from the
reactor. The steady-state operating points of the
reactor are points, where the curve and the line
intersect. The steady states are stable if the slope
of the cooling line is higher than the slope of the
heat generated curve. This condition is satisfied in
steady states at the temperatures Tr = 296.7 K
and Tr = 377.5 K, and it is not satisfied in the
steady state at the Tr = 343.1 K. The steady-
state behavior of the chemical reactor is similar
for all vertex systems.

From the viewpoint of safety operation or in
the case when the unstable steady state coin-
cides with the point that yields the maximum
reaction rate at a prescribed temperature, it is
necessary to stabilize CSTR in the surroundings
of the open-loop unstable steady state, see e. g.
Pedersen and Jorgensen (1999), Antonelli and As-
tolfi (2003), González and Alvarez (2006), Salgado
et al. (2006), Salau et al. (2006).

In this context, the open-loop behavior of the
reactor was studied at first. The initial temper-
ature of the reaction mixture was chosen Tr(0) =
341.5 K. Simulation results obtained for the nom-
inal model (black line) and 4 vertex systems (ma-
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Fig. 1. Multiple steady states of CSTR
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Fig. 2. Open-loop response of CSTR

genta, blue, cyan and green lines) are shown in
Figure 2. They confirm that the temperature of
the reaction mixture in the CSTR does not con-
verge without feedback control into the unsta-
ble steady state represented by the temperature
Tr = 343.1 K (red line).

4.2 Stabilization of the CSTR

The main aim was to stabilize the CSTR using
robust static output feedback into its open-loop
unstable steady state. The design of robust sta-
bilizing PI and PID controllers was based on the
theory presented in Section 2.

It was necessary to obtain a linear state space
model (30) of the controlled process at first. The
linear mathematical model of the CSTR was de-
rived using linearization of non-linear terms in the
mass balances of propylene oxide and propylene
glycol and the enthalpy balance of the reaction
mixture. It was supposed for control purposes that
the reactor was a two-input single-output system.
The reaction mixture flow rate qr and the coolant
flow rate qc were chosen as the control inputs
and the temperature of the reaction mixture Tr

was selected as the controlled output. The other
input variables were constant. The matrices of the
nominal linear model in the operating point at the
temperature Tr = 343.1 K were

A0 =




−0.0664 0 −0.0001 0
0.0365 −0.0299 0.0001 0
54.9420 0 0.1329 0.0138

0 0 0.0144 −0.3297




B0 =




0.01886 0
−0.0188 0
−18.3005 0

0 −1.1978




C0 =
(
0 0 1 0

)
(48)

The eigenvalues of A0 are −0.0299, 0.0929,
−0.0260, −0.3301, and they confirm the insta-
bility of the reactor at the temperature Tr =
343.1 K. For 2 uncertain parameters, we obtained
22 = 4 linear models, which represented vertices
(31) of the uncertain polytopic system (30). All
vertex systems were also unstable.

For finding stabilizing output feedback PI or PID
controllers, it was necessary to solve two sets of
LMIs (41), (42). For their solution, the LMI MAT-
LAB Toolbox was used. Following parameters in-
fluenced solution and could be changed: Q, R, γ.
In dependence on the choice of these parameters,
it was possible to find several stabilizing PI and
PID controllers. The best simulation results with
fast responses and small overshoots were obtained
using the PI and the PID controllers presented
in Table 3. They were obtained for Q, R and γ
chosen as follows

Q =




27 0 0 0 0
0 27 0 0 0
0 0 9× 10−7 0 0
0 0 0 9× 10−7 0
0 0 0 0 9× 10−7




R =
(

9× 10−3 0
0 9× 10−4

)
, γ = 5× 10−6.

The choice of Q and R was done according to
the values of the state and the control variables.
Because the values of these variables differ by
several orders, the values of elements of Q and
R also differ by several orders.

Table 3. Stabilizing PI and PID con-
trollers

PI

[
3.0823 × 10−2 8.5148× 10−3

5.4289 × 10−1 2.2448× 10−1

]

PID

[
9.7077× 10−2 3.5293 × 10−2 1.4297 × 10−2

4.8860 1.8347 3.6488

]

The possibility to stabilize the reactor using de-
signed robust static output feedback PI and PID
controllers was studied by simulations. The non-
linear model of the CSTR was used as the con-
trolled system and the initial temperature of the
reaction mixture was Tr(0) = 341.5 K. The aim
was to control the temperature in the CSTR to
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the value Tr = 343.1 K. The control input bound-
aries were as follows: qr ∈ [0; 0.18] m3min−1

and qc ∈ [0; 1.58] m3min−1. Simulation results
obtained with the PI and PID robust static feed-
back controllers presented in Table 3 are shown
in Figs. 3, 4 for the controlled output Tr and the
control inputs qr and qc. The setpoint is drawn
by red line, the black line represents the nominal
system and vertex systems are represented by
magenta, blue, cyan and green lines. Both, PI and
PID static output feedback controllers are able
to stabilize the CSTR with uncertainties into its
open-loop unstable steady state.
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Fig. 3. Robust PI stabilization of CSTR

The possibility to use robust controllers in the
presence of disturbances was studied, too. Fol-
lowing disturbances were loaded: the inlet tem-
perature of the coolant Tc0 decreased by 5 K
for t ∈ [50; 100) min, the feed temperature
of the reaction mixture Tr0 decreased by 3 K
for t ∈ [100; 150) min and the feed concentra-
tion of propylene oxide cC3H6O,0 decreased by
0.006 mol m−3 for t ∈ [150; 200) min. Obtained
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Fig. 4. Robust PID stabilization of CSTR

simulation results are shown in Figures 5, 6. The
robust PI and PID controllers are able to sta-
bilize the CSTR also in the presence of distur-
bances. The robust PID controller attenuates dis-
turbances very fast and the overshoots caused by
disturbances are very small.

The ability of robust static output feedback PI a
PID controller to stabilize the CSTR with noisy
signals was also studied. The white noise signal
was generated using the Simulink block Band-
limited White Noise and the noise power was
0.0005. The signal was added to the controlled
output. Obtained simulation results are shown in
Figures 7, 8. The robust PI and PID controllers
are able to stabilize the CSTR with noisy signals,
but especially PID controllers can generate the
control inputs which cannot be realized.

CONCLUSION

Possibility to stabilize the exothermic CSTR with
two uncertain parameters using static output
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Fig. 5. Robust PI stabilization of CSTR in the
presence of disturbances

feedback PI and PID controllers was studied. The
results confirm that the presented simple non-
iterative algorithm based on solving of two sets of
LMIs is an effective tool for the design of robust
stabilizing controllers. Its advantage is that it can
be used for P, PI and PID controller design. Ro-
bust static output feedback PI or PID controllers
can be successfully used for control of CSTRs with
multiple steady states, uncertainties and distur-
bances, even though CSTRs are very complicated
systems from the control viewpoint. Both, PI and
PID controllers are able to stabilize the open-
loop unstable processes and their advantage in
comparison with the robust P controller is that
they do not retain offsets. The disadvantage of
PID controllers is their more complicated imple-
mentation and they are not suitable for using in
the presence of noise.
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Fig. 6. Robust PID stabilization of CSTR in the
presence of disturbances
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