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Abstract: A novel robust stability condition is proposed appropriate for the structured 
uncertain system matrix with a constant part; this is the case when a dynamic robust 
controller is designed (e.g. PID) and the augmented system includes both the uncertain 
controlled system and the fixed part respective to controller dynamics. Generally, the 
developed condition is less conservative than those from literature. Structured auxiliary 
matrices are used with a parameter dependent part respective to the fixed part of aug-
mented system matrix, which reduces conservatism of the resulting robust stability con-
dition. The resulting robust control design method applies BMI solver on the proposed 
stability condition. The properties of the method are illustrated on randomly generated 
examples.  

Keywords: Robust control, Parameter dependent Lyapunov function, Polytopic uncer-
tainty domain, Bilinear matrix inequalities 

1 INTRODUCTION 

Robustness belongs to important control design quali-
ties when the results are to be implemented in prac-
tice. Modelling real plants inherently includes uncer-
tainties (modelling errors due to linearization and ap-
proximation, disturbances etc.) that have to be consid-
ered in control design. Robust stabilization guarantees 
closed loop stability over the whole uncertainty do-
main. Recently, several approaches have been devel-
oped in robust control; the problem of robust stability 
and robust control is often formulated as an optimiza-
tion problem. Recently, new efficient computational 
techniques have been developed to solve optimization 
tasks that can be formulated in form of Linear Matrix 
Inequalities (LMI). LMI techniques enable to solve a 
large set of convex problems in polynomial time (e.g. 
Boyd et al. 1994). Significant effort has been made to 
formulate various robust control problems in algebraic 
framework (Skelton et al. 1998) and transform them 
to LMI. This approach can be directly applied when 
control problems for linear systems with a convex 
(affine or polytopic) uncertainty domain are solved. 
However, there are many important control problems 

even for linear systems, which have been proved to be 
NP hard (Blondel and Tsitsiklis 1997). Generally, the 
class of structured linear control problems such as 
decentralized control and simultaneous SOF belong to 
NP hard problems. Nevertheless, various techniques 
have been developed to reformulate the problem as 
LMI one using certain convex relaxations as lineariz-
ing or convexifying functions (e.g. deOliveira et al. 
2000; Rosinová and Veselý 2003). Another possible 
way is to formulate and solve the bilinear matrix ine-
qualities (BMI) respective to robust control design 
problem. A nice review and basic characteristics of 
LMI and BMI in various control problems are in (Van 
Antwerp and Braatz 2000). Various algorithms to 
enhance numerical tractability of these nonconvex 
problems have been developed e.g. (Tuan et al. 2000).  

In robust control of linear systems polytopic uncer-
tainty domain is often considered since it has nice 
properties as a convex envelope of its vertices. For 
this uncertainty model, the notion of quadratic stabil-
ity has been introduced considering one Lyapunov 
function for the whole uncertainty domain. This ap-
proach includes robustness against arbitrarily quick 
changes of system parameters within the uncertainty 
domain; however for slowly varying systems quad-
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ratic stability yields too conservative results. There-
fore the robust stability notion and parameter depend-
ent Lyapunov function have been introduced to reduce 
conservatism, e.g. (deOliveira et al., 1999, Henrion et 
al 2002). 

To authors knowledge one of the best robust stability 
conditions has been proposed in (Peaucelle et al. 
2000), see (Grman et al. 2003). To minimize conser-
vatism of the robust stability condition, two auxiliary 
matrices are included. These auxiliary matrices appear 
in product with the system matrix varying over the 
uncertainty domain. The auxiliary matrices therefore 
have to be fixed for the whole uncertainty domain to 
keep linearity in uncertainty parameters. However, 
when a dynamic controller structure is considered, the 
augmented system matrix has a fixed part associate 
with controller dynamics (i.e. for PID case). To fur-
ther reduce conservatism of the stability criterion, 
structured uncertainty of the controlled system matrix 
is employed and the auxiliary matrices are structured 
respectively. Then the part associate to controller dy-
namics is considered as parameter dependent (Duan et 
al. 2006; Gao et al. 2008). Another approach to re-
duce conservatism of stability criterion is using the 
polynomial parameter dependent Lyapunov function 
which, however, leads to enormously increasing num-
ber of unknown variables (Ebihara et al 2006). 

In this paper we apply the approach described in pre-
vious paragraph and use structured auxiliary matrices 
to design a robustly stabilizing controller. The pro-
posed use of structured matrices leads to “structured 
robust stability condition” which is the base for robust 
controller design. The resulting matrix inequality is 
solved as BMI. All developments are performed in 
general formulation including both discrete-time and 
continuous-time systems. The proposed robust control 
design approach has been verified on a PI robust con-
troller design for randomly generated examples. 

The structure of paper is following. In Section 2 the 
robust control problem is formulated for both con-
tinuous and discrete-time controllers. In Section 3 the 
novel robust stability condition employing structured 
auxiliary matrices is presented. The controller design 
algorithm based on BMI solution is illustrated in Sec-
tion 4 on the randomly generated set of uncertain dis-
crete-time systems.  

2 PROBLEM FORMULATION AND 
PRELIMINARIES 

Consider a linear affine uncertain system in general 
form covering both continuous and discrete-time 
cases: 
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lmn RtyRtuRtx ∈∈∈ )(,)(,)(  are system state, con-

trol and output vectors respectively; 000 ,, CBA are 
known constant matrices of appropriate dimensions 
corresponding to the nominal system; BA δδ ,  are ma-
trices of uncertainties of the respective dimensions. In 
the following we consider square systems, i.e. m=l. 
For the affine uncertainties BA δδ ,  the respective 
equivalent polytopic model is used, given by its verti-
ces 

)},,(),...,,,(),,,{( 2211 CBACBACBA NN            (2)   

where N  is the respective number of polytope verti-
ces.                             

Consider a controller with dynamics described by 
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where )()()(,)( tytwteRte l −=∈  is the control error 
(without loss of generality w(t)=0 is considered); AR,  
BR  are controller dynamics matrices; K1, K2 are con-
troller gains to be designed. Matrices of controller 
dynamics are determined by the controller structure, 
e.g. for discrete-time PI controller we have  

 mRR IBA == , mm
m RI ×∈  is identity matrix. 

Combining (1) and (3), the augmented closed loop 
system is obtained  
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or alternatively, using the polytopic model (2) the 
closed loop dynamics is described as 
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Note that while the upper blocks of the closed loop 
matrix ii AA 1211 , are parameter dependent (varying 
depending on their position in the uncertainty do-
main), the lower ones 2221, AA  are constant for whole 
uncertainty domain - they are associate with control-
ler, which is fixed for the whole uncertainty domain. 
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This structure of system matrices – with lower part 
fixed for the whole uncertainty domain - enables to 
relax the stability condition used for robust controller 
design in Section 3.  

The main aim of this paper is to design robust stabiliz-
ing controller for the uncertain system (1), in other 
words to find such control gain matrices K1, K2 which 
guarantee that the closed loop uncertain system (5),(6) 
is parameter dependent, quadratically stable within the 
whole uncertainty domain (2), (or (6) for closed loop 
system). 

Recall briefly the basic notions concerning Lyapunov 
stability. To cover both continuous and discrete time 
cases, the D-stability concept (e.g. Henrion, 2002) has 
been used. In the following, * denotes transpose com-
plex conjugate. 

Definition 1  (D-stability) 

Consider the D-domain in the complex plain defined 
as 
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The considered linear system (1) is D-stable if all its 
poles lie inside the D-domain.  

In the following, the standard choice of ijr is used: 

0,1,0 221211 === rrr  (for a continuous-time system); 

1,0,1 221211 ==−= rrr  (for a discrete-time system).  

Quadratic D-stability is equivalent to the existence of 
one (parameter independent) Lyapunov function for 
the whole set describing the uncertain system model; 
this approach guarantees stability over the whole un-
certainty domain for uncertain time invariant systems 
as well as for time variant systems where the parame-
ters can vary at any rate within the uncertainty do-
main.                         

The robust stability notion based on the parameter 
dependent Lyapunov function (PDLF) defined as 
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  iα  are respective to those in (6)  

has been introduced to obtain less conservative results 
than those obtained using quadratic stability with a 
unique Lyapunov function.  

Definition 2  (deOliveira et al. 1999) 

System (5) is robustly D-stable in the convex uncer-
tainty domain (6) with parameter-dependent 
Lyapunov function (7) if and only if there exists a 
matrix 0)()( >= TPP αα such that 
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for all α such that ( )αCA  is given by (6).         

Recall the sufficient robust D-stability condition pro-
posed in (Peaucelle et al. 2000),   

Lemma 1 

If there exist matrices nxnnxn RGRE ∈∈ ,  and N sym-

metric positive definite matrices nxn
i RP ∈  such that 

for all i = 1, …, N :  
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then the system (5) is robustly D-stable.   

Note that the auxiliary matrices E and G are constant 
for the whole uncertainty domain which makes (9) 
linear in i.  

In the sequel, 0>X denotes a positive definite ma-
trix; * in matrices denotes the respective transposed 
term to make the matrix symmetric; I is an identity 
matrix and 0 is a zero matrix of the respective dimen-
sions. 

3 ROBUST STABILITY CONDITION FOR 
PARAMETER DEPENDENT AUXILIARY 

MATRICES 

In this section the novel robust stability condition is 
developed from (9) employing the closed loop system 
matrix structure (6) to further decrease a certain con-
servatism still present in (9). This aim is reached by 
considering more general form of auxiliary matrices E 
and G in (9), with parameter dependent blocks corre-
sponding to the constant part of the system matrix (6). 
In this way, known structure of the closed loop uncer-
tainty enables to relax the stability condition (9) fur-
ther used for the robust controller design. 

The idea has been motivated by (Duan et al. 2006; 
Gao et al. 2008) where structured slack matrices have 
been used for the H2 and Hinf filtering problems. The 
crucial point is to choose such a structure of the auxil-
iary matrices E and G that resulting products 

cici GAEA ,  do not destroy linearity in i of the respec-
tive stability condition, therefore to guarantee stability 
it is sufficient if this condition is satisfied in the verti-
ces of the convex domain (6). 

To achieve the outlined aim, the structure of E and G 
respective to the system matrix (6) is considered: 
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where dimensions of the blocks of ii GE ,  correspond 
to the structure of ciA defined in (6); index i denotes 
the uncertainty domain parameter dependence analo-
gous to (7). The Lyapunov matrix (7) is structured as 
follows  

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
=

i
T

i

ii

i
PP

PP
P

2212

1211
.        (11) 

Considering structure of the matrices iiici PGEA ,,,  the 
main result - relaxed stability condition is obtained. 

Theorem 1  

If there exist matrices nxn
i

nxn
i RGRE ∈∈ , with blocks 

defined by (10), and N symmetric positive definite 
matrices nxn

i RP ∈  defined by (11) such that:  
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     for all i = 1,…, N 

where entries of matrix Mi are:  
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then the system (5) is robustly D-stable.  

To simplify reading recall that according to (6): 
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Symbol sym(X)  denotes TXX + . 

 

 

Proof 

The proof of Theorem 1 is straightforward: substitut-
ing structured matrices (6), (10) and (11) into suffi-
cient robust stability condition (9), the matrix inequal-
ity (12) is received.  

Note that (12) is linear in i and it is LMI for stability 
analysis, i.e.  considering unknown matrices 

iii PGE ,, .  

Corollary 1 

If there exist matrices K1, K2 such that (12) holds for 
ciA defined by (6), then a controller (3) robustly stabi-

lizes the uncertain system (1) within the polytopic 
uncertainty domain given by vertices (2). 

Corollary 1 suggests the way to design a robust con-
troller. Since (12) is bilinear with respect to the un-
known matrices iii GEPKK ,,,, 21  it can be solved 
either using some convex relaxation technique yield-
ing a respective LMI formulation, or directly using 
some BMI solver. We adopt the latter way and pro-
pose the robust controller design procedure by solving 
(12) as BMI for unknown matrices iii P,G,E  (simulta-
neously for all vertices). Recall, that ii G,E are auxil-
iary matrices free of any constraints; iP  are symmetric 
positive definite (these matrices define parameter de-
pendent Lyapunov function (7)). The proposed robust 
controller design procedure has been verified on the 
set of randomly generated examples both for discrete-
time and continuous-time systems. The results has 
been compared with those received using “unstruc-
tured” robust stability condition (9). 

The robust stability condition (12) is more general 
than (9) and includes the “unstructured” variant (9) as 
its special case. Therefore from theoretical point of 
view the results of the proposed control design 
method should be at least as good as those received 
using (9).  

4 EXAMPLES 

The robust controller design method presented in Sec-
tion 3 has been tested on randomly generated exam-
ples. Solution of BMI (12) proposed in the previous 
section (for unknown 21,,,, KKPGE iii ) has been in 
each example compared with the solution of “unstruc-
tured” BMI (9) (for unknown KPGE i ,,, ). In this 
section the results are summarized for discrete-time PI 
controller design. 

Square systems have been considered with equal num-
ber of inputs and outputs. For each example the poly-
topic uncertainty domain is specified by its vertices. 
The PI controller is described by  

17th International Conference on Process Control 2009
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The corresponding state-space model of PI controller 
(13) is in the form of (3): 
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where mRR IBA == , mm
m RI ×∈  is identity matrix, m 

is number of system inputs/outputs for control; 
., 21 IPI KKKKK +==  

Example 1 

Consider 50 randomly generated uncertain discrete-
time systems (1), (2) with 4 states, 1 input/output and 
two uncertainty domain vertices subject to BMI (12) 
and for comparison to BMI (9) as well. In all cases the 
uncertain system is unstable in some points of the 
uncertainty domain.  

Two qualities have been followed in each case: i) suc-
cess of the design – if a feasible solution has been 
obtained yielding a robustly stabilizing controller;  ii) 
the maximum spectral radius of the respective uncer-
tainty domain vertices. The results are summarized in 
Tab.1.  

Method 
Number of 
successful 
solutions 

Average 
spectral 
radius 

Novel 
BMI (12) 44 0.8139 

BMI (9) 44 0.8142 

Tab.1. 

Example 2 

Again, the 50 randomly generated discrete-time ex-
amples with 4 states and two vertices uncertainty do-
main, but with 2 inputs/outputs are considered. Each 
uncontrolled model is unstable in some points of the 
uncertainty domain. The results are summarized in 
Tab.1b. 

Method Number of 
successful 
solutions 

Average 
spectral 
radius 

Novel 
BMI (12) 

41 0.8332 

BMI (9) 40 0.8363 

Tab.2 

The results in both examples are very close to each 
other, though in the latter case there was one example 
where the new method outperforms the previous one. 
It can be expected that for more complex systems the 
results would favor the new method. The reason is 
that for more complex system with more inputs and 
outputs, the fixed part of the augmented system matrix 

respective to controller dynamics is bigger; therefore 
the relaxation brought about by structured auxiliary 
matrices would be also bigger. Unfortunately, the 
BMI solver we have used (PENBMI) has numerical 
problems with bigger systems (and more unknown 
variables), therefore at present we search other ways 
to prove qualities of our proposed stability condition 
in robust control design.  

5 CONCLUSION 

A new robust stability condition has been proposed 
appropriate for dynamic robust controller design (e.g. 
PID). The developed condition is generally less con-
servative than the ones known from literature. This 
quality comes from using structured auxiliary matrices 
with a parameter dependent part, which reduces con-
servatism of the robust stability condition. For robust 
control design, the proposed condition is in form of 
BMI. The BMI solver has been used to test the pro-
posed robust control design method. The results ob-
tained from randomly generated examples illustrate 
the benefits of the proposed method. Further possibili-
ties of the proposed approach are under research. 
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