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Abstract: This paper deals with numerical issues arising in robust design of PI controller 
for the Integral Plus Dead Time plant (IPDT) under robust tuning based on regions of 
parameters corresponding to non-overshooting, monotonic, or monotonic & one-pulse 
control achieved by computer simulation. 
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1 INTRODUCTION 

Control design for IPDT plant 
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was already treated by different approaches in many 
papers, see e.g. [2], [6], [9] to mention just few of 
them. However, majority of available methods offers 
just transient responses with overshooting that are not 
acceptable in many control problems occurring e.g. in 
mechatronics. For such performance definition, 
tuning of the PI controller [7], [8] based on triple real 
dominant pole and on the setpoint weighting with the 
control algorithm 
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that can be shown to be equivalent to using prefilter 

( )
1

1

+

+
=

sT

sbT
sF

i

i
p  (3) 

with iT  being the integral time constant gives 

excellent results. It is based on solving closed loop 
characteristic equation for a triple pole 0s  of 

characteristic polynomial ( )sA  that requires fulfilling 
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Solution of the last equation in (4) yields root 

( ) dTs /220 −−=  (6) 

for which from the first two equations in (4) one gets 
stable tuning with parameters 
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For the root ( ) dTs /220 +−=  the resulting values 

( ) didsR TTTKK 17157.0;/1588.0 =−=  with negative 

loop gain do not guarantee the closed loop stability. 

Zero of the closed loop transfer function  
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can be cancelled by the prefilter denominator in (3) 
that removes overshooting typical for one degree of 
freedom PI controllers. Simultaneously, one of the 
triple real poles (6) will be cancelled by the prefilter 
numerator (3) that further accelerates the transient 
responses. It gives the setpoint weighting coefficient 
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So, fast and smooth responses are achieved both in 
regulatory as well as tracking control tasks that are 
much better than e.g. those reported in [2], [6], [9]. 

2 NEEDS FOR ROBUST CONTROLLER DESIGN 

The most serious and principal disadvantage of the 
proposed design is that it guarantees excellent 
properties just in the nominal case representing 
a single point in the space of controller parameters. 
But, real plants have just exceptionally properties that 
can be characterized by fixed completely known 
point. E.g. in level control the dead time behavior 
that is caused by long pipelines between the pump 
and the container varies, whereby the resulting delay 
is not only proportional to its length but it is also 
influenced by the control signal. For low flow rates 
the resulting delay is larger than for the relatively 
large ones.  

Similarly, in transporting material by belt conveyers 
the delay is proportional to their length and to the 
control signal (amount of material transported), but in 
the opposite way as above. For low control signal 
values the belt velocity is higher than for fully loaded 
belt, what leads to reverse delay dependence on 
control values.  

Both above examples explain, why the traditional 
methods of controller tuning based on nominal 
transfer functions are just rarely used in practice. In 
both above cases it is mostly required to design 
controller in such a way that will guarantee specified 
performance for interval plants having parameters 
given in the form 

0;, minmaxmaxmin >≥∈ sssss KKKKK   (10) 

0;, minmaxmaxmin >≥∈ ddddd TTTTT  (11) 

The aim of this paper is to expand the optimal tuning 
(7-9) giving interesting dynamical properties, but 
corresponding just to a single nominal point to plants 
with interval uncertainty (10-11).  

3 CLOSED LOOP PERFORMANCE  

From the technology point of view, the expected 
dynamics is frequently specified by requiring non-
overshooting plant output (Non-Overshooting 
control, NO), monotonic plant output control 
(Monotonic Output control, MO), or monotonic plant 
output achieved under one smooth pulse of control 
(plant input) having after a step change of setpoint 
signal just one extreme point at the controller output 
(plant input) and no further local extremes of control 
signal showing tendency to oscillations. Such a 
combination of monotonic output with smooth 

control signal at the plant input will here be briefly 
denoted as One-Pulse control (1P).  

The output transients represented by the setpoint step 
response values ( )ty , ( ) 00 =y measured over interval 

simt  (that should be larger than maximal possible 

settling time) are classified according to  

( )[ ] ( ) ( )simttwsigntyw ,0,0 ∈∀−≤  (12) 

as NO. In case of fulfilling (10) and relations  

( ) ( )[ ] ( ) simtttwsigntyty ≤<≤−≤ 2112 0;0       (13) 

it is denoted as MO and in case of fulfilling (13) and 
simultaneously also (14) 
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it will be denoted as 1P. For all that ( ) 0; ≥mm ttu  

corresponds to the maximal control signal amplitude 
during transient. 

In practice, but also in case of computer simulation, it 
has sense to weaken the above conditions by 
introducing some tolerable overshooting defined by  

0>ε  (15) 

ε  being a small positive number and in this way to 
find controller parameters corresponding to 
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E.g. by choosing 01.0=ε  and considering setpoint 
step responses with the maximal step 1=w  it means 
that overshooting up to 1% of the setpoint value w 
will be tolerated and included under denotation as the 
NO. This approach will only be used for 01.0≈ε , 
because step responses with larger overshooting may 
be achieved also in other ways (e.g. without using 
setpoint weighting) and so the design should consider 
also other alternatives. But it is no real limitation of 
this procedure, since usual measurement precision in 
practice is in the range 1-5%. 

All above mentioned properties are, however, just 
rarely in focus of contemporary control research. 
Latest review on PID control [5] is e.g. mentioning 
just NO for control loops without dead time and 
without distinguishing two other important 
specifications MO and 1P. This is consequence of the 
development of last decades, when methods applied 
were dominated by the mathematical convenience 
and concentrated mostly on traditional performance 
indices like gain margin, phase margin, maximum 
sensitivity, ∞H  norm, ISE, etc. Because of lacking 

analytical tools, the controller will be robustly tuned 
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by using numerically derived areas of parameters 
corresponding to NO, MO, or 1P. 

By its specification, 1P is subset of MO. This is 
subset of NO that represents subset of stable control.  

Because the settling time used for characterizing 
speed of output transient strongly depends on the 
defined measurement precision (given e.g. by ε ), for 
quantitative evaluation of responses more frequently 
IAE (Integral of Absolute Error) or the ISE (Integral 
of Squared Error) performance indices are used that 
do not depend on ε  so strongly 
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To evaluate control effort required to achieve the 
required output behavior, Total Variance (TV) 
criterion is used [6]. This was defined as 
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All these values are computed by simulation after 
discretization with small sampling period. 

Optimal values corresponding to the PI controller 
with the nominal tuning for the triple real pole (7-9) 
and unit reference step 1=w , or unit disturbance 
step 1=v  are as follows 
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4 ROBUST PI CONTROLLER DESIGN 

4.1 Determining prefilter coefficient 

After introducing loop parameter 

dsRc TKK=Ω  (21) 

that is specifying the P action gain, parameter 

idf TT /=Ω  (22) 

specifying scaled integral time constant and  

0; >= dd TsTσ  (23) 

specifying new independent (complex) variable, the 
closed loop characteristic polynomial and its 
derivatives can be written as 
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The question is how the controller design developed 
originally for guaranteeing triple real dominant pole 
can be extended to more general situation. 
Numerically, the first critical point in such a new 
approach will be given by looking for real root 0σ  of 

the transcendent characteristic equation   

( ) 00 =σA   (25) 

It is possible to show that for each 0, >ΩΩ fc  there 

exist at least one real root of (25). But, for some 
values there exist 3 such roots and the task is to 
choose that one corresponding to minimal IAE, or 
ISE values. This root finally determines the setpoint 
weighting coefficient 
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and together with coefficients fc ΩΩ ,  (21-23) also 

the complete control algorithm (2).  

4.2 Uncertainty line segments and trapezoids 

After evaluating (21) and (22) for interval values (10-
11), it is obvious that in general, we should find 
controller solution for 

maxmin
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Geometrically, it is, however, not rectangle, but 
trapezoid, or in a limit case a line segment. When 
dealing with interval values just for the plant gain 

sK , whereas the dead time value is known exactly, in 

the parameter plane ( )fc ΩΩ , such situation 

corresponds to a horizontally oriented uncertainty 
line segment with vertices 
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On the other side, having interval values just for the 
plant dead time dT , whereas the plant gain value sK  

is known exactly, it corresponds to a skew uncertainty 
line segment with vertices 
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For both parameters given in the interval form (27) in 
the parameter plane ( )fc ΩΩ ,  one gets trapezoid 

uncertainty set (US) with vertices 
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So, using experimental approach based on 
identification of NO, MO, or 1P areas, it will be 
necessary: 

1. to choose grid of parameters fc ΩΩ , over US 

(28),  

2. for each point of this grid to derive setpoint 
weighting coefficient b  given by real negative 
pole dTs00 =σ  (9), (23) equation (25),  

3. to run simulations under derived PI control,  

4. to check fulfillment of conditions (12-14), or of 
the weakened conditions (16-17) and  

5. to evaluate performance criteria (18-19).  

Doing so over whole grid of parameters fc ΩΩ , , it is 

possible to get information about corresponding 
control properties that can later be used in robust 
tuning of the controller. This will be based on 
information about possible plant gains (10) and 
possible dead time values (11). 

After choosing some controller tuning iR TK , , one 

gets uncertainty set (US) (28). It is expected that the 
robust design with given performance specification 
can be fulfilled just if the whole US (28) can be 
located within the specified parameter area. 
Furthermore, the weighting coefficient b will be 
defined by its minimal value corresponding to given 
position of US. Due to this, for all other parameters 
transient responses will be slower than for nominal 
tuning, but without overshooting. 

5 NUMERICAL DETERMINATION OF 
SETPOINT WEIGHTING 

For solving transcendent characteristic equation (23) 
according to σ  different algorithms may be used. 
Fundamental problems are related to existence and 
uniqueness of the solution. Since there are available 
just iterative solutions, practical problems are 
associated with their convergence and speed, with 
achieved precision and dependence on initial 
conditions. The only exception enabling explicit 
evaluation corresponds to the triple real pole (6) 
written as 

2200 −=σ   (29) 

According to (7) and (19-20) it is corresponding to 
point ( )0000 , fc ΩΩ=Ω  
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5.1 Existence and uniqueness of real solution of (23) 

Lemma 1: The function ,: RR →A  

( ) fcceA ΩΩ+Ω+= σσσ σ2  is smooth function with 

derivatives  

( ) ( ) ceAA Ω++=→ σσσσ 2,: 2&& RR  

and 

( ) ( ) σσσσ eAA 24,: 2 ++=→ &&&& RR  
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Lemma 3: The derivative ( )σA&  is increasing 

function on intervals ( ) ( )∞−∪−−∞− ,2222,  and 

decreasing function on interval ( )22,22 −−−  

with relative maximum value at the point 

22 −−=σ  

( ) ( ) 021222 22 >Ω>Ω++=−− −−
cceA&  

and relative minimum value at the point 22 −=σ  

( ) ( ) cceA Ω<Ω+−=− −2221222&  

Lemma 4: If ( ) 022 ≥−A& , then ( ) 0>σA&  for all 

R∈σ  (may be with exception of 22 −=σ ), i.e. 
function ( )σA  has unique simple negative zero point. 

Lemma 5: Closed loop characteristic polynomial of 
delay free plant  

( ) 0,;2 >ΩΩΩΩ+Ω+= fcfccsssA  (31) 

has real roots  

2/42
0 2,1






 ΩΩ−Ω±Ω−= fcccs ; fc Ω≥Ω 4  (32) 

Theorem 1: For any 0>Ωc  and 0>Ω f , there exist 

at least one real negative zero 00 <σ  of (23). 

Proof:  

Existence of the solution follows from Lemma 2. 

For ( ) ( ) 021222 22 ≥Ω+−=− −
ceA&  the 

uniqueness of the solution results from Lemma 4. For 

( ) 022 <−A&  there might exist also several real 

solutions of (23).  
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It is an interesting conclusion of Lemma 5 and 
Theorem 1 that conditions on existence of real root of 
(23) are more relaxed in the case of dead time system 
than for the delay free system (32). 

5.2 Convergence of solutions 

We know that for 0>Ωc  and 0>Ω f  (23) has at 

least one real solution 00 <σ , the question, however, 

is, what to do in situations when there exists several 
real solutions.  

E.g. for 17.0=Ωc , 0438.0=Ω f  one gets 3 

different real negative roots of (23) shown in Tab. 1 
together with the corresponding performance indices. 

Tab. 1 Roots of (23) used in (24) and corresponding 
performance indices of resulting control 

Root  s0 IAE ISE TV 
-2.8267 3.5359 0.3356 0.0658 
-0.1254 4.4333 0.7482 0.1324 
-0.0725 5.9271 1.5535 0.2202 

 

It is evident that the minimal values of IAE/ISE 
correspond to root 0s that is maximally shifted to the 

left on real axis. This must then be respected by 
choosing initial condition for computation, e.g. by 
means of Matlab offering for solving nonlinear 
equations of form ( ) 0=xf  (that includes also (23)) 

function fsolve.  

 

Fig. 1 Contours of residual polynomial values 
corresponding to levels defined by vector v=[-3e-17 -
2e-17 -1e-17 0 1e-17 2e-17 3e-17], 1P area that is 
coinciding with MO and NO areas (full)  

 

 

Fig. 2 Setpoint weighting values b in 3D (above) and 
in 2D (below) 

In function it is possible to set by using options = 
optimset options like 'TolFun' – termination tolerance 
on ( )xf  values, or ‘TolX’ - termination tolerance on 

x  values, or to display algorithm used by setting 
output item ‘algorithm’. 

It is also possible to define initial value for the 
solution: in order to eliminated dependence on choice 
of initial values for computation. 

From Fig. 1 it is obvious that the residual polynomial 
values are related with the character of the transient 
responses. The optimal point (29-30) is situated just 
at the corner of the 1P area (see also Fig. 3), so that it 
is not possible to include it in practically usable 
uncertainty box (28) with variable plant gain sK .  

Usable results may be achieved just for variable dead 
time and fixed plant gain sK when for appropriately 

chosen integral time constant Ti US given as skew 
line segment (28b) may be more easily located into 
1P area. Since this has not convex shape, in general, 
such line segment with vertices lying in 1P does not 
necessarily belong to 1P also by its internal points, so 
one has to be careful in placing US close to the 
optimal point (30). 
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Fig. 3 Optimal point 00Ω  corresponding to triple real 

pole (30); 1P area and IAE values defined over it 
(above) and detailed view (below); increasing level 
of red corresponds to increasing IAE values 

4.3 Numerical issues in determining parameter areas 

When determining for a setpoint step NO, MO, or 1P 
areas according to (10-13), for 0=ε  all melt 
together into a relatively narrow strip (Fig.  1, 3, 4). 
Differences occur just after introducing certain 
tolerance 0>ε  (13) into areas identification by 

inequalities (14-15). Although already for 510−=ε  
areas corresponding to weaken MO and 1P are 
reasonably larger than for strictly MO and 1P, further 
they vary with increasing ε  just slightly. NO area, 
however, increases reasonably fast. It means that the 
requirement on strictly MO and 1P puts tight 
constraints on admissible plant uncertainty – much 
stronger than in using the disturbance observe based 
PI1 controller [4].  

Broader plant uncertainty can be allowed just in the 
case when tolerating some small overshooting 
(Fig.4). Examples show uncertainty box (28) 
corresponding to values  
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with dead time changes 2/ minmax =dd TT  and 

5.1/ minmax =ss KK .  

 

 

Fig. 4 Performance portrait with NO, MO and 1P 
areas corresponding to different values of ε  and 
identified using (14-15) for grid of 100x100 points; 

00Ω - optimal tuning (30), example of locating 

uncertainty box (28) into NO and MO areas 

corresponding to 510−=ε  
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It is to see if Fig. 4 that US satisfying for 510−=ε  
NO and MO requirements does not already fulfill 
requirements on 1P. Transient responses in Fig. 5 
correspond to minimal value of parameter b 
identified over uncertainty set as 

0.0065min =b  (34) 

 

 

 

Fig. 5 Setpoint step responses corresponding to 
vertices of US from Fig. 4 (black) with minbb =  (34) 

and optimal transients corresponding to (30) (red); to 
see differences in robust tuning, scaling for u was 
enlarged times 40, but then the one pulse of optimal 
control signal is not shown fully) 

Due to use of minimal value of prefilter coefficient 
over US (34) that contributes to slowing down 
transients and to decreasing overshooting, achieved 

overshooting values are smaller than supposed in the 
design. This conservatism could be partially reduced 
by a two-step procedure using corrective 
identification of performance portrait corresponding 
not to variable, but to fixed value of prefilter 
coefficient (34), but this is a generic disadvantage of 
using PI controller with setpoint weighting instead of 
DOB based PI controller [4].  

It is yet to remind that identified areas corresponding 
to the setpoint step and to the disturbance step will 
be, in general, different. Tuning fulfilling 
requirements put on both setpoint as well as 
disturbance response should then be found by 
intersection of corresponding areas. 

6 CONCLUSIONS 

Analysis of new robust PI controller tuning approach 
based on experimental identification of plant 
performance portrait with areas corresponding to 
loop parameters guaranteeing non-overshooting, 
monotonic and one-pulse control showed that the 
two-degree-of-freedom PI controller design [7], [8] 
may also be extended to interval plants by respecting 
specified qualitative requirements.  

Whereas it seems that we have all numerical 
problems of such design, for practical application it 
still would be necessary to analyze also the problem 
of control signal constraints. 
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