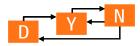


Department of Biochemical and Chemical Engineering Process Dynamics and Operations Group (DYN)

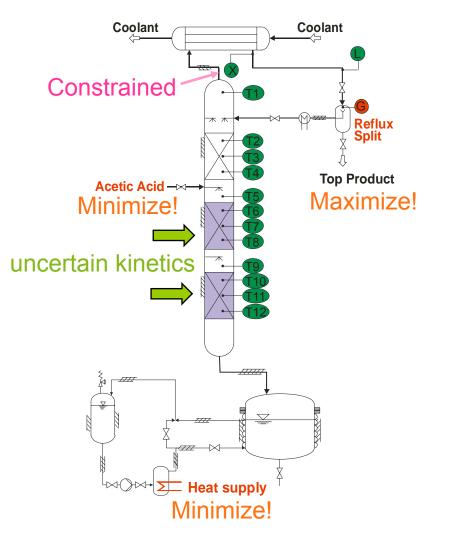
Online optimizing control: The link between plant economics and process control

Sebastian Engell


Process Dynamics and Operations Group Department of Biochemical and Chemical Engineering Technische Universität Dortmund Dortmund, Germany

Introduction

The gap between process operations and controller design


technische universität dortmund

Process operations

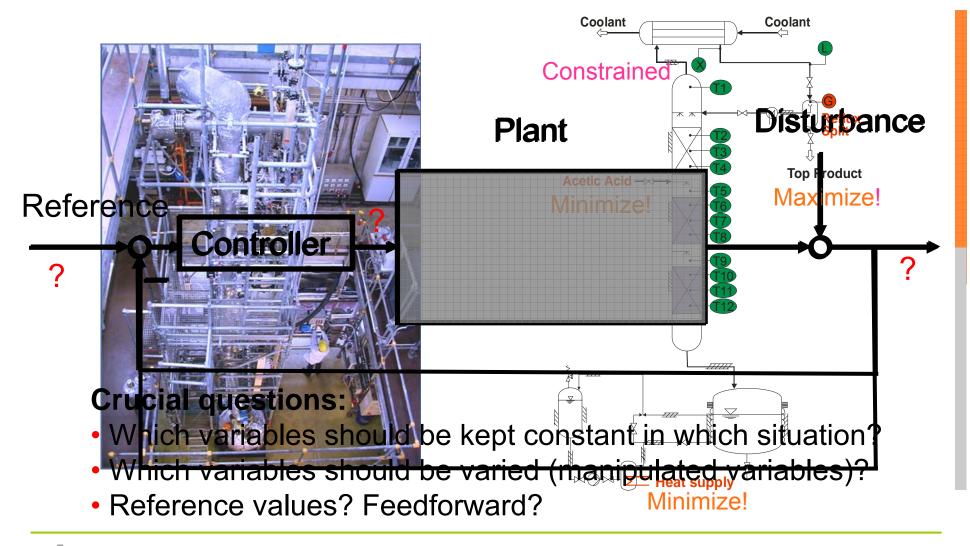
Reactive distillation column

technische universität dortmund

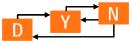
Control engineering

Standard task description:

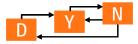
Choose and design feedback controllers for optimal


- disturbance rejection
- setpoint tracking

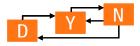
for a given "plant" (i.e. inputs, outputs, dynamics, disturbances, references, model errors, limitations, ...)


"SERVO or REGULATION PROBLEM"

Control engineering reduction

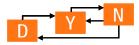


U technische universität dortmund

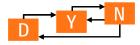

- In process control, the servo problem formulation is adequate for subordinate tasks:
 - Temperature control
 - Flow control
 - ...
- Optimal solution of servo/regulation problems does not imply optimal plant operation – optimal plant operation is not necessarily a servo problem!
- Automatic (feedback) control is often considered as a necessary low level function but not as critical for economic success.

➡ CONTROL FOR OPTIMAL PLANT OPERATION

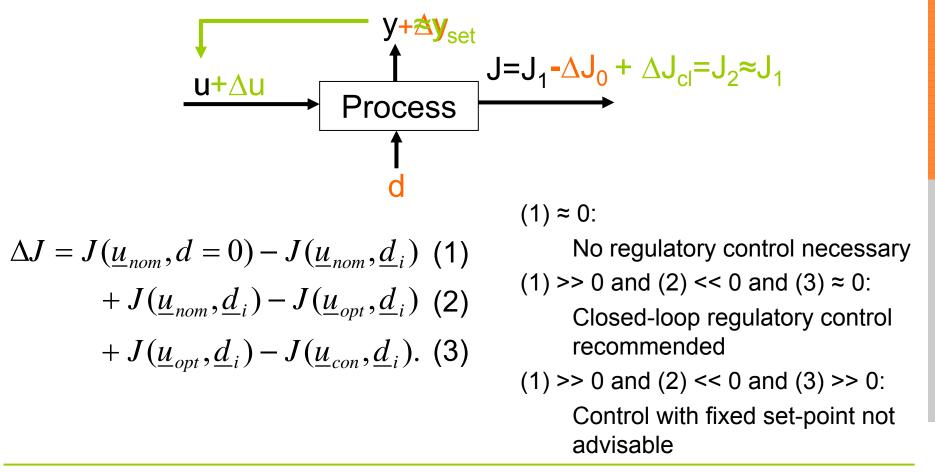
Outline: From control to optimal operation

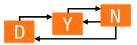

- The gap between process control and process operations
- Control structure selection
- Real-time optimization
- From RTO to optimizing control
- Direct finite-horizon optimizing control
- Application example: SMB Chromatography
- Plant-model mismatch
- Summary, open issues and future work

Control structure selection


- Choice of manipulated and controlled variables
 - Which variables should be controlled?
 - Which manipulated variables should be used?
 - Loop pairing (not considered here)
- Common methods:
 - Linear analysis: RGA, condition numbers, sensitivities, Jorge Trierweiler's RPN, optimization
 - Simulation studies

Focus is on dynamics – methods address the servo problem but not optimal plant operation.


Plant performance-based control structure selection


- Skogestad (2000): "Self-optimizing control"
- Basic ideas:
 - Tracking of set-points is not always advantageous
 - Feedback control should guarantee cost effective operation in the presence of disturbances and plant-model mismatch
 - Stationary analysis (dynamics ignored)
 - Non-linear plant behavior considered by use of rigorous nonlinear plant models

Plant performance-based control structure selection

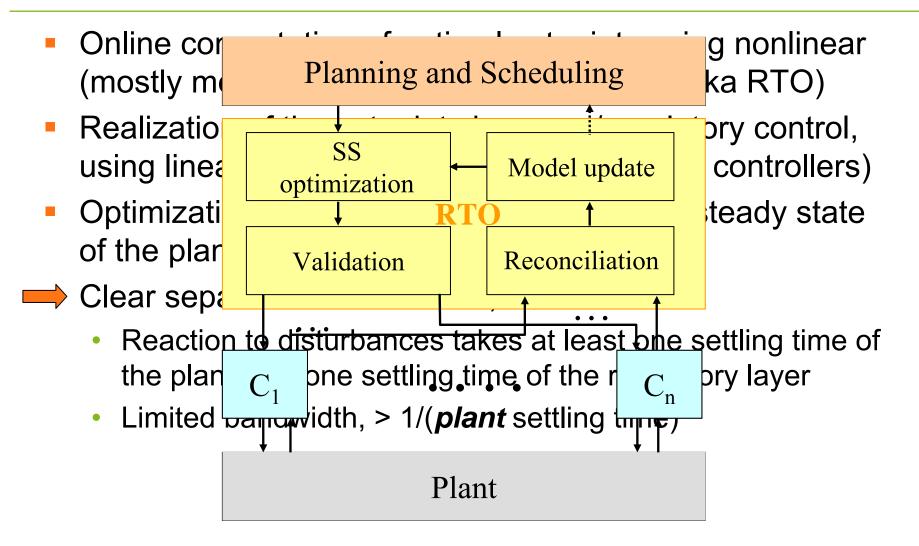
Decision based on the effect of regulation on the profit J

Comparison of feedback structures

- Feedback restricts the controlled variables to an interval around the set-points (due to measurement errors)
- Computation of the worst-case profit for possible control structures and several disturbance scenarios (guaranteed plant performance)

$$\min_{\underline{u}} J(\underline{u}, \underline{d}_i, \underline{x})$$

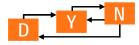
$$s.t.: \underline{\dot{x}} = \underline{f}(\underline{u}, \underline{d}_i, \underline{x}) = 0$$


$$\underline{y} = \underline{m}(\underline{x}) = \underline{M}(\underline{u}, \underline{d}_i)$$

$$\underline{y}_{set} - \underline{e}_{sensor} < \underline{y} < \underline{y}_{set} + \underline{e}_{sensor}$$

 Set-points optimized separately for a set of disturbances

Two-layer architecture with RTO



technische universität dortmund

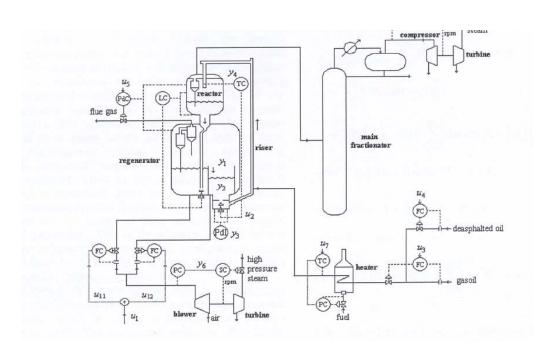
From control to optimal operation

- The gap between process control and process operations
- Control structure selection
- Real-time optimization
- From RTO to optimizing control
- Direct finite-horizon optimizing control
- Application example
- Summary, open issues and future work

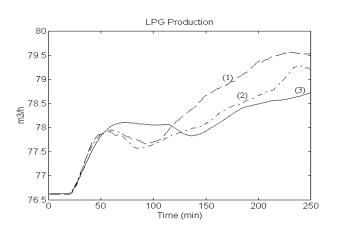
From RTO to optimizing control

- Simple idea: (strict) RTO is too slow ... hence
- Do not wait for steady state → fast sampling RTO
 - Current industrial practice:
 Sampling times of 10-30 mins instead of 4-8 hours
 dynamic control without concern for dynamics
 - Stability enhanced by restricting the size of changes
 - Similar to gain scheduling control: Dynamic plant state is projected on a stationary point
 - Ad-hoc solution

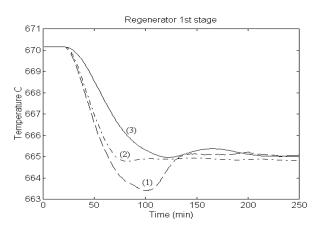
Integration of performance optimization in MPC

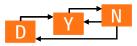

- Idea:
 - Add a term that represents the economic cost (or profit) to a standard (range control) MPC cost criterion
 - Zanin, Tvrzska de Gouvea and Odloak (2000, 2002):

$$\begin{split} \min_{\Delta u(k+i);i=0,...,m-1} &\sum_{j=1}^{p} \left\| W_{1}(y(k+j)-r) \right\|_{2}^{2} \\ &+ \sum_{i=0}^{m-1} \left\| W_{2} \Delta u(k+i) \right\|_{2}^{2} + W_{3} f_{eco} \left(u(k+m-1) \right) \\ &+ \left\| W_{5}(u(k+m-1)-u(k-1)-\Delta u(k)) \right\|_{2}^{2} \\ &+ W_{6} [f_{eco} \left(u(k+m-1), y(k+\infty) \right) \\ &- f_{eco} \left(u(k), y'(k+\infty) \right)]^{2} \end{split}$$



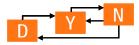
Application to a real industrial FCC


7/6 inputs, 6 outputs Economic criterion: LPG-production


Problems: Acceptance by operators Concerns for vulnerability

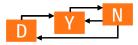
(1) *W3*=100, (2) *W3*=1, (3) *W3*=0.1

technische universität dortmund



From control to optimal operations

- The gap between process control and process operations
- Control structure selection
- Real-time optimization


From RTO to optimizing control

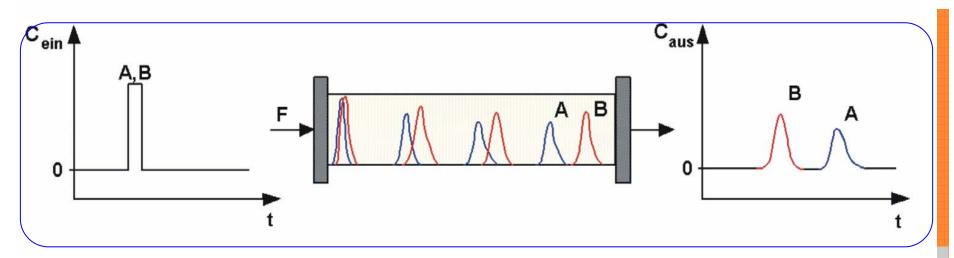
- Direct finite-horizon optimizing control
- Application example
- Plant-model mismatch
- Summary, open issues, and future work


Direct Finite Horizon Optimizing Control

- Idea:
 - Optimize over a finite moving horizon the (main) degrees of freedom of the plant with respect to process performance rather than tracking performance
 - Represent the relevant constraints for plant operation as constraints in the optimisation problem and not as setpoints
 - Quality requirements are also formulated as constraints and not as fixed setpoints
- → Maximum freedom for economic optimization

Direct Finite Horizon Optimizing Control

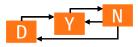
- Advantages:
 - Degrees of freedom are fully used.
 - One-sided constraints are not mapped to setpoints.
 - No artificial constraints (setpoints) are introduced.
 - No waiting for the plant to reach a steady state is required, hence fast reaction to disturbances.
 - Non-standard control problems can be addressed.
 - No inconsistency arises from the use of different models on different layers.
 - Economic goals and process constraints do not have to be mapped to a control cost whereby inevitably economic optimality is lost and tuning becomes difficult.
 - The overall scheme is structurally simple.



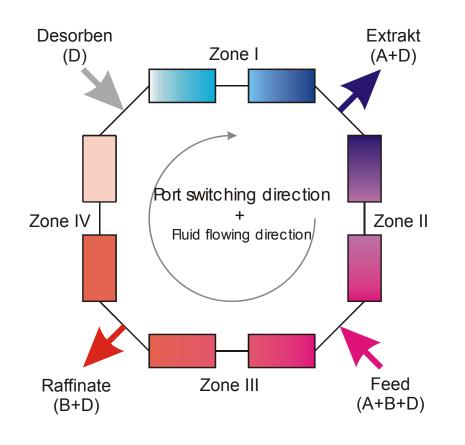
Application study: SMB chromatography

technische universität dortmund

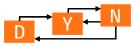
Chromatography: Principle, batch process

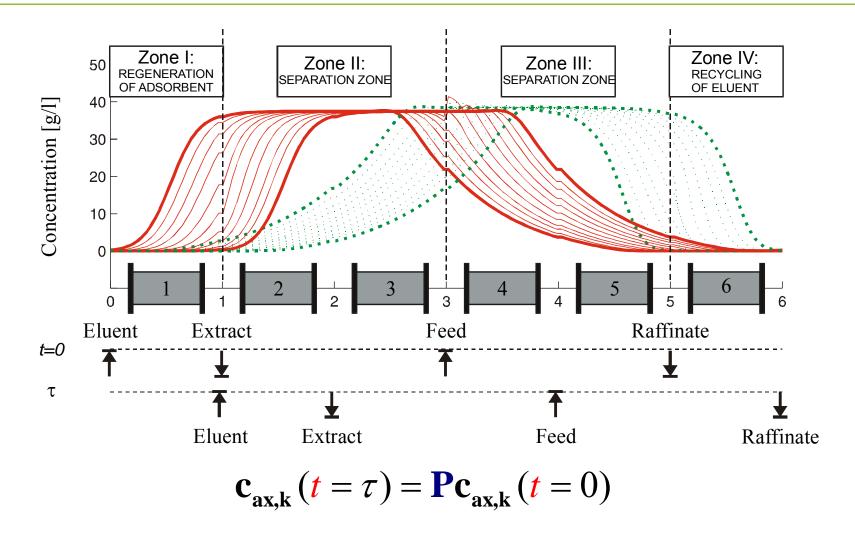


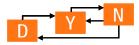
- Separation is based on different adsorption affinities of the components to a fixed adsorbent.
- Gradual separation while the mixture is moving through the column
- Fractionating of the products at the column outlet


© Simple process, high flexibility

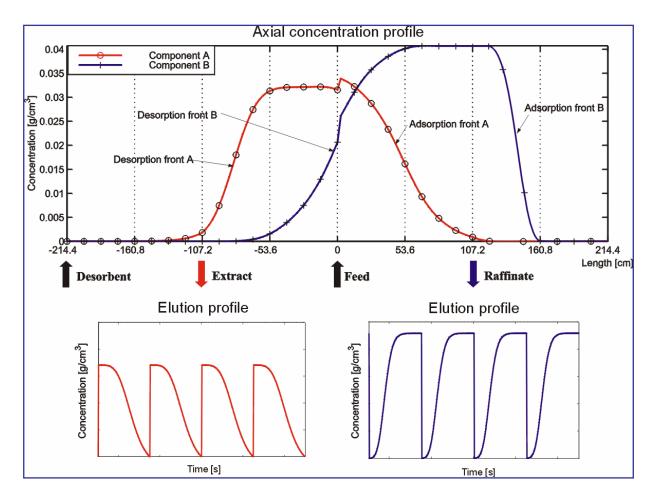
 High operating costs, high dilution of the products, and low productivity

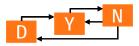

technische universität dortmund


Simulated-Moving-Bed process

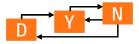

- A number of chromatographic columns are connected in series
- The inlet and outlet ports move to the next column position after each swichting period (τ)
- Quasi-countercurrent operation is achieved ("simulated") by cyclic port switching
- Continuous operation, higher productivity, and lower separation cost
- Complex dynamics, very slow reaction to changes

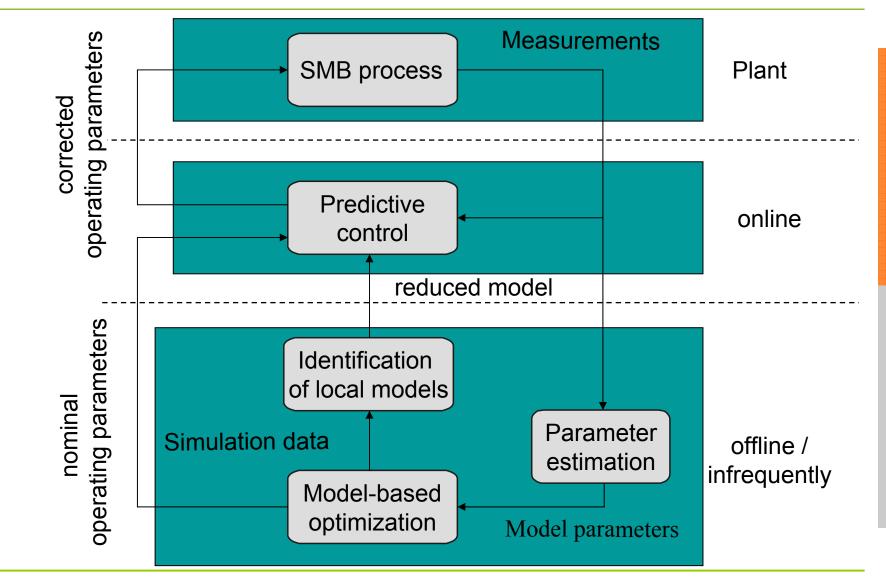
SMB dynamics




tu technische universität dortmund

SMB concentration profiles

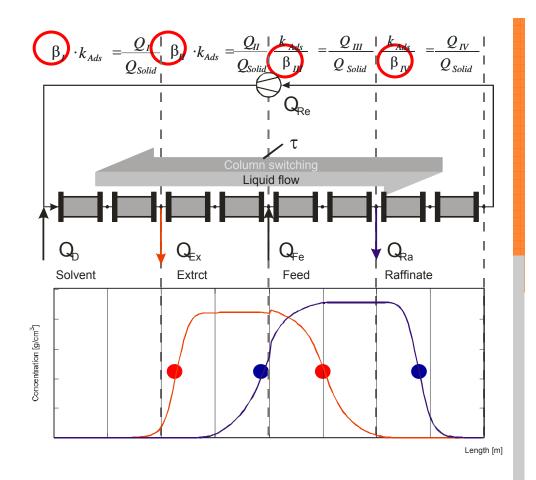

- Continuous flows and discrete switchings
- Axial profile builds up during start-up
- Same profile in different columns in cyclic steady state
- Periodic output concentrations

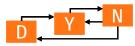


SMB optimization and control problem

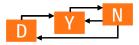
- **Goal:** Maintain specified purity at minimal operating cost
- Periodic process described by switched pde's
- Strongly nonlinear behaviour especially for nonlinear adsorption isotherms
- Drifts may lead to breakthrough of the separation fronts
 → long periods of off-spec production
- Intuitive determination of a near-optimal operating point is difficult.
- Optimal operation is at the purity limit.
- Operating cost is caused by solvent consumption and the cost of the adsorbent per (gram of) product
- Minimization of the solvent flow rate while meeting the specs for purity and recovery

Hierarchical control scheme (Klatt et al.)




technische universität dortmund

Stabilizing the concentration profile


- Front positions taken as controlled variables
- Choice of manipulated variables: β-factors
- Decoupled influence on the zones of the SMB process
- Successful application to process with linear isotherm

Problems of the hierarchical approach

- Extension to nonlinear isotherms possible but control scheme quite complex (NN-based LPV MPC) (Wang and Engell, 2003)
- Fronts can only be detected accurately in the recycle stream, not in the product streams
- Optimality and desired purities cannot be guaranteed by front position control if the model has structural errors, e.g. in the form of the isotherm.
 - \rightarrow additional purity control layer necessary
 - \rightarrow scheme becomes very complex, optimality is lost.
- ⇒ Use economic online optimization directly to control the plant (Toumi and Engell, Chem. Eng. Sci., 2004)

Formulation of the online optimization problem

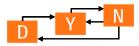
$$\min \sum_{j=k+1}^{k+H_p} (\Theta(j) + \Delta \beta_j^T R_j \Delta \beta_j)$$

$$\beta_k, \beta_{k+1}, \dots, \beta_{k+H_r}$$

$$\begin{cases} x_{k+1,0} = Mx_k \\ \dot{x} = f(x, u, p) \\ y = h(x, u) \end{cases}$$

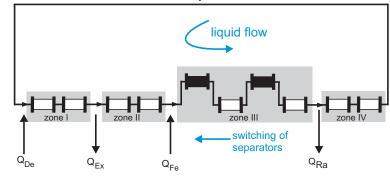
s.t. $\sum_{\substack{j=k+1\\k+H_p}}^{k+H_p} Pur_{Ex,j} + \Delta Pur_{Ex} \ge Pur_{Ex,\min}$ $\sum_{\substack{j=k+1\\j=k+1}}^{k+H_p} Rec_{Ex,j} + \Delta Rec_{Ex} \ge Rec_{Ex,\min}$ $\Delta p_j \le \Delta p_{\max}$ $j = k, ..., k + H_p$ Θ: economic criterion: solvent consumption

 β_{k} degrees of freedom – transformed flow rates and switching time

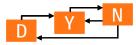

Rigorous hybrid process model

Purity requirements (with error feedback, log. scaled)

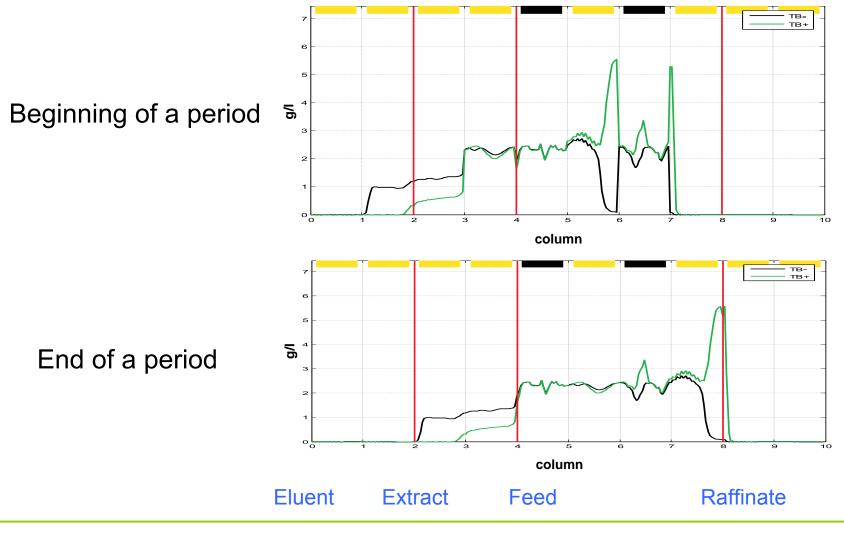
Recovery (with error feedback)


max. pressure loss

technische universität dortmund


Reactive SMB processes

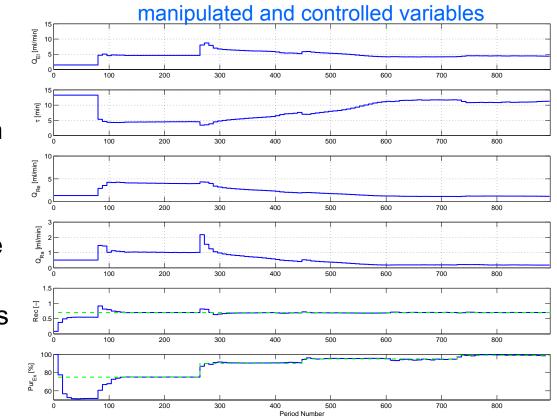
- Integration of reaction and separation can overcome equilibria and reduce energy and solvent consumption
- Fully integrated process however is severely restricted
- Hashimoto SMB-process:
 - Reaction and separation are performed in separate columns
 - Reactors remain fixed in the loop at optimal locations
 - Optimal conditions for reaction and separation can be chosen

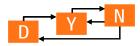


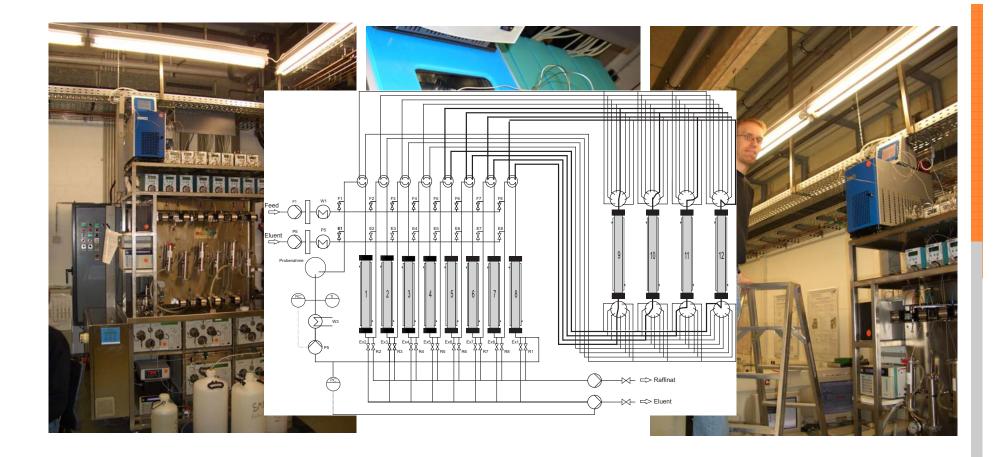
 Disadvantage: complex valve shifting for simulated movement of reactors

U technische universität dortmund

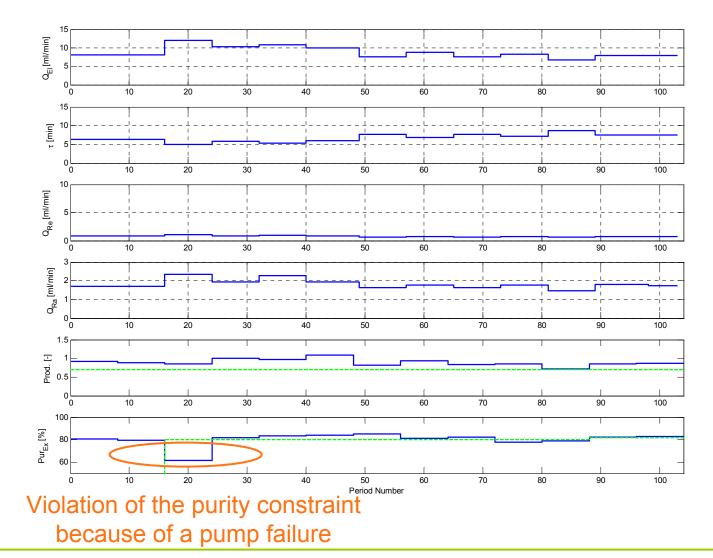
Racemization of Tröger's Base (TB): Profiles

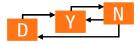



U technische universität dortmund


Simulation of the optimizing controller

- Purity and recovery constraints enforced
- Plant/model mismatch $(H_A + 10\%, H_B 5\%)$
- Controller reduces the solvent consumption
- Satisfaction of process requirements

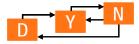

Experimental Hashimoto SMB reactor

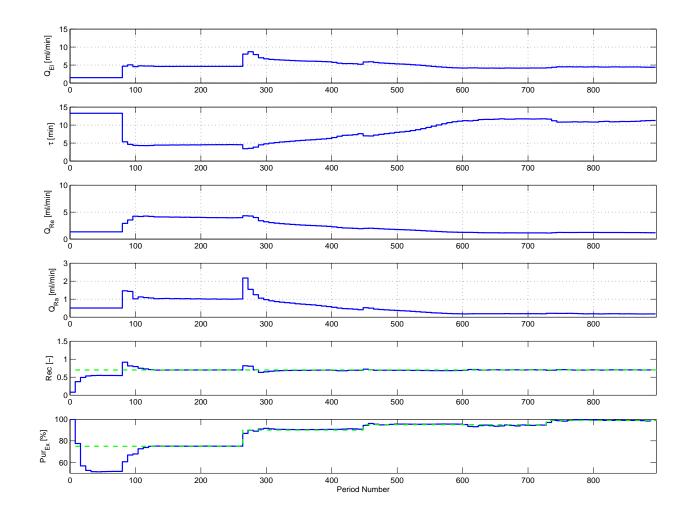

technische universität dortmund

Experimental results

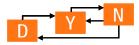
technische universität dortmund

Conclusion from the case study

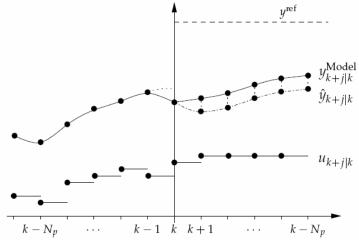

- Direct optimizing control is feasible!
- Numerical aspects:
 - General-purpose NLP algorithms for dynamic problems provide sufficient speed for slow processes (Biegler et al., Bock et al.)
 - Special algorithms taylored to online control for short response times (~ s) (Bock, Diehl et al.)

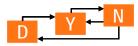

Main advantages

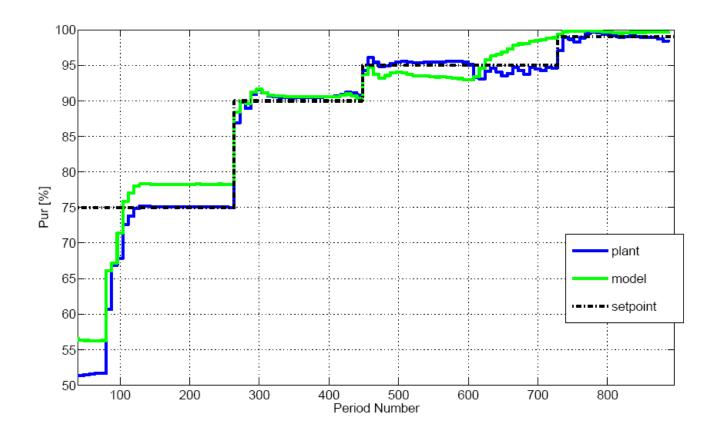
- Performance
- Clear, transparent and natural formulation of the problem, few tuning parameters, no interaction of different layers


But there is a problem ...

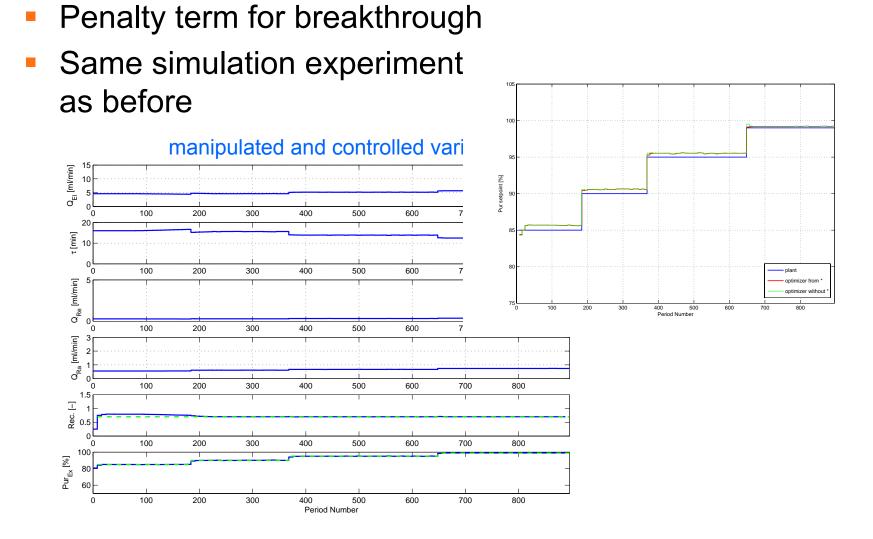
U technische universität dortmund



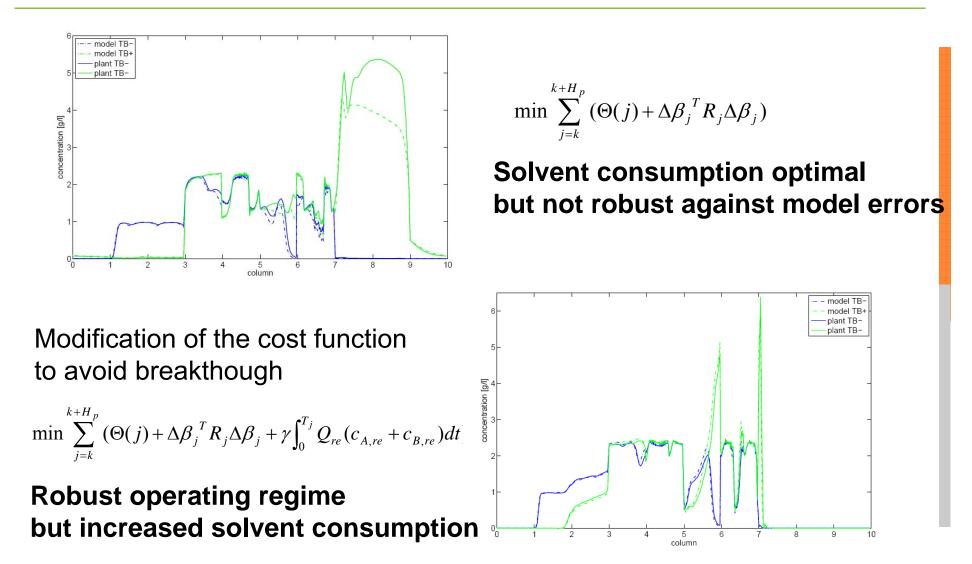

technische universität dortmund

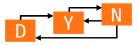

NMPC and model accuracy

- The idea of (N)MPC is to solve a forward optimization problem repeatedly
- Quality of the solution depends on the model accuracy
- Feedback only enters by re-initialization and error correction (disturbance estimation) term
- Model errors are usually taken into account by a constant extrapolation of the error between prediction and observation



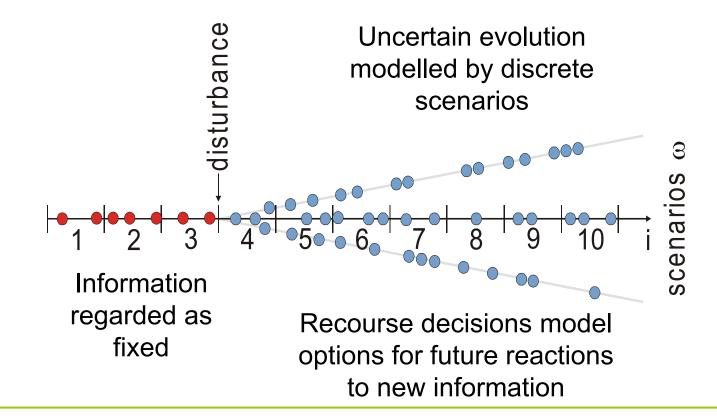
Plant-model mismatch for Hashimoto SMB


Modification of the cost function



technische universität dortmund

Modification of the cost function


How to include robustness in optimizing control?

- Improve the quality of the model by parameter estimation
 - Numerical effort
 - Insufficient exitation during nominal operation
 - Structural plant-model mismatch
- Worst-case optimization for different models
 - Conservative approach, loss of performance
 - Does not reflect the existence of feedback
- Two-stage optimization!

Two-stage decision problem

- Information and decision structure
 - First stage decisions $\mathbf{x} \neq \mathbf{f}(\omega)$ (here and now)
 - Second stage decisions $\mathbf{y} = \mathbf{f}(\omega)$ (recourse)

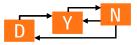
technische universität dortmund

Two-stage formulation

$$\begin{split} \min_{\substack{u_k \cdots u_{k+N_p-1} \\ u_k^{*b} \cdots u_{k+N_p-1}^{*b} \\ y_{k+j} \in \mathcal{Y} \\ y_{k+j} \in \mathcal{Y} \\ u_{k+j-1} \in \mathcal{U} \\ \Delta u_{k+j-1} \in \mathcal{U} \\ \Delta u_{k+j-1} \in \mathcal{U} \\ 0 = y_{k+j} - f\left(\theta, y_{k+j-1}, \dots, u_{k+j-1}, \dots\right) \\ y_{k+j}^{*b} \in \mathcal{Y} \\ u_{k+j-1}^{*b} \in \mathcal{U} \\ \Delta u_{k+j-1}^{*b} \in \mathcal{U} \\ \Delta u_{k+j-1}^{*b} \in \mathcal{U} \\ 0 = y_{k+j}^{*b} - f\left(\theta^{*b}, y_{k+j-1}^{*b}, \dots, u_{k+j-1}^{*b}, \dots\right) \\ 0 = u_{k+i} - u_{k+i}^{*b} \quad i = 0, \dots, N'_{u} \\ y_{k+N_p} \in W \ominus \mathcal{W}(\alpha) \end{split}$$

From control to optimal operations

- The gap between process control and process operations
- Control structure selection
- Real-time optimization
- En route from RTO to dynamic optimization
- Direct finite-horizon optimizing control
- Application example
- Plant-model mismatch
- Summary, open issues, and future work



Summary

The goal of process control is not set-point tracking but optimal performance!

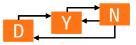
direct finite horizon optimizing control

- Main advantages:
 - Performance
 - Clear, transparent and natural formulation of the problem, few tuning parameters, no interaction of different layers
- Feasible in real applications but requires engineering
- Numerically tractable due to advances in nonlinear dynamic optimization (Biegler et al., Bock et al.)
- Modelling and model accuracy are critical issues.
- Two-stage formulation leads to a uniform formulation of uncertainty-conscious online scheduling and control problems.

Open issues

Modelling

- Dynamic models are expensive
- Training simulators are often available, but models too complex
- Grey box models, rigorous stationary nonlinear plus blackbox linear dynamic models?
- State estimation
 - MHE formulations natural but computationally demanding
- Stability
 - Economic cost function may not be suitable to ensure stability



More research topics

- Measurement-based optimization
- Constraint handling in case of infeasibility
- Integration of discrete degrees of freedom
- System archictecures decentralization, coordination
- Issues for real implementations:
 - Operator interface
 - Plausibility checks, safety net
 - Reduction of complexity à la NCO tracking?
- References

S. Engell, Feedback control for optimal process operation, *Journal of Process Control* 17 (2007), 203-219.

S. Engell, T. Scharf, and M. Völker: A Methodology for Control Structure Selection Based on Rigorous Process Models. 16th IFAC World Congress, Prague, 2005, Paper Code Tu-E14-TO/6

The Team

Control Structure Selection:

Tobias Scharf

SMB:

Karsten-Ulrich Klatt, Guido Dünnebier, Felix Hanisch, Chaoyong Wang, Abdelaziz Toumi, Achim Küpper

NMPC with multiple (NN) models:
 Kai Dadhe

Thanks to

- The Plant and Process Design Group of TU Dortmund for the joint work on SMB modeling, optimization, and control
- Our partners at IWR Heidelberg (Georg Bock, Moritz Diehl, Johannes Schlöder, Andreas Potschka, Sebastian Sager)
- Prof. Darci Odloak for the information on the FCC case
- The DFG for sponsoring our research in the context of the research clusters "Integrated Reaction-Separation Processes" and "Optimization-based control of chemical processes"
- and to you for your kind attention!

