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Introduction

The gap between process operations and 
controller design
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Control engineering

Standard task description:
Choose and design feedback controllers for optimal

- disturbance rejection
- setpoint tracking

for a given “plant“ (i.e. inputs, outputs, dynamics, 
disturbances, references, model errors, limitations, …)

“SERVO or REGULATION PROBLEM”
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Crucial questions:
• Which variables should be kept constant in which situation?
• Which variables should be varied (manipulated variables)?
• Reference values? Feedforward?

Constrained
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In process control, the servo problem formulation is
adequate for subordinate tasks:
• Temperature control
• Flow control
• …

Optimal solution of servo/regulation problems does not
imply optimal plant operation – optimal plant operation
is not necessarily a servo problem!

Automatic (feedback) control is often considered as a 
necessary low level function but not as critical for
economic success.

CONTROL FOR OPTIMAL PLANT OPERATION
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Outline: From control to optimal operation

The gap between process control and process operations

• Control structure selection

• Real-time optimization

• From RTO to optimizing control

• Direct finite-horizon optimizing control

• Application example: SMB Chromatography

• Plant-model mismatch

• Summary, open issues and future work
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Choice of manipulated and controlled variables
• Which variables should be controlled?
• Which manipulated variables should be used?
• Loop pairing (not considered here)

Common methods: 
• Linear analysis: RGA, condition numbers, 

sensitivities, Jorge Trierweiler’s RPN, optimization
• Simulation studies

Focus is on dynamics – methods address the
servo problem but not optimal plant operation.

Control structure selection
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Plant performance-based control structure selection

Skogestad (2000): “Self-optimizing control”
Basic ideas:
• Tracking of set-points is not always advantageous
• Feedback control should guarantee cost effective operation in 

the presence of disturbances and plant-model mismatch
• Stationary analysis (dynamics ignored)
• Non-linear plant behavior considered by use of rigorous 

nonlinear plant models
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Plant performance-based control structure selection

Decision based on the effect of regulation on the profit J
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Comparison of feedback structures

Feedback restricts the controlled variables to an interval 
around the set-points (due to measurement errors)
Computation of the worst-case profit for possible control 
structures and several disturbance scenarios 
(guaranteed plant performance)

Set-points optimized separately for a set of 
disturbances
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Two-layer architecture with RTO
Online computation of optimal setpoints using nonlinear
(mostly mechanistic) steady-state models (aka RTO)
Realization of the setpoints by servo/regulatory control, 
using linear models (linear MPC or standard controllers)
Optimization can only be performed after a steady state
of the plant is confirmed
Clear separation of concerns, but
• Reaction to disturbances takes at least one settling time of 

the plant plus one settling time of the regulatory layer
• Limited bandwidth, > 1/(plant settling time)

Planning and Scheduling

SS
optimization Model update

Validation Reconciliation

C1 Cn

Plant

RTO
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From control to optimal operation

The gap between process control and process operations

Control structure selection

Real-time optimization

• From RTO to optimizing control

• Direct finite-horizon optimizing control

• Application example

• Summary, open issues and future work
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From RTO to optimizing control

Simple idea: (strict) RTO is too slow ...
hence
Do not wait for steady state fast sampling RTO
• Current industrial practice: 

Sampling times of 10-30 mins instead of 4-8 hours
dynamic control without concern for dynamics

• Stability enhanced by restricting the size of changes
• Similar to gain scheduling control: 

Dynamic plant state is projected on a stationary point
• Ad-hoc solution
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Integration of performance optimization in MPC

Idea: 
• Add a term that represents the economic cost (or profit) to a standard

(range control) MPC cost criterion
• Zanin, Tvrzska de Gouvea and Odloak (2000, 2002):
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Application to a real industrial FCC

7/6 inputs, 6 outputs
Economic criterion: LPG-production

(1) W3=100, (2) W3=1, (3) W3=0.1

Problems: Acceptance by operators
Concerns for vulnerability
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From control to optimal operations

The gap between process control and process operations

Control structure selection

Real-time optimization

From RTO to optimizing control

• Direct finite-horizon optimizing control

• Application example

• Plant-model mismatch

• Summary, open issues, and future work
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Direct Finite Horizon Optimizing Control

Idea:
• Optimize - over a finite moving horizon - the (main) 

degrees of freedom of the plant with respect to
process performance rather than tracking
performance

• Represent the relevant constraints for plant 
operation as constraints in the optimisation problem
and not as setpoints

• Quality requirements are also formulated as 
constraints and not as fixed setpoints

Maximum freedom for economic optimization
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Direct Finite Horizon Optimizing Control

Advantages:
• Degrees of freedom are fully used.
• One-sided constraints are not mapped to setpoints.
• No artificial constraints (setpoints) are introduced.
• No waiting for the plant to reach a steady state is required, 

hence fast reaction to disturbances.
• Non-standard control problems can be addressed.
• No inconsistency arises from the use of different models 

on different layers.
• Economic goals and process constraints do not have to be 

mapped to a control cost whereby inevitably economic 
optimality is lost and tuning becomes difficult.

• The overall scheme is structurally simple.
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Application study: SMB chromatography
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• Separation is based on different 
adsorption affinities of the 
components to a fixed adsorbent.

• Gradual separation while the 
mixture is moving through the 
column

• Fractionating of the products at 
the column outlet

Chromatography: Principle, batch process

☺ Simple process, high flexibility

High operating costs, 
high dilution of the products, and 
low productivity
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Simulated-Moving-Bed process

• A number of chromatographic
columns are connected in series

• The inlet  and outlet ports move
to the next column position after
each swichting period (τ)

• Quasi-countercurrent operation is
achieved (“simulated”) by cyclic
port switching

☺ Continuous operation,
higher productivity, and
lower separation cost
Complex dynamics, very
slow reaction to changes 

Feed
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SMB dynamics
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SMB concentration profiles

Continuous flows 
and discrete  
switchings
Axial profile 
builds up during 
start-up
Same profile in 
different columns 
in cyclic steady 
state
Periodic output 
concentrations
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SMB optimization and control problem

Goal: Maintain specified purity at minimal operating cost
Periodic process described by switched pde‘s
Strongly nonlinear behaviour especially for nonlinear
adsorption isotherms
Drifts may lead to breakthrough of the separation fronts

long periods of off-spec production
Intuitive determination of a near-optimal operating point 
is difficult.
Optimal operation is at the purity limit.
Operating cost is caused by solvent consumption and 
the cost of the adsorbent per (gram of) product
Minimization of the solvent flow rate while meeting
the specs for purity and recovery
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Hierarchical control scheme (Klatt et al.)
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Stabilizing the concentration profile

Front positions taken 
as controlled variables

Choice of manipulated 
variables: β-factors

Decoupled influence on 
the zones of the SMB 
process

Successful application 
to process with linear 
isotherm
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Problems of the hierarchical approach

Extension to nonlinear isotherms possible but control
scheme quite complex (NN-based LPV MPC) 
(Wang and Engell, 2003)
Fronts can only be detected accurately in the recycle 
stream, not in the product streams
Optimality and desired purities cannot be guaranteed
by front position control if the model has structural
errors, e.g. in the form of the isotherm. 

additional purity control layer necessary
scheme becomes very complex, optimality is lost.

Use economic online optimization directly to control
the plant (Toumi and Engell, Chem. Eng. Sci., 2004)
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Formulation of the online optimization problem

Purity requirements
(with error feedback, log. scaled)

s.t.

max. pressure loss

Θ: economic criterion: solvent 
consumption
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Reactive SMB processes
Integration of reaction and separation can overcome 
equilibria and reduce energy and solvent consumption
Fully integrated process however is severely restricted
Hashimoto SMB-process:
• Reaction and separation are performed in separate columns
• Reactors remain fixed in the loop at optimal locations
• Optimal conditions for reaction and separation can be 

chosen

• Disadvantage: complex valve shifting for simulated 
movement of reactors

Q
De ExQ

switching of
separators

liquid flow

zone II zone IIIzone I zone IV

QRaQFe
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Experimental Hashimoto SMB reactor
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Conclusion from the case study

Direct optimizing control is feasible!
Numerical aspects:
• General-purpose NLP algorithms for dynamic problems

provide sufficient speed for slow processes
(Biegler et al., Bock et al.)

• Special algorithms taylored to online control for short
response times (~ s) (Bock, Diehl et al.)

Main advantages
• Performance
• Clear, transparent and natural formulation of the problem, 

few tuning parameters, no interaction of different layers

But there is a problem ...
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NMPC and model accuracy

The idea of (N)MPC is to solve a forward optimization 
problem repeatedly
Quality of the solution depends on the model accuracy
Feedback only enters by re-initialization and error 
correction (disturbance estimation) term

Model errors are usually
taken into account by
a constant extrapolation
of the error between
prediction and observation
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Plant-model mismatch for Hashimoto SMB
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Modification of the cost function
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How to include robustness in optimizing control?

Improve the quality of the model by parameter 
estimation
• Numerical effort
• Insufficient exitation during nominal operation
• Structural plant-model mismatch

Worst-case optimization for different models
• Conservative approach, loss of performance
• Does not reflect the existence of feedback

Two-stage optimization!
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Two-stage decision problem

Information and decision structure
• First stage decisions x ≠ f(ω) (here and now)
• Second stage decisions y = f(ω) (recourse)
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Two-stage formulation
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From control to optimal operations

The gap between process control and process operations

Control structure selection

Real-time optimization

En route from RTO to dynamic optimization

Direct finite-horizon optimizing control

Application example

Plant-model mismatch

• Summary, open issues, and future work
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Summary
The goal of process control is not set-point tracking but 
optimal performance!        

direct finite horizon optimizing control
Main advantages: 
• Performance
• Clear, transparent and natural formulation of the problem, 

few tuning parameters, no interaction of different layers
Feasible in real applications but requires engineering
Numerically tractable due to advances in nonlinear 
dynamic optimization (Biegler et al., Bock et al.)
Modelling and model accuracy are critical issues.
Two-stage formulation leads to a uniform formulation
of uncertainty-conscious online scheduling and control 
problems.
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Open issues
Modelling
• Dynamic models are expensive
• Training simulators are often available, but models too

complex
• Grey box models, rigorous stationary nonlinear plus black-

box linear dynamic models?
State estimation
• MHE formulations natural but computationally demanding

Stability
• Economic cost function may not be suitable to ensure

stability
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More research topics
Measurement-based optimization
Constraint handling in case of infeasibility
Integration of discrete degrees of freedom
System archictecures – decentralization, coordination

Issues for real implementations:
• Operator interface
• Plausibility checks, safety net
• Reduction of complexity – à la NCO tracking?
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