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Abstract: This paper is dedicated to issue of approximation of nonlinear functions
and nonlinear dynamical systems by Piecewise Affine (PWA) linear model. The
article presents new identification Matlab toolbox for modelling and simulation of
nonlinear systems. Functions of the toolbox together with GUI application simplified
and accelerates identification of so called PWA OAF model. Identification of nonlinear
systems is based on novel method of PWA modelling by generalized Fourier series.
The approach provides identification of nonlinear functions of an arbitrary number of
variables and identification of nonlinear dynamical systems in ARX model structure

fashion from input-output data.
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1. INTRODUCTION

In the recent research many methods were devel-
oped for modelling of hybrid systems and gen-
eral nonlinear functions at all (Roll et al., 2004;
Ferrari-Trecate, 2005; Julian et al., 1999). Many
model structures were developed for hybrid sys-
tems and nonlinear systems. Much attention is
dedicated to system modeling in MLD (Mixed
Integer Dynamical) form (Bemporad and Morari,
1999) and PWA (Piecewise Affine). In (Bempo-
rad et al., 2000), the formal equivalence between
MLD systems and PWA systems is established
and also effective algorithms were developed for
transformation from one model structure to an-
other (Villa et al., 2004; Bemporad, 2002). In
(Heemels et al., 2001ab), the equivalence between
the following five classes of hybrid systems is, un-
der certain conditions, established: MLD systems,
Linear Complementarity (LC) systems, Extended
Linear Complementarity (ELC) systems, PWA
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systems and Max-Min-Plus-Scaling (MMPS) sys-
tems. The important result of these equivalences
is that derived theoretical properties and tools can
easily be transferred from one class to another.
In this paper we present an effective tool for
modeling of nonlinear systems by PWA using
novel approach based on generalized Fourier series
(Kozak and Stevek, 2010). This approach belongs
to black-box identification methods of general
nonlinear models (Sjoberg et al., 1995).

We use methodology of generalized Fourier series
with orthogonal polynomials. In (Leondes, 1997),
orthogonal polynomials were used as activation
functions for special case of neural network with
one hidden layer - Orthogonal Activation Func-
tion based Neural Network (OAF NN). For this
type of neural network online and off-line training
algorithm has been defined with fast convergence
properties. After simple modification of OAF NN
it is possible to use this technique for PWA ap-
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proximation of a common nonlinear system.

The paper is divided in six sections. First, we for-
mulate the identification and linearization prob-
lem of nonlinear function. Next, we present mod-
eling of nonlinear process by OAF NN, topology
of the fourier series (PWA OAF NN) and net-
work transformation to state space PWA form.
In Section 3 PWA OAF identification toolbox is
presented on three case studies. In Section 3.3 is
identified nonlinear dynamical system from input-
output data and designed explicit mpc control
law.

2. PROBLEM FORMULATION

PWA linear approximation of hybrid systems de-
pends on defining guardlines of the PWA mapp-
ping. If guardlines are known, the problem of iden-
tifying PWA systems can easily be solved using
standard techniques for linear systems (Roll et al.,
2004). The method based on finding mapping
guardlines is suitable for linear system with non-
linear discrete parts like switches which changes
system behavior in step. Other methods a pri-
ori assume that the system dynamics is contin-
uous (Ferrari-Trecate, 2005). Both mentioned ap-
proaches use for identification clustering-based al-
gorithms.

As will be pointed out, nonlinear identification
techniques can be used under specific conditions
in order to obtain linear PWA model. Many neu-
ral network based identification techniques use
nonlinear neuron functions of one variable which
are easier linearizable than whole model of many
variables. The key idea is based on linearization
of nonlinear neural network functions of single
variable. Similarly as Taylor series, it is possi-
ble to define any nonlinear function as a series
of nonlinear functions. This approach leads to
generalized Fourier polynomial series. Generalized
Fourier series is based on a set of one-dimensional
orthonormal functions QSEN) defined as

[ oM we @ =, W

1

where 0;; is the Kronecker delta function and
[x1,22] is the domain of interest. Several exam-
ples of orthonormal functions are the normalized
Fourier (harmonic) functions, Legendre polynomi-
als, Chebyshev polynomials and Laguerre polyno-
mials (Leondes, 1997). In this paper only Cheby-
shev polynomials will be discussed.

Orthogonal Activation Function based Neural
Network (OAF NN) is employed in the task of
nonlinear approximation. PWA approximation of
every used orthonormal polynomial creates Piece-
wise Affine Orthogonal Activation Function based
Neural Network (PWA OAF NN).
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Fig. 1. Adjusted OAF NN structure
2.1 Chebyshev polynomial

The Chebyshev polynomials of the first kind can
be defined by the trigonometric identity

T, (x) = cos(n arccos(z)) (2)

with norm defined as follows

1 1 T n=>0
—=——(Tu())dz = (3)
/*1 1—a? /2 n#l

Recursive generating formula for Chebyshev poly-
nomials:

where U, is the Chebyshev polynomial of the
second kind generated by the recursive formula:

Uo(l') =1, (8)
Ui (z) =2z, 9)
Upt1(z) =22U, (z) — Up—1(2), (10)

The first few Chebyshev polynomials of the first
kind are



18th International Conference on Process Control
June 14-17, 2011, Tatranskd Lomnica, Slovakia

Le-We-5, 004.pdf

>
w©

C D

Fig. 2. PWA approximation of T2, T3, T4, T5
Chebyshev polynomials

To(z) =1, (11)
Ty (z) ==, (12)
To(z) =222 — 1 (13)
Ty(x) =42° — 3z (14)
Ty(z) =8z — 82% + 1 (15)

The first few Chebyshev polynomials of the second
kind are

Up(z) =1, (16)
Ur(z) =2z, (17)
Us(x) =4a* — 1 (18)
Us(z) =8z — 4x (19)
Uy(z) =162 — 1227 + 1. (20)

2.2 OAF NN topology

It is possible to define Generalized Fourier series
with orthogonal polynomilas by neural network
with one hidden layer. In this work we use a
Matlab function framework for orthogonal activa-
tion function based neural networks which is part
of the toolbox. Aftr slight revision it is possible
to use this methodology for modeling the fourier
series. Example of the network for modeling func-
tion of two variables is depicted in Fig. 1.

If we consider general structure of the network in
ARX fashion with na, nb, and nk parameters we
get network output equation:
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Fig. 3. OAF ARX model for na=2, nb=2, nk=0
or nk=1
1P
y=wi— +...
T

Z (T (y(k1) + -+ wn T (y (k1)) +

2 (w0, Ty (B Ina)) + -+ wi, Ty (y(kfna) +

2 (o, Ty (kb)) + -+ i, T (k) +

i1=(na—1)(n—-1)+2

ig =na(n—1)+1

i3 =mnbn—1)+2
ia=Mmb+1)(n—-1)+1
is=Mmb+na—1)(n—1)+2;
i¢ = (nb+mna)(n —1)+ 1,
i7:nk+nb—1

p =na+nb

(21)
where y(k|na) denotes y(k — na) and similarly
u(k|nk) = u(k—nk). Every Chebyshev polynomial
is aproximated by set of lines (Fig. 2)

T(x)~a;xz+b; for i={1,2,...,n4in} (22)

Then output equation becomes difference equa-
tion.

A convenient feature of all Chebyshev polynomial
is their symmetry. All polynomials of even order
are symmetrical by vertical axis and all polyno-
mial of odd order are symmetrical by origin. These
properties allow decreasing number of lineariza-
tion points to half while keeping precision. To
get the lowest number of shift cases of generated
PWA model we linearized the polynomials in the
same points, Fig. 2. The term ’linearization point’
denotes the interval division point where the PWA
function breaks.

2.3 Transformation to state space PWA form

Accuracy of the approximation of nonlinear sys-
tem is significantly increased when the function
is linearized around multiple distinct linearization
points. State space PWA structure describes be-
havior of nonlinear dynamical systems in multiple
linearization points.
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Fig. 4. PWA OAF ID studio
y(k) = Ciz(k) + Diu(k) + g;
IF[z]eDi, i=1,...,n1 (23b)

Every dynamic ¢ is active in polyhedral partition
(23b) which can be expressed by inequality

guardX;xz(k) + guardU;u(k) < guardC; (24)

Difference equation (21) can be easily transformed
to state space form. In Matlab difference equation
can be expressed by discrete transfer function. It
is possible to use transformation function tf2ss.
But this policy doesn’t lead to desired state space
PWA form. Desired state space form has to keep
all outputs of difference equation (21) in state
vector. So we can correctly define guardline in-
equality (24).

Here we present transformation example for sys-
tem with parameters na=2, nb=2, nk=0 or
nk=1, Fig.3 . Difference equation:

y(k) = D+ cly(k — 1) + ey (k — 2)+

cgfgu(k -1 +c u 2u(k 2) (25)

In PWA form guidelines are defined for 21 = u(k—
2),22=y(lk—2),23=y(k—1) and u = u(k — 1)
PWA state space model:
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x(k+1)=A;x(k) + Biu(k) + f;  (26a)
( ) sz(k) ( ) + g; (26b)
o 0 0
A= 0 0 1 (26¢)
) o) ol
M1
B,=1| 0 (26d)
| )
Ci=[001] (26e)
D;=0 (26f)
0
fi=1 0 (26g)
o0
9i=0; (26h)
reE<3Ix1l> (261)

3. PWA OAF IDENTIFICATION TOOLBOX

PWA identification problem has garnered great
interest in the research community. In Matlab
enviroment several toolboxes were developed for
identification hybrid and nonlinear systems (Roll
et al., 2004; Ferrari-Trecate, 2005; Julian et al.,
1999). The main aim of the PWA OAF Identifica-
tion Toolbox (PWA OAF IT) is to provide efficient
tools for analysis, identification and simulation of
PWA OAF model. In following section we present
toolbox functionality on several identification ex-
amples.

In PWA OAF IT the model is represented by the
following fields of the model structure:

model.na - Number of past output terms
model.nb - Number of past input terms
model.nk - Delay from input to the output
model .npoly - Number of Chebys. polynomials
model.ndiv - Division of {0,1} interval
model.Fi - Connection matrix of network
model.w - Network parameters

model.type - Type of polynomials ’Chebys’
model . const - Constant in difference equation
model .yconst - Y-cons in difference equation
model.uconst - U-const in difference equation
model.sysStruct - PWA state space struct
model.ynorm - Normalized output data
model.unorm - Normalized input data
model.u - Input data

model .y - Output data

model.ypar - Normalization param. of output
model .upar - Normalization param. of input

So far PWA OAF ID supports only MISO sys-

tems. In order to obtain identified model, call

>>model = pwaoafid(y,u,modelstruct,param)

Input arguments are in standard notation well
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Fig. 5. 3D function

known from PWAID toolbox. For more informa-
tion type

>>help oafpwaid
For using gui application Fig. 4, call

>> oafpwaid_studio

3.1 Identification of 2-D function

2-D function is defined by formula:
y = ale*((ﬂ#bl)/cl)2 + aze*((ﬁsz)/w)%r
age—((z—bg)/ch + a46*((l’*b4)/04)2

a; = 53.4, by = 5.165, ¢; =8.815,  (27)
as = 31.25, by = 18.69, ¢y = 5.109,

az = 20.2, by = 13.89, c3 = 2.381,

as = 4.316, by = 9.864, c, = 0.992,

We have made sample data in interval {7,22}
(Fig. 5). In our example we did approximation
in one point, by two lines. Before parameter es-
timation it was necessary to normalize data into
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(b) PWA-OAF Identification Studio

(b) PWA approximation of 3-D function

the interval {—1, 1} where Chebyshev polynomials
are orthogonal. We used the first four Chebyshev
polynomials Ty + T5. Mean square error for this
approximation is mse = 5.1947. To choose a best
position of linearization points is a state of art of
many algorithms. Through fast network parame-
ters computation it is possible to use even genetic
approach to get better position of linearization
point and number of chebyshev polynomials.

3.2 Identification of 3-D function

Consider a 3-D nonlinear function defined as

f(@) = —.2(sin(zq + 4x2)) — 2 cos(2x1 + 3x2)
—3sin(2x; — x2) + 4 cos(z1 — 2x2)
T € {0, 1},
Tg € {0, 1},
(28)

We used the first six Chebyshev polynomials, up
to the fifth order Ty + T3, linearized in 1 point,
each polynomial by two lines. The total number
of shifting cases for the resulting PWA function is
nP*l where n, is the number of neural network
inputs and Ip is the number of linearization points.
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Fig. 6. Vehicle identification data

For the 3-D function example (28) we get 22 =
shifting cases. The result is plotted in Fig. 5b. For
this approximation mse=0.0144.

3.3 Modeling and control of monlinear dynamic
system

In next example we will try to capture vehi-
cle nonlinear dynamic from input output data
for purpose of predictive control design of au-
tomatic cruise control. We used Simulink vehi-
cle model with automatic transmission controller
(Veh, 2006). Input for model is throttle and break
torque signal. Output is vehicle velocity. From the
character of input signals we can merge throttle
and break torque signal to one input signal (Fig.
6a). Positive part of the input signal is propor-
tional to accelerator pedal pressing and negative
part of the input signal is proportional to breaking
pedal pressing. Input-output data and identified
system output are captured in Fig. 6. We used
following identification parameters:

na =1

nb =1

nk =1 (29)
npoly = 4 polynomials: Ty, 11,715,135
ndiv = 1 approximation by two lines

These parameters leads to state space model with
one state variable and one input. Acquired PWA
state space model has four dynamics (four shifting
cases) and it is possible to design an automatic
cruise control for such system.

For control design we used MPT toolbox (Kvas-
nica et al., 2004). We designed explicit mpc con-
troller with time varying reference tracking prop-
erty. We choosed quadratic cost control problem:

116

160

140}

120}

100}

80

Velocity [kph]

60|

401 Velocity — data

— P\WA OAF
OAF

20

0 ; ; ; ; ; ;
0 100 200 300 400 500 600 70
Sample Time [s]

(b) Vehicle speed time response

i — T
w2 = a(N)T Pya(N)+
N-1
u(k)" Ru(k) + (k)" Qr(k)
k=1

(30a)

w(k +1[t) = fayn(x(k), u(k))
Umin S U(k) S Umax
s.t.: Au”mi" < u(k) - U(]C - 1) S Au'maw

Ymin < gdyn(x(k),u(k)) < Ymaz

Z(N) € Tser
(30b)
Parameters of control design:

norm: 2
subopt_lev: 0O
N: 3
tracking: 1

Q: 100
R: 1

Qy: 700

Thanks to few PWA dynamics it is possible choose
higher prediction horizon to refine control perfor-
mance. Resulting control law is defined over 430
regions. It is possible to get satisfactory perfor-
mance with control law defined over fewer num-
ber of regions. Designed control law was used in
feedback control with nonlinear vehicle model Fig.
7b.

4. CONCLUSION

PWA OAF toolbox significantly improves identifi-
cation and modeling of nonlinear systems. Trans-
formation to PWA state space model allows to use
existing control design tools. So far PWA OAF ID
supports only MISO systems. Three studied cases
were presented. It was shown that the proposed



18th International Conference on Process Control
June 14-17, 2011, Tatranskd Lomnica, Slovakia

Le-We-5, 004.pdf

100

20
0

Pedal [%]

-100 o

0 20 40 60 80 100 120
Time [s]

(a) Control and reference input time response

Fig. 7. Automatic cruise control

approach was effective in model precision and
universal in various input configuration. Compu-
tation of network parameters is fast and it allows
to execute identification for various parameters
(order of used Chebyshev polynomials, number
of linearization points) to get better performance
or even to use genetic approach. Accuracy of the
PWA OAF NN approximation depends on the
number of linearization points, the highest order
of used Chebyshev polynomials and absolute value
of computed parameters of the neural network.
More linearization points give better precision of
the approximation but complexity of the PWA
model increases. It is necessary to find suitable
proportion between the number of linearization
points and required precision.
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