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Disturbance Decoupling of Discrete-time
Nonlinear Systems by Static Measurement

Feedback

A. Kaldmäe Ü. Kotta

Institute of Cybernetics at TUT, Akadeemia tee 21, 12618 Tallinn,
Estonia

fax : +372 620 4151 and e-mail : arvo@cc.ioc.ee, kotta@cc.ioc.ee

Abstract: This paper addresses the disturbance decoupling problem (DDP) for nonlinear
systems extending the results for continuous-time systems into the discrete-time case. Sufficient
conditions are given for the solvability of the problem. The notion of the rank of a one-form is
used to find the static measurement feedback, that solves the DDP whenever possible. Moreover,
necessary and sufficient conditions are given for single-input single-output systems as well as for
multi-input single-output systems under the additional assumption.

Keywords: Nonlinear systems, discrete-time systems, disturbance decoupling, static
measurement feedback.

1. INTRODUCTION

The disturbance decoupling problem (DDP) for discrete-
time nonlinear control system by state feedback has
been addressed in many papers; see Aranda-Bricaire and
Kotta (2004 2001); Fliegner and Nijmeijer (1994); Griz-
zle (1985); Kotta and Nijmeijer (1991); Monaco and
Normand-Cyrot (1984). Most papers extend the known
results for continuous-time systems (see for example Ni-
jmeijer and van der Schaft (1990); Conte et al. (2007);
Isidori (1995)) into the discrete-time domain and in all
these papers the control system is described by smooth
or analytic difference equations. However, there are no
papers that address the DDP for discrete-time nonlinear
control systems using the output feedback except that
of by Shumsky and Zhirabok (2010) (see also Kotta and
Mullari (2010)) and Kotta et al. (2011). In Shumsky and
Zhirabok (2010) the controlled output is a vector function
of the measured output, having possibly less components
than the measured output itself. Therefore, the above
solution may be considered only as a partial solution. The
paper by Kotta et al. (2011) provides a full algorithmic
solution for the problem using the dynamic feedback. In
both papers the novel algebraic approach, called the al-
gebra of functions, is applied, see Zhirabok and Shumsky
(2008).

As for continuous-time nonlinear control systems there
exist also only a few papers addressing the problem, see
Pothin et al. (2002); Isidori et al. (1981); Xia and Moog
(1999); Andiarti and Moog (1996). The paper by Pothin
et al. (2002) studies the problem using a static measure-
ment feedback, and in Isidori et al. (1981) the feedback
considered is restricted to pure dynamic measurement
feedback, whereas the other two papers focus on the dy-
namic measurement feedback.

The goal of this paper is to extend the results of Pothin
et al. (2002) for discrete-time nonlinear control systems.

2. PROBLEM STATEMENT

Consider a discrete-time nonlinear control system

x(t+ 1) = f(x(t), u(t), w(t))

y(t) = h(x(t)) (1)

z(t) = k(x(t)),

where the state x(t) ∈ Rn, the control input u(t) ∈ Rm, the
disturbance input w(t) ∈ Rν , the output to be controlled
y(t) ∈ R and the measured output z(t) ∈ Rµ. Assume that
f , h and k are meromorphic functions of their arguments.

Let K∗ denote the inversive field of meromorphic functions
in variables x(t), u(t), w(t) and a finite number of their (in-
dependent) forward- and backward shifts. Note that not all
the variables are independent because of the relationships
defined by (1) and in the computations the dependent vari-
ables have to be expressed via the independent ones. For
example, x(t+ 1) has to be replaced by f(x(t), u(t), w(t)).
See Aranda-Bricaire et al. (1996) for the details how to
construct K∗.
Define the vector spaces X = spanK∗{dx(t)}, Z =
spanK∗{dz(t)}, U = spanK∗{du(t + k), k ≥ 0}, W =

spanK∗{dw(t+ k), k ≥ 0} and E = X + U +W.

Definition 1. (Aranda-Bricaire et al. (1996)) The relative
degree r of the output y(t) is defined by

r := min{k ∈ N|dy(t+ k) /∈ X}.
If such an integer does not exist, then define r :=∞.

The static measurement feedback of the form u(t) =
F (z(t), v(t)) is called regular if F is invertible with respect
to v(t), i.e. if there exists an inverse function α := F−1

such that v(t) = α(z(t), u(t)).

Problem Statement. Given a nonlinear system of the
form (1), the goal is to find, if possible, a regular static
measurement feedback of the form
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u(t) = α−1(z(t), v(t)),

such that controlled output y(t) of the closed loop system
satisfies the following conditions:

(i) dy(t + k) ∈ spanK∗{dx(t),dv(t), . . . ,dv(t + k −
r)},∀k ≥ r

(ii) dy(t+ r) /∈ X .

Condition (i) represents the independence of the output of
the closed-loop system from the disturbance whereas the
condition (ii) represents the output controllability of the
closed-loop system.

Analogously to the continuous-time case, see Pothin et al.
(2002), define the subspace Ω ⊂ X by

Ω := {ω(t) ∈ X |∀k ∈ N : ω(t+ k)

∈ spanK∗{dx(t),dy(t+ r), . . . ,dy(t+ r + k − 1)}}.
Lemma 1. The subspace Ω may be computed as the limit
of the following algorithm:

Ω0 = spanK∗{dx(t)}
Ωk+1 = {ω(t) ∈ Ωk|ω(t+ 1) ∈ Ωk (2)

+ spanK∗{dy(t+ r)}}, k ≥ 0.

Proof : We show below, that sequence Ωk converges and
in the limit we get Ω. Consider a subspace Ωk. By (2),
Ωk+1 ⊂ Ωk or Ωk+1 = Ωk. Since the subspace Ωk is finite-
dimensional vector space, at certain step k∗ + 1, Ωk

∗
=

Ωk
∗+1. Thus the sequence (2) converges and the limit is

Ωk
∗
. We show now that Ω = Ωk

∗
. Suppose ω(t) ∈ Ωk

∗
.

Then, by (2)

ω(t+ 1) ∈ Ωk
∗−1 + spanK∗{dy(t+ r)}

and so ω(t+ 1) = ω̃(t) + ξdy(t+ r) for some ω̃(t) ∈ Ωk
∗−1

and function ξ ∈ K∗. Since ω̃(t) ∈ Ωk
∗−1, by (2)

ω̃(t+ 1) ∈ Ωk
∗−2 + spanK∗{dy(t+ r)}

and so forward shift of ω(t+ 1) is

ω(t+ 2) ∈ Ωk
∗−2 + spanK∗{dy(t+ r),dy(t+ r + 1)}.

Continuing in the same way, we get

ω(t+k∗) ∈ Ω0 + spanK∗{dy(t+ r), . . . ,dy(t+ r+k∗− 1)},
which means that ω(t) ∈ Ω. We showed that if ω(t) ∈ Ωk

∗
,

then ω(t) ∈ Ω, i.e. Ωk
∗ ⊂ Ω.

Now suppose that ω(t) ∈ Ω. Then by definition of Ω,

ω(t+ k∗) ∈ X + spanK∗{dy(t+ r), . . . ,dy(t+ r+ k∗− 1)}.
Because Ω0 = X ,

ω(t+k∗) = ω̃(t) + ξ1dy(t+ r) + . . .+ ξk∗dy(t+ r+k∗− 1),

where ω̃(t) ∈ Ω0 and ξ1, . . . , ξk∗ ∈ K∗. Backward shift
ω̃(t − 1) ∈ Ω1, because ω̃(t − 1) ∈ Ω0 and ω̃(t) ∈ Ω0 +
spanK∗{dy(t+ r)}. Note that dy(t+ r− 1) ∈ Ωk

∗
, because

dy(t + r) ∈ Ωl + spanK∗{dy(t + r)} for every l ≥ 0. Thus
backward shift of ω(t+ k∗) is

ω(t+k∗−1) ∈ Ω1 + spanK∗{dy(t+ r), . . . ,dy(t+k∗−2)}.
Continuing in the same way, we get

ω(t+ 1) ∈ Ωk
∗−1 + spanK∗{dy(t+ r)}.

Thus ω(t) ∈ Ωk
∗

and we are shown that Ω ⊂ Ωk
∗
. Above

we showed that Ωk
∗ ⊂ Ω, so Ω = Ωk

∗
. 2

We will show next how Ω changes under the regular
static measurement feedback u(t) = α(z(t), v(t)). Denote
by K∗ the field of meromorphic functions in variables
x(t), v(t), w(t) and a finite number of their independent
forward- and backward shifts and define the vector spaces
X = spanK∗{dx(t)}, U = spanK∗{du(t + k), k ≥ 0},
W = spanK∗{dw(t + k), k ≥ 0}, E = X + U + W.
Analogously to Xia and Moog (1999) one can prove that
there exists an isomorphism Φ : E → E such that if Ωcl is
the subspace for the closed loop system, then Ωcl = Φ(Ω).

Let ω(t) ∈ Θ be a one-form. In general, ω(t) is a linear
combination of all n basis elements of Θ, i.e. {θ1, . . . , θn}.
However, it is often possible to find a linearly independent
subset of the set {θ1, . . . , θn} with less than n elements in
terms of which ω(t) can be expressed.

Definition 2. (Choquet-Bruhat et al. (1996)) Let γ be
the minimal number of linearly independent one-forms
necessary to express a one-form ω(t). Then ω(t) is said
to be of rank γ.

Note that 1 ≤ γ ≤ n. For example, if the rank γ of
a one-form ω(t) is 1, then ω(t) = ξdα and thus ω(t) ∧
dω(t) = 0. In the general case, if the rank γ is k, then
ω(t)∧(dω(t))(k) = 0, where (dω(t))(k) = dω(t)∧. . .∧dω(t)
is k-fold wedge product.

We prove the following lemma for MISO systems, provid-
ing the alternative formulation of the disturbance decou-
pling.

Lemma 2. Under the assumption that the relative degree
r of the output y(t) is finite, the system (1) is disturbance
decoupled iff

dy(t+ r) ∈ Ω + spanK∗{du(t)}. (3)

Proof : Necessity. Assume, that system (1) is disturbance
decoupled, i.e.

dy(t+ k) ∈ spanK∗{dx(t),du(t), . . . ,du(t+ k − r)} (4)

for k ≥ r and

dy(t+ r) /∈ spanK∗{dx(t)}. (5)

In particular, dy(t + r) ∈ spanK∗{dx(t),du(t)}. Rewrite
the latter as

dy(t+ r) ∈ X + spanK∗{du(t)}. (6)

Thus there exists a one-form ω0(t) ∈ X and a function
ξ ∈ K∗ such that dy(t+r) = ω0(t)+ξdu(t). We are going to
show, that ω0(t) ∈ Ω. Assume contrarily, that ω0(t) /∈ Ω.
The forward shift of dy(t+ r) ∈ spanK∗{dx(t),du(t)} is

dy(t+ r + 1) ∈ spanK∗{dx(t),dw(t),du(t),du(t+ 1)},
which yields a contradiction with (4). Thus, ω0 ∈ Ω and
we can rewrite (6) as dy(t+ r) ∈ Ω + spanK∗{du(t)}.
Sufficiency. Assume that for system (1) the condition (3) is
fulfilled. We must show that system (1) satisfies conditions
(4) and (5). Because r is the relative degree of y(t), (5) is
satisfied. Because of (3),

dy(t+ r) = ω0(t) + ξdu(t),

where ω0(t) ∈ Ω and ξ ∈ K∗. Since ω0(t) ∈ Ω

ω0(t+ l) ∈ spanK∗{dx(t),dy(t+ r), . . . ,dy(t+ r + l − 1)}
for all l ≥ 0. Thus
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dy(t+ r + l) ∈ spanK∗{dx(t),dy(t+ r), . . .

. . . , dy(t+ r + l − 1),du(t+ l)}
for all l ≥ 0. Hence

dy(t+r+l−1) ∈ spanK∗{dx(t),dy(t+r), . . . ,dy(t+r+l−2)}
and

dy(t+ r + l) ∈ spanK∗{dx(t),dy(t+ r), . . .

. . . , dy(t+ r + l − 2),du(t+ l − 1),du(t+ l)}.
Continuing the same way, we get

dy(t+ r + l) ∈ spanK∗{dx(t),du(t), . . . ,du(t+ l)}.
Changing l by l = k− r, we get (4) and thus sufficiency is
fulfilled. 2

We are going to use the subspace Ω and the concept of the
rank of a one-form to give a sufficient condition for the
disturbance decoupling problem.

3. MAIN RESULTS

Theorem 3. The disturbance decoupling problem for sys-
tem (1) is solvable by static measurement feedback if:

(i) dy(t+ r) ∈ Ω + Z + U ,
(ii) there exists a one-form ω(t) ∈ Z+U such that dy(t+

r)− ω(t) ∈ Ω and rank ω(t) = γ ≤ m,
(iii) for any basis {dα1(z(t), u(t)), . . . ,dαγ(z(t), u(t))} of

ω(t),

rank
[∂α(z(t), u(t))

∂u(t)

]
= γ, (7)

where α := [α1, . . . , αγ ]T .

Proof : Assume that condition (i) is fulfilled. Under the
condition (ii) there exists a one-form ω(t) such that dy(t+
r)− ω(t) ∈ Ω where

ω(t) = β1dα1(z(t), u(t)) + . . .+ βγdαγ(z(t), u(t)).

When condition (iii) is satisfied, then γ one-forms
dαi(z(t), u(t)), i = 1, . . . , γ, are independent with respect
to the variable u(t). Define for i = 1, . . . , γ

vi(t) = αi(z(t), u(t)). (8)

If γ < m, then by renumbering the inputs u(t), if
necessary, complete (8) with

vi(t) = ui(t), i = γ + 1, . . . ,m (9)

to get an invertible map. Define a static measurement
feedback u(t) = α(z(t), u(t)) as the solution of (8) and
(9). Note that this yields

dy(t+ r) ∈ Ω⊕ spanK∗{dv(t)}
and thus by Lemma 2, system (1) is disturbance decou-
pled. 2

In case of SISO systems when m = 1, (7) and (ii) of
Theorem 3 yield

rank
[∂α(z(t), u(t))

∂u(t)

]
= γ = 1.

Thus, condition (iii) of Theorem 3 is satisfied if and only if
γ = 1. For SISO systems one can conclude from Theorem
3 a necessary and sufficient condition.

Corollary 4. For SISO nonlinear control systems the DDP
is solvable by a regular static measurement feedback iff:

(i) dy(t+ r) ∈ Ω + Z + U
(ii) There exists a one-form ω(t) ∈ Z + U such that

dy(t+ r)− ω(t) ∈ Ω and rank ω(t) = 1.

Proof : Necessity. Assume that system (1) is decoupled by
the regular static measurement feedback

u(t) = α(z(t), v(t)), v(t) = α−1(z(t), u(t)). (10)

Then by Lemma 2

dy(t+ r) ∈ Ω + spanK∗{dv(t)}. (11)

Combining (11) with (10) implies condition (i). Since
ω(t) = ξd(F−1(z(t), u(t))), ω(t) ∧ dω(t) = 0 and rank
ω(t) = 1. Thus condition (ii) is also fulfilled.

Sufficiency. Assume that (i) holds. Then

dy(t+ r) ∈ Ω⊕ spanK∗{dz(t),du(t)}.
Since by (ii) the rank of the one-form ω(t) is 1, define
ω(t) := λdv(t) and so

dy(t+ r) ∈ Ω⊕ spanK∗{dv(t)}
meaning that the system is decoupled. 2

In general there is no necessary and sufficient condition
for MISO systems, but under an additional assumptions
Ω ∩ Z = Ø and dy(t + r) ∈ Ω ⊕ Z + U one can find a
necessary and sufficient condition for MISO systems.

Theorem 5. Assume that Ω ∩ Z = Ø and dy(t+ r) ∈ Ω⊕
Z+U . The DDP is solvable by regular static measurement
feedback iff

(i) There exists a one-form ω(t) ∈ Z + U such that
dy(t+ r)− ω(t) ∈ Ω and γ := rank ω(t) ≤ m.

(ii) For any basis {dα1(z(t), u(t)), . . . ,dαγ(z(t), u(t))} of
ω(t),

rank
[∂α(z(t), u(t))

∂u(t)

]
= γ.

Proof : Necessity. Assume that system (1) is disturbance
decoupled by the regular static measurement feedback
v(t) = α(z(t), u(t)). By Lemma 2, dycl(t + r) ∈ Ωcl + V,
where V = spanK∗{dv1(t), . . . ,dvm(t)} and ycl(t) is the
output of the closed-loop system. Because of isomorphism
Φ : E → E described above and feedback α(z(t), u(t)), one
can write

dy(t+ r) ∈ Ω + spanK∗{dα(z(t), u(t))}.
Thus, there exist a one-form ω̃(t) ∈ Ω and ξ ∈ K∗ such
that

dy(t+ r) = ω̃(t) + ξdα(z(t), u(t)).
Assumption dy(t+r) ∈ Ω⊕Z+U implies that ω̃(t) ∈ Ω+Z.
Rewrite ω̃(t) = ω̃0(t) + ω̃z(t) for some ω̃0(t) ∈ Ω and
ω̃z(t) ∈ Z. As in the proof of Lemma 2, one can show
that ω̃z(t) ∈ Ω. Due to the assumption Ω ∩ Z = 0, we
have ω̃z(t) = 0. Then define ω(t) = ξdα(z(t), u(t)) and
the necessity of condition (i) is fulfilled.

Because the rank of a one-form ω(t) is γ,

ω(t) = β1dα1(z(t), u(t)) + . . .+ βγdαγ(z(t), u(t))

where βi ∈ K∗, i = 1, . . . , γ. Suppose, contrarily to the
claim of Theorem 5 that (ii) is not fulfilled. Then there
exist a one-form

ξ1dα1(z(t), u(t)) + . . .+ ξγdαγ(z(t), u(t)) ∈ Z.
Assume without loss of generality that ξ1 6= 0, then ω(t)
can be decomposed into

ω(t) = ω̃z(t) + η2dα2(z(t), u(t)) + . . .+ ηγdαγ(z(t), u(t))
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in which

ω̃z(t) =
β1
ξ1

(ξ1dα1(z(t), u(t))+ . . .+ξγdαγ(z(t), u(t))) ∈ Z

and

ηi = βi −
β1
ξ1
ξi,

for i = 2, . . . , γ. As shown before, if ω̃z(t) ∈ Z then
necessarily ω̃z(t) ∈ Ω and since Ω ∩ Z = 0, this yields
a contradiction. Thus condition (ii) has to be fulfilled.

Sufficiency. Because all of the conditions of Theorem 3 are
satisfied, then sufficiency is fulfilled. 2

4. EXAMPLES

The first example illustrates Theorem 3.

Example 1. Consider the system

x1(t+ 1) = x2(t) + x3(t)u1(t)x4(t) + u2(t)x4(t)

x2(t+ 1) = x2(t) + x3(t)u1(t)x4(t) + u2(t)x4(t) + x23(t)

x3(t+ 1) = cosx1(t) (12)

x4(t+ 1) =w(t)

y(t) = x1(t)

z(t) = x4(t).

Note that the relative degree of the output y(t) is 1,
because

dy(t+ 1) = dx2(t) + u1(t)x3(t)dx4(t) + x3(t)x4(t)du1(t)

+ u1(t)x4(t)dx3(t) + u2(t)dx4(t) + x4(t)du2(t).

Next we find the vector space Ω using the algorithm,
defined by (2). First,

Ω0 = spanK∗{dx1(t),dx2(t),dx3(t),dx4(t)}.
Because dy(t+ 1) = dx1(t+ 1),

dx1(t+ 1) = dy(t+ 1) ∈ Ω0 + spanK∗{dy(t+ 1)}
dx2(t+ 1) = dy(t+ 1) + 2x3(t)dx3(t)

∈ Ω0 + spanK∗{dy(t+ 1)}
dx3(t+ 1) =− sinx1(t)dx1(t) ∈ Ω0 + spanK∗{dy(t+ 1)}
dx4(t+ 1) = dw(t) /∈ Ω0 + spanK∗{dy(t+ 1)}.

Thus, Ω1 = spanK∗{dx1(t),dx2(t),dx3(t)}. In the next
step we get Ω1 = Ω2 = Ω. Since dz(t) = dx4(t),
the condition (i) of Theorem 3 is satisfied, i.e. dy(t +
1) ∈ Ω + Z + U . Next step is to choose ω(t) such that
ω(t) ∈ Z + U and dy(t + 1) − ω(t) ∈ Ω. One can take
ω(t) := u2(t)dx4(t) + x4(t)du2(t) + u1(t)x3(t)dx4(t) +
x3(t)x4(t)du1(t) which can be rewritten as

ω(t) = d(u2(t)z(t)) + x3(t)d(u1(t)z(t)).

From above, the rank of ω(t) is 2 = m. Thus condition (ii)
of Theorem 3 is satisfied. Condition (iii) is easily verified
and the disturbance decoupling feedback may be found as
the solution of the system of equations v1(t) = u2(t)z(t)
and v2(t) = u1(t)z(t) with respect to u1(t) and u2(t).

In the second example the rank of a one-form ω(t) is
strictly less than the number of inputs, γ < m.

Example 2. Consider the system

x1(t+ 1) = x2(t) + x4(t)u1(t)u2(t)

x2(t+ 1) = x2(t) + x4(t)u1(t)u2(t) + x23(t)

x3(t+ 1) = cosx1(t) (13)

x4(t+ 1) =w(t)

y(t) = x1(t)

z(t) = x4(t).

The relative degree of output y(t) is 1 and

dy(t+ 1) = dx2(t) + u1(t)u2(t)dx4(t)

+ u2(t)x4(t)du1(t) + u1(t)x4(t)du2(t).

Like in Example 1, one can find the subspace Ω =
spanK∗{dx1(t),dx2(t),dx3(t)} and thus the condition (i)
of Theorem 3 is satisfied. Since now one can choose ω(t) as
ω(t) = d(u1(t)u2(t)z(t)), γ :=rank ω(t) = 1 and condition
(ii) of Theorem 3 is fulfilled. Note that (iii) is satisfied and
the regular static measurement feedback can be found from
v1(t) = u1(t)u2(t)z(t) and v2(t) = u2(t).

The following example shows that for the MISO case the
condition (i) of Theorem 3 is not necessary.

Example 3. Consider the system

x1(t+ 1) = x2(t) + u1(t)x3(t)x4(t) + u2(t)x4(t)

x2(t+ 1) = x2(t) + u1(t)x3(t)x4(t) + u2(t)x4(t) + x23(t)

x3(t+ 1) = u1(t)x4(t) (14)

x4(t+ 1) =w(t)

y(t) = x1(t)

z(t) = x4(t)

Condition (i) of Theorem 3 is not satisfied, because Ω =
spanK∗{dx1(t)}, but

dy(t+ 1) = dx2(t) + u1(t)x4(t)dx3(t) + u1(t)x3(t)dx4(t)

+ x3(t)x4(t)du1(t) + u2(t)dx4(t) + x4(t)du2(t).

Still, one can choose ω(t) = x3(t)d(u1(t)z(t))+d(u2(t)z(t))
and find the static measurement feedback from v1(t) =
u1(t)z(t) and v2(t) = u2(t)z(t), which solves the DDP.

Example 4. Consider the system

x1(t+ 1) = ex2(t)x
2
3(t)

x2(t+ 1) = cosx2(t)

x3(t+ 1) = u1(t) sinx4(t) (15)

x4(t+ 1) = u2(t)w(t)

y(t) = x1(t)

z(t) = x4(t).

Note that the relative degree of the output y(t) is 2.
Sequence (2) for this system converges and the subspace
Ω = Ω2 = spanK∗{dx2(t)}. Because

dy(t+ 2) = d(eu
2
1(t) cos x2(t) sin

2 x4(t)),

the first condition of Theorem 3 is satisfied. One can choose
ω(t) to be
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ω(t) = 2eu
2
1(t) cos x2(t) sin

2 z(t)(cosx2(t) sin2 z(t)u1(t)du1(t)

+ cosx2(t) cos z(t) sin z(t)u21(t)dz(t)).

Because ω(t) ∧ dω(t) = 0, the rank of ω(t) is 1 and
thus the second condition is satisfied. Next, one can find

α(z(t), u(t)) = ln(u1(t) sin z(t)); so rank
[
∂α(z(t),u(t))

∂u(t)

]
= 1

and condition (iii) is also satisfied. The feedback that
solves the DDP is

u1(t) = ev1(t) csc z(t)

u2(t) = v2(t).

and the closed-loop system

x1(t+ 1) = ex2(t)x3(t)
2

x2(t+ 1) = cos(x2(t))

x3(t+ 1) = ev1(t)

x4(t+ 1) = v2(t)w(t)

y(t) = x1(t)

z(t) = x4(t)

is disturbance decoupled.

Example 5. Consider the system

x1(t+ 1) = x4(t)w(t) ln(x2(t)u2(t))

x2(t+ 1) = x1(t)x2(t)

x3(t+ 1) = eu1(t)x4(t) (16)

x4(t+ 1) = u2(t)w(t)

y(t) = x1(t)

z(t) = x4(t).

The relative degree of output y(t) is 1 and the subspace
Ω = spanK∗{dx1(t),dx2(t)}. Since

dy(t+ 1) =
w(t)z(t)

x2(t)
dx2(t) +

w(t)z(t)

u2(t)
du2(t)

+w(t) ln(u2(t)x2(t))dz(t)

+ z(t) ln(u2(t)x2(t))dw(t),

there does not exist a one-form ω(t) ∈ Z + U such that
dy(t+1)−ω(t) ∈ Ω. Thus the second condition of Theorem
3 is not satisfied and the DDP is not solvable by the static
measurement feedback.

5. CONCLUSION

In this paper the notion of the rank of a one-form and the
subspace Ω of differential one-forms was used to solve the
DDP for nonlinear discrete-time control systems by static
measurement feedback. Sufficient conditions for solvability
of the DDP were found. Necessary and sufficient conditions
were derived from the above conditions for SISO systems
and for MISO systems under the additional assumption.
The sufficient condition also provided a procedure to find
the static measurement feedback to solve the DDP. Be-
cause these conditions are very restrictive, further research
is necessary. Next step is to extend the results by Xia
and Moog (1999) addressing the dynamic measurement

feedback in the framework of differential forms for discrete-
time systems. Those results can then be compared with
those by Kotta et al. (2011), that are obtained using
the tools of algebra of functions. Additionally to above
theoretical problems the functions in Mathematica will be
developed for solving the DDP and integrated into the
symbolic software package NLControl, developed in the
Institute of Cybernetics at Tallinn University of Technol-
ogy.
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