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The robust motion control of a robot manipulator 
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 Ilkovičova 3, 812 19 Bratislava, Slovak Republic  

(Tel: +421-2-6029-1776; e-mail: jan.kardos@stuba.sk) 

Abstract: The contribution presents a verification of the fast and chattering-free robust variable structure 
fixed-target position control of the 2-DOF robot manipulator considering both the mutual interaction 
between the links and the gravitational forces influence as the signal disturbances. Numerical simulations 
in the joint space show the feasibility and effectiveness of the provided algorithm in the control of 
a complex mechatronic system. 

 

1. INTRODUCTION 

Any feasible control of the multi-DOF mechatronic system 
has to face the problem of an extreme variability of the plant 
parameters as well as a strong influence of the variable 
external forces (gravitational, Coriolis and centrifugal). The 
classical control methods are not able to manage satisfactory 
such a complex and difficult task at all. One of the promising 
control approaches is the contemporary variable structure 
control (VSC) theory with its specific and unique attribute – 
the sliding mode (sliding mode control – SMC) (Utkin et al. 
1999), (Utkin 2002), (Kardoš 2009). The basic feature of the 
sliding mode is the high frequency oscillation of the actuating 
variable because of the switching principle in the control 
algorithm. In sliding mode, the system’s phase trajectory is 
robust and independent of the parametric and external 
disturbances due to reserve in power. 

Based on the VSC, the equivalent time sub-optimal control 
(ETSC) algorithm has been formulated for a single-DOF 
motion control system (Kardoš 2005). The main benefits of 
this control are a simple control structure, the fastest possible 
and overshoot-free response and the insensitivity to any 
(parametric and/or signal) type of disturbances. One of the 
problems of SMC, the chattering elimination, has been solved 
via the reaching law approach (Hung et al. 1993). The aim of 
this contribution is the implementation of the prospective 
ETSC algorithm in the control structure of a multi-DOF robot 
manipulator. Using the Euler-Lagrange formalism, a dynamic 
model of the robot manipulator has been derived (Kardoš 
2010). For the purposes of this paper, the reduced model of 
a 2-DOF manipulator has been considered without loss of 
generality. 

2. THE OUTLINE OF THE CONTROL ALGORITHM 

The goal of the original time sub-optimal control (TSC) 
algorithm (Kardoš 2007) is the fast and overshoot-free 
positioning of the motion control system despite its variable 
dynamics. Let for the basic model of the generalized position 

q generator given in the phase space ( )ee &,  by the system of 
the differential equations 
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the time sub-optimal control be described by the group of 
expressions 
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In (1) and (2), qqe d −=  stands for the control error (qd – 

desired position value), ( )Tee &,=e  corresponds to the 
system’s error vector (the phase vector), F(e) represents the 
linear switching function (a switching line with the slope α), 
u is the system’s input (the control), M > 0 refers to the value 
of a natural limitation of the control u, K stands for the 
control channel gain and the time constant T represents the 
dominant variable parameter 

 

maxmin,TTT ∈  (3) 

 

Note that control (2) belongs to the switching type 
(discontinuous) VSC algorithms and that the majority of VSC 
prefers the linear switching function with its simple 
computation and realization. To avoid the chattering problem 
in a motion control system (the chattering denotes a low 
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frequency oscillation of system variables in sliding mode due 
to presence of parasitic dynamics and non-linearities in real 
mechatronic systems), the reaching law modification of the 
original control algorithm (2) has been performed (Kardoš 
2005). The main idea of the reaching law is to force the 
system’s state (the representative point in the phase portrait) 
to reach the switching function using the prescription given 
by the differential equation 

 

( ) ( )ee kF
dt

dF
−=  (4) 

 

where 1/k represents the time constant of the switching 
function exponential evolution (decrease). Equation (4) meets 
the sliding mode existence condition (Utkin et al. 1999) and 
assures the chattering elimination replacing the discontinuous 
control by its smooth equivalent (close to mean value) in the 
vicinity of the switching function. Assuming the non-
oscillating behaviour of the controlled variable q, using (1) 
and (2), we obtain a linear continuous equivalent control uEQU 
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Combining equation (5) with the control u limitation 
( ( ) Mu ≤abs ) in (2) yields the resultant equivalent time sub-
optimal control (ETSC) (Kardoš 2005) in the form 

 

( )
( ) ( )⎩

⎨
⎧

≥
<

=
MuforuM
Muforu

u
EQUEQU

EQUEQU
ETSC abssgn

abs
 (6) 

 

The recommended value of parameter k 

 

α>>
>>

k
k 1

 (7) 

 

corresponds with the requirement of the fast and accurate 
control. 

Algorithm (6) guarantees the robust and near-to-time optimal 
control of a single-DOF mechatronic system (SISO) (1) with 
the parametric uncertainty (3) in time constant (Kardoš 
2005), (Kardoš 2007) as well as the chattering elimination in 
control structure (Kardoš 2005), which implies the low 
energy consumption. Furthermore, it is evident that signals 
necessary for the control algorithm completion, i.e. the 
position signal and the velocity one (cf. (5)), are in 
mechatronic systems directly accessible. 

 

3. CONTROL OF THE ROBOT MANIPULATOR 

The implementation of the proposed control strategy in the 
robot manipulator positioning control requires the thorough 
analysis of both the mutual interaction among the 
manipulator’s degrees of freedom and the interaction between 
any DOF and the environment (e.g. the friction, the influence 
of the gravitation etc). Due to robustness of the presented 
control algorithm, such an interaction can be viewed as the 
signal disturbance. Consequently, the robot manipulator 
representing a complex MIMO system can be decoupled to 
a set of SISO systems, one for each DOF. Thus, any DOF can 
be controlled by its individual control algorithm (6). 

Based on the Euler-Lagrange formalism, let the robot 
manipulator’s dynamics be described by the matrix 
differential equation (Kardoš 2010) 

 

( ) ( ) ( )qgqqcqBqqJ −−−= &&&& ,τ  (8) 

 

where q and τ stand for the vectors of generalized 
coordinates and generalized driving forces or torques 
respectively, J(.) represents the inertia matrix, B denotes the 
diagonal matrix of viscous friction coefficients, c(.) 
corresponds to the vector of Coriolis and centrifugal forces 
and g(.) stands for the vector of gravitational forces. 

To keep the controllability of the manipulator DOF’s, for the 
ith DOF, the limitation Mi of the control ui (in this particular 
case a limitation of the driving torque τi as an element of the 
driving forces vector τ) in the corresponding ETSC algorithm 
(6) should satisfy the condition 
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where Bi, ci, gi, jij, iq&  and jq&&  are the elements of the related 
matrices or vectors in (8). Note, that the values of elements in 
matrix J as well as the ones in vectors c and g are extremely 
variable for the period of the robot positioning, which makes 
the utilization of conventional control theory methods almost 
impossible. To get the values of the control boundary Mi, the 
maximal values of both the joint angular acceleration and the 
joint angular velocity should be known. These values are 
given by the particular industrial technology where the 
controlled robot manipulator is supposed to be utilized. 
Taking into consideration the requirement of the fastest 
possible motion as well as the boundaries of acceleration and 
velocity, the command (desired value qdi) in high-quality 
controllable robot positioning should have the form of S-
curve. 

For the control purposes, after the decoupling of the original 
controlled plant (8), the values of the ith DOF parameters are 
given by the pair of expressions 
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4. EXPERIMENTAL RESULTS 

The provided control algorithm has been applied in 
a numerical model of the robot manipulator control. 
A corresponding kinematic structure of the two-link 
manipulator is depicted in Figure 1, with the positive 
orientation of joint variables qi (i = 1, 2) indicated by arrows. 
Both the controlled manipulator and the control algorithm 
parameters are given in Table 1. The resultant control 
structure in Matlab-Simulink can be seen in Figure 2. 
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Fig. 1. Kinematic structure of the two-link manipulator 
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Fig. 2. Diagram of the Matlab control structure 

The dynamic parameters of the robot endpoint trajectory (in 
the task space) equivalent to the angular values in the joint 
space are as follows: the maximal value of the acceleration 
amax = 1.767ms-2, the maximal value of the velocity 
vmax = 1.767ms-1. Such parameters represent a sufficiently 
dynamic motion in robotized technologies, particularly in 
mechatronic systems with a strong coupling between the 
DOF’s and with extremely variable time constants 
(proportional to the square of the varying distance between 
the revolute joint and the gravity centre of any rotating mass). 

 

Joint number i Parameter 1 2 
Length li of a link [m] 0.75 0.75 
Total mass mi of a link [kg] 30 32 
Coefficient of the viscous 
friction Bi [kgms-1] 2 2 

Control channel gain Ki 0.5 0.5 
Max. value of the moment 
of inertia jiimax [kgm2] 88.875 18 

Max. value of the system’s 
time constant Timax [s] 44.4375 9 

Joint angular velocity 
boundary maxiq&  [rads-1] 0.7854 0.7854 

Joint angular acceleration 
boundary maxiq&&  [rads-2] 0.7854 0.7854 

Driving torque (control) 
boundary Mi [Nm] 840 300 

Control parameter αi (2) 0.0733 0.3621 
Control parameter ki (5) 10000 10000 

 

Tab. 1. Parameters of the 2-DOF robot control 

Figures 3 to 8 show the control system behaviour in the time 
domain for a period of positioning between the starting 
position q1 = q2 = 0 and the target one q1 = q2 = π/2 (in 
radians) in both joints. The left column of figures 
corresponds to the first link of the manipulator, the right 
column to the second one. The perfect accuracy of 
positioning is evident in Figures 3 and 6, where the desired 
(S-curve) angular position qdi (i = 1, 2) and the controlled 
position qi are depicted. The perfect tracking performance is 
assured by the high value of parameter k in (5). The related 
trapezoidal plots of the desired angular velocity diq&  and the 
output velocity iq&  in Figures 5 and 8 show the accuracy and 
robustness of the ETSC algorithm. In Figures 4 and 7 there is 
a time history of the driving torques τi in manipulator joints. 
The discontinuities in plots correspond with the intentional 
discontinuities in the motion acceleration. Neither of the 
driving torques exceeds the prescribed limitation Mi defined 
by (9) (cf. Table 1). A non-zero value of the driving torque in 
steady state represents in both joints the reaction of the 
driving force to the gravitational one (the second link is in 
a horizontal position). 

To prove the robustness of the proposed control despite the 
significant coupling between the DOF’s, a simulation with 
the constant mutual position of the robot links has been 
performed. Figures 9 to 14 show the system variables versus 
time plots in the case of the maximally stretched manipulator 
arm (q2 = 0) during the whole period of motion (the initial 
angular position of the first link q1 = 0, the target position 
q1 = π/2). Again, the perfect accuracy and robustness of the 
proposed control is illustrated in Figures 9 and 12 with the 
angular position in the time domain. The stretched arm of the 
manipulator matches with the zero value of the angular 
position q2. A minimal difference between the desired and the 
actual angular position of the second link can be seen in 
Figure 14 with the 900-times enlarged scale of the vertical 
axis. 
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Fig. 3. First link: desired position qd1 and link position q1 
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Fig. 4. First link: driving torque τ1 
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Fig. 5. First link: desired angular velocity 1dq& and link 
angular velocity 1q&  
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Fig. 6. Second link: desired position qd2 and link position q2 
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Fig. 7. Second link: driving torque τ2 
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Fig. 8. Second link: desired angular velocity 2dq& and link 
angular velocity 2q&  
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Fig. 9. First link, stretched arm: desired position qd1 and link 
position q1 
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Fig. 10. First link, stretched arm: driving torque τ1 
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Fig. 11. First link, stretched arm: desired angular velocity 
1dq& and link angular velocity 1q&  
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Fig. 12. Second link, stretched arm: desired position qd2 and 
link position q2 
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Fig. 13. Second link, stretched arm: driving torque τ2 
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Fig. 14. Second link, stretched arm, detailed view: desired 
position qd2 and link position q2 
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Notice the zero value of driving torques in steady state in 
Figures 10 and 13. This is the consequence of the vertical 
final position of the stretched link pair and therefore the zero 
influence of the gravitational forces. The wide interval of the 
driving torque variation in the second DOF, mirroring the 
torque in the first joint in spite of the constant mutual 
position between the links, shows the influence of the first 
link motion to the second link and proves the robustness of 
the control algorithm. 

5. CONCLUSIONS 

In this paper, the robustness and accuracy of a motion control 
algorithm based on the VSC theory – the equivalent time sub-
optimal control – is verified and illustrated by the numerical 
simulation of a multi-DOF control system. Both the dynamic 
(tracking) and the steady-state accuracy have been achieved 
despite the enormous influence of the mechanical coupling 
among the DOF’s of the robot manipulator. It has been 
demonstrated, that the proposed method assures the 
robustness against the signal as well as the parametric 
disturbances. The key to this method is the sliding mode 
control combined with the reaching law approach. The simple 
implementation of the control algorithm, given by the linear 
combination of the mechatronic system’s straightforwardly 
accessible phase variables, represents an additional benefit of 
the presented method. 
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