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Abstract: Oscillations are the most prominent indications of deteriorated controller perfor-
mance. Control loop oscillations are a common type of plant-wide disturbance and the root-
causes can be one or more among poorly tuned controllers, process or actuator non-linearities,
presence of model plant mismatch and oscillatory disturbances. This article addresses detection
and diagnosis of oscillations in measurements due to multiple sources under a framework of
internal model control. A pattern recognition based approach using cross wavelet transforms is
proposed to pinpoint the source(s) of oscillation in the control loops. The phase information
in wavelet domain between input and output signals is exploited to diagnose the source(s) of
oscillations.

Keywords: wavelet transform, oscillation, valve stiction, phase, pattern recognition

1. INTRODUCTION

It is well known that performance degradation in control
loops manifests as one or more of the following: (i) poor
set point (SP) tracking (ii) oscillations (iii) poor distur-
bance rejection and (iv) excessive final control element
variation. Oscillations are attributed to one or more among
poor controller tuning, process or actuator non-linearities,
presence of model plant mismatch or oscillatory distur-
bances. A tool to help the engineer should therefore au-
tomatically bring oscillatory loops to his or her attention,
characterize them and highlight the presence of plant wide
oscillations. Several authors have addressed the detection
of oscillatory measurements in process data. Early works
appear in Hägglund (1995) followed by (Thornhill and
Hägglund 1997, Forsman and Stattin 1999, Rengaswamy et
al. 2001, Tangirala et al. 2007). Hägglund (1995) proposed
a technique to detect oscillating loops “on-line” using the
IAE criterion. This method does not assume any particular
shape for oscillation and only requires the measurement to
deviate significantly from the set point. Hägglund (1995)
also proposed a diagnostic procedure for finding the source
of oscillation and eliminating it. The diagnostic procedure
is carried out by disconnecting the feedback (i.e. switching
the controller to manual mode). This approach is simple
and efficient and probably the most comprehensive pro-
cedure available for diagnosing root cause for oscillations.
However, switching the controller to manual mode may not
always be allowed, especially if the loop is deemed critical.
Further, it will not be possible to apply this approach
on thousands of loops in a routine fashion. Thornhill
and Hägglund (1997) presented an offline technique for
detecting oscillation using a regularity factor. This method
requires the user to specify the root-mean-square value of
the noise and a thresholds a nontrivial task when applied
to hundreds of loops.

Thornhill and Hägglund (1997) and Thornhill et al. (2003)
proposed a set of procedures to detect and diagnose oscil-
lating loops using offline data. They combine the tech-
niques of controller performance assessment along with
operational signatures (OP-PV plots) and spectral anal-
ysis of the controller error for diagnosis. This technique,
though not completely automated, can distinguish the
cause of oscillation as one of the following: (i) poor tuning
(ii) nonlinearity or (iii) external disturbance. However,
the downside lies in manually inferring the loop signa-
tures that are based on spectral analysis or on a map
of controller output (OP) versus process variable (PV)
and isolating the oscillating portion from the entire data.
Horch (1999) presented a simple, practical approach to
distinguish oscillating loops that are caused by external
disturbances and static friction. This approach is based
on cross-correlation between the controller output (OP)
and process output (PV). The cross-correlation technique
failed when the data had intermittent oscillations and the
set-point was also changing. Horch and Isaksson (1998)
also proposed a technique to identify stiction using nonlin-
ear filters. The method assumed that information such as
mass of stem, diaphragm area, and so on for each valve is
readily available. Since in a typical process industry facility
there can be thousands of control loops, it may be nearly
impossible to build/maintain a knowledge base of control
valves, making this technique difficult to implement.

Choudhury et al. (2004) used higher order statistics for de-
tecting nonlinearity in data and have extended the method
for diagnosing stiction by fitting an ellipse of the OP-PV
plot and inferring the stiction from an assumed stiction
model. The success of this approach lies in correctly iden-
tifying the oscillation period and its start and end point
in the OP-PV data. Tangirala et al. (2007) proposed non-
negative matrix factorization for detection and diagno-
sis of plant-wide oscillations based on source separation
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techniques. As can be seen, the task of detecting stiction
or other nonlinearities in valves from routine operating
data is a challenging task. To summarize, data driven
techniques that are presented in the literature till date are
useful in (a) assessing the performance of the controller
by calculating a figure of merits given that the cause of
poor-performance is only due to either an aggressive or
sluggishly tuned controller in pure feedback control, (b)
detecting oscillating loops with an user-specified param-
eter, and (c) limited diagnosis of the cause of oscillation
based on cross-correlation, power spectral analysis, or OP-
PV plots. The current approaches lack (a) the capability to
efficiently diagnose oscillations due to multiple sources, (b)
the ability to diagnose the causes of time-varying oscilla-
tions and (c) an automated means of oscillation diagnosis.

In this work, we have attempted to address some of the
aforementioned drawbacks by using wavelet and cross
wavelet transforms. This paper is organized as follows:
A brief introduction on wavelet transforms is given in
Section 2. Problem statement and proposed methodology
for an IMC framework are given in Section 3 followed
by simulation studies in Section 4. The paper ends with
concluding remarks in Section 5.

2. WAVELET ANALYSIS

The main benefit of wavelet analysis over Fourier anal-
ysis is that both time and frequency localization can be
achieved in the former. This is because wavelet analysis
employs a wave packet whereas Fourier analysis uses an
infinite wave train of sines and cosines. In recent years,
wavelet power transforms have become increasingly popu-
lar (Bloomfield et al. 2004) while the additionally available
phase information has remained untapped.

Wavelet analysis has become a common tool for analyzing
localized variations of power within a time series. By
decomposing a time series into time–frequency space, one
is able to determine both the dominant modes of vari-
ability and how those modes vary in time. The wavelet
transform can be used to analyze time series that contains
varying power at different frequencies. The term “wavelet
function” is used generically to refer to either orthogo-
nal or non-orthogonal wavelets. The term “wavelet basis”
refers only to an orthogonal set of functions (Torrence
and Compo 1998). The use of an orthogonal basis implies
the use of the discrete wavelet transform, while a non-
orthogonal wavelet function can be used with either the
discrete or the continuous wavelet transform. The contin-
uous wavelet transform was developed as an alternative
approach to the short-time Fourier transform because the
spectrogram is limited in resolution by the extent of the
sliding window function. The wavelet analysis is done in
a similar way to the short-time fourier transform (STFT)
analysis in which the signal is multiplied with a function
(i.e. the wavelet) similar to the window function in the
STFT and the transform is computed separately for differ-
ent segments of the time-domain signal. However, there are
two main differences between the STFT and continuous
wavelet transform (CWT). The Fourier transforms of the
windowed signals are not taken, and therefore single peak
will be seen corresponding to a sinusoid, i.e., negative
frequencies are not computed. The width of the window

is changed as the transform is computed for every single
spectral component, which is the most significant char-
acteristic of the wavelet transform. Throughout this work,
we use the standard Morlet wavelet: a Gaussian modulated
sine wave of the form (Torrence and Compo 1998)),

ψ(η) = π−1/4eiω0ηe−η
2/2 (1)

The quantity π−1/4 is a normalization factor, η =
n

s
is the

dimensionless time parameter, n is the time parameter and
s is the scale of the wavelet, ω0 = sω is the dimensionless
frequency parameter and ω is the frequency parameter.

It is to be noted that an infinite number of mother wavelets
are available, including the derivative-of-a-Gaussian (DOG)
and Paul wavelets. In this work, the complex Mor-
let wavelet is chosen since it yields a complex wavelet
transform, containing information on both amplitude and
phase. Since DOG wavelets are entirely real, they may not
be used for phase analysis, as their real transforms hold
only information on amplitude. Alternatively, the complex
Paul wavelet could be employed. However, as the Paul
function is more sharply defined in time (in comparison
to the more sinusoidal Morlet function), it is better suited
for studying pulse-like variations.

2.1 Continuous wavelet transform

The continuous wavelet transform is defined as follows:

W (a, τ) =
1√
a

∫
x(t)ψ∗

(t− τ)

a
dt (2)

where ψ(t) denotes the mother wavelet. The parameter
a represents the scale index which is the reciprocal of
frequency and the parameter τ indicates the time shifting
(or translation). High scales (low frequencies) correspond
to the global information of a signal that usually spans
the entire signal, whereas low scales (high frequencies)
correspond to detailed information of a hidden pattern in
the signal that usually lasts for a relatively shorter time.

The CWT has edge artifacts because the wavelet is not
completely localized in time. Cone of Influence (COI) has
been defined as the area in which the wavelet power caused
by a discontinuity at the edge has dropped by e−2 of
the value at the edge. Due to the edge effect, confidence
limits for the wavelet spectra are required and hence
to determine significance levels for wavelet spectra an
appropriate background spectrum is required. Red noise
spectrum is used as background spectrum and it has the
characteristic feature of increasing power with decreasing
frequency. In this work, continuous wavelet transform
and cross wavelet transform are performed using Morlet
wavelet to study the time-frequency properties of the of
the output sequences.

2.2 Wavelet scale Vs. Fourier period

The scale can be defined as the distance between oscilla-
tions in the wavelet, or it can be some average width of
the entire wavelet . The period (or inverse frequency) is
the approximate Fourier period that corresponds to the
oscillations within the wavelet. For all wavelets, there is
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a one-to-one relationship between the scale and period.
The relationship can be derived by finding the wavelet
transform of a pure cosine wave with a known Fourier
period, and then computing the scale at which the wavelet
power spectrum reaches its maximum.

For some wavelets the period has more meaning than oth-
ers. For the Morlet, which has several smooth oscillations,
the period is a well-defined quantity which measures the
approximate Fourier period of the signal. For the Morlet
wavelet , l=1.03a, where l is the Fourier period, indicating
that for the Morlet wavelet the wavelet scale (a) is almost
equal to the Fourier period.

2.3 Cross-wavelet transform (XWT)

The cross-wavelet transform between two time series X
and Y, with wavelet transforms Wx(f, τ) and Wy(f, τ)
is simply the multiplication of the first complex wavelet
transform with the complex conjugate of the second

Wxy(f, τ) =Wx(f, τ)W ∗y (f, τ) (3)

where f ≈ 1

a
when f0 = 2π for the Morlet wavelet. The

wavelet scale, a, is inversely proportional to the central
frequency of the wavelet (fo).

While a wavelet power spectrum depicts the variance of
a time series with times of large variance showing large
power, the cross wavelet power of two time series depicts
the covariance between these time series. Additionally,
cross wavelet power has a known distribution of confidence
levels which is proportional to the square root of the
product of two χ2 distributions (Torrence and Compo
1998). This allows cross wavelet power to be used as a
quantified measure of the similarity of power between two
time series.

2.4 Phase difference analysis

In complement to wavelet analysis, the phase spectrum
analysis can be used to characterize the association be-
tween signals. The phase difference provides information
on the sign of the relationship (i.e., in phase or out
of phase). As the Morlet wavelet is a complex wavelet,
the cross wavelet transform relation can be written in
terms its modulus |Wx(f, τ)| and its phase, φx(f, τ) =

tan−1
Imag(Wx(f, τ)

Real(Wx(f, τ)
. Similarly, with the cross wavelet

transform Wxy(f, τ) the phase relation between the time
series X and Y can be computed using the relation,

φxy(f, τ) = tan−1
Imag(Wxy(f, τ)

Real(Wxy(f, τ)
.

The estimation of phase spectrum in Fourier domain be-
tween two time series contains relatively large errors com-
pared to that computed in wavelet domain(?). Moreover,
phase difference is localized in time and frequency in
wavelet domain. The arrows in the cross-wavelet transform
plot indicate the direction of the phase difference between
the variables. The phase arrows pointing right indicate
that the variables are in-phase, pointing left indicate the
variables are anti-phase, down indicate phase lead of 90°

and up refer to phase lag of 90°. The direction of the
phase difference between the variables plays a crucial role
in diagnosing the source(s) of oscillation in the work.

2.5 Average angle

As we are interested in the phase difference between the
components of the two time series, it is necessary to
estimate the mean and confidence interval of the phase
difference. The circular mean of the phase are used over
regions with higher than 5% statistical significance that
are outside the COI to quantify the phase relationship.
This is a useful and general method for calculating the
mean phase. The circular mean of a set of angles (ai ,
i=1...n) is defined as

am = arg(X,Y ) (4)

with X =
∑n
i=1 cos(ai) and Y =

∑n
i=1 sin(ai). It is

difficult to calculate the confidence interval of the mean
angle reliably since the phase angles are not independent.
The number of angles used in the calculation can be set
arbitrarily high simply by increasing the scale resolution.
However, it is interesting to know the scatter of angles
around the mean. For this the circular standard deviation
is defined as

s =

√
−2 ln

R

n
(5)

where R =
√
X2 + Y 2. The circular standard deviation is

analogous to the linear standard deviation in that it varies
from zero to infinity. It gives similar results to the linear
standard deviation when the angles are distributed closely
around the mean angle. In some cases there might be
reasons for calculating the mean phase angle for each scale,
and then the phase angle can be quantified as a number
of years. The XWT phase angle within the 5% significant
regions and outside the COI has the mean phase 176±12
(where ± designates the circular standard deviation).

3. PROBLEM STATEMENT AND PROPOSED
METHOD

Oscillations in model based control loops occur due to
either one of (i) valve stiction (ii) model plant mismatch,
(iii) external oscillatory disturbances or combination of
any of these. It becomes vital to diagnose the causes of
oscillations in order to take the appropriate remedial ac-
tion. A procedure based on pattern recognition techniques
using cross wavelet transform is devised in this article
to diagnose the cause(s) of the oscillation. The problem
is setup in the internal model control (IMC) framework
(Figure 1). Cross wavelet transform of input and plant
and that of input and model output are computed and
thereby a specific pattern is sought for root cause diagnosis
of oscillation using the direction of wavelet phase difference
between the variables.

To illustrate the idea of cross-wavelet transform for an
input-output system, an open-loop process with Gp(s) =

1

10s+ 1
is considered. The process is simulated for a

sinusoidal input having two frequencies and the time
domain plots of input and output are given in Figure 2.
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Fig. 1. Schematic representation of internal model control
with actuator

0 100 200 300 400 500 600 700 800 900 1000
−1

−0.5

0

0.5

1

O
u

tp
u

t 
(y

)

Open loop system

0 100 200 300 400 500 600 700 800 900 1000
−1

−0.5

0

0.5

1

Time (samples)

In
p

u
t 

(u
)

Fig. 2. Time domain behavior of input and output signals
considered for interpretation of wavelet analysis

Fig. 3. Cross wavelet transform between input and output
signals

The cross wavelet transform plot between two quantities
u and y is shown in Figure 3.

It is known from Figure 3 that the quantities u and y
show high common power at two frequencies between two
different time intervals (0.1 Hz, 0-511 and 0.2 Hz, 512-
1024) and the arrows indicate the direction of the wavelet
phase between u and y i.e., u leads y by 90° (pointing
down). Based on the properties of cross wavelet transform,
wavelet phase difference and linear time invariant systems

theory, the following methodology is proposed to diagnose
the source(s) of oscillation in a control loop.

The quantities controller output (u), process output (y)
and model output (ym) of an oscillating control loop are
obtained either from simulation or from industry. The
cross wavelet transforms, Wuy(f, τ) and Wuym(f, τ) are
computed. By comparing the direction of wavelet phase,
the following conclusions can be drawn.

Based on the properties of cross wavelet transform, wavelet
phase difference and linear time invariant systems theory,
the following methodology is proposed to diagnose the
source(s) of oscillation in a control loop.

• Valve stiction: If the oscillating source is only
due to valve stiction, the cross wavelet transform
plots should not only exhibit harmonics but also
discontinuities.

• Model plant mismatch: If the source is due to
model plant mismatch, which among the gain, time
constant and delay causes the oscillation needs to be
pinpointed.
Gain mismatch : Gain mismatch theoretically does
not affect the wavelet phase spectrum. Hence, the
phase difference between Wuy(f, τ) and Wuym(f, τ)
is zero at the fundamental frequency of oscillation.
Cross wavelet spectrum ratio is constant at non-zero
value at the frequency of oscillation. Further, the
average phase angles of Wuy(f, τ) and Wuym(f, τ)
estimated at the frequency of oscillation are theoret-
ically same. In addition to this, the arrows in cross
wavelet transform plots will be in same direction.
Time constant mismatch: Time constant mis-
match affects both cross wavelet spectrum ratio and

phase spectrum. The plots of both
|Wuy(f,τ)|
|Wuym (f,τ)| and

φuy(f, τ) − φuym(f, τ) clearly show that the time
constant mismatch significantly changes behavior of
absolute cross wavelet spectrum ratio and the phase
spectrum. Consequently, the average phase angles of
Wuy(f, τ) and Wuym(f, τ) estimated at the frequency
of oscillation are different. The arrows in cross wavelet
transform plots will be in same direction since the
effect of time constant mismatch on phase spectrum
is minimum.
Delay mismatch : Delay mismatch theoretically
does not affect the magnitude of cross wavelet phase
spectrum. Hence, cross wavelet spectrum ratio is
unity at the frequency of oscillation. In contrast, the
phase difference between Wuy(f, τ) and Wuym(f, τ)
is non-zero at the fundamental frequency of oscil-
lation and the average phase angles of Wuy(f, τ)
and Wuym(f, τ) estimated at the frequency of oscilla-
tion are different. Consequently, the arrows in cross
wavelet transform plots will be in opposite direction.

4. SIMULATIONS

A control system consisting of a process characterized

by the transfer function Gp =
Kp

τps+ 1
e−dpsand model

Gm =
Km

τms+ 1
e−dms is simulated with IMC controller

for a unit step change in the set point. The different
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Fig. 4. Time domain behavior of plant, model and con-
troller outputs for the valve stiction as the source of
oscillation.

case studies analyzed for the diagnosis of oscillation in a
control loop are (i) oscillation due to valve stiction (ii)
oscillation due to valve stiction and oscillatory disturbance
(iii) oscillation due to gain mismatch (iv) oscillation due
to gain mismatch and oscillatory disturbance and (v)
oscillation due to delay mismatch.

4.1 Diagnosis of valve stiction

A simple yet efficient one parameter model proposed by
(Hägglund 1995) is used to generate oscillations due to
valve stiction. The model is

x(t) =

{
x(t− 1) |u(t)− x(t− 1)| ≤ d
u(t) otherwise

(6)

Here u(t) and x(t− 1) are present and past valve outputs,
u(t) is the present controller output, and d is the valve
stiction band. The valve stiction band is expressed in
terms of the percentage or fraction of valve movement
corresponding to the amount of stiction present in the
valve. For instance, if 100 units of force are required to
open the valve completely from completely closed position
and 10 units of force is required to overcome the amount of
static friction in the valve, stiction band is 10% or 0.1. The
stiction band of 0.1 is used in the simulation. Model plant
mismatch is introduced by changing the values of gain,
time constant and delay appropriately in the process. The
sinusoidal disturbance of frequency 0.01 Hz is considered
for the simulation.

The cross wavelet transform computed between controller
output and plant output is compared with that computed
between controller output and model output. In the case
of oscillation due to valve stiction (Figure 4), the plots
of cross wavelet transform (Figures 6 & 7) not only
show harmonics but also discontinuities which are the
characteristics of a sticky valve. Figures 8 and 9 clearly
indicate the presence of the valve stiction as one of the
sources of oscillation between 800 and 1600 s and the
other being the oscillatory component of frequency 0.01
Hz throughout.

4.2 Gain mismatch

If the oscillation is only due to MPM, there will be clearly
a single frequency in the cross wavelet transform plot. The
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Fig. 5. Time domain behavior of plant, model and con-
troller outputs for the case oscillatory output and
valve stiction as the sources of oscillation

Fig. 6. Cross wavelet transform plot between u and yp
when the oscillation is only due to valve stiction.

Fig. 7. Cross wavelet transform plot between u and ym
when the oscillation is only due to valve stiction.

system is simulated to generate oscillation in the plant out-
put due to gain mismatch (Figure 10). The cross wavelet
transforms, Wuy(f, τ) and Wuym(f, τ) are estimated from
where the quantities, absolute cross wavelet transform ra-

tio
|Wuy(f,τ)|
|Wuym (f,τ)| , the phase difference, φuy(f, τ)−φuym(f, τ)

and average phase angles of Wuy(f, τ) and Wuym(f, τ) at
the frequency of oscillation are obtained. The value of
|Wuy(f,τ)|
|Wuym (f,τ)| is found constant at 2.4 (Figure 13), the phase

difference is zero (Figure 14) at the frequency of oscillation
and the average phase angles are −2.551 and −2.554. The
plots of Wuy(f, τ) and Wuym(f, τ) (Figures 11 & 12) show
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Fig. 8. Cross wavelet transform plot between u and yp
when the oscillation is due to oscillatory disturbance
and valve stiction.

Fig. 9. Cross wavelet transform plot between u and ym
when the oscillation is due to oscillatory disturbance
and valve stiction.
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Fig. 10. Time domain behavior of plant, model and con-
troller outputs for the case of gain mismatch as the
source of oscillation.

that the arrows are in same direction. This is also in line
with the fact that the phase spectrum is unaffected by the
changes in gain.

4.3 Time constant mismatch

The control loop whose outputs are given in Figure (15)
is analyzed for diagnosing the source(s) of oscillations.
Figures (18) and (19) indicate the presence of time con-
stant mismatch as the source of oscillation. Further, the

Fig. 11. Cross wavelet transform plot between u and yp
when the oscillation is gain mismatch

Fig. 12. Cross wavelet transform plot between u and ym
when the oscillation is gain mismatch
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Fig. 13. A plot of ratio of cross wavelet transforms when
the oscillation is due to gain mismatch.

closeness of the values of average phases angles (-2.4244
and -2.1488) strengthens the presence of time constant
mismatch. Figures (16) and (17) indicate that the arrows
are in the same direction. This is also expected in the case
of time constant mismatch as the source of oscillation since
the effect of time constant mismatch on phase spectrum is
minimal.

4.4 Oscillation due to delay mismatch

The control loop whose outputs are given in Figure 20
is analyzed for diagnosing the source(s) of oscillations.
The cross wavelet transforms, Wuy(f, τ) and Wuym(f, τ)
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Fig. 14. A plot of phase difference when the oscillation is
due to gain mismatch
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Fig. 15. Time domain plots of plant, model and controller
outputs for the case of time constant mismatch as the
source of oscillation

Fig. 16. Cross wavelet transform plot between u and yp
when the oscillation is due to time constant mismatch

are estimated from where the quantities, absolute cross

wavelet transform ratio
|Wuy(f,τ)|
|Wuym (f,τ)| , the phase differ-

ence, φuy(f, τ) − φuym(f, τ) and average phase angles of
Wuy(f, τ) and Wuym(f, τ) at the frequency of oscillation

are obtained. The value of
|Wuy(f,τ)|
|Wuym (f,τ)| is found unity (Fig-

ure 23), the phase difference is non-zero (Figure 24) at the
frequency of oscillation and the average phase angles are
−2.9498 and 1.751. These observations show the presence
of delay mismatch. Further, the plots of Wuy(f, τ) and
Wuym(f, τ) (Figures 21 & 22) indicate that the arrows are

Fig. 17. Cross wavelet transform plot between u and ym
when the oscillation is due to time constant mismatch
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Fig. 18. A plot of ratio of cross wavelet transforms when
the oscillation is due to time constant mismatch
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Fig. 19. A plot of phase difference when the oscillation is
due to time constant mismatch

in opposite direction strengthening the presence of delay
mismatch as the source of oscillation.

5. CONCLUSIONS

A pattern recognition technique combined with two key
measures namely, absolute cross wavelet transform ratio
and wavelet phase difference for the diagnosis of control
loop oscillations in internal model control systems due to
multiple sources has been developed. A diagnostic study
of oscillation due to either one of valve stiction, model
plant mismatch, oscillatory disturbance or combination of
these has been presented. The oscillations due to valve
stiction manifest as harmonics as well as discontinuities
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Fig. 20. Time domain plots of plant, model and controller
outputs for the case of delay mismatch as the source
of oscillation.

Fig. 21. Cross wavelet transform plot between u and yp
when the oscillation is due delay mismatch..

Fig. 22. Cross wavelet transform plot between u and ym
when the oscillation is due delay mismatch..

in the cross wavelet transform plots whereas oscillation
due to model plant mismatch leaves distinct signatures in
the phase information (arrows). If the oscillations are due
to gain mismatch, the absolute cross wavelet transform is
constant at non-zero value at the frequency of oscillation
and the wavelet phase difference is zero. Further, the
plots of Wuy(f, τ) and Wuym(f, τ) show the arrows are in
same direction which strengthens the finding of the gain
mismatch as the source of oscillation. If the oscillation is
due to time constant mismatch, both the quantities, the
absolute cross wavelet transform and the the wavelet phase
difference are affected. On the other hand, oscillation due

0 200 400 600 800 1000 1200 1400 1600 1800
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

Time (samples)

a
b

s
(W

u
y

)/
a

b
s

(W
u

y
m

)

Oscillation due to delay  mismatch

At fundamental frequency:

Average phase angle
uy

 = −2.9498

Average phase angle
uym

 = 1.751

Fig. 23. A plot of ratio of cross wavelet transforms when
the oscillation is due to delay constant mismatch
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Fig. 24. A plot of phase difference when the oscillation is
due to delay mismatch

to delay mismatch results in a directional change in the
phase difference while the absolute cross wavelet transform
ratio is unity at the frequency of oscillation.
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Thornhill, N.F. and T. Hägglund (1997). Detection and
diagnosis of oscillation in control loops. Control Engi-
neering Practice 5, 1343–1354.

Thornhill, N.F., B. Huang and H. Zhang (2003). Detection
of multiple oscillations in control loops. Journal of
Process Control 13, 91–100.

Torrence, C. and G.P. Compo (1998). A practical guide
to wavelet analysis. Bulletin of the American Meteo-
rological Society 79, 61–78.

18th International Conference on Process Control
June 14–17, 2011, Tatranská Lomnica, Slovakia Le-Th-3, 015.pdf

451


