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Abstract: In the paper the first order sensitivity analysis is performed for a class of optimal
control problems for hyperbolic equations with the Neumann boundary conditions involving
constant time delays. A singular perturbation of geometrical domain of integration is introduced
in the form of a circular hole. The Steklov-Poincaré operator on a circle is defined in order to
reduce the problem to regular perturbations in the truncated domain. The optimality system is
differentiated with respect to the small parameter and the directional derivative of the optimal
control is obtained as a solution to an auxiliary optimal control problem.
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1. INTRODUCTION

We consider an optimal control problem in the domain
with small geometrical defect. The size of the defect is
measured by small parameter ρ > 0. The presence of the
defect results in the singular perturbation of the hyperbolic
state equation. Such a perturbation is transformed to
the regular perturbation in the truncated domain ΩR for
any R > ρ > 0. We perform the sensitivity analysis in
the truncated domain using the Steklov-Poincaré operator
defined on the circle ΓR.

The problems of the sensitivity analysis for regular
perturbations of optimal control problems were stud-
ied in Lasiecka and Soko lowski (1991); Malanowski and
Soko lowski (1986); Malanowski (2001); Rao and Soko lowski
(2000); Soko lowski (1985 1987 1988); Soko lowski and Zole-
sio (1992). Singular perturbations of geometrical domains
are analysed in Jackowska et al. (2002 2003); Maz’ya et al.
(2000); Nazarov (1999); Nazarov and Soko lowski (2004

2003acb); Nazarov et al. (2004); Soko lowski and Żochowski
(1999abc 2001 2003). The construction of asymptotic ap-
proximation for the Steklov-Poincaré operator is given in
Soko lowski and Żochowski (2005).

In particular, in Kowalewski et al. (2010) the sensivity
analysis of optimal control problems defined for the wave
equation is performed. The small parameter describes
the size of an imperfection in the form of a small hole
or cavity in the geometrical domain of integration. The
initial state equation in the singularly perturbed domain
is replaced by the equation in a smooth domain. The
imperfection is replaced by its approximation defined
by a suitable Steklov’s type differential operator. For
approximate optimal control problems the well-posedness
is shown. One term asymptotics of optimal control are
derived and justified for the approximate model. The key
role in the arguments is played by the so called ”hidden
regularity” of boundary traces generated by hyperbolic
solutions.

The idea of ”hidden regularity” regalarization has been
used in the past successfully for boundary control prob-
lems, particulary in the context of numerical approxima-
tions (Hendrickson and Lasiecka (1993 1995); Lagnese and
Leugering (2004); Lasiecka and Triggiani (2000)). Regular-
izing parameter allows to obtain smooth on the boundary
approximations, which can be then taken to appropriate
limits. The property of ”hidden regularity” is displayed
by hyperbolic flows which satisfy the Lopatinski condition
(Harmander (1985); Lasiecka et al. (1986); Lasiecka and
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Fig. 1. The domain Ωρ in two spatial dimensions.

Triggiani (1990 1991); Sakamoto (1982)). The method of
”hidden regularity” regularization has been also applied
in domain decomposition procedures introduced and de-
scribed in Lagnese and Leugering (2004).

In the present paper an optimal control problem in sin-
gularly perturbed geometrical domain Ωρ is analysed with
respect to small parameter ρ > 0. We derive the one-term
asymptotic expansion of optimal controls. The first term of
the expansion, of the order ρ2 is uniquely determined as an
optimal solution to the auxiliary optimal control problem.
The control constraints for the auxiliary problem are ob-
tained by an application of the conical differentiability of
metric projection in L2 spaces. Our method is constructive
and can lead to numerical procedures for determination of
the first order approximations of the optimal controls.

2. PRELIMINARIES

Consider now the distributed parameter system described
by the following time delay hyperbolic equation

∂2y

∂t2
− ∆y = f in Ωρ × (0, T ),

∂y

∂η
= y(x, t− h) + Gv on Γ × (0, T ),

∂y

∂η
= 0 on Γρ × (0, T ),

y(x, 0) = y0(x) in Ωρ,
∂y

∂t
(x, 0) = yI(x) in Ωρ,

y(x, t′) = Ψ0(x, t′) in Γ × [−h, 0),





(1)

where:

∆ =

n∑

i=1

∂2

∂x2
i

, G ∈ L(L2(Σ), H−5/2Ξ−5/2(Σ)),

h is a specified positive number representing a time delay,
Ψ0 is an initial function defined on Γ × [−h, 0), ∂/∂η is a
normal derivative at Γρ directed towards the exterior of
Ωρ, Ωρ is presented on the Fig. 1.

We denote by

Ωρ = Ω \B(ρ) ⊂ R2, ∂ Ωρ = Γ ∪ Γρ, (2)

where: Ω is a domain on the plane R2 with a smooth
boundary ∂ Ω and

Bρ = {x : |x− ϑ| < ρ} (3)

with a smooth boundary Γρ.

First we shall present sufficient conditions for the existence
of a unique solution of the problem (1) for the case where
the boundary control v ∈ L2(Σ).

For this purpose, we introduce the space D−1
A+D2

t
(Q) (Lions

and Magenes (1972), vol. 2, p.131) defined by

D−1
A+D2

t
(Q)

df
=

{y|y ∈ H−1,−2(Q), y′′ + Ay ∈ Ξ−3,−3(Q)},
(4)

where: the spaces H−1,−2(Q) and Ξ−3,−3(Q) are defined
by (9.5) and (10.4) of Chapter 5 in (Lions and Magenes
(1972), vol. 2) respectively. Under the norm of the graph
D−1

A+D2
t
(Q) is a Hilbert space.

The existence of a unique solution for the mixed initial-
boundary value problem (1) on the cylinder Q can be
proved using a constructive method, i.e. first solving (1)
on the subcylinder Q1 and in turn on Q2 etc., until the
procedure covers the whole cylinder Q. In this way the
solution in the previous step determines the next one.

For simplicity, we introduce the following notations:

Q = Ωρ × (0, T )
Σ = Γ × (0, T )

Ej
∧
= ((j − 1)h, jh)

Qj = Ωρ × Ej

Σj = Γ × Ej

Σ0 = Γ × [−h, 0)





for j = 1, ...,K. (5)

Using Theorem 10.1 of (Lions and Magenes (1972), vol. 2,
p. 132) we can prove the following result.

Theorem 1. Let y0, yI ,Ψ0, v and f be given with y0 ∈
Ξ−3/2(Ω), yI ∈ Ξ−5/2(Ω),
Ψ0 ∈ H−5/2Ξ−5/2(Σ0), v ∈ L2(Σ) and f ∈ Ξ−3,3(Q).
Then there exists a unique solution y ∈ D−1

A+D2
t
(Q)

for the problem (1). Moreover, y(·, jh) ∈ Ξ−3/2(Ω) and
∂y

∂t
(·, jh) ∈ Ξ−5/2(Ω) for j = 1, ....K.

The spaces appearing in the Theorem 1 are defined in
Lions and Magenes (1972).

Let us surround Γρ by the circle ΓR such that
R > ρ > 0 (Fig. 2) .

Consequently, we denote

ΩR = Ω \B(R), (6)

where:

B(R) = {x : |x− ϑ| < R}. (7)

We set the non-local Neumann boundary condition on ΓR:

∂y

∂η
= Aρ(y) on ΓR, (8)

where: Aρ is a Steklov-Poincare operator defined in the

domain C(R, ρ) = B(R) \ B(ρ).The operator Aρ is a
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Fig. 2. The domain ΩR.

mapping of H1/2(ΓR) → H−1/2(ΓR). Consequently, we
consider in ΩR×(0, T ) the following time delay hyperbolic
equation:

∂2y

∂t2
− ∆y = f in ΩR × (0, T ),

∂y

∂η
= y(x, t− h) + Gv on Γ × (0, T ),

∂y

∂η
= Aρ(y) on ΓR × (0, T ),

y(x, 0) = y0(x) in ΩR.
∂y

∂t
(x, 0) = yI(x) in ΩR,

y(x, t′) = Ψ0(x, t′) in Γ × [−h, 0),





(9)

We shall investigate the dependence of optimal solutions
on the small parameter ρ > 0.

The small hole B(ρ) is a singular perturbation in the
domain Ωρ. Consequently, the same small hole constitutes
regular perturbation in the domain ΩR.

Using the results of Soko lowski and Żochowski (2005) we
obtain the following expansion for the operator Aρ:

Aρ = A0 + ρ2B + O(ρ4)

in the operator norm

L(H1/2(ΓR), H−1/2(ΓR)),

(10)

where: the remainder O(ρ4) is uniformly bounded on
bounded sets in the space H1/2(ΓR).

Corollary 1. In the space D−1
A+D2

t
(Q) the solution of the

hyperbolic equation (for ρ = 0) can be represented as

∂2y0

∂t2
− ∆y0 = f in ΩR × (0, T ),

∂y0

∂η
= y0(x, t− h) + Gv on Γ × (0, T ),

∂y0

∂η
= A0(y0) on ΓR × (0, T ),

y0(x, 0) = y0(x) in ΩR,

∂y0

∂t
(x, 0) = yI(x) in ΩR,

y0(x, t′) = Ψ0(x, t′) in Γ × [−h, 0).





(11)

We shall look the expansion of the solution yρ in ΩR ×
(0, T ):

yρ = y0 + ρ2y1 + ỹ =

= y0 + ρ2y1 + ρ4ŷ
(12)

Consequently, the Neumann boundary condition in (9) can
be rewritten as

∂yρ

∂η
= Aρ(yρ) =

= A0(yρ) + ρ2B(yρ) + ρ4Ã(yρ)

(13)

Substituting (12) into (13) we obtain

∂y0

∂η
+ ρ2B

∂y1

∂η
+

∂ỹ

∂η
=

= A0(y0 + ρ2y1 + ỹ)+

+ρ2B(y0 + ρ2y1 + ỹ) + ρ4Ã(yρ)

(14)

Comparing components with the same powers we get

ρ0 :
∂y0

∂η
= A0(y0)

ρ2 : ρ2
∂y1

∂η
= ρ2[A0y

1 + By0]





(15)

Hence it follows the following expansion of solutions:

Let us denote by y0 the solution of the problem (11)
corresponding to a given parameter ρ = 0.

Subsequently, y1 corresponding to a given parameter ρ2 is
a solution of the following equation:

∂2y1

∂t2
− ∆y1 = 0 in ΩR × (0, T ),

∂y1

∂η
= y1(x, t− h) + Gv on Γ × (0, T ),

∂y1

∂η
= A0(y1) + B(y0) on ΓR × (0, T ),

y1(x, 0) = 0 in ΩR,
∂y1

∂t
(x, 0) = 0 in ΩR,

y1(x, t′) = Ψ0(x, t′) in Γ × [−h, 0).





(16)
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3. PROBLEM FORMULATION. OPTIMIZATION
THEOREM.

We shall now consider the optimal boundary control
problem in domains Ωρ and ΩR respectively. Let us denote
by U = L2(Γ × (0, T )) the space of controls. The time
horizon T is fixed in our problem.

Let us consider in Ωρ × (0, T ) the following time delay
hyperbolic equation

∂2y

∂t2
− ∆y = f in Ωρ × (0, T ),

supp f⊂ ΩR × (0, T ),
∂y

∂η
= y(x, t− h) + Gv on Γ × (0, T ),

∂y

∂η
= 0 on Γρ × (0, T ),

y(x, 0) = y0(x) in Ωρ

supp y0 ⊂ ΩR,
∂y

∂t
(x, 0) = yI(x) in Ωρ,

supp yI ⊂ ΩR,

y(x, t′) = Ψ0(x, t′) in Γ × [−h, 0).





(17)

The performance functional is given by

I(v) =
1

2

∥∥∥ y(v) − zd

∥∥∥
2

H−1,−2(ΩR×(0,T ))

+
α

2

∥∥∥ v
∥∥∥
2

L2(Γ×(0,T ))
.

(18)

Finally, we assume the following constraints on the control
v ∈ Uad:

Uad = {v ∈ L2(Γ × (0, T )), 0 ≤ v(x, t) ≤ 1}. (19)

Subsequently, we consider in ΩR × (0, T ) the following
hyperbolic time delay equation

∂2y

∂t2
− ∆y = f in ΩR × (0, T ),

∂y

∂η
= y(x, t− h) + Gv on Γ × (0, T ),

∂y

∂η
= Aρ(y) on ΓR × (0, T ),

y(x, 0) = y0(x) in ΩR,

∂y

∂t
(x, 0) = yI(x) in ΩR,

y(x, t′) = Ψ0(x, t′) in Γ × [−h, 0).





(20)

The performance functional and constraints on the control
are given by (18) and (19).

Result: The Solution of the problem (20) (in the domain
ΩR) is a restriction of the solution of the problem (17) (in
the domain Ωρ) to ΩR. Hence, we have the possibility of
replacing the singular perturbation of the domain B(ρ)
by the regular perturbation on the boundary ΓR in a
smaller domain ΩR. Consequently, we shall analyse the
optimal boundary control problem (18)-(20) in the domain
ΩR. Moreover, we assume the fixed parameter ρ > 0.

The solving of the formulated optimal control problem
is equivalent to seeking a v0 ∈ Uad such that I(v0) ≤
I(v) ∀v ∈ Uad.

From Lions’ scheme (Theorem 1.3 Lions (1971), p. 10)
it follows that for α > 0 a unique optimal control v0 is
characterized by the following condition

I ′(v0)(v − v0) ≥ 0 ∀v ∈ Uad. (21)

Using the form of the performance functional (18) we can
express (21) in the following form:

〈
(y(v0) − zd, y(v) − y(v0)

〉
H−1,−2(ΩR×(0,T ))

+α
〈
v0, v − v0

〉
L2(Γ×(0,T ))

≥ 0 ∀v ∈ Uad.
(22)

To simplify (22), we introduce the adjoint equation and for
every v ∈ Uad. we define the adjoint variable p = p(v) =
p(x, t; v) as the solution of the following equation

∂2p

∂t2
− ∆p = y(v)− zd in ΩR × (0, T ),

∂p

∂η
= p(x, t + h) on Γ × (0, T − h),

∂p

∂η
= 0 on Γ × (T − h, T ),

∂p

∂η
= Aρ(p) on ΓR × (0, T ),

p(x, T ; v) = 0 in ΩR,
p′(x, T ; v) = 0 in ΩR.





(23)

Theorem 2. Let the hypothesis of Theorem 1 be satisfied.
Then for given zd ∈ H−1,−2(ΩR × (0, T )) and any v0 ∈
L2(Σ), there exists a unique solution p(v0) ∈ H3,3(ΩR ×
(0, T )) ⊂ Ξ3,3(ΩR × (0, T )) for the problem (23).

We simplify (22) using the adjoint equation (23). Con-
sequently, after transformations we obtain the following
formula 〈

G∗p + α v0, v − v0

〉
L2(Γ×(0,T ))

≥ 0

∀v ∈ Uad.

(24)

Theorem 3. For the problem (20) with the performance
functional (18) with α > 0, and with constraints on
the control (19), there exists a unique optimal control
v0 which satisfies the maximum condition (24). Moreover,

v0 = PUad

(
− 1

α
G∗p

)
where PUad

is a projective operator.

4. THE SENSITIVITY OF OPTIMAL CONTROLS

Theorem 4. We have the following expansion of the opti-
mal control in L2(Γ × (0, T )), with respect to the small
parameter,

vρ = v0 + ρ2q + o(ρ2) (25)

for ρ > 0.

Moreover, we assume that ρ is a sufficiently small. The
function q in (25) is a optimal solution of the following
optimal control problem:
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The state equation

∂2w

∂t2
− ∆w = 0 in ΩR × (0, T ),

∂w

∂η
= w(x, t− h) + Gq on Γ × (0, T ),

∂w

∂η
= A0(w) + B(y0) on ΓR × (0, T ),

w(x, 0) = 0 in ΩR,

∂w

∂t
(x, 0) = 0 in ΩR,

w(x, t′) = Ψ0(x, t′) on Γ × [−h, 0),





(26)

where: w = y1.

The performance functional

I(u) =
1

2

∥∥∥w(q)
∥∥∥
2

H−1,−2(ΩR×(0,T ))

+
α

2

∥∥∥u
∥∥∥
2

L2(Γ×(0,T ))
.

(27)

The adjoint equation

∂2z

∂t2
− ∆z = w(q) in ΩR × (0, T ),

∂z

∂η
= z(x, t + h) on Γ × (0, T − h),

∂z

∂η
= 0 on Γ × (T − h, T ),

∂z

∂η
= A0(z) + B(p0) on ΓR × (0, T ),

z(x, T ) = 0 in ΩR,
z′(x, T ) = 0 in ΩR,





(28)

where: z = p1.

Then, the optimal control q is characterized by〈
w(q), w(u) − w(q)

〉
H−1,−2(ΩR×(0,T ))

+ α
〈
q, u− q

〉
L2(Γ×(0,T ))

≥ 0 ∀v ∈ Uad,
(29)

where: Sad is a set of admissible controls such that

Sad =
{
u ∈ L2(Γ × (0, T ))

∣∣∣
u(x, t) ≥ 0 on the set

E0 = {(x, t)|v0(x, t) = 0},
u(x, t) < 0 on the set

E1 = {(x, t)|v0(x, t) = 1},〈
G∗p0 + α v0, u

〉
L2(Γ×(0,T ))

= 0},

(30)

where:

p0 is a adjoint state for ρ = 0,

v0 is a optimal solution for ρ = 0 such that

0 ≤ v0(x, t) ≤ 1.

We simplify (29) using the adjoint equation (28). After
transformations we obtain the following maximum condi-
tion

〈
G∗z + α q, u− q

〉
L2(Γ×(0,T ))

≥ 0

∀u ∈ Sad.
(31)

Theorem 5. For the time delay hyperbolic problem

∂2w

∂t2
− ∆w = 0 in ΩR × (0, T ),

∂w

∂η
= w(x, t − h) + Gu on Γ × (0, T ),

∂w

∂η
= A0(w) + B(y0) on ΓR × (0, T ),

w(x, 0) = 0 in ΩR,
∂w

∂t
(x, 0) = 0 in ΩR,

w(x, t′) = Ψ0(x, t
′) in Γ × [−h, 0),





(32)

with the performance functional (27) with α > 0, and
with constraints on the control (30), there exists a unique
optimal control q which satisfies the maximum condition
(31).

5. CONCLUSIONS

The results presented in the paper can be treated as a
generalization of the results obtained in Soko lowski and
Żochowski (2005) onto the case of hyperbolic systems with
boundary condition involving time delays.

In this paper we have considered the mixed initial bound-
ary value problems of hyperbolic type.

We can also consider similar optimal control problems for
parabolic-hyperbolic systems.

The ideas mentioned above will be developed in forthcom-
ing papers.
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