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Abstract: In this paper, we consider an optimal control problem for a linear infinite order
hyperbolic system. One from the initial conditions is given by control function. Sufficient
conditions for the existence of a unique solution of such hyperbolic equations with the Dirichlet
boundary conditions are presented. The performance functional has the quadratic form. The
time horizon T is fixed. Finally, we impose some constraints on the control. Making use of the
Lions scheme (Lions (1971)), necessary and sufficient conditions of optimality for the Dirichlet
problem with the quadratic performance functional and constrained control are derived.
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1. INTRODUCTION

Various optimization problems associated with the optimal
control of second order time delay distributed parame-
ter systems have been studied in Wang (1975); Knowles
(1978); Kowalewski (1988b 1993ab 1998 2000 2001) re-
spectively.

In Knowles (1978), the time optimal control problems
of linear parabolic systems with the Neumann boundary
conditions involving constant time delays were considered.

These equations constitute in a linear approximation, a
universal mathematical model for many diffusion processes
in which time-delayed feedback signals are introduced at
the boundary of a system’s spatial domain. For example,
in the area of plasma control (Wang (1975)), it is of
interest to confine a plasma in a given bounded spatial
domain Ω by introducing a finite electric potential barrier
or a ”magnetic mirror” sorrounding Ω. For a collision-
dominated plasma, its particle density is describable by
a parabolic equation. Due to particle inertia and finite-
ness of electric potential or the magnetic -mirror field
strength, the particle reflection at the domain boundary is
not instantaneous. Consequently, the particle flux at the
boundary of Ω at any time depends on the flux of particles
which escaped earlier and reflected back into Ω at a later
time. This leads to the boundary conditions involving time
delays.

Using the results of Wang (1975), the existence of a unique
solution of such parabolic systems was discussed. A char-
acterization of the optimal control in terms of the adjoint
system was given. Consequently, this characterization was
used to derive specific properties of the optimal control
(bang-bangness, uniqueness, etc.). These results were also
extended to certain cases of nonlinear control without
convexity and to certain fixed-time problems.

Consequently, in Kowalewski (1988b 1993ab 1998 2000
2001) linear quadratic problems for second order hyper-
bolic systems with time delays given in the different form
(constant time delays, time-varying delays, integral time
delays, etc.) were presented.

Moreover, in Lions (1971) and Kowalewski (2004) optimal
control problems via initial state for second order hyper-
bolic systems were investigated.

Such hyperbolic systems constitute in a linear approxi-
mation mathematical models of representative convection-
reaction processes, e.g. fixed-bed reactors, pressure swing
absorption processes, etc.

In particular, in Kowalewski (2010), the optimal control
problems via initial condition for infinite order hyperbolic
systems were considered. The presented optimal control
problem can be generalized onto the case of time delay
infinite hyperbolic systems.

For this reason, in the present paper we consider an opti-
mal control problem for a linear time delay infinite order
hyperbolic system with constant time delay appearing in
the state equation.

We consider a different type of equations, namely, time
delay infinite order partial differential equations of hyper-
bolic type with one from the initial conditions given by
control function.

The paper is organized as follows. The existence and
uniqueness of solutions for such hyperbolic equations were
proved - Lemma 1 and Theorem 2. The optimal control
is characterized by the adjoint problem - Lemma 3. The
necessary and sufficient conditions of optimality with the
quadratic performance functional and constrained control
are derived for the Dirichlet problem - Theorem 4.
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2. PRELIMINARIES

Let Ω be a bounded open set of Rn with smooth boundary
Γ.

We define the infinite order Sobolev space
H∞{aα, 2}(Ω) of functions Φ(x) defined on Ω Dubinskij
(1975) and Dubinskij (1976) as follows

H∞{aα, 2}(Ω) =

=



Φ(x) ∈ C∞(Ω) :

∞∑

|α|=0

aα ‖ DαΦ ‖22< ∞



, (1)

where: C∞(Ω) is a space of infinite differentiable functions,
aα ≥ 0 is a numerical sequence and ‖ · ‖2 is a norm in the
space L2(Ω), and

Dα =
∂|α|

(∂x1)α1 . . . (∂xn)αn
, (2)

where: α = (α1, . . . , αn) is a multi-index for differentiation,

|α| =
n∑

i=1

αi.

The space H−∞{aα, 2}(Ω) is defined as the formal conju-
gate space to the space H∞{aα, 2}(Ω), namely:

H−∞{aα, 2}(Ω) =

=



Ψ(x) :Ψ(x)=

∞∑

|α|=0

(−1)|α|aαDαΨα(x)



, (3)

where: Ψα ∈ L2(Ω) and

∞∑

|α|=0

aα ‖ Ψα ‖22 < ∞.

The duality pairing of the spaces H∞{aα, 2}(Ω) and
H−∞{aα, 2}(Ω) is postulated by the formula

〈Φ,Ψ〉 =
∞∑

|α|=0

aα

∫

Ω

Ψα(x)DαΦ(x) dx, (4)

where: Φ ∈ H∞{aα, 2}(Ω), Ψ ∈ H−∞{aα, 2}(Ω).
From above, H∞{aα, 2}(Ω) is everywhere dense in L2(Ω)
with topological inclusions and H−∞{aα, 2}(Ω) denotes
the topological dual space with respect to L2(Ω) so we
have the following chain:

H∞{aα, 2}(Ω) ⊆ L2(Ω) ⊆ H−∞{aα, 2}(Ω). (5)

3. EXISTENCE AND UNIQUENESS OF SOLUTIONS

Consider now the distributed-parameter system described
by the following infinite order hyperbolic equation

∂2y

∂t2
+Ay + y(x, t− h) = u x ∈ Ω, t ∈ (0, T ), (6)

y(x, t′) = Φ0(x, t
′) x ∈ Ω, t′ ∈ [−h, 0), (7)

y(x, 0) = 0 x ∈ Ω, (8)

y′(x, 0) = v x ∈ Ω, (9)

y(x, t) = 0 x ∈ Γ, t ∈ (0, T ), (10)

where Ω has the same properties as in the Section 1.

y ≡ y(x, t; v), u ≡ u(x, t), v ≡ v(x)

Q = Ω× (0, T ), Q̄ = Ω̄× [0, T ],

Q0 = Ω× [−h, 0), Σ = Γ× (0, T ),

h is a specified positive number representing a time delay,
Φ0 is an initial function defined on Q0.

The operator
∂2

∂t2
+A in (6) is an infinite order hyperbolic

operator and A (Dubinskij (1986)) is given by

Ay =
( ∞∑

|α|=0

(−1)|α|aαD2α + 1
)
y (11)

and

∞∑

|α|=0

(−1)|α|aαD2α is an infinite order elliptic partial

differential operator.

The operator A is a mapping of H∞{aα, 2} onto
H−∞{aα, 2}. For this operator the bilinear form Π(t; y, ϕ)
= (Ay, ϕ)L2(Ω) is coercive on H∞{aα, 2} i.e. there exists

λ > 0, λ ∈ IR such that Π(t; y, ϕ) ≥ λ‖y‖2H∞{aα,2}. We as-

sume that ∀ y, ϕ ∈ H∞{aα, 2} the function t → Π(t; y, ϕ)
is continuously differentiable in [0, T ] and Π(t; y, ϕ) =
Π(t;ϕ, y).

The equations (6) - (10) constitute a Dirichlet problem.

First we shall prove sufficient conditions for the existence
of a unique solution of the mixed initial-boundary value
problem (6) - (10) for the case where v ∈ L2(Ω).

The existence of a unique solution for the mixwd initial-
boundary value problem (6) - (10) on the cylinder Q can
be proved using a constructive method, i.e. first solving
(6) - (10) on the subcylinder Q1 and in turn on Q2, etc.,
until the procedure covers the whole cylinder Q. In this
way the solution in the previous step determines the next
one.

For simplicity, we introduce the notations

Ej
∧
= ((j − 1)h, jh), Qj = Ω× Ej , j = 1, ...,K

Using the results of Section 6 of (Lions (1971), p. 314) we
can prove the following lemma.

Lemma 1. Let

u ∈ L2(Q), (12)

fj ∈ L2(Qj), (13)

where
fj(x, t) = u(x, t)− yj−1(x, t− h),

yj−1(·, (j − 1)h) ∈ H∞{aα, 2}(Ω), (14)

y′j−1(·, (j − 1)h) ∈ L2(Ω). (15)

Then, there exists a unique solution

yj ∈ L2(Ej ;H
∞{aα, 2}(Ω)) with

dyj
dt

∈ L2(Ej ;L
2(Ω)) for

the mixed initial-boundary value problem (6), (14) and
(15).

Proof. We observe that for j = 1 we have
yj−1

∣∣
Q0

(x, t− h) = Φ0(x, t− h). Then the assumptions
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(13), (14) and (15) are fullfilled if we assume that

Φ0 ∈ L2(−h, 0;H∞{aα, 2}(Ω)),
dΦ0

dt
∈ L2(−h, 0;L2(Ω)),

y0(x, 0) ∈ H∞{aα, 2}(Ω) and y′0(x, 0) ∈ L2(Ω). These
assumptions are sufficient to ensure the existence of a

unique solution y1 ∈ L2(E1;H
∞{aα, 2}(Ω)) with

dy1
dt

∈
L2(E1;L

2(Ω)).

In order to extend the results to Q2, we have to to
prove that y1(·, h) ∈ H∞{aα, 2}(Ω), y′1(·, h) ∈ L2(Ω)
and f2 ∈ L2(Q2). From the Theorem 3.1 of Lions and
Magenes (1972) (Vol.1, p.19) y1 ∈ L2(E1;H

∞{aα, 2}(Ω))
jointly with

dy1
dt

∈ L2(E1;L
2(Ω)) imply that the mappings

t → y1(·, t) and t → y′1(·, t) are continuous from [0, h] →
H∞{aα, 2}(Ω) and [0, h] → L2(Ω) respectively. Thus,
y1(·, h) ∈ H∞{aα, 2}(Ω) and y′1(·, h) ∈ L2(Ω).

Also it is easy to notice that the assumption (13) fol-
lows from the fact that y1 ∈ L2(E1;H

∞{aα, 2}(Ω)) and
u ∈ L2(Q). Thus, there exists a unique solution y2 ∈
L2(E2;H

∞{aα, 2}(Ω)) with
dy2
dt

∈ L2(E2;L
2(Ω)).2

The foregoing result is now summarized for j = 1, ...,K.

Theorem 2. Let y(x, 0), y′(x, 0),Φ0 and u be given with
y(·, 0) ∈ H∞{aα, 2}(Ω), y′(·, 0) ∈ L2(Ω),

Φ0 ∈ L2(−h, 0;H∞{aα, 2}),
dΦ0

dt
∈ L2(−h, 0;L2(Ω))

and u ∈ L2(Q). Then, there exists a unique solution

y ∈ L2(0, T ;H∞{aα, 2}(Ω)) with
dy

dt
∈ L2(0, T ;L2(Ω)) for

the mixed initial-boundary value problem (6) - (10).

4. PROBLEM FORMULATION. OPTIMIZATION
THEOREM.

We shall now formulate the optimal control problem for
the Dirichlet problem. Let us denote by U = L2(Ω) the
space of controls. The time horizon T is fixed in our
problem.

The performance functional is given by

I(v) = λ1

∫

Ω

| y(x, T ; v)− zd |2 dx+

+λ2

∫

Ω

(Nv)v dx, (16)

where: λi ≥ 0 and λ1 + λ2 > 0; zd is a given element in
L2(Ω);N is a positive linear operator on L2(Ω) into L2(Ω).

Finally, we assume the following constraint on controls
v ∈ Uad , where

Uad is a closed, convex subset of U. (17)

Let y(x, t; v) denote the solution of the mixed initial-
boundary value problem (6) - (10) at (x, t) corresponding
to a given control v ∈ Uad. We note from the Theorem
2 that for any v ∈ Uad the performance functional (16)
is well-defined since y(x, T ; v) ∈ H∞{aα, 2}(Ω) ∈ L2(Ω).
The solving of the formulated optimal control problem

is equivalent to seeking a v0 ∈ Uad such that I(v0) ≤
I(v) ∀v ∈ Uad.

Then from the Theorem 1.3 (Lions (1971), p. 10) it follows
that for λ2 > 0 a unique optimal control v0 exists;
moreover, v0 is characterized by the following condition

I ′(v0) · (v − v0) ≥ 0 ∀v ∈ Uad. (18)

Using the form of the performance functional (16) we can
express (18) in the following form

λ1

∫

Ω

(y(x, T ; v0)− zd)(y(x, T ; v)− y(x, T ; v0))dx+

+λ2

∫

Ω

(Nv0)(v − v0)dx ≥ 0 ∀v ∈ Uad. (19)

To simplify (19), we introduce the adjoint equation and for
every v ∈ Uad, we define the adjoint variable p = p(v) =
p(x, t; v) as the solution of the equation

∂2p(v)

∂t2
+Ap(v) + p(x, t+ h; v) = 0

x ∈ Ω, t ∈ (0, T − h), (20)

∂2p(v)

∂t2
+Ap(v) = 0 x ∈ Ω, t ∈ (T − h, T ), (21)

p(x, T ; v) = 0 x ∈ Ω, (22)

p′(x, T ; v) = −λ1(y(x, T ; v)− zd) x ∈ Ω, (23)

p(x, t) = 0 x ∈ Γ, t ∈ (0, T ). (24)

The existence of a unique solution for the problem (20)-
(24) on the cylinder Q can be proved using a constructive
method. It is easy to notice that for given zd and v,
problem (20)-(24) can be solved backwards in time starting
from t = T , i.e., first, solving (20)-(24) on the subcylinder
QK and in turn on QK−1, etc. until the procedure covers
the whole cylinder Q. For this purpose, we may apply The-
orem 2 (with an obvious change of variables) to problem
(20)-(24).

Lemma 3. Let the hypothesis of Theorem 2 be satisfied.
Then, for given zd ∈ L2(Ω) and any v ∈ L2(Ω), there exists
a unique solution such that p(v) ∈ L2(0, T ;H∞{aα, 2}(Ω))
and

∂p(v)

∂t
∈ L2(0, T ;L2(Ω)) for the problem (20)-(24).

We simplify (19) using the adjoint equation (20)-(24). For
this purpose setting v = v0 in (20)-(24), multiplying both
sides of (20)-(21) by (y(v) − y(v0)) and then integrating
over Ω × (0, T − h) and Ω × (T − h, T ) respectively and
then adding both sides of (20), (21) we get

∫

Q

(
∂2p(v0)

∂t2
+Ap(v0)

)
(y(v)− y(v0)) dxdt

+

T−h∫

0

∫

Ω

p(x, t+ h; v0)(y(x, t; v) − y(x, t; v0))dxdt

=

∫

Ω

p′(x, T, v0)[y(x, T ; v)− y(x, T ; v0)]dx
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−
∫

Ω

p′(x, 0, v0)[y(x, 0; v)− y(x, 0; v0)]dx

−
∫

Ω

p(x, T, v0)[y
′(x, T ; v)− y′(x, T ; v0)]dx

+

∫

Ω

p(x, 0, v0)[y
′(x, 0; v)− y′(x, 0; v0)]dx

+

∫

Q

p(v0)
∂2

∂t2
(y(v)− y(v0)) dxdt

+

∫

Q

Ap(v0)(y(v) − y(v0)) dxdt

+

T−h∫

0

∫

Ω

p(x, t+ h; v0) ·

·(y(x, t; v) − y(x, t; v0))dxdt = 0 (25)

and so, by (22) and (23),

λ1

∫

Ω

(y(x, T, v)− zd)[y(x, T ; v)− y(x, T ; v0)]dx

=

∫

Ω

p(x, 0, v0)[y
′(x, 0; v)− y′(x, 0; v0)]dx

+

∫

Q

p(v0)
∂2

∂t2
(y(v)− y(v0)) dxdt

+

∫

Q

Ap(v0)(y(v) − y(v0))dxdt

+

T−h∫

0

∫

Ω

p(x, t+ h; v0) ·

·(y(x, t; v) − y(x, t; v0))dxdt (26)

Using the equation (6), the second integral on the right-
hand side of (26) can be rewritten as

∫

Q

p(v0)
∂2

∂t2
(y(v) − y(v0))dxdt

= −
∫

Q

p(v0)A(y(v) − y(v0))dxdt

−
T∫

0

∫

Ω

p(x, t; v0) ·

·(y(x, t− h; v)− y(x, t− h; v0))dxdt

= −
∫

Q

p(v0)A(y(v) − y(v0))dxdt

−
T−h∫

−h

∫

Ω

p(x, t′ + h; v0) ·

·(y(x, t′; v)− y(x, t′; v0))dxdt
′ (27)

Substituting (27) into (26) we obtain

λ1

∫

Ω

(y(x, T ; v0)− zd)(y(x, T ; v)− y(x, T ; v0))dx

=

∫

Ω

p(x, 0, v0)[y
′(x, 0; v)− y′(x, 0; v0)]dx

−
∫

Q

p(v0)A(y(v) − y(v0))dxdt

−
0∫

−h

∫

Ω

p(x, t+ h; v0)(y(x, t; v)− y(x, t; v0))dxdt

−
T−h∫

0

∫

Ω

p(x, t+ h; v0)(y(x, t; v) − y(x, t; v0))dxdt

+

∫

Q

p(v0)A(y(v) − y(v0))dxdt

+

T−h∫

0

∫

Ω

p(x, t+ h; v0) ·

·(y(x, t; v)− y(x, t; v0))dxdt (28)

Afterwards using the formulae y′(x, 0; v) = v and
y′(x, 0; v0) = v0 in (28) we get

λ1

∫

Ω

(y(x, T ; v0)− zd)(y(x, T ; v)− y(x, T ; v0))dx

=

∫

Ω

p(x, 0; v0)(v − v0)dx (29)

Substituting (29) into (19) we obtain

∫

Ω

(p(x, 0; v0) + λ2Nv0)(v − v0)dx ≥ 0

∀v ∈ Uad (30)

Theorem 4. For the problem (6)-(10) with the perfor-
mance functional (16) with zd ∈ L2(Ω) and λ2 > 0 and
with constraints on controls (17), there exists a unique
optimal control v0 which satisfies the maximum condition
(30).

We must notice that the conditions of optimality derived
above (Theorem 4) allow us to obtain an analytical formula
for the optimal control in particular cases only (e.g. there
are no constraints on controls). This results from the
following: the determining of the function p(v0) in the
maximum condition from the adjoint equation is possible
if and only if we know y0 which corresponds to the control
v0. These mutual connections make the practical use of
the derived optimization formulas difficult. Therefore we
resign from the exact determining of the optimal control
and we use approximation methods.

In the case of the performance functional (16) with λ1 > 0
and λ2 = 0, the optimal control problem reduces to the
minimizing of the functional on a closed and convex subset
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in a Hilbert space. Then, the optimization problem is
equivalent to a quadratic programming one (Kowalewski
(1988a)) which can be solved by the use of the well-known
algorithms, e.g. Gilbert’s in Kowalewski (1988a).

5. CONCLUSIONS

The results presented in the paper can be treated as
a generalization of the results obtained in Kowalewski
(2010) onto the case of infinite order time delay hyperbolic
systems with one of the initial conditions given by control
function.

In this paper we have considered optimal control problem
for such hyperbolic systems with the Dirichlet boundary
conditions.

We can also consider similar optimal control problems
for time delay infinite order hyperbolic systems with
Neumann boundary conditions.

Finally we can consider optimal control problem for infi-
nite order hyperbolic systems with two initial conditions
given by control functions.

The ideas mentioned above will be developed in forthcom-
ing papers.
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