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Kotta, Ü., Tőnso, M.: Relationship Between Two Polynomial Realization Methods, Editors: Fikar, M., Kvasnica, M., In
Proceedings of the 18th International Conference on Process Control, Tatranská Lomnica, Slovakia, 147–152, 2011.

Full paper online: http://www.kirp.chtf.stuba.sk/pc11/data/abstracts/020.html

http://www.kirp.chtf.stuba.sk/pc11
http://www.kirp.chtf.stuba.sk/pc11/data/abstracts/020.html


Relationship between two polynomial
realization methods

Ü. Kotta M. Tõnso
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Abstract: The aim of the paper is to show that two different polynomial realization methods,
one of them based on adjoint polynomials and the other on the polynomial quotients, are
equivalent. It is proved that both methods provide exactly the same set of basis vectors of the
subspace determining the differentials for the state coordinates.
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1. INTRODUCTION

Identification of a nonlinear system provides a mathe-
matical model of the system in the form of input-output
(i/o) differential equation. At the same time, most of
the control system theory is developed for the systems
represented by the state equations. Thus, it is necessary
to bring the obtained i/o equation into the state-space
form. This task is called realization of the system. For
nonlinear systems realization is a sophisticated problem;
note that every input-output equation does not necessar-
ily admit a state-space representation. There are several
(equivalent) necessary and sufficient realizability condi-
tions available in the literature. Among them the most
known are algebraic conditions formulated in terms of
integrability of the subspaces of differential one-forms, see
Conte et al. (2007) and those in terms of Lie brackets
by Delaleau and Respondek (1995). Recently, the theory
of the noncommutative polynomial rings was applied to
the realization problem. The polynomial approach is built
upon the approach of differential one-forms and is most
efficient from the computational point of view. The aim
of the present paper is to find relations between the basis
one-forms of the subspaces used to find differentials of the
state coordinates in Halás and Kotta (2009) and Tõnso
and Kotta (2009).

2. PROBLEM STATEMENT AND ALGEBRAIC
FRAMEWORK

Consider a single-output nonlinear system, described by
a higher order i/o differential equation, relating the input
u = [u1, . . . , um]T , the output y and a finite number of
their time derivatives

y(n) = φ(y, ẏ, . . . , y(n−1), u, u̇, . . . , u(n−1)). (1)

In (1) u ∈ U ⊂ Rm, y ∈ Y ⊂ R, t > 0 and φ is a real
analytic function.

The realization problem is defined as follows. Given a
nonlinear system, described by the i/o equation of the
form (1), find, if possible, the state coordinates x ∈ Rn,

x = ψ(y, . . . , y(n−1), u, . . . , u(n−1)) such that in these
coordinates the system takes the classical state space form

ẋ = f(x, u)
y = h(x),

(2)

and the sequences {u, y, t > 0}, generated by (2) (for dif-
ferent initial states), coincide with the sequences {u, y, t >
0}, satisfying equations (1). Then (2) is called a realization
of (1). A system (1) is said to be realizable if for it exists
a realization of the form (2).

Below we briefly recall the algebraic formalism, described
in Conte et al. (2007). Let K denote the field of meromorp-
hic functions in a finite number of the independent system
variables {y, . . . , y(n−1), u(k), k ≥ 0} and s : K → K
denote the time derivative operator d/dt. Then the pair
(K, s) is a differential field Kolchin (1973). Over the field K
one can define a differential vector space, E := spanK{dϕ |
ϕ ∈ K} spanned by the differentials of the elements of K.
Consider a one-form ω ∈ E : ω =

∑
i αidϕi, αi, ϕi ∈ K. Its

derivative ω̇ is defined by ω̇ =
∑

i α̇idϕi + αidϕ̇i.

3. POLYNOMIAL FRAMEWORK

Polynomial framework is built upon the linear algebraic
framework. The differential field (K, s) induces a ring of
left polynomials K[Z, s]. The elements of K[Z, s] can be
uniquely written in the form

a(Z) =
n∑

i=0

aiZ
n−i, ai ∈ K

where Z is a polynomial indeterminate and a(Z) 6= 0 if
and only if at least one of the functions ai, i = 0, . . . , n is
nonzero. If a0 6≡ 0, then the positive integer n is called the
degree of the polynomial a(Z) and denoted by deg a(Z).
In addition, we set deg 0 = −∞. For a ∈ K let us define
the multiplication

Z · a = a · Z + s(a). (3)

If the multiplication is defined by (3), the ring K[Z, s] is
proved to satisfy left Ore condition McConnel and Robson
(1987), and Zn · a ∈ K[Z, s], for n ≥ 1, and
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Zn · a =

n∑

i=0

Ci
ns

n−i(a)Zi.

A ring D is called an integral domain, if it does not contain
any zero divisors. This means that if a and b are two
elements of D such that ab = 0, then a = 0 or b = 0.

Lemma 1. McConnel and Robson (1987)

(i) The ring K[Z, s] is an integral domain.
(ii) If a and b are nonzero left polynomials, then

deg(a b) = deg a+ deg b.

Definition 2. Abramov et al. (2005) The adjoint of a Ore
polynomial ring K[Z, s] is defined as the Ore polynomial
ring K[Z∗, s∗], where s∗ = −s.

From the definition it follows that in the adjoint polyno-
mial ring multiplication is defined by the commutation rule
Z∗ · a = a · Z∗ − ȧ, where a ∈ K. If

p(Z) = pnZ
n + . . .+ p1Z + p0 (4)

is a polynomial in K[Z, s] then the adjoint polynomial
p∗(Z∗) is defined by the formula

p∗(Z∗) = Z∗npn + . . .+ Z∗p1 + p0 ∈ K[Z∗, s∗], (5)

where the products Z∗ipi must be computed in K[Z∗, s∗].

For Φ ∈ K we define d : K → E as follows:

dΦ :=

n−1∑

i=0

∂Φ

∂y(i)
dy(i) +

m∑

j=1

k∑

l=0

∂Φ

∂u
(l)
j

du
(l)
j .

dΦ is said to be the total differential (or simply the
differential) of the function Φ and it is a differential one-
form. It is proved in Conte et al. (2007) that s(dΦ) =
d(sΦ). Let us define Zkdy := d(sky) and Zldu := d(slu),
for k, l ≥ 0 in the vector space E . Since every one-form
ω ∈ E has the form

ω =
n−1∑

i=0

aidy
(i) +

m∑

j=1

k∑

l=0

bj,ldu
(l)
j ,

where ai, bj ∈ K, so ω can be expressed in terms of the left
polynomials

ω =

(
n−1∑

i=0

aiZ
i

)
dy +

m∑

j=1

(
k∑

l=0

bj,lZ
l

)
duj .

A polynomial can be considered as an operator acting on
the elements of E :(

k∑

i=0

aiZ
i

)
(αdν) :=

k∑

i=0

ai
(
Zi · α

)
dν,

with ai, α ∈ K and dν ∈ {dy,du1, . . . ,dum}. It is easy to
notice that Z(ω) = s(ω), for ω ∈ E . Additionally, using the
induction principle, one can show that Zn(dΦ) = d(snΦ).

Instead of working with equation (1), describing the con-
trol system, we can work with its differential

dy(n) −
n−1∑

i=0

∂φ

∂y(i)
dy(i)=

m∑

j=1

n−1∑

i=0

∂φ

∂u
(i)
j

du
(i)
j (6)

that can be rewritten as

a(Z)dy =
m∑

j=1

bj(Z)duj , (7)

with

a(Z) = Zn −
n−1∑

i=0

∂φ

∂y(i)
Zi, bj(Z) =

n−1∑

i=0

∂φ

∂u
(i)
j

Zi (8)

and a(Z), bj(Z) ∈ K[Z, s] for j = 1, . . . ,m.

4. REALIZABILITY CONDITIONS

Realizability conditions in terms of adjoint polynomials
can be found in Halás and Kotta (2009) for single-input
single-output (SISO) systems and in Halás and Kotta
(2011) for multi-input single-output systems:

Theorem 3. Given a nonlinear control system defined by
i/o equation (1), or equivalently by (6), let

ωi :=
m∑

j=1

b∗j,i−1duj − a∗i−1dy, i = 1, . . . , n. (9)

Then there exists a state space realization of the form (2)
if and only if

spanK{dy,dẏ − ωn,dÿ − ω̇n − ωn−1, . . . ,

dy(n−1) − ω(n−2)
n − ω(n−3)

n−1 − . . .− ω2, } (10)

is integrable.

Realizability conditions based on division of non-commuta-
tive polynomials are given in Tõnso and Kotta (2009) for
SISO systems and in Belikov et al. (2011) for multi-input
multi-output systems:

Theorem 4. Given a nonlinear control system defined by
i/o equation (1), or equivalently by (6), let

ω̄l :=
[
āl(Z),−b̄·,l(Z)

] [dy
du

]
, l = 1, . . . , n (11)

where āl(Z) and b̄·,l(Z) can be computed recursively from

āl−1(Z) = Z āl(Z) + rl
b̄·,l−1(Z) = Z b̄·,l(Z) + ρ·,l,

(12)

with the initial polynomials

ā0(Z) = a(Z), b̄·,0(Z) = [b1(Z), . . . , bm(Z)].

Then there exists a state space realization of the form (2)
if and only if

spanK{ω̄l, l = 1, . . . , n} (13)

is integrable.

State coordinates necessary for realization can be found
by integrating the basis vectors of the subspaces (10)
or (13). Of course, one cannot find the integrable one-
forms dx1(t), . . . , dxn(t) for an arbitrary i/o equation. No
matter which way the the subspace is calculated, either
by Theorem 3 or by Theorem 4, its integrability can be
checked by the Frobenius theorem.

Theorem 5. Choquet-Bruhat et al. (1989)(Frobenius) Let
V = spanK{ω1, . . . , ωr} be a subspace of E . V is closed iff
dωk ∧ ω1 ∧ . . . ∧ ωr = 0, for all k = 1, . . . , r.

5. MAIN RESULT

Since Theorems 3 and 4 both present necessary and suf-
ficient realizability conditions, these conditions are obvi-
ously equivalent. The goal of this section is to show the
precise relationship between the codistribution (10) and
(13).
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Proposition 6. The basis one-forms (10) in Theorem 3
coincide with the one-forms ω̄l, l = 1, . . . , n in Theorem 4.

Proof. First note that basis one-forms of the codistribution
(10) can be written in a form

dy(i−1) − ω(i−2)
n − . . .− ω̇n−i+3 − ωn−i+2,

where i = 1, . . . , n. Definition (9) allows us to rewrite the
basis vectors in the form:

(Zi−1 + Zi−2a∗n−1 + . . .+ Za∗n−i+2 + a∗n−i+1)dy

−
m∑

j=1

(Zi−2b∗j,n−1 + . . .+ Zb∗j,n−i+2 + b∗j,n−i+1)duj (14)

Next, observe that the (polynomial) coefficient of dy,
denoted by ãn−i+1(Z), is similar to the polynomial

a(Z) = Zn + Zn−1a∗n−1 + . . .+ Za∗1 + a∗0.

We only need to multiply ãn−i+1(Z) from left by Zn−i+1

and add a missing part zn−ia∗n−i + . . . + Za∗1 + a∗0. The
latter means

Zn−i+1ãn−i+1(Z) + Zn−ia∗n−i + . . .+ Za∗1 + a∗0 = a(Z).

For the sake of simplicity we can replace in previous
equality the index i by l = n − i + 1, l = 1, . . . n, keeping
in mind that it just means reversing the order of the
coefficients:

Zlãl(Z) + Zl−ia∗l−1 + . . .+ Za∗1 + a∗0 = a(Z).

Thus, we have represented a coefficient ãl(Z) of dy as a
left quotient of a(Z) and Zl, l = 1, . . . , n. Note that such
quotients can be computed using the recursive formula

Zãl(Z) + a∗l−1 = ãl−1(Z).

Since the quotient of two polynomials is unique, the
polynomial ãl(Z) has to be equal to āl(Z) in (12), while
rl = a∗l−1. Analogously, it is possible to prove that the

coefficients of duj for j = 1, . . . ,m in (14) equal to b̄·,l(Z)
in (12). Thus, we have shown that the basis one-forms (10)
and (11) coincide, except that the order is reversed. �
Remark about the discrete-time case

Realizability conditions for discrete-time systems are
largely analogous to their continuous-time counterparts.
The analogue of Theorem 3 for discrete-time SISO systems
can be found in Halás and Kotta (2010); the only difference
is that in basis (10) instead of the derivative operator there
is the forward shift operator δ. The forward shift operator
is defined by shifting the arguments of the function ac-
cording to the rules δy(t) = y(t + 1), δuj(t) = uj(t + 1),
j = 1, . . . ,m. The inverse operator of δ is denoted by
δ−1 and called backward-shift operator. We should also
keep in mind that in discrete-time case multiplication of
polynomials and adjoint polynomials is defined by different
commutation rules, Z ·a = δ(a) ·Z and Z∗ ·a = δ−1(a) ·Z∗,
respectively. Due to the latter commutation rule, for an
adjoint polynomial p∗(Z∗) = p∗nZ

∗n + . . .+ p∗1Z
∗+ p∗0, the

equalities p∗i = δ−i(pi), i = 0, . . . , n hold. Therefore, for
the discrete-time systems, the equality (14) takes the form

(Zi−1 + δi−n−1(an−1)Zi−2 + . . .+ δi−n−1(an−i+1))dy

−
m∑

j=1

(δi−n−1(bj,n−1)Zi−2 + . . .+ δi−n−1(b∗j,n−i+1))duj

(15)

for i = 1, . . . , n. The coefficients of dy and duj , j =
1, . . . ,m can be computed by polynomial division as in
Theorem 4; however, the shorter way is to use the cut-
and-shift operator defined by

δ−1c (p(Z)) = δ−1(p(Z)− p0), (16)

see also Kotta and Tõnso (2008). In terms of the cut-and-
shift operator the equality (15) may expressed as

δ−lc a(Z)dy −
m∑

j=1

δ−lc (bj,l)duj = δ−lc [a(Z),−b(Z)]

[
dy
du

]

(17)
for l = 1, . . . , n. The latter formula agrees with the result
in Kotta and Tõnso (2008).

6. EXAMPLES

Example 1. Consider the control system ÿ = u+ yu̇2. Let
us compute the differentials of state coordinates necessary
for realization by two different methods, by Theorem 3
and Theorem 4. As a common step of both methods, one
has to find the polynomial representation of the system,
i.e polynomials a(Z) and b1(Z) = b(Z):

a(Z) = Z2 − u̇2
b(Z) = 2yu̇Z + 1.

Following Theorem 3, one has to compute adjoint polyno-
mials a∗(Z∗) and b∗(Z∗). By (5),

a∗(Z∗) = Z∗2 + u̇2

b∗(Z∗) = 2yu̇Z∗ + (1− 2ẏu̇− 2yü).

After computing ω1 and ω2 defined by (9)

ω1 = (1− 2ẏu̇− 2yü)du− u̇2dy
ω2 = 2yu̇du

it is easy to write down the basis one-forms (14)

spanK{dy, dẏ − ω2} = spanK{dy, dẏ − 2yu̇du}. (18)

According to Frobenius condition the latter subspace is
not integrable and thus the system does not admit the
classic state space representation.

Alternatively, one may follow Theorem 4 and find āl(Z),
b̄l(Z), l = 1, . . . , n by dividing a(Z) and b(Z) from the left
by the polynomial Z repeatedly:

ā0(Z) = Z2 − u̇2 b̄0(Z) = 2yu̇Z + 1
ā1(Z) = Z b̄1(Z) = 2yu̇
ā2(Z) = 1 b̄2(Z) = 0

By (11),

ω̄1 = Zdy − 2yu̇du = dẏ − 2yu̇du

ω̄2 = dy,

which coincide with the basis one-forms of (18).

Example 2. Consider the control system

y(3) = u1ẏ + yu̇1 + u̇22 + u2ü2 (19)

that can be described as in (8) as follows:

a(Z) = Z3 − u1Z
b1(Z) = Z + ẏ
b2(Z) = u2Z

2 + 2u̇2Z + ü2.
(20)

Obeying Theorem 3, the adjoint polynomials a∗(Z∗),
b∗1(Z∗) and b∗2(Z∗) are as follows:

a∗(Z∗) = Z∗3 − u1Z∗ + u̇1
b∗1(Z∗) = Z∗ + ẏ
b∗2(Z∗) = u2Z

∗2.
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Computation of ωi’s, defined by (9), yields

ω1 = ẏdu1 − u̇1dy
ω2 = du1 + u1dy
ω3 = u2du2,

(21)

which allow to find the basis one-forms defined by (10):

spanK{dy, dẏ − ω3,dÿ − ω̇3 − ω2} =

spanK{dy, dẏ−u2du2,dÿ−u̇2du2−u2du̇2−du1−u1dy}.
(22)

Alternative solution starts by computing quotients by (12)

ā0(Z) = Z3 − u1Z b̄·,0 = [Z + ẏ, u2Z
2 + 2u̇2Z + ü ]

ā1(Z) = Z2 − u1 b̄·,1 = [ 1, u2Z + u̇2 ]
ā2(Z) = Z b̄·,2 = [ 0, u2 ]
ā3(Z) = 1 b̄·,3 = [ 0, 0 ],

(23)
that allow to find the basis one-forms ω̄1, ω̄2 and ω̄3

according to (11):

ω̄1 = (Z2 − u1)dy − du1 − (u2Z − u̇2)du2
= dÿ − u1dy − du1 − u2du̇2 − u̇2du2

ω̄2 = Zdy − 0 · du1 − u2du2
= dẏ − u2du2

ω̄3 = dy.

As expected, the above one-forms coincide with (22). Ac-
cording to Frobenius condition, the subspace spanK{ω̄1, ω̄2,
ω̄3} is integrable and the differentials of the state coordi-
nates

dx1 = ω̄3 = dy

dx2 = ω̄2 = d(ẏ − 1

2
u22)

dx3 = ω̄1 + u1ω̄3 = d(ÿ − u1 − u2u̇2)

yield the classical state equations

ẋ1 =
1

2
u22 + x2

ẋ2 = u1 + x3

ẋ3 = u1(
1

2
u22 + x2).

7. MATHEMATICA IMPLEMENTATION

We have implemented both realization methods in com-
puter algebra system Mathematica. On that purpose we
use the functions from the package NLControl, allowing to
solve various modelling, analysis and synthesis problems
for nonlinear control systems, see Tõnso et al. (2009);
Tõnso (2010). NLControl package also includes the basic
tools for polynomials from Ore rings. If compared with
the Maple OreTools package, the polynomial functions in
NLControl have one essential benefit. Namely, NLControl
allows take into account that the derivative (or shift) oper-
ator is defined by the control systems equations, see Halás
et al. (2009). The OreTools package lacks such possibility,
therefore it may sometimes provide a wrong result when
applied to nonlinear control problems.

The given Mathematica code below has two advantages
worth to mention. First, it is constructed in a way it
can handle both continuous- and discrete-time systems;

in case of discrete-time systems one has just to replace
the word TimeDerivative by the word Shift. Second,
though the scope of this paper is limited to single-output
systems, the above code allows to find state coordinates for
multi-output systems, too. Therefore an additional pair of
curly braces may appear around Mathematica expressions
below. Consider the system (19). After loading the package
by the command

<<NLControl‘Master‘

let us create the object IO[], representing the i/o equa-
tions for this system.

eqs = {y’’’[t]->u1[t]y’[t]+u1’[t]+u2’[t]2+
u2[t]u2’’[t]};
Ut = {u1[t],u2[t]};
Yt = {y[t]};
ioeq = IO[eqs,Ut,Yt,t,TimeDerivative]

First, let us compute the state coordinates by Theorem 3.
For that we need to construct the Ore ring and adjoint
Ore ring associated with the system ioeq.

R = DefineOreRing[Z, ioeq];
adR = DefineAdjointOreRing[Z, ioeq];

The function FromIOToOreP finds the polynomials a(Z)
and bj(Z), j = 1, . . . ,m for the system ioeq. Note that
the polynomials bj(Z) are chosen with the opposite sign
to (7) and (20).

AB = MapThread[Join, FromIOToOreP[ioeq]]

{{OreP[1,0,-u1[t],0],
OreP[-1,-y’[t]],
OreP[-u2[t],-2 u2’[t],-u2’’[t]]}}

The function OreP[pn, . . .,p1, p0] represents the Ore
polynomial in the form (4). The function Adjoint allows
to compute adjoints of the polynomials being elements of
the matrix AB.

adAB = Map[Adjoint[#, adR]&, AB, 2]

{{OreP[1,0,-u1[t],u1’[t]], OreP[-1,-y’[t]],
OreP[-u2[t],0,0]}}

By the next code row the coefficients of the polynomials
are represented as the individual 0-degree polynomials.
The constant terms (the last argument of OreP[]) are
removed, since they correspond to ω1, which is not neces-
sary in further computations.

adAB = Map[ If[ Head[#]===OreP,
Drop[ List @@ OreP /@ #, -1], ]&, adAB, 2]

{{{1, 0, OreP[-u1[t]]}, {OreP[-y[t]]},
{OreP[-u2[t]], 0}}}

To obtain the the polynomials, respective to the one-forms
ωi, defined by (9), we need to equalize the length of the
rows by adding the missing zeros to the beginning of each
row and the transpose the obtained matrix.

omega = Transpose/@ PadLeft/@ adAB

{{{1,0,0}, {0,0,OreP[-u2[t]]},
{OreP[-u1[t]],-1,0}}}
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In above output the vector {1,0,0} corresponds to
dy, which can be considered as ωn+1 = ω4, the vec-
tor {0,0,OreP[-u2[t]]} corresponds to −ω3 and
{OreP[-u1[t]], OreP[-y[t]],0} to −ω2, given by
(21). Our next task is to compute the basis one-forms (10).
Denoting the basis elements by θ1, . . . , θn (and recalling
that our ωi, i = 2, . . . , n are of opposite signs, to (9)),
allows to compute the basis by the time-saving recursive
formula θ1 = dy, θi+1 = θ̇i + ωn−i+1 for i = 1, . . . , n − 1.
Instead of computing the derivatives of θi, i = 1, . . . , n−1
we have chosen to multiply the respective polynomials by s
from right. The reason for such choice is that the routines
available in NLControl are more suitable for this method
and it allows to avoid several clumsy data transformation.

statedifpoly = Rest @ FoldList[
OreMultiply[ OreP[1,0],#1,K]+#2&, 0, #]&
/@ omega

{{{1,0,0}, {OreP[1,0],0,OreP[-u2[t]]},
{OreP[1,0,-u1[t]], -1,
OreP[-u2[t],-u2’[t]]}}}

The function FromOrePToSpanK converts the list of Ore
polynomials into the set of one-forms.

statedif = FromOrePToSpanK[
Join @@ statedifpoly, ioeq]

SpanK[{{1,0,0,0,0,0}, {0,1,0,0,-u2[t],0},
{-u1[t],0,1,-1,-u2’[t],-u2[t]}},
{y[t],y’[t],y’’[t],u1[t],u2[t],u2’[t]},
-1, t]

We have computed the basis of the subspace (10). The
function BookForm allows to print the result in a user-
friendly form:

BookForm[statedif]

SpanK{dy, dy’ - u2 du2,
-u1 dy + dy’’- du1 - u2’du2 - u2 du2’}

Integrating the one-forms

states = IntegrateOneForms[statedif]

{y[t], 1/2 (u2[t]ˆ2 - 2y’[t]),
u1[t] + u2[t]u2’[t] - y’’[t]}

yields the state coordinates, which allow to find the state
equations:

BookForm[Realization[ioeq,
{x1[t],x2[t],x3[t]}, states]]

x1’ = (u2ˆ2 - 2*x2)/2
x2’ = -u1 + x3
x3’ = -((u2ˆ2 - 2*x2)*u1)/2
y = x1

x1 = y
x2 = (u2ˆ2 - 2*y’)/2
x3 = u1 + u2 u2’ - y’’)

The basis (10) can be also found by the single func-
tion StateDifferentialsAdjoint[ioeq] (the name
of the function may be confusing, because in fact,
it gives the linear combination of the differentials of
the state coordinates.) The realization procedure can

be performed by the function Realization[ioeq,
{x1[t],x2[t],. . .}, Method->Adjoint].

Second, let us find the state coordinates by Theorem
4. We can employ the Ore ring R and the matrix AB
already computed above. The order of the system can be
determined by the function MaxPLMOrder, which allows
to find the maximal order of time-derivative, shift or any
other pseudo-linear map.

ni = MaxPLMOrder[eqs, #, TimeDerivative
]& /@ Yt

{3}

According to (12) we have to divide the elements of the
matrix AB repeatedly by the polynomial s from left. By
abuse of function name, we have defined the function
CutAndShift[p(Z),R] as a left quotient of p(Z) and
s for the Ore rings, associated with the continuous-time
systems. The reason is that in case of discrete-time systems
the quotients can be found by applying cut-and-shift
operator as in (17). This extension allows to compute the
polynomials āl and b̄·,l, l = 1, . . . , n in (12) for both,
continuous- and discrete time systems, by the following
compact row:

ABquot = MapThread[ NestList[
CutAndShift[#, K]&, #1, #2]&, AB, ni]

{{{OreP[1,0,-u1[t],0],
OreP[-1,-y’[t]],
OreP[-u2[t],-2 u2’[t],-u2’’[t]]},

{OreP[1,0,-u1[t]], -1,
OreP[-u2[t],-u2’[t]]},

{OreP[1,0],0,OreP[-u2[t]]},
{1,0,0}}}

The obtained list corresponds to {{{ā0(Z), b̄·,0(Z)}, . . . ,
{ā3(Z), b̄·,3(Z)}}}, where the polynomials are given by
(23). Removing the first row {ā0(Z), b̄·,0(Z)} and reversing
the order of the remaining rows yields

ABquot = Reverse /@ Rest /@ ABquot

{{{1, 0, 0}, {OreP[1, 0], 0, OreP[-u2[t]]},
{OreP[1, 0, -u1[t]], -1,

OreP[-u2[t], -u2’[t]]}}}

The funtion FromOrePToSpanK converts Ore polynomi-
als into the set of one-forms.

FromOrePToSpanK[ Join @@ ABquot, ioeq]

SpanK[{{1,0,0,0,0,0}, {0,1,0,0,-u2[t],0},
{-u1[t],0,1,-1,-u2’[t],-u2[t]}},
{y[t],y’[t],y’’[t],u1[t],u2[t],u2’[t]},
-1, t]

By that the basis of the subspace (13) has been computed.
The one-forms (13) can be also found by the function
StateDifferentialsLeftQuoteint[ioeq] and the
realization can be performed by Realization[ioeq,
{x1[t],x2[t]. . .}, Method->LeftQuotient].

Preliminary comparison of two realization methods, based
on relatively small examples, suggests that the program
employing adjoint polynomials works faster than the one
based on the polynomial quotients. The reason is obvious
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– adjoint polynomial method utilizes only polynomial mul-
tiplication, which is a primary function (it is immaterial
whether we work with polynomials or with adjoint polyno-
mials) and is therefore performed faster than polynomial
division.

However, in discrete-time case the situation is different.
Polynomial quotient operator can be replaced by cut-and-
shift operator, which means that the program can compute
the basis one-forms without calling neither multiplication
nor division functions and therefore, it can produce the
results faster than the program involving adjoint polyno-
mials.

8. CONCLUSION

In this paper the realizability problem of nonlinear control
system has been addressed. The paper focuses on estab-
lishing the explicit relationship between the two necessary
and sufficient realizability conditions. Both conditions are
formulated in terms of integrability of a certain subspace.
While in the first condition the basis one-forms of the
subspace are achieved from the adjoints of the polynomials
describing the system; in the second condition the basis
one-forms are found using polynomial quotients. As both
conditions are necessary and sufficient it is obvious that
they are equivalent; however, in this paper it is proved that
the basis one-forms used in both conditions are equal.
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