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Ülle Kotta ∗ Tanel Mullari ∗ Alexey Ye. Shumsky ∗∗

Alexey N. Zhirabok ∗∗∗

∗ Institute of Cybernetics at Tallinn University of Technology,
Akadeemia tee 21, 12618 Tallinn, Estonia (e-mail: kotta@cc.ioc.ee).
∗∗ Institute of Applied Mathematics, Far Eastern Branch of Academy

of Sciences, Radio street 7, 690041 Vladivostok, Russia (e-mail:
shumsky@mail.primorye.ru)

∗∗∗Dept. of Design and Technology of Radio Equipment, Far Eastern
Federal University, Pushkinskaya street 10, 690950 Vladivostok, Russia

(e-mail: zhirabok@mail.ru)

Abstract: The tools of the algebra of functions are applied to readdress the accessibility and
static state feedback linearization problems for discrete-time nonlinear control systems. These
tools are also applicable for nonsmooth systems. Moreover, the close connections are established
between the new results and those based on differential one-forms.
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1. INTRODUCTION

The approach based on the vector spaces of differential
one-forms over suitable differential/difference fields of non-
linear functions offers the complementary (dual) tools to
the differential geometric methods for studying the non-
linear control systems, either continuous- or discrete-time,
see Conte et al. [2007]. These tools are characterized by
their inherent simplicity, universality and strong similarity
to their linear counterparts.

However, there exists another mathematical approach that
relies on a certain algebraic structure, called the algebra
of functions, see Zhirabok and Shumsky [2008]. The main
idea for developing the algebra of functions traces back to
the book by Hartmanis and Stearns [1966], who introduced
the algebra of partitions for finite automata defined via the
transition tables or graphs. In the algebra of functions the
partitions were replaced by functions generating them and
the analogous operations and operators for functions were
introduced. The four key elements of the algebra of func-
tions are partial preorder relation, binary operations (sum
and product, defined in a specific manner), binary relation
and certain operators m and M. The first two elements are
defined on the arbitrary set of vector functions whereas
the other two are defined for functions with the domain
being the state space of the control system. Like the tools
based on the differential forms, the algebra of functions
provides a unified viewpoint to study the discrete-time as
well as the continuous-time control systems; additionally
it allows to address also the discrete-event systems like

? This work was supported by the Estonian governmental funding
project no. SF0140018s08, ESF grant no. 8365 and Russian Founda-
tion of Basic Researchers Grants 10-08-00133 and 10-08-91220-CT.

those in Shumsky and Zhirabok [2010a,b]. An important
point to stress is that these tools (unlike most previous
methods) do not require the system to be described in
terms of smooth functions.

The goal of this paper is to compare the tools of the algebra
of functions with those based on the differential forms.
Our purpose is to compare the assumptions made on the
control system, the basic algorithms and the solutions of
few chosen control problems, like accessibility and static
state feedback linearization. In order to focus on the
key aspects and keep the presentation simple, we restrict
ourselves in this paper to the discrete-time single-input
systems.

Whereas the number of publications on the topic of static
state feedback linearization is huge, the situation is differ-
ent for the discrete-time case, see Jayaraman and Chizek
[1993], Nam [1989], Grizzle [1986], Nijmeijer and van der
Schaft [1990], Aranda-Bricaire et al. [1996], Jakubczyk
[1987], Simões and Nijmeijer [1996]. Except Simões and
Nijmeijer [1996], all papers focus on smooth feedback.

The interest in recasting these old problems is that the
new solution is not based on the ’tangent linearized sys-
tem’ description of the system but is found directly by
manipulating the functions on the system equation level.
Therefore, for finding the solution one is not required to
solve a partial differential equation or to integrate the
differential one-forms. The new approach is based on the
algebra of functions. Then we compare the new results
with the one described in terms of the differential forms in
Aranda-Bricaire et al. [1996].
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2. TOOLS BASED ON DIFFERENTIAL FORMS

Consider a discrete-time nonlinear control system Σ of the
form

σ(x) = f(x, u), (1)

where by σ(x) is denoted the forward shift of x, alter-
natively written as x+, f : Rn × R → Rn, the variables
x = [x1, ..., xn]T 1 and u are the coordinates of the state
space Rn and the input space R, respectively. In the ap-
proach based of differential one-forms, one assumes that f
in (1) is analytic function. However, in the approach based
on the algebra of functions there is no need to assume that
f is analytic. Actually, f is allowed even to be nonsmooth.

In the study of discrete-time nonlinear control systems
the following assumption is usually made, that guarantees
the forward shift operator, defined by equation (1), to be
injective. Note that this assumption is not restrictive since
it is always satisfied for accessible systems, see Grizzle
[1993].

Assumption 1. The system (1) is submersive, i. e. generi-
cally, rank[∂f(x, u)/∂(x, u)] = n.

Note that this assumption is not restrictive, especially
for problems studied in this paper, since by the results
of Grizzle [1993], submersivity is a necessary condition
for a system to be accessible. Moreover, accessibility is a
necessary condition for static state feedback linearizability.

In the approach of differential one-forms one associates
with system (1) an inversive difference field (K, σ) of
meromorphic functions in a finite number of independent
system variables, see Aranda-Bricaire et al. [1996]. The
forward shift operator σ : K → K is defined by

σϕ(x, u) = ϕ(σ(x), σ(u)) = ϕ(f(x, u), σ(u)).

However, not every element in K has necessarily a preim-
age with respect to σ. To guarantee that σ is an automor-
phism, one has to extend equations (1) by

x̃ = g(x, u) (2)

such that

rank
∂(fT , gT )T

∂(x, u)
= n+ 1.

Though the choice of the function g(x, u) is not unique,
all choices lead to isomorphic differential fields. In what
follows we use sometimes the abridged notation ϕ+ = σ(ϕ)
and ϕ− = σ−1(ϕ) for ϕ ∈ K.

Over the field K one can define a vector space E :=
spanK{dϕ | ϕ ∈ C} spanned by the differentials of the
elements of C = {x, σk(u), k ≥ 0}. The elements of E are
called differential one-forms. The forward shift operator
σ : K → K induces a forward shift operator σ : E → E by

Σiaidϕi → Σia
+
i d(σ(ϕi)).

A 1-form ω ∈ E is called exact if dω = 0 and closed if
dω ∧ ω = 0, where ∧ denotes the wedge product. The
subspace of 1-forms in E is called completely integrable if
1 Note that we often omit the symbol of transposition T in [ , ]T

for simplicity of presentation.

it admits a basis which consists only of closed one-forms.
The relative degree r of a 1-form ω in X := spanK{dx} is
defined by r = min{k ∈ N | ω(k) 6∈ X}.
Define a sequence of codistributions Hk as follows

H1 = spanK{dx}
Hk+1 = {ω ∈ Hk | ω+ ∈ Hk}, k ≥ 1.

Each Hk contains the one-forms with relative degree
equal to k or greater than k. The sequence Hk is non-
increasing. There exists an integer k∗ ≤ n such that
for 1 ≤ k ≤ k∗, Hk+1 ⊂ Hk, Hk∗+1 6= Hk∗ but
Hk∗+1 = Hk∗+2 := H∞. Obviously, k∗ is the minimal
integer satisfying Hk∗+1 = Hk∗+2 and H∞ is the maximal
codistribution, invariant with respect to the forward shift.
Finally, note that the subspaces are invariant with respect
to the regular static state feedback and state coordinate
transformation Aranda-Bricaire et al. [1996].

3. THE ALGEBRA OF FUNCTIONS

To readdress accessibility and feedback linearization prob-
lems, the mathematical technique called the algebra of
functions and developed in Zhirabok and Shumsky [2008]
will be used. We recall below briefly the definitions and
concepts to be used in this paper, see also Shumsky [2009].
Since these tools are not widely known, we provide many
illustrative examples to illustrate the definitions.

The elements of algebra of functions are vector functions
and its main ingredients are:

(1) relation of partial preorder, denoted by ≤,
(2) binary operations, denoted by × and ⊕,
(3) binary relation, denoted by ∆,
(4) operators m and M.

The first two elements are defined on the arbitrary set S
of vector functions whereas the last two are defined for the
set SX of vector functions with the domain being the state
space X.

Definition 1. (Relation of partial preorder) Given α, β ∈
S, one says that α ≤ β iff there exists a function γ such
that

β(s) = γ(α(s))

for ∀s ∈ S.

The definition means that every component of the function
β can be expressed as a function of α. Clearly, α ≤ β iff

rank[∂α/∂s] = rank

[
∂α/∂s
∂β/∂s

]
.

Example 2. Let α(s) = [s1, s2]T , β(s) = [s1, s1s2]T . Then
α ≤ β since there exists γ(α) = [α1, α1α2]T such that
β1 = α1, β2 = α1α2. The inequality β ≤ α does not hold
in general, since α2 = β2/β1 is not valid for s1 = β1(s) = 0,
i.e. on the set of measure zero.

If α 6≤ β and β 6≤ α, then α and β are said to be
incomparable.

Example 3. Let α(s) = [s1s3, s2]T and β(s) = [s1, s2s3]T ;
α(s) and β(s) are incomparable. Note that α(s) 6≤ β(s),
since
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rank

(
∂α

∂s

)
=

(
s3 0 s1
0 1 0

)
6= rank

(
∂α/∂s
∂β/∂s

)

=



s3 0 s1
0 1 0
1 0 0
0 s3 s2


.

In the similar manner one can show that β(s) ≤ α(s).

Definition 4. (Strict equivalence) If α ≤ β and β ≤ α,
then α and β are called strictly equivalent, denoted by
α ∼= β.

Note that the relation ∼= is reflexive, symmetric and
transitive. The equivalence relation divides the set S into
the equivalence classes containing the equivalent functions.

Example 5. The functions α(s) = [s1, s2]T and β(s) =
[s1, s1 + s2]T are strictly equivalent since β1 = α1, β2 =
α1 + α2, and α1 = β1, α2 = β2 − β1.

Besides the strict equivalence, we use the notion of equiv-
alence, corresponding to the situation when one of the
inequalities α ≤ β or β ≤ α may be violated on a set
of measure zero.

Example 6. (Continuation of Example 2) The functions α
and β are equivalent though not strictly equivalent.

Definition 7. Given α, β ∈ S,

α× β = max(γ ∈ S | γ ≤ α, γ ≤ β),

and

α⊕ β = min(γ ∈ S | α ≤ γ, β ≤ γ).

It follows from these definitions that the function α× β is
a maximal bottom of the functions α and β while α ⊕ β
is their minimal top. In the simple cases the definition
may be used to compute α ⊕ β. For the general case, see
Zhirabok and Shumsky [2008].

The rule for operation × is simple

(α× β)(s) =

[
α(s)
β(s)

]
.

However, the product may contain redundant (function-
ally dependent) components that have to be found and
removed. Moreover, to simplify the computations, one is
advised to replace the remaining components by equivalent
but more simple functions. At moment, no algorithm exists
for these two steps.

Example 8. (Computation of the functions α× β and α⊕
β). Let S = R3,

α(s) =

[
s1 + s2
s3

]
, β(s) =

[
s1s3
s2s3

]
.

Then (α×β)(s) ∼= [s1 +s2, s3, s1s3]T , (α⊕β)(s) ∼= s3(s1 +
s2).

Definition 9. (Binary relation ∆) Given α, β ∈ SX , α and
β are said to form an (ordered) pair, denoted as (α, β) ∈ ∆
if there exists a function f∗ such that

β(f(x, u)) = f∗(α(x), u) (3)

for all (x, u) ∈ X × U .

The example below shows that the binary relation is not
symmetric.

Example 10. Let α(x) = x2, β(x) = x1, and the state
transition map in (1)

f(x, u) =

[
ϕ1(x2, u)

ϕ2(x1, x2, u)

]
.

Then

β(f(x, u)) = ϕ1(α(x), u)

but

α(f(x, u)) = ϕ(x1, x2, u) 6= f∗(β(x), u).

The binary relation ∆ may be given the following interpre-
tation. From (3), if for states x̃(t) and x̂(t) at time instant
t the equality

α(x̃(t)) = α(x̂(t))

holds, then at time instant t+ 1 we have

β(x̃(t+ 1)) = β(x̂(t+ 1))

independent of the control u(t) applied.

Another interpretation is also possible. One may ask
the question. What do we have to know about x(t) to
compute β(x(t + 1)) for arbitrary but known u(t)? Of
course, in the case when all the components of x(t) are
known, this is possible. However, in many cases, some
of this information is unnecessary and the amount of
the necessary information is displayed in function α(x),
forming a pair with the function β(x).

Obviously, given β(x), there exist many functions α(x),
forming a pair with β(x), i.e. (α, β) ∈ ∆. The most
important among them is the maximal function with
respect to the relation ≤, denoted by M(β). In a similar
manner, for a given function α(x), there exist many
functions β(x), forming a pair with α(x), i.e. (α, β) ∈ ∆.
We will denote by m(α) the minimal function among those
functions (with respect to relation ≤).

Binary relation ∆ is used for definition of the operators
m and M. These operators define the functions m(α)
and M(β) respectively that are supposed to satisfy the
conditions formulated below in Definitions 11 and 12.

Definition 11. The function M(β) ∈ SX is defined by the
following two conditions

(i) (M(β), β) ∈ ∆
(ii) if (α, β) ∈ ∆, then α ≤M(β).

Definition 12. The function m(α) ∈ SX is defined by the
following two conditions

(i) (α,m(α)) ∈ ∆
(ii) if (α, β) ∈ ∆, then m(α) ≤ β.

The properties of the operators M and m are as follows
(see Zhirabok and Shumsky [2008]):

(1) α ≤ β ⇒M(α) ≤M(β);
(2) α ≤ β ⇒m(α) ≤m(β);
(3) m(α⊕ β) ∼= m(α)⊕m(β);
(4) m(M(β)) ≤ β;
(5) M(m(α)) ≥ α;
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(6) α is f -invariant function ⇔m(α) ≤ α⇔ α ≤M(α)

Computation of the operator m. It has proven that the
function γ exists that satisfies the condition (α × u) ⊕
f ∼= γ(f); if f is surjection 2 define m(α) ∼= γ, see Shumsky
[1988]. In this paper we assume that f is surjection.

Note that the latter assumption and the submersivity
assumption made in Section 2 are related as follows. The
map f is a submersion at a point (x, u) if its differential
df : Rn ×R→ Rn at this point is a surjective linear map.

Because the composition γ(f) may be written as γ+

and m(α) ∼= γ, one may alternatively write the rule for
computation of the operator m using a backward shift as
follows: m(α) ∼= ((α× u)⊕ f)−.

Computation of the operator M. In the special case when
the composite function β(f(x, u)) can be represented in
the form

β(f(x, u)) =

d∑

i=1

ai(x)bi(u)

where a1(x), a2(x), . . ., ad(x) are arbitrary functions and
b1(u), b2(u), . . ., bd(u) are linearly independent, then

M(β) := a1 × a2 × · · · × ad.

For the general case, see Zhirabok and Shumsky [2008].

4. MINIMAL f -INVARIANT FUNCTION

The goal of this section is to find a minimal (containing
the maximal number of functionally independent compo-
nents) vector function α0(x) such that its forward shift
α0(f(x, u)) does not depend on control u. Note that if f
is smooth, α0(x) satisfies the condition

∂

∂u
α0(f(x, u)) ≡ 0.

Though α0(x) is not unique, all possible choices are
equivalent functions.

Note that since the relative degrees of the components of
α0 are two or more, the differentials of α0(x) span the
integrable part of the codistribution H2 of the one-forms,
denoted by Ĥ2, i.e. Ĥ2 = spanK{dα0(x)}.
Algorithm 1. (Computation of the minimal f -invariant
function α satisfying the condition α0 ≤ α). Given α0,
compute recursively, using the formula below

αi+1 = αi ⊕m(αi) (4)

the sequence of nondecreasing functions αi, i ≥ 1. By
Theorem 1 in Shumsky and Zhirabok [2010c] there exists
a finite k such that αk+1 is equivalent to αk, denoted by
αk+1 ∼= αk. Note that the sequence αk converges at most in
n steps. Define α∗ := αk, and δi := αi−1, for i = 1, . . . , n.

The proposition below demonstrates that δk corresponds
to the integrable subspace of Hk+1, denoted by Ĥk+1.

Proposition 13. Ĥk+1 = spanK{dδk(x)}.

Proof. We give the proof for δ2 and H3. The justification
for the following steps is completely similar. As shown
2 For non-surjective f the formula is more complicated.

above Ĥ2 = spanK{dα0(x)} = spanK{dδ1(x)}. Next, note
that H3 may be alternatively defined as H3 = H2 ∩H−2 3 .

Note that the integrable subspace of H3, denoted by Ĥ3

may be computed alternatively as ̂Ĥ2 ∩ Ĥ−2 . Indeed, if the

exact one-form dζ ∈ Ĥ3, one necessarily has dζ ∈ H2,
dζ ∈ H−2 , and so, also into their intersection. Since dζ is

exact, dζ ∈ Ĥ2 and dζ ∈ Ĥ−2 , and therefore, also into
their intersection as well as into the integrable subspace
of the intersection. To show the converse, note that H3 =
H2 ∩ H−2 necessarily yields Ĥ2 ∩ Ĥ−2 ⊂ H3. Next, though

spanK{dm(δ1)} 6= Ĥ−2 completely, these two distributions
differ by a single basis element. Since this basis element
is missing in Ĥ2, it does not affect the intersection. In
particular, by definition of the operator m, δ1 × u ≤
m(δ1) ◦ f = m(δ1)+, and therefore (δ1)− × u− ≤ m(δ1).
By definition, the function (δ1)− contains the variable
x̃ whereas m(δ1) is free from this variable. Therefore,
because m(δ1) is the minimal function, satisfying this
inequality,

spanK{dm(δ1)} = spanK{d(δ1)−} − spanK{dx̃}
+ spanK{du−}
= Ĥ−2 − spanK{dx̃}+ spanK{du−}.

Then
spanK{d(δ2)} = spanK{d(δ1 ⊕m(δ1))}

= spanK{dδ1} ∩ spanK{dm(δ1)}
= Ĥ2 ∩ (Ĥ−2 + spanK{du−})

that corresponds to Ĥ3 = Ĥ2 ∩ Ĥ−2 . �
Examples 14 and 15 below illustrate the Proposition 13.
Namely, note that in the span of Ĥ−2 the differential

of the control variable du− is missing but Ĥ−2 contains
instead the element of dx̃− whereas x̃− is missing in m(δ1).

Moreover, δ1 ⊕m(δ1) corresponds to Ĥ2 ∩ Ĥ−2 .

Example 14. Consider the system

x+1 = x1 + x3
x+2 = x2 + x5
x+3 = u
x+4 = x3x4
x+5 = x1

Note that for this example (if we take x̃ = x5)

x−1 = x5
x−2 = x2 − x̃−
x−3 = x1 − x5
x−4 = x4/(x1 − x5)
x−5 = x̃−

and u− = x3.

Compute

δ1 = [x1, x2, x4, x5]T

and

m(δ1) = [[x1, x2, x4, x5, u]⊕ [x1 + x3, x2 + x5, u, x3x4, x1]]
−

= [x2 + x5, u, x1, x4]− = [x2, x3, x5,
x4

x1 − x5
]

3 Note that the application of the backward shift to the codistribu-
tion has to be understood componentwise.
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Note that δ1 corresponds toH2 = spanK{dx1,dx2,dx4,dx5},
which is integrable and m(δ1) corresponds to the H−2 ,
where

H−2 = spanK{dx−1 ,dx−2 ,dx−4 ,dx−5 }
= spanK{dx−1 ,dx−2 + dx−5 ,dx

−
4 ,dx

−
5 }

= spanK{dx5,dx2,d
(

x4
x1 − x5

)
,dx̃−}

.

The only difference between m(δ1) andH−2 is that whereas
m(δ1) contains x3 = u−, H−2 contains dx̃− = dx5. All the
other components coincide.

Furthermore, compute

δ2 = δ1 ⊕m(δ1) =

[
x2, x5,

x4
x1 − x5

]
,

and

m(δ2) =

[ [
x2, x5,

x4
x1 − x5

, u

]

⊕ [x1 + x3, x2 + x5, u, x3x4, x1]

]−

= [x2 + x5, u]− = [x2, x3].

Note that δ2 corresponds to (integrable)

H3 = spanK

{
dx2,dx5,d

(
x4

x1 − x5

)}

In a similar manner, compute

δ3 = δ2 ⊕m(δ2) = x2

and

m(δ3) = [[x2, u]⊕ [x1 + x3, x2 + x5, u, x3x4, x1]]
−

= u− = x3

Note that δ3 corresponds to the integrable subspace of H4.

Therefore

δ4 = δ3 ⊕m(δ3) ∼= const.

Finally, note that δ4 ∼= const corresponds to H∞ being
trivial, H∞ = {0}.

Example 15. Consider the system

x+1 = x1 + x3
x+2 = x2
x+3 = u
x+4 = x3x4
x+5 = x1

Compute

δ1 = [x1, x2, x4, x5]T

and

m(δ1) = [[x1, x2, x4, x5, u]⊕ [x1 + x3, x2, u, x3x4, x1]]
−

= [x2 + x5, u, x1, x4]− = [x2, x3, x5,
x4

x1 − x5
]

Note that δ1 corresponds toH2 = spanK{dx1,dx2,dx4,dx5}.

Furthermore,

δ2 = δ1 ⊕m(δ1) =

[
x2, x5,

x4
x1 − x5

]
,

and

m(δ2) =

[ [
x2, x5,

x4
x1 − x5

, u

]
⊕ [x1 + x3, x2, u, x3x4, x1]

]−

= [x2, u]− = [x2, x3].

Note that δ2 corresponds to

H3 = spanK

{
dx2,dx5,d

[
x4

x1 − x5

]}
.

In a similar manner, compute

δ3 = δ2 ⊕m(δ2) = x2

and

m(δ3) = [[x2, u]⊕ [x1 + x3, x2, u, x3x4, x1]]
−

= u− = [x2, u]− = [x2, x3].

Note that δ3 corresponds to the integrable subspace of H4,
i.e. Ĥ4 = spanK{dx2}.
Therefore

δ4 = δ3 ⊕m(δ3) = x2 = δ3

Finally, note that δ4 ∼= δ3 = x2 corresponds to the fact
that H∞ = H5 = spanK{dx2}.

5. ACCESSIBILITY

Note that accessibility is a necessary condition for static
state feedback linearizability. Therefore, we recall below
the accessibility definition and condition formulated in
terms of codistribution.

Following the notation in Jakubczyk and Sontag [1990] we
denote by Ak(x) the set of points reachable from x in k
forward time steps using arbitrary sequences of controls
u = (u(0), . . . , u(k − 1)) ∈ (Rm)k, and by A(x) the set of
points reachable from x in any number of forward steps
using arbitrary sequences of controls. That is,

A(x) =
⋃

k≥0
Ak(x).

The system is said to be forward accessible from x if
its reachable set A(x) has non-empty interior. A generic
notion of accessibility has been derived from this pointwise
definition in Albertini and Sontag [1993].

Definition 16. The system (1) is said to be (forward)
accessible if its reachable set A(x) has a non-empty interior
in Rn for almost all x ∈ Rn.

Proposition 17. Aranda-Bricaire et al. [1996] The system
(1) is accessible iff H∞ = {0}.
Proposition 18. The following statements for system (1)
are equivalent

(i) H∞ 6= {0}
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(ii) For some k, δk−1 ∼= δk 6= const.

Proof. Suppose H∞ 6= 0. This means that f -invariant
function β∗ exists such that α0 ≤ β∗. Due to the 6th
property of the operators m and M, m(β∗) ≤ β∗. The
inequality α0 ≤ β∗ implies m(α0) ≤m(β∗) which together
with the above inequality gives m(α0) ≤ β∗. By analogy
one may prove that for all i, mi(α0) ≤ β∗. It follows from
(4) that δi ≤ β∗ for all i. Due to (4) δ1 ≤ δ2 ≤ . . . and
since this sequence is bounded, then δk−1 ∼= δk 6= const
for some k.

Suppose that δk−1 ∼= δk 6= const for some k. This means
that the function α∗ ∼= δk is f -invariant such that α0 ≤ α∗,
i.e. the system (1) may be decomposed into the form
containing an autonomous subsystem. The latter means
that that the system (1) is nonaccessible since it admits
an autonomous variable, see Aranda-Bricaire et al. [1996]
and therefore H∞ 6= {0}. �

6. FEEDBACK LINEARIZATION

Definition 19. A regular static state feedback u = α(x, v)
is a mapping α : Rn × R → R such that generically
[∂α(·)/∂v] 6= 0.

System (1) is said to be static state feedback linearizable
if, generically, there exist

(i) a state coordinate transformation ϕ : Rn → Rn and
(ii) a regular static state feedback of the form u = α(x, v),

such that, in the new coordinates z = ϕ(x), the
compensated system reads z+ = Az +Bv, where the
pair (A,B) is in Brunovsky canonical form.

Theorem 20. Aranda-Bricaire et al. [1996] System (1) is
static state feedback linearizable if and only if

(i) Hk is completely integrable for all k = 1, . . . , n,
(ii) H∞ := Hn+1 = {0}.

Theorem 21 below suggests an alternative solution to the
static state feedback linearization problem. Consider a
special form of the system (1), the so-called controller
canonical form, see Kotta [2005]:

z+1 = z2,
z+2 = z3,

...
z+n−1 = zn
z+n = ψ(z, u).

(5)

The goal of Theorem 21 below is to find out under which
conditions formulated in terms of the algebra of functions
the system (1) can be transformed into the form (5) using
the state coordinate transformation z = ϕ(x). From this
form a regular static state feedback may be easily found
by defining v = ψ(z, u), in order to solve the feedback
linearization problem.

Note that by the results of Kotta [2005] the conditions to
transform the system (1) into the form (5) coincide with
those of Theorem 20.

Theorem 21. The system (1) can be transformed into the
form (5) iff δi 6= const, for i = 1, . . . , n− 1, but δn = const
where δi = αi−1 for i = 1, 2, . . . , n.

Proof. Sufficiency. Define ϕ1 := δn−1, ϕi+1 = M(ϕi),
i = 1, 2, . . . , n − 1 and zi = ϕi(x), i = 1, 2, . . . , n.
According to the definition of the operator M, one has
(M(ϕi), ϕi) ∈ ∆ that together with ϕi+1 = M(ϕi) gives
(ϕi+1, ϕi) ∈ ∆. By definition of the binary relation ∆,
there exists a function f∗i such that

ϕi(f(x, u)) = f∗i(ϕi+1(x), u),

for all (x, u) ∈ X×U and i = 1, 2, . . . , n−1. It follows from
(4) that α0 = δ1 ≤ δ2 ≤ . . . ≤ δn−1. Since δn−1 = δn−2 ⊕
m(δn−2), we have δn−1 ≥m(δn−2), and therefore, by the
1st and 5th properties of the operators m and M the
following holds

ϕ2 := M(ϕ1) = M(δn−1) ≥M(m(δn−2))
≥ δn−2 ≥ α0.

In a similar manner, one may obtain the inequalities

ϕ3 = M(ϕ2) ≥ δn−3 ≥ α0,
...

ϕn−1 = M(ϕn−2) ≥ δ1 ≥ α0.

The definition of the function α0 and the inequalities
ϕi ≥ α0, i = 1, 2, . . . , n− 1, yield

∂

∂u
ϕi(f(x, u)) =

∂

∂u
f∗i(ϕi+1(x), u) = 0,

therefore the function f∗i does not depend on u and

ϕi(f(x, u)) = f∗i(ϕi+1(x)).

The last equality and the rule for computation of the
operator M yield M(ϕi) = f∗i(ϕi+1). Since ϕi+1 =
M(ϕi), one may take f∗i(ϕi+1) = ϕi+1, i = 1, 2, . . . , n−1.
Then

z+i = ϕi(f(x, u)) = ϕi+1(x) = zi+1

for i = 1, 2, . . . , n−1. Since the function ϕn does not satisfy
the condition ϕn ≥ α0, the equation for the variable zn has
the general form:

z+n = ϕn(f(x, u)) = ψ(z, u).

Necessity. Suppose the system (1) can be transformed
into the canonical form (5), i.e. there exists the state
transformation ϕ : X → Z such that for i = 1, . . . , n− 1

z+i = ϕi(x
+) = ϕi(f(x, u)) = ϕi+1(x) = zi+1, (6)

and

z+n = ϕn(x+) = ψ(z, u). (7)

The equality ϕi(f(x, u)) = ϕi+1(x) in (6) and a definition
of the binary relation ∆ yields the inclusion (ϕi+1, ϕi) ∈
∆, for i = 1, 2, . . . , n− 1. It is obvious that

∂

∂u
ϕi(f(x, u)) =

∂

∂u
ϕi+1(x) = 0,

therefore, by the definition of the function α0, α0 ≤ ϕi for
i = 1, 2, . . . , n−1. By the 2nd property of the operator m,
this inequality implies mj(α0) ≤mj(ϕi) for all j ≥ 1, and
i = 1, 2, . . . , n− 1.

Consider the inclusion (ϕ2, ϕ1) ∈ ∆ which is by Definition
12 equivalent to the inequality m(ϕ2) ≤ ϕ1 that together
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with m(α0) ≤ m(ϕ2) gives m(α0) ≤ ϕ1. In the similar
manner the inclusion (ϕ3, ϕ2) ∈ ∆ is equivalent to the
inequality m(ϕ3) ≤ ϕ2 which implies m2(ϕ3) ≤ m(ϕ2).
Since m2(α0) ≤ m2(ϕ3) and m(ϕ2) ≤ ϕ1, one obtains
from these three inequalities m2(α0) ≤ ϕ1. Analogously,
it can be proved that mi(α0) ≤ ϕ1, i = 1, 2, . . . , n − 2.
By definition of the operation ⊕, these inequalities are
equivalent to the single inequality

α0 ⊕m(α0)⊕ . . .⊕mi(α0) ≤ ϕ1, i = 1, 2, . . . n− 2. (8)

It follows from the definition of the functions δi, i =
1, 2, . . . , n − 1, and the 3rd property of the operator m
that

δ3 = δ2 ⊕m(δ2)
= (δ1 ⊕m(δ1))⊕m(δ1 ⊕m(δ1))
∼= α0 ⊕m(α0)⊕m2(α0).

In general, it can be proved that

δi ∼= α0 ⊕m(α0)⊕ . . .⊕mi−1(α0), i = 1, 2, . . . , n− 1.

Since ϕ1 6= const, then due to (8), δi 6= const, for
i = 1, 2, . . . , n− 1.

Suppose now contrarily to the claim of the theorem that
δn = α0⊕m(α0)⊕ . . .⊕mn(α0) 6= const. By analogy with
the proof of sufficiency part of the theorem, it can be shown

that
∂

∂u
ϕn(f(x, u)) =

∂

∂u
ψ(z, u) = 0, i.e. the right-hand

side of the equation z+n = ϕn(f(x, u)) does not depend on
the control u that contradicts the equation (5). �
Proposition 22. The following two conditions for system
(1) are equivalent

(i) H∞ = {0} and Hk, for k = 1, . . . , n are completely
integrable

(ii) δi 6= const for i = 1, . . . , n− 1 and δn = const.

Proof. (ii)→ (i) Suppose that δi 6= const for i = 1, 2..., n−
1, and δn = const. According to Theorem 21, in this
case the system (1) can be transformed into the controller
canonical form (5) and therefore, it is accessible. Then by
Proposition 17, H∞ = {0}. Moreover, by the results of
Kotta [2005], H1, . . . ,Hn are completely integrable.

(i) → (ii) Consider a sequence of functions α0 := δ1 ≤
δ2 ≤ . . .. Since the sequence converges at most in n steps,
for some k, δk+1 = δk. If δk 6= const, then it follows
from Proposition 18 that H∞ 6= {0} which contradicts the
condition (i). Therefore for some k, δk = const. According
to Theorem 20, the system (1) is static state feedback
linearizable, and therefore, due to the structure of the
Brunovsky canonical form, k = n. �
Remark 1. If δk−1 ∼= δk 6= const holds for some k, then
ϕ1
∼= M(ϕ1). The latter means that the function ϕ1

is f -invariant and the variable z1 := ϕ1(x) satisfies the
equation z+1 = z1, and the system (1) is not transformable
into the canonical form (5).

Remark 2. If the system is not transformable into the
canonical form (5) one may alternatively say that function
ϕ1 in Remark 1 is an autonomous variable for system (1),
and therefore, the system (1) is non-accessible.

7. EXAMPLES

Example 23. (Continuation of Example 14)

Since for this example n = 5, but already δ4 ∼= const, the
system admits only partial linearization.

Example 24. (Continuation of Example 15) Since δ3 =
δ4 = x2, the system is not accessible.

Example 25. Consider the system

x+1 = x1(x23 + 1)2

x+2 = x2(x23 + 1)3

x+3 = x3 + u
(9)

Compute first according to Aranda-Bricaire et al. [1996]

H∞ = H3 = spanK{3x2dx1 − 2x1dx2};

therefore the system (9) admits an autonomous variable
x31/x

2
2.

Next, using the tools of the algebra of functions one may
compute

δ1 := α0(x) = [x1, x2]T .

Furthermore, by (4) 4 5 ,

δ2(x) = δ1(x)⊕m(δ1(x)) = [x1, x2]T ⊕ x31
x22

=
x31
x22
.

Since

m

(
x31
x22

)
=
x31
x22
,

we get

δ3(x) ∼= δ2(x) 6= const.

Example 26. Consider the system with non-smooth state
transition map f(x, u),

x+1 = x22u
x+2 = x1sign x2
x+3 = u

Compute

δ1 := α0 =

[
x1
x3
, x2

]

and

m(δ1) =
[
[δ1, u]⊕ f(x, u)

]−

=

[[
x1
x3
, x2, u

]
⊕ [x22u, x1sign x2, u]

]−

= [x22u, u]− = [x1, x3].

So,

δ2 = δ1 ⊕m(δ1) =

[
x1
x3
, x2

]
⊕ [x1, x3] =

x1
x3

Furthermore, compute

m(δ2) = [[δ2, u]⊕ f(x, u)]−

=

[[
x1
x3
, u

]
⊕ [x22u, x1sign x2, u]

]−

= u− = x3
4 m(ζ) is a function of x at the time instant t + 1 which can be
computed if ζ is known at time instant t.
5 δ2(x) is a function of x which can be computed both from δ1(x)
and m(δ1(x)).
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and

δ3 = δ2 ⊕m(δ2) =
x1
x3
⊕ x3 = const.

Therefore, define

z1 := δ2 =
x1
x3

z2 := z+1 = M(δ2) = x22

z3 := z+2 = M2(δ2) = M(x22) = x21(sign x2)2

and find the state equations

z+1 = z2
z+2 = z3
z+3 = z22u

2 (sign
√
z3)

2

Example 27. Consider

x+1 = ux1
x+2 = x1x3
x+3 = x3

Compute

δ1 := α0 = [x2, x3]T

and

m(δ1) = [[x2, x3, u]⊕ [ux1, x1x3, x3]]
−

= x−3 = x3.

Furthermore,

δ2 ∼= δ1 ⊕m(δ1) = x3.

Obviously, δ3 ∼= δ2 6= const. The system admits an
autonomous element x3. The system is neither accessible
nor linearizable via static state feedback.

Example 28. Consider the system

x+1 = ζ(x2)u
x+2 = x1x2
x+3 = u

where ζ is an invertible analytic function, and compute

H2 = spanK

{
d

(
x1
x3

)
,dx2

}

and

H3 = spanK

{
d

(
x1
x3

)}
, H3 = {0}.

Define the new state variables

z1 =
x3
x3

z2 =

(
x1
x3

)+

= ζ(x2)

z3 = ζ+(x2) = ζ(x+2 ) = ζ(x1, x2)

(10)

and so the state equations in the controller canonical form
are

z+1 = z2
z+2 = z3
z+3 = ζ(ζ−1(z3)z2u).

(11)

Note that using the results of Theorem 21, one does not
have to assume ζ(x2) to be analytic. Compute

δ1 := α0 = [x1/x3, x2]

and

m(δ1) = [[δ1, u]⊕ f(x, u)]−

= [[x1/x3, x2, u]⊕ [ζ(x2)u, x1x2, u]]−

= [ζ(x2)u, u]− = [x1, x3]

So, δ2 = δ1 ⊕m(δ1) = x1/x3. Then

m(δ2) = [[δ2, u]⊕ f(x, u)]−

= [[x1/x3, u]⊕ [ζ(x2)u, x1x2, u]]−

= u− = x3

and δ3 = δ2 ⊕m(δ2) = const.

Therefore, define z1 = δ2 = x1/x3, z2 = M(δ2) = ζ(x2),
z3 = M2(δ2) = ζ(x1x2) that agrees with (10) yielding
(11).

Example 29. Consider the system

x+1 = x3,
x+2 = sign(x3) + x1,
x+3 = ux1.

(12)

Note that this system cannot be studied using the results
of Theorem 21 since f in (12) is not a smooth function.
Compute

δ1 = [x1, x2],

and

m(δ1) = [[x1, x2, u]⊕ [x3, sign(x3) + x1, ux1]]−

= [x1, ux1]− = [x2 − sign(x1), x3].

Therefore,

δ2 = x2 − sign(x1).

Next, compute m(δ2) = const, yielding δ3 = const. By the
results of Theorem 21 (see the proof), we have

z1 := δn−1 = δ2 = x2 − sign(x1),
z2 := z+1 = x1,
z3 := z+2 = x3,

yielding the equations in the controller canonical form

z+1 = z2,
z+2 = z3,
z+3 = uz2

that are easily linearizable by using the feedback u = z2/v.

8. CONCLUSIONS

For the discrete-time nonlinear SISO control systems the
problems of accessibility and static state feedback lin-
earizability have been readdressed in terms of the new
tools, called the algebra of functions. Unlike the differential
geometric methods the new tools allow to study the non-
smooth systems. The new results are compared to the
existing ones and the relationship is demonstrated on the
numerous examples.
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The extension of the results for the continuous-time case is
not immediate, since the inequality δk−1 ≥m(δk−2) in the
continuous-time case, unlike the discrete-time case, does
not yield the inequality M(δk−1) ≥ M(m(δk−2)) which
was used in the proof.
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