Slovak University of Technology in Bratislava Institute of Information Engineering, Automation, and Mathematics

PROCEEDINGS

of the $18^{\text {th }}$ International Conference on Process Control
Hotel Titris, Tatranská Lomnica, Slovakia, June 14-17, 2011
ISBN 978-80-227-3517-9
http://www.kirp.chtf.stuba.sk/pc11

Editors: M. Fikar and M. Kvasnica

Dušek, F., Honc, D., Rozsival, P.: Mathematical Model of Differentially Steered Mobile Robot, Editors: Fikar, M., Kvasnica, M., In Proceedings of the 18th International Conference on Process Control, Tatranská Lomnica, Slovakia, 221-229, 2011.

Mathematical model of differentially steered mobile robot

F. Dušek* D. Honc* P. Rozsíval**
* Department of Process Control, Faculty of Electrical Engineering and Informatics, University of Pardubice nám. Čs. legii 565, 53210 Pardubice, Czech Republic
(Tel: + 420466037 125; e-mail: frantisek.dusek@upce.cz)
** Department of Electrical Engineering, Faculty of Electrical Engineering and Informatics, University of Pardubice
(e-mail: pavel.rozsival@upce.cz)

Abstract

Paper deals with dynamic mathematical model of an ideal differentially steered drive system (mobile robot) planar motion. The aim is to create model that describes trajectory of a robot's arbitrary point. The trajectory depends on supply voltage of both drive motors. Selected point trajectory recomputation to trajectories of wheels contact points with plane of motion is a part of the model, too. The dynamic behaviour of engines and chassis, form of coupling between engines and wheels and basic geometric dimensions are taken into account. The dynamic model will be used for design and verification of a robot's motion control in MATLAB / SIMULINK simulation environment.

1. INTRODUCTION

Paper deals with dynamic model of an ideal mobile robot with differentially steered drive system and planar motion. Single-axle chassis or caterpillar chassis is mostly used in case of small mobile robots (Novák 2005). Caster wheel is added to single-axle to ensure stability. This solution together with independent wheel actuation allows excellent mobility on the contrary to a classic chassis - see commercially available robot in Fig. 1. Derived mathematical model comes from lay-out, nominal geometric dimensions and other features of that robot with view of ideal behaviour of individual components and some simplifying assumptions. The aim is to create model based on forces caused by engine moments of independent wheel drives. Model will consist of dynamic behaviour description of chassis and in series connected DC motors. Presented motion model based on centre of mass (primary element) dynamics is different from models reflecting kinematics only and commonly used in literature - published e.g. in (Stengel 2010) or (Lucas 2010). Standard models describe robot's trajectory time evaluation depending up to known wheel speed (information from wheel speed sensors) and chassis geometry - odometry - published e.g. in (Winkler 2010). Our model extends standard model with dynamic part describing wheel speed dependency on motor supply voltage by respecting dynamics, construction, geometry and other parameters of chassis and motors.
Motor supply voltage actuating the wheel causes driving torque and thereby wheel rotation. Inertial and resistance forces act against driving torque. Both driving torques influence each other because of these forces. Planar curvilinear motion of the robot is result of various time variant wheel rotation speeds.
Planar curvilinear motion can be decomposed to a sum of linear motion (translation) and rotation motion. Forces balance is starting point for the derivation of motion equations. If F is actual force acting to a mass point with
weight m and with distance r from axis of rotation then it holds for general curvilinear motion that vector sum of all forces acting to a selected point is zero - see literature (Horák et al. 1976)
$\vec{F}+\underbrace{m \frac{d \vec{v}}{d t}}_{\text {inertial force }}+\underbrace{m \frac{d \vec{\omega}}{d t} \times r}_{\text {Euler's force }}+\underbrace{2 m \vec{\omega} \times \frac{d \vec{r}}{d t}}_{\text {Coriolis force }}+\underbrace{m \vec{\omega} \times(\vec{\omega} \times \vec{r})}_{\text {centrifugal force }}=0$
Application of this general equation requires specification of individual forces according to actual conditions and/or eventually implementing other acting forces. We will consider forces originated by motion of real body - induced with resistances (losses) in addition to curvilinear motion forces.

Fig. 1 Differentially steered mobile robot

We will approximate these forces in simplest manner to be proportional to a speed. Equations describing dependences of translation and rotation speed of selected chassis point to
actual wheel motor voltages will be result of the dynamic part.
Selection of the point where actual translation and rotation speed will be evaluated influences significantly initial equations and hence complexity of the resulting model. If the selected point is centre of gravity then initial equations of dynamic part are simplest but equations describing dependencies between wheel speeds and translation and rotation speed are more complicated. Centre of the join between wheels is used as the selected chassis point in common literature. Such a choice leads to simplest recalculation of actual wheel speeds to motion equations of that point. Trade-off between these two approaches is chosen in our paper - point as centre of gravity projection to join between wheels is selected. Trajectory (time course) computation of another chassis points (points where wheels meet the ground) supplements dynamic part of the model.

2. MATHEMATICAL MODEL

Described mobile robot is driven by two DC motors with common voltage source and independent control of each motor. Motors are connected with driving wheels through gear-box with constant gear ratio. Ideal gear-box means that it reduces linearly angular speed and boosts the moment (nonlinearities are not considered). Loses in motor and also in gear-box are proportional to rotation speed. Chassis is equipped with caster wheel with no influence to chassis motion (its influence is included in resistance coefficients acting against motion).
Model of the robot consists from three relatively independent parts. Description of the ideal DC motors connected in series is given in chapter 2.1. Two equations describe dependency of the motor rotation speed and current on power supply voltage and loading moment related to chassis dynamics. Motion equations are presented in chapter 2.2 - dependency between translation and rotation speed of the selected point on moments acting to driving wheels. Chapter 2.3 is dedicated to equations describing how motor speed influences translation and rotation speed of the selected point and to complete model formulation. In last chapter 2.4 the model is transformed to simpler form which is more suitable for next using and for trajectory of arbitrary point calculation. Equations describing trajectory corresponding to contact points of the driving and caster wheels with the ground are formulated.

2.1 DC motor in series connection dynamics

Equivalent circuit of ideal DC motor in series connection (Poliak et al. 1987) is in Fig. 2. It consists from resistivity R, inductance L and magnetic field of the motor M. Commutator is not considered. Rotor produces electrical voltage with reverse polarity than source voltage - electromotive voltage U_{M}, which is proportional to rotor angular velocity ω. Twisting moment of the rotor M_{M} is proportional to current i.
Ideal behaviour means that whole electric energy used to magnetic field creating is transformed without any loses to

Fig. 2 Equivalent circuit of motor
mechanical energy - moment of the motor. We do not consider loses in magnetic field but only electric loses in winding and mechanical loses proportional to rotor speed.
Firs equation describes motor behaviour through balancing of voltages (Kirhoff's laws)

$$
\begin{equation*}
U_{R}+U_{L}=U_{0}-U_{M}, \quad R i+L \frac{d i}{d t}=U_{0}-K \omega \tag{2}
\end{equation*}
$$

where
$R \quad[\Omega]$ is motor winding resistivity,
$L \quad[\mathrm{H}]$ is motor inductance,
$K \quad\left[\mathrm{~kg} \cdot \mathrm{~m}^{2} . \mathrm{s}^{-2} . \mathrm{A}^{-1}\right]$ is electromotoric constant,
$U_{0} \quad[\mathrm{~V}]$ is source voltage,
$\omega \quad\left[\mathrm{rad} . \mathrm{s}^{-1}\right] \quad$ is rotor angular velocity and
$i \quad[\mathrm{~A}]$ is current flowing through winding.
Second equation is balance of moments (electric energy) moment of inertia M_{s}, rotation resistance proportional to rotation speed (mechanical loses) M_{0}, load moment of the motor M_{x} and moment M_{M} caused by magnetic field which is proportional to current

$$
\begin{align*}
& M_{s}+M_{o}+M_{x}=M_{M} \\
& J \frac{d \omega}{d t}+k_{r} \omega+M_{x}=K i \tag{3}
\end{align*}
$$

where
$J \quad\left[\mathrm{~kg} . \mathrm{m}^{2}\right] \quad$ is moment of inertia,
$k_{r} \quad\left[\mathrm{~kg} . \mathrm{m}^{2} . \mathrm{s}^{-1}\right]$ is coefficient of rotation resistance and
$M_{\mathrm{x}} \quad\left[\mathrm{kg} \cdot \mathrm{m}^{2} . \mathrm{s}^{-2}\right]$ is load moment.

2.2 Chassis dynamics

Chassis dynamics is defined with vector of translation speed ν_{B} acting in selected chassis point and with rotation of this vector with angular velocity ω_{B} (constant for all chassis points). It is possible to calculate trajectory of arbitrary chassis point from these variables. Point B for which the equations are derived is centre of gravity normal projection to join between wheels - see Fig. 3. This leads according to authors to simplest set of equation for whole model. We consider general centre of gravity T position - usually it is placed to centre of the join between wheels.
We consider forces balances as starting equations. It is possible to replace two forces F_{L} and F_{P} acting to chassis in left (L) and right (P) wheel ground contact points with one force F_{B} and torsion moment M_{B} acting in point B . Chassis is characterized with semi-diameter of the driving wheels r, total weight m, moment of inertia J_{T} with respect to centre of gravity located with parameters $l_{\mathrm{T}}, l_{\mathrm{L}}, l_{\mathrm{P}}$.

Fig. 3 Chassis scheme and forces

Let us specify equation (1) for our case. Position of the centre of gravity is constant with respect to axis of rotation so we do not need to consider Coriolis force. We have to consider Coriolis force for example if the chassis moves on rotating surface.
Similarly we do not consider centrifugal force - chassis is supposed to be solid body represented as mass point (centre of gravity). Because force vector causing the movement acts in point B and goes through centre of gravity it is enough if we consider inertial force by linear motion. By rotational motion it is necessary to consider moment caused with Euler's force because the axis of rotation does not go through the centre of gravity.
By the balance of forces causing linear motion we will consider except of forces $F_{\mathrm{L}}, F_{\mathrm{P}}$ caused by drives and inertial force F_{S} also resistance force F_{O} proportional to speed v_{B}. The balance of forces influencing linear motion is

$$
\begin{align*}
& F_{L}+F_{P}+F_{O}+F_{S}=0 \\
& \frac{M_{G L}}{r}+\frac{M_{G P}}{r}-k_{v} v_{B}-m \frac{d v_{B}}{d t}=0 \tag{4}
\end{align*}
$$

where
$m \quad[\mathrm{~kg}] \quad$ is robot mass,
$k_{v} \quad\left[\mathrm{~kg} . \mathrm{s}^{-1}\right]$ is resistance coefficient against linear motion
$M_{\mathrm{GL}} \quad\left[\mathrm{kg} \cdot \mathrm{m}^{2} \cdot \mathrm{~s}^{-2}\right]$ is moment of the left drive,
$M_{\mathrm{GP}} \quad\left[\mathrm{kg} \cdot \mathrm{m}^{2} \cdot \mathrm{~s}^{-2}\right]$ is moment of the right drive,
$v_{\mathrm{B}} \quad\left[\mathrm{m} . \mathrm{s}^{-1}\right]$ is linear motion speed and
$r \quad[\mathrm{~m}] \quad$ is semi-diameter of the wheels.
Balance of moments is slightly more complicated because the rotation axis does not lie in centre of gravity. That's why it is necessary to take into account except chassis momentum M_{T} also moment $M_{\mathrm{E}}=l_{\mathrm{T}} F_{\mathrm{E}}$ caused by Euler's force F_{E}. Similarly as by linear motion we will consider moment M_{O} caused with
resistance against rotation to be proportional to angular velocity ω_{B}.

$$
\begin{gather*}
M_{B L}+M_{B P}+M_{O}+M_{T}+M_{E}=0 \\
-\frac{M_{G L}}{r} l_{L}+\frac{M_{G P}}{r} l_{P}-k_{\omega} \omega_{B}-J_{T} \frac{d \omega_{B}}{d t}-l_{T} m \frac{d \omega_{B}}{d t} l_{T}=0 \tag{5}
\end{gather*}
$$

where

l_{P} $[\mathrm{~m}] \quad$ is distance of the right wheel from point B, l_{L} $[\mathrm{~m}] \quad$ is distance of the left wheel from point B,	
l_{T}	$[\mathrm{~m}] \quad$ is distance of the centre of gravity from point

Resulting moment of inertia J_{B} with respect to rotation axis in point B is given by eq. (6) which is parallel axis theorem or Huygens-Steiner theorem - see e.g. (Horák et al. 1976)

$$
\begin{equation*}
J_{B}=J_{T}+m l_{T}^{2} \tag{6}
\end{equation*}
$$

where
$J_{T} \quad\left[\mathrm{~kg} \cdot \mathrm{~m}^{2}\right]$ is moment of inertia with respect to centre of gravity and
$l_{T} \quad[\mathrm{~m}] \quad$ is distance between centre of gravity and point B.

2.3 Relationship between rotation speed of the motor and centre of gravity chassis movement (kinematics)

The equation describing the behaviour of the two motors (currents and angular velocity) and the behaviour of the chassis (the speed of the linear movement and speed of the rotation) are connected only through moments of engines.

Equations express the law of conservation of energy which is conversion of electrical energy to mechanical including one type of losses but represent only one relationship between the speed of the two motors (peripheral speed of the drive wheels) and rates of movement and rotation of the chassis. Additional relation is given by design of the drive and chassis. We expect that both drive wheels are firmly linked to rotors of relevant engines over ideal gearbox with gear ratio p_{G} - without nonlinearities and any flexible members.
Gearbox decreases output angular velocity ω_{Gx} with relation to the input angular speed ω_{x} according to the transmission ratio p_{G} and simultaneously in the same proportion increases output torque $M_{G x}$ with relation to the input torque M_{x}.

$$
\begin{array}{cc}
\omega_{G L}=\frac{\omega_{L}}{p_{G}} & \omega_{G P}=\frac{\omega_{P}}{p_{G}} \\
M_{G L}=p_{G} M_{L} & M_{G P}=p_{G} M_{P} \tag{7b}
\end{array}
$$

Further we assume that both drive wheels have the same radius r and their peripheral speeds v_{L}, v_{P} depend on the angle speeds of gearbox output $\omega_{\mathrm{GL}}, \omega_{\mathrm{GP}}$ according to relations

$$
\begin{align*}
& v_{L}=r \omega_{G L}=r \frac{\omega_{L}}{p_{G}} \tag{7c}\\
& v_{P}=r \omega_{G P}=r \frac{\omega_{P}}{p_{G}}
\end{align*}
$$

To determine the value of the linear speed in point B and the angular velocity of rotation let us start from Figure 4. We expect that both drive wheels have the same axis of rotation and therefore their peripheral speeds are always parallel. The illustration shows the positioning where the peripheral speeds v_{L} and v_{P} actually operate (driving wheels L and P) and the point B. We want to specify such a linear v_{B} and angular ω_{B} speeds that have the same effect as the action of the peripheral speed of the driving wheels. By using the similarity of triangles depicted in Figure 4 we can recalculate the peripheral speeds of the wheels $v_{\mathrm{L}}, v_{\mathrm{P}}$ to the speed v_{B} in point B according to relation (8a) and the angular velocity of rotation ω_{B} according to the relation (8b)

$$
\begin{gather*}
v_{B}=\frac{v_{L} l_{P}+v_{P} l_{L}}{l_{L}+l_{P}}=\frac{r}{p_{G}\left(l_{L}+l_{P}\right)}\left(l_{P} \omega_{L}+l_{L} \omega_{P}\right) \tag{8a}\\
\omega_{B}=\frac{v_{B}}{x+l_{L}}=\frac{v_{P}-v_{L}}{l_{L}+l_{P}}=\frac{r}{p_{G}\left(l_{L}+l_{P}\right)}\left(-\omega_{L}+\omega_{P}\right) \tag{8b}
\end{gather*}
$$

To determine the relative position $\Delta x_{\mathrm{K}}, \Delta y_{\mathrm{K}}$ of the point K we use an auxiliary right triangle specified by cathetus c and hypotenuses a and l_{K} (see Figure 5). Then the equations for relative coordinates of the point K calculating are

$$
\begin{align*}
a & =\frac{1}{2}\left(l_{P}-l_{L}\right) \\
\gamma & =\arctan \left(a / l_{K}\right) \quad c=\sqrt{a^{2}+l_{K}^{2}} \tag{10c}\\
\Delta x_{K} & =-c \sin (\alpha-\gamma) \quad \Delta y_{K}=c \cos (\alpha-\gamma)
\end{align*}
$$

Fig. 4 Linear and angular speeds recalculations

2.5 Overall model and steady-state

The dynamic part of the model consists from four differential equations describing the behaviour of both motors, two differential equations describing the dynamics of the chassis and two algebraic equations with dependency of linear and angular chassis speed on the peripheral speeds of the driving wheels. We can find in these equations eight state variables describing the current state of the left motor (current i_{L}, angular velocity of the rotor ω_{L}, loading moment M_{L}) and the right motor (current i_{P}, angular velocity of the rotor ω_{P}, loading moment M_{P}) and the movement of the chassis (linear speed v_{B} and angular velocity of rotation ω_{B}). All the state

Fig. 6 Motors wiring
variables are dependent on the time courses of the power of the left U_{L} and right U_{P} motor.
Each motor has its own power supply voltage ($U_{\mathrm{L}}, U_{\mathrm{P}}$) disbranched from the common source of voltage U_{0}. Control of the supply voltage of both motors using amplifier with control signal u_{x} is shown in Figure 6. Because both engines are powered from the common source it will be taken into account also effect of the internal resistance R_{z}. Both motors are considered with the same parameters. We can write with using the equations (2) and (3) and Figure 6 four differential equations describing the behaviour of both engines as

$$
\begin{gather*}
R i_{L}+R_{z}\left(i_{L}+i_{P}\right)+L \frac{d i_{L}}{d t}=u_{L} U_{0}-K \omega_{L} \tag{11a}\\
R i_{P}+R_{z}\left(i_{L}+i_{P}\right)+L \frac{d i_{P}}{d t}=u_{P} U_{0}-K \omega_{P} \tag{11b}\\
J \frac{d \omega_{L}}{d t}+k_{r} \omega_{L}+M_{L}=K i_{L} \tag{12a}\\
J \frac{d \omega_{P}}{d t}+k_{r} \omega_{P}+M_{P}=K i_{P} \tag{12b}
\end{gather*}
$$

Differential equations (4) and (5) describing the behaviour of the chassis complete the dynamic model. We can rewrite these equations with respect to the equations (7) and introduction of the "reduced" radius of the wheel r_{G} and total moment of inertia J_{B} (13a) as

$$
\begin{equation*}
r_{G}=\frac{r}{p_{G}} \quad J_{B}=J_{T}+m l_{T}^{2} \tag{13a}
\end{equation*}
$$

$$
\begin{gather*}
\frac{p_{G}}{r} M_{L}+\frac{p_{G}}{r} M_{P}-k_{v} v_{B}-m \frac{d v_{B}}{d t}=0 \\
M_{L}+M_{P}-r_{G} k_{v} v_{B}-r_{G} m \frac{d v_{B}}{d t}=0 \tag{13b}\\
-l_{L} \frac{p_{G}}{r} M_{L}+l_{P} \frac{p_{G}}{r} M_{P}-k_{\omega} \omega_{B}-\left(J_{T}+m l_{T}^{2}\right) \frac{d \omega_{B}}{d t}=0 \tag{13c}\\
-l_{L} M_{L}+l_{P} M_{P}-k_{\omega} \omega_{B}-r_{G} J_{B} \frac{d \omega_{B}}{d t}=0
\end{gather*}
$$

It is possible to rewrite the last two algebraic equations (8a) a (8b) describing the dependence between rotations speed of both motors and chassis movement with using the substitution (13a) as

$$
\begin{gather*}
v_{B}=\frac{r_{G}}{l_{L}+l_{P}}\left(l_{P} \omega_{L}+l_{L} \omega_{P}\right) \tag{14a}\\
\omega_{B}=\frac{r_{G}}{l_{L}+l_{P}}\left(-\omega_{L}+\omega_{P}\right) \tag{14b}
\end{gather*}
$$

These six differential equations (11a,b), (12a,b), (13b,c) and two algebraic equations (14a,b) containing eight state variables representing a mathematical description of dynamic behaviour of ideal differentially steered mobile robot with losses linearly dependent on the revolutions or speed. Control signals u_{L} and u_{P} that control the supply voltages of the motors are input variables and the speed of the movement v_{B} and speed of rotation ω_{B} are output variables. From them with using the equations (9a) - (9c) we can determine the current coordinates of a point B and the angle of rotation of the chassis.
In the following calculation of steady-state values for constant engine power voltages is given. Calculation of steady-state is useful both for the checking of derived equations and secondly for the experimental determination of the values of the unknown parameters. Because the equation (11)-(14) are linear with respect to state variables the calculation of steady-state leads to a system of eight linear equations which we can write in matrix form as
$\left[\begin{array}{cccccccc}R+R_{z} & R_{z} & K & 0 & 0 & 0 & 0 & 0 \\ R_{z} & R+R_{z} & 0 & K & 0 & 0 & 0 & 0 \\ K & 0 & -k_{r} & 0 & -1 & 0 & 0 & 0 \\ 0 & K & 0 & -k_{r} & 0 & -1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 1 & -r_{G} k_{v} & 0 \\ 0 & 0 & 0 & 0 & -l_{L} & l_{P} & 0 & -r_{G} k_{\omega} \\ 0 & 0 & l_{P} & l_{L} & 0 & 0 & -\frac{l_{P}+l_{L}}{r_{G}} & 0 \\ 0 & 0 & -1 & 1 & 0 & 0 & 0 & -\frac{l_{P}+l_{L}}{r_{G}}\end{array}\right]\left[\begin{array}{c}i_{L} \\ i_{P} \\ \omega_{L} \\ \omega_{P} \\ M_{L} \\ M_{P} \\ v_{B} \\ \omega_{B}\end{array}\right]=\left[\begin{array}{c}U_{L} \\ U_{P} \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0\end{array}\right]$

2.6 Computational form of the model

A mathematical model will be used in particular for the design and simulation validation of control movement of the robot. Model can be divided into three series-involved parts as shown in Figure 7. From the control point of view action variables are signals u_{L} a u_{P} that control the supply voltage of the motors. Momentary speed v_{B} and speed of rotation ω_{B} are output variables from linear part of the model. These variables are the inputs to the consequential non-linear part of the model, whose outputs are controlled variables - the coordinates of selected point position $x_{\mathrm{B}}, y_{\mathrm{B}}$ and the rotation
angle of the chassis α. The last part is the calculation of coordinates of the position of arbitrary points of the chassis.
We can modify linear part of the model into simpler form for control design purposes - to reduce number of differential equations from six to four. If we substitute equations (14a,b) into ($13 \mathrm{~b}, \mathrm{c}$) and eliminate moments M_{L} a M_{P} by substitution

Fig. 7 Model partitioning into linear and nonlinear part
of (12a,b) to (13b,c) we are able to reduce four differential equations (12a,b) a (13b,c) into two (17c,d).
If we introduce substitution of the parameters according to following formulas

$$
\begin{align*}
a_{L}=k_{r}+\frac{k_{v} l_{P} r_{G}^{2}}{l_{L}+l_{P}} & a_{P}=k_{r}+\frac{k_{v} l_{L} r_{G}^{2}}{l_{L}+l_{P}} \tag{16a}\\
b_{L}=J+\frac{m l_{P} r_{G}^{2}}{l_{L}+l_{P}} & b_{P}=J+\frac{m l_{L} r_{G}^{2}}{l_{L}+l_{P}} \tag{16b}\\
c_{L}=k_{r} l_{L}+\frac{k_{\omega} r_{G}^{2}}{l_{L}+l_{P}} & c_{P}=k_{r} l_{P}+\frac{k_{\omega} r_{G}^{2}}{l_{L}+l_{P}} \tag{16c}\\
d_{L}=J l_{L}+\frac{J_{B} r_{G}^{2}}{l_{L}+l_{P}} & d_{P}=J l_{P}+\frac{J_{B} r_{G}^{2}}{l_{L}+l_{P}} \tag{16d}
\end{align*}
$$

The reduced linear part of the model consists from set of equations

$$
\begin{gather*}
\frac{d i_{L}}{d t}=\frac{u_{L} U_{0}-K . \omega_{L}-\left(R+R_{z}\right) \cdot i_{L}-R_{z} i_{P}}{L} \tag{17a}\\
\frac{d i_{P}}{d t}=\frac{u_{P} U_{0}-K \cdot \omega_{P}-\left(R+R_{z}\right) \cdot i_{P}-R_{z} i_{L}}{L} \tag{17b}\\
\frac{d \omega_{L}}{d t}=\frac{1}{b_{L} d_{P}+b_{P} d_{L}}\left(d_{P}\left[K\left(i_{L}+i_{P}\right)-a_{L} \omega_{L}-a_{P} \omega_{P}\right]-\right. \tag{17c}\\
\left.-b_{P}\left[K\left(-l_{L} i_{L}+l_{P} i_{P}\right)+c_{L} \omega_{L}-c_{P} \omega_{P}\right]\right) \\
\frac{d \omega_{P}}{d t}=\frac{1}{b_{L} d_{P}+b_{P} d_{L}}\left(d_{L}\left[K\left(i_{L}+i_{P}\right)-a_{L} \omega_{L}-a_{P} \omega_{P}\right]+\right. \tag{17d}\\
\left.+b_{L}\left[K\left(-l_{L} i_{L}+l_{P} i_{P}\right)+c_{L} \omega_{L}-c_{P} \omega_{P}\right]\right)
\end{gather*}
$$

and output variables are given by algebraic equations (14a,b). It is possible to write reduced linear part of the model as standard state-space model in matrix form as

$$
\begin{aligned}
& \frac{d \mathbf{x}}{d t}=\mathbf{A x}+\mathbf{B u} \quad \mathbf{x}=\left[\begin{array}{c}
i_{L} \\
i_{P} \\
\mathbf{y}=\mathbf{C} \mathbf{x} \\
\omega_{L} \\
\omega_{P}
\end{array}\right] \quad \mathbf{u}=\left[\begin{array}{c}
u_{L} \\
u_{P}
\end{array}\right] \quad \mathbf{y}=\left[\begin{array}{c}
v_{B} \\
\omega_{B}
\end{array}\right], ~
\end{aligned}
$$

with constant matrices \mathbf{A}, \mathbf{B} a \mathbf{C}
$\mathbf{A}=\left[\begin{array}{cccc}-\frac{R+R_{z}}{L} & -\frac{R_{z}}{L} & -\frac{K}{L} & 0 \\ -\frac{R_{z}}{L} & -\frac{R+R_{z}}{L} & 0 & -\frac{K}{L} \\ \frac{K\left(d_{P}+b_{P} l_{L}\right)}{b_{L} d_{P}+b_{P} d_{L}} & \frac{K\left(d_{P}-b_{P} l_{P}\right)}{b_{L} d_{P}+b_{P} d_{L}} & -\frac{d_{P} a_{L}+b_{P} c_{L}}{b_{L} d_{P}+b_{P} d_{L}} & -\frac{d_{P} a_{P}-b_{P} c_{P}}{b_{L} d_{P}+b_{P} d_{L}} \\ \frac{K\left(d_{L}-b_{L} l_{L}\right)}{b_{L} d_{P}+b_{P} d_{L}} & \frac{K\left(d_{L}+b_{L} l_{P}\right)}{b_{L} d_{P}+b_{P} d_{L}} & -\frac{d_{L} a_{L}-b_{L} c_{L}}{b_{L} d_{P}+b_{P} d_{L}} & -\frac{d_{L} a_{P}+b_{L} c_{P}}{b_{L} d_{P}+b_{P} d_{L}}\end{array}\right]$
$\mathbf{B}=\left[\begin{array}{cc}\frac{U_{0}}{L} & 0 \\ 0 & \frac{U_{0}}{L} \\ 0 & 0 \\ 0 & 0\end{array}\right]$
$\mathbf{C}=\left[\begin{array}{cccc}0 & 0 & \frac{l_{P} r_{G}}{l_{L}+l_{P}} & \frac{l_{L} r_{G}}{l_{L}+l_{P}} \\ 0 & 0 & -\frac{r_{G}}{l_{L}+l_{P}} & \frac{r_{G}}{l_{L}+l_{P}}\end{array}\right]$

3. EXAMPLE OF THE BEHAVIOUR

Basic verification of the above derived model was made by calculation for situations where we can guess the behaviour of the real device. First value of the state variables in steady states will be given for some combinations of parameters and motor supply voltages. Further time courses of the robot trajectory will be determined for some combinations of time courses of supply voltages when robot is starting from zero speed.
Values of the parameters listed in the following tables are used in all of the calculations. These values are chosen so that they at least roughly correspond to the values estimated for the robot in Figure 1. The values of the geometrical and other parameters of the chassis are listed in Table 1.
Table 1 Chassis parameters

Notation	Value	Dimension	Meaning
l_{L}	0.040	m	distance of the left wheel from point B
l_{P}	0.060	m	distance of the right wheel from point B
l_{T}	0.020	m	distance of centre of gravity from join between wheels
l_{K}	0.040	m	distance of caster wheel from join between wheels
r	0.050	m	semi-diameter of driving wheel
m	1.250	kg	total weight of the robot k_{v}
0.100	$\mathrm{~kg} \cdot \mathrm{~s}^{-1}$	coefficient of the resistance against robot linear motion	
J_{T}	0.550	$\mathrm{~kg} \cdot \mathrm{~m}^{2}$	moment of inertia of robot with respect to centre of gravity
k_{ω}	1.350	$\mathrm{~kg} \cdot \mathrm{~m}^{2} . \mathrm{s}^{-1}$	coefficient of the resistance against robot rotating

Necessary parameters for DC motors with common voltage source description are given in Table 2. We consider identical motors with identical parameters.

Table 2 DC motors parameters

Notation	Value	Dimension	Meaning
R	2.000	Ω	motor winding resistivity
L	0.050	H	motor inductance
K	0.100	$\mathrm{~kg} \cdot \mathrm{~m}^{2} \cdot \mathrm{~s}^{-2} \cdot \mathrm{~A}^{-1}$	electromotoric constant
R_{Z}	0.200	Ω	source resistance
U_{0}	10.00	V	source voltage
J	0.025	$\mathrm{~kg} \cdot \mathrm{~m}^{2}$	total moment of inertia of rotor and gearbox
k_{r}	0.002	$\mathrm{~kg} \cdot \mathrm{~m}^{2} . \mathrm{s}^{-1}$	coefficient of the resistance against rotating of rotor and gearbox
p_{G}	25	---	gearbox transmission ratio

3.1 Steady state for different positions of point B and motors voltages

The steady states are calculated as a solution of the system of eight equations in matrix form (15). Traces of the wheels are shown during the first 20 seconds of motion from zero initial conditions - calculated from state-space model (18) and from the equations for the trajectories calculation $(9,10)$. Trajectories are plotted for the situation that the origin of the coordinate system is in the centre between the wheels, which is on the x -axis and the default orientation of the robot is in the direction of the y axis. Starting and final position of the robot is displayed using the triangle that connects all three wheels. Trajectory of the centre of gravity is displayed in addition to the traces of the wheels.
Steady-state A (Table 3a) corresponds to the geometric arrangement - point (B) is midway between the wheels and both engines have the same supply voltage. The result is that the robot moves only linearly.

Table 3a Steady state A

The following three experiments show the influence of centre of gravity position. Steady-state B (table 3b) holds again for the symmetric geometric arrangement but only one motor is powered. Steady state C (table 3c) shows the situation in the case that point B is in the extreme position above the left wheel and only the left motor is powered. Steady-state D (table 3d) corresponds to the same position of the point B above the left wheel but is only right motor is powered. In all three cases the robot rotates and at the same time the point B has some linear speed. Both wheels produce translation because of the interactions.

Table 3b Steady state B

	left wheel	right wheel	
U	0.000	1.000	V
l	0.050	0.050	m
i	-0.02772	0.16287	A
ω	0.04523	1.07935	Hz
M	-0.001176	1.03010	N.m
v_{B}	0.006757		m. ${ }^{-1}$
ω_{B}	0.123762		Hz
$\underset{\omega^{\lambda}}{\xi}$	Trajecto	f wheels L,K,P (m)	

Table 3c Steady state C

Table 3d Steady state D

	left wheel	right wheel	
U	0.000	1.000	V
l	0.000	0.100	m
i	-0.02773	0.16286	A
ω	0.045248	1.030120	Hz
M	-0.00334148	0.00334159	N.m
ν_{B}	0.0005686		m. s^{-1}
ω_{B}	0.1237626		Hz

3.2 Dynamic behaviour for particular cases

Dynamic behaviour is demonstrated on the time courses of currents and angular speeds of the motors starting from zero initial conditions. Graphs in Figure 8 show courses of supply voltages, currents and angular speeds for the case that the point B is in the middle between both motors with the same constant voltage 1 V . Situation corresponds to experiment with the parameters in Table 3a.

Fig. 8 Dynamic behaviour - constant supply voltage 1 V for both motors
Situation where point B is in the middle between both motors with the right motor voltage 1 V only corresponds to experiment with the parameters in Table 3b.
Illustrative example of behaviour in the situation when both voltages are periodic and with different amplitudes is in figures 10 and 11 . On the left motor is a rectangular voltage of period 20 s , phase offset 10 s and amplitude 3 . On the right
motor is a rectangular voltage of doubled period 40 s and amplitude 4.

Fig. 9 Dynamic behaviour - constant supply voltage 1 V for right motor

Fig. 10 Dynamic behaviour - periodic voltages

Fig. 11 Dynamic behaviour - periodic voltages - speeds and trajectories

4. CONCLUSION

The behaviour of the dynamic model in simulated situations agrees with the expected behaviour of a real device. Position of centre of gravity does not affect the behaviour in steady state. Immediate linear speed in point B depends on its position but the trajectories of the wheels are independent on the position of the point B.
Interaction of the two drives was confirmed. Because of the forces of inertia and the forces of resistance also wheel without supply voltage rotates by the chassis movement. Even change of the meaning of the rotation occurs in the transient state. This situation is seen in Figure 9.
Motor dynamics is negligible compared to the expected dynamics of the chassis for estimated motor parameters. Because the parameters of the model have physical meaning it will be possible to measure directly some parameters on real device. Identification of additional parameters will be possible experimentally from measured time courses of power voltages and the corresponding courses of angular speed of the wheels.

ACKNOWLEDGMENTS

The work has been supported in the framework of the research project MSM 0021627505 in part "Management, optimization and diagnostics of complex systems". This support is very gratefully acknowledged.

REFERENCES

Horák, Z., Krupka, F. (1976). Fyzika, vol. 1. SNTL Praha, 1976, 422 p.
Lucas, G.W. (2010). A Tutorial and Elementary Trajectory Model for the Differential Steering System of Robot Wheel Actuators, http://rossum.sourceforge.net/papers/DiffSteer/DiffSteer. html [cited 11.11.2010]
Novák, P. (2005). Mobilní roboty (pohony, senzory, řizení). BEN 2005, ISBN 80-7300-141-1
Poliak, F., Fedák, V., Zboray, L. (1987). Elektrické pohony, Bratislava: Alfa, 1987
Stengel, R.F. (2010). Robotics and Intelligent Systems; A Virtual textbook, http://www.princeton.edu/~stengel/RISVirText.html [cited 11.11.2010]
Šrejtr, J. (1954). Technická mechanika II. Kinematika 1. část. SNTL Praha, 1954, 256 p.
Winkler, Z. (2010). Odometrie; http://robotika.cz/guide/odometry/cs [cited 11.11.2010]

