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Abstract: AutoGenU is a Mathematica program to automatically generate simulation pro-
grams for Nonlinear Model Predictive Control (NMPC). It analytically evaluates the Jaco-
bians necessary to calculate the optimality condition in the NMPC realized using Continua-
tion/Generalized Minimum Residual (C/GMRES) method. However, in the case of the LHC
Superfluid Helium Cryogenic System, which is distributed parameter system, these Jacobians,
expressed directly in terms of inputs, states and co-states become complex expressions due
to cascading relations between internal variables of the circuit’s model. A semi-automatic
code generation procedure based on AutoGenU is presented, where intermediate variables are
introduced and the chain rule is applied to evaluate the Jacobians, thereby avoiding complex
expressions. In addition, the ODE set describing the system state dynamics is stiff, thus the
dynamics time integration step is small. The intermediate variables are available at each step
and are used to evaluate the optimality condition more precisely at low additional computing
cost. The observed computational cost of the semi-automatically generated code is slightly lower
than that of automatically generated and the controller performance is similar in both cases.
However, the generation of semi-automatic code requires significantly less memory, and is much
faster, widening the applicability of code generation for complex systems.

Keywords: Nonlinear Model Predictive Control, Nonlinear Receding Horizon Control,
Automatic Code Generation System, Distributed Parameters System, Stiff system

1. INTRODUCTION

AutoGenU is a Mathematica program to automatically
generate simulation programs for Nonlinear Model Pre-
dictive Control (NMPC) also known as Receding Horizon
Control (RHC). Once the state equation, the performance
index and some other simulation conditions are specified
by a user as an input file in Mathematica R© Format, then
AutoGenU.nb loads the input file, executes such necessary
operations as partial differentiation, and generates a C
source file. The generated source file is ready for com-
pilation and execution. The simulation program employs
a fast optimization algorithm, Continuation/Generalized
Minimum Residual (C/GMRES) (Ohtsuka (2000)). Au-
toGenU has been applied to generate the NMPC for the
Superfluid Helium Cryogenic Circuit (SHCC) at the Large
Hadron Collider (LHC) 1 . More precisely, a simulation
independent implementation of the NMPC based on the
C/GMRES optimization (Ohtsuka (2004)) has been sep-
arated from the simulation program. Then, this C code
has been used in Matlab R© simulations, accessed via MEX
functions, (Noga et al. (2010)) and also it has been inte-

1 The LHC is the newest particle accelerator and collider at the
European Organization for Nuclear Research (CERN)

grated into the PVSS II R© SCADA of the LHC cryogenic
system as a prototype implementation of NMPC for the
SHCC.

A 106.9 m long Standard Cell of the SHCC is composed
of eight, main superconducting magnets of the LHC,
submerged in a bath of superfluid helium (Brüning et al.
(2004)). The magnets are cooled via an over 100 m long
Bayonet Heat Exchanger integrated into the magnets
(Lebrun et al. (1997)). Our system corresponds to a Sub-
Sector of the SHCC that is composed of two Standard Cells
that share common helium bath (Gubello et al. (2006)).
The system state x(l, t) is the magnet temperatures as a
function of time t and is spatially distributed over the Sub-
Sector length 0 ≤ l ≤ 2 × 106.9 m. Its dynamics has been
modeled as a function of a distributed value of cooling
power of two heat exchangers that is a function of helium
saturation temperature a(l, t) and mass flow rate b(l, t) in
each heat exchanger (Noga (2007), Noga et al. (2010)).
After spatial discretization of x, a and b using a Finite
Volume approach with N = 10 intervals, the dynamics of
discretized state
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dx1/dt = f1(x1, x2, a1, b1)
dxi/dt = fi(xi−1, xi, xi+1, ai, bi) (i = 2, ..., N − 1)
dxN/dt = fN (xN−1, xN , aN , bN ),

(1)
with saturation temperature

a1 = aI,1
ai+1(ai, bi) (i = 1, ..., N/2 − 1)
aO,1(aN/2, bN/2)
aN/2+1 = aI,2
ai+1(ai, bi) (i = N/2 + 1, ..., N − 1)
aO,2(aN , bN )

(2)

and He II mass flow rate
b1 = bI,1
bi+1(ai, bi, xi) (i = 1, ..., N/2 − 1)
bO,1(aN/2, bN/2, xN/2)
bN/2+1 = bI,2
bi+1(ai, bi, xi) (i = N/2 + 1, ..., N − 1)
bO,2(aN , bN , xN ).

(3)

Please note the presence of a Two-Point Boundary Value
problem, since the boundaries are the He II mass flow rates
at heat exchanger inlets that are the model manipulated
variables

bI,k = uk (k = 1, 2) (4)

and the saturation temperature at the outlets aO,k. The
saturation temperatures are equal in a Sub-Sector aO,k =
aSS . Due to the spatial discretization scheme chosen, the
saturation temperature at the inlets aI,k is solved to satisfy
the boundary conditions at the outlets aO,k using the
Newton method with n-th iteration

(aI,k)n+1 = (aI,k)n−(daO,k/daI,k)−1n [(aO,k)n−aSS ]. (5)

In order to evaluate the necessary optimality condition
in the NMPC (Ohtsuka (2004)), AutoGenU analytically
calculates the Jacobians Hu and Hx of the Hamiltonian

H = L(x, u) + λT f(x, u, t) + µT C(x, u, t) (6)

with respect to vectors of system inputs u(t) and states
x(t). Here, t is time, L is a performance index that
appears in the cost functional to be minimized during the
optimization,

ẋ = f(x, u), C(x, u) = 0 (7)

represent the system state dynamics and constraints re-
spectively and λ(t) and µ(t) are the Lagrange multipli-
ers. In case of the SHCC , the Jacobians Hu and Hx

expressed directly in terms of inputs and states become
very complex and the automatic code generation fails due
to excessive operational memory needed. However, the
automatic generation of each component of the Jacobians
separately has been successful. One method to significantly
reduce the complexity of the Hu and Hx expressions is to
introduce intermediate variables and use the chain rule to
evaluate the Jacobians. A number of intermediate vari-
ables corresponding to internal model variables has been
chosen to exploit the model structure. Since the choice of
the intermediate variables and the implementation of the
chain rule are done by hand, the resulting code generation
procedure is semi-automatic.

The set of ODEs describing the SHCC state dynamics is
stiff. In the C/GMRES version for systems with stiff dy-
namics, the residuum of the optimality condition is calcu-
lated using integrals of the JacobianHu over the prediction
horizon grid (Noga et al. (2010)). The grid corresponds to

intervals with constant control signal. The automatically
generated Hu is expressed directly in terms of system
inputs and states and thus has high computational cost,
thus the integrals are calculated using simple quadratures
such as one-point rectangular or two-points trapezoidal,
where Hu is evaluated exclusively at the horizon grid.
However, once the intermediate variables are introduced
and then available at each state integration step, which in
case of stiff system is much shorter than the grid interval,
the Hu may be evaluated at each step at low additional
computational cost, resulting in a more precise calculation
of the optimality condition.

This paper presents the semi-automatic procedure of
NMPC code generation for the SHCC based on Auto-
GenU. This section introduced AutoGenU and the mo-
tivation for the use of intermediate variables in case of the
SHCC. Next, the choice of intermediate variables and the
implementation of the chain rule are described in detail.
Then the evaluation of the optimality condition using the
intermediate variables is presented. Finally the perfor-
mance of the semi-automatically generated NMPC code
is compared against that generated automatically. The
low memory required by the semi-automatic generation
process is highlighted.

2. SEMI-AUTOMATIC CODE GENERATION

During automatic code generation using symbolic mathe-
matics, the cascading relations between i-th and (i−1)-th
variable a and b in Eqs. (2) and (3) enable propagation of
complex expressions. This is especially visible in case of the
Hamiltonian, Eq. (6), that involves the system dynamics
f , Eq. (1), and, trough the index L, helium mass flow
rates at the heat exchanger outlets calculated from Eq.
(3). Its Jacobians Hu and Hx expressed directly in terms
of inputs and states become very complex and the auto-
matic code generation fails due to excessive operational
memory needed. However, automatic generation of C code
for each component of the Jacobians separately requires
less memory and has been successful.

A method to avoid the propagation that significantly
reduces the complexity of the expressions for Hu and Hx is
to use ai and bi as intermediate variables. The components
of Hu and Hx, which are the Jacobians fx, fu, Cx, Cu, Lx

and Lu, are calculated using the chain rule

dfi
dxj

=
∂fi
∂xj

+
∂fi
∂ai

dai
dxj

+
∂fi
∂bi

dbi
dxj

(8)

dfi
duk

=
∂fi
∂ai

dai
duk

+
∂fi
∂bi

dbi
duk

, (9)

recalling that b1 = u1 and bN/2+1 = u2, see Eq. (4).
The Jacobians of intermediate variables with respect to
the states and inputs are calculated as follows. At the dis-
cretization points along the heat exchanger i = 1, ..., N/2−
1, N/2 + 1, ..., N − 1



dai+1

dxj
dbi+1

dxj


 =



∂ai+1

∂ai

∂ai+1

∂bi
∂bi+1

∂ai

∂bi+1

∂bi







dai
dxj
dbi
dxj


+

[
0

∂bi+1

∂xi
δi,j

]

(10)
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dai+1

duk
dbi+1

duk


 =



∂ai+1

∂ai

∂ai+1

∂bi
∂bi+1

∂ai

∂bi+1

∂bi







dai
duk
dbi
duk


+

[
0

∂bi+1

∂uk

]
(11)

with Kronecker delta δi,j . At the outlets of the k-th heat
exchanger (i = N/2, N)



daO,k

dxj
dbO,k

dxj


 =



∂aO,k

∂ai

∂aO,k

∂bi
∂bO,k

∂ai

∂bO,k

∂bi







dai
dxj
dbi
dxj


+

[
0

∂bO,k

∂xi

]
(12)




daO,k

duk
dbO,k

duk


 =



∂aO,k

∂ai

∂aO,k

∂bi
∂bO,k

∂ai

∂bO,k

∂bi







dai
duk
dbi
duk


+

[
0

∂bO,k

∂uk

]
(13)

At the inlets of k-th heat exchanger, the manipulated
inputs are the boundary conditions, see Eqs. (3) and (4),
thus

dbi/dxj = 0 (i = 1, N/2 + 1)
dbi/duk = 1 (i = 1, k = 1 and i = N/2 + 1, k = 2)
dbi/duk = 0 (i = 1, k = 2 and i = N/2 + 1, k = 1),

(14)
however the saturation pressure in Eq. (2) is fixed at the
outlet, thus

daO,k/dxj = 0
daO,k/duk = 0

(15)

and the partial derivatives at the inlet is calculated as

dai/dxj = −(∂aO,k/∂ai)
−1 ∂aO,k/∂xj

dai/duk = −(∂aO,k/∂ai)
−1 ∂aO,k/∂uk.

(16)

Here the Jacobians ∂aO,k/∂xj and ∂aO,k/∂uk are found
as daO,k/dxj and daO,k/duk using da1/dxj = 0 and
daN/2+1/duk = 0, see Eqs. (10) and (11). The partial
derivatives ∂aO,k/∂ai are calculated in an iterative manner
similar to Eqs. (10)–(13).

All other partial derivatives in Eqs. (8)–(13), are generated
automatically as in AutoGenU. However, as demonstrated,
the choice of the intermediate variables and the implemen-
tation of the chain rule are done by hand, thus the resulting
code generation procedure is semi-automatic. Regarding
other components of Hu and Hx, the cost function L is
a sum of terms among which some are independent of
the intermediate variables and the corresponding parts
of the gradients Lx, Lu can be generated automatically.
However, the helium mass flow rate at the heat exchanger
outlets is minimized, thus enters the performance index
and corresponding parts of the gradients have been gen-
erated similarly to and using some sub-expressions of the
fx, fu. In the system, the Jacobians of the constraints, Cx

and Cu, do not involve the intermediate variables and can
be generated automatically.

The semi-automatic code generation procedure is much
faster and requires much less operational memory than the
automatic used in AutoGenU. The observed generation
time was seconds vs. 30 min. and the maximum memory
used to store all the data for the Mathematica session was
7.9 MB vs. 1034 MB. This makes it possible to apply
this type of the semi-automatic code generation process
to more complicated systems.

Fig. 1. Comparison of the performance of the automati-
cally and semi-automatically generated controllers.

3. C/GMRES OPTIMALITY CONDITION

In NMPC an open loop optimal control problem is solved
over the future prediction time t′ horizon taken from the
current time t to t+ T (Ohtsuka (2004)):

minimize J̄ = φ+

∫ t+T

t

L+λT (f − ẋ) +µT C dt′, (17)

with the predicted state trajectory starting at current
state: x′(0, t) = x(t). Based on the optimized, predicted
future input trajectory u′(t, t′), the feedback control is
realized by applying only its initial part u(t) = u′(0, t)
and continuously repeating the optimization using current
measurements and receding the time horizon as the time
passes.

In case of stiff dynamics, the state/costate integration step
must be very short and in order to separate its length
from the control horizon discretization grid t′i, i = 1..Nt′ ,
u′(t′, t) and µ(t′, t) are parameterized using Nt′ discrete
inputs u∗i (t) and Lagrange multipliers µ∗i (t) (Noga et al.
(2010))
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u′(t′, t) =

Nt′−1∑

i=0

σi(t
′) u∗i (t) (18)

µ(t′, t) =

Nt′−1∑

i=0

σi(t
′) µ∗i (t) , (19)

with basis window functions:

σi (t′) =

{
1 if t′i ≤ t′ < t′i+1
0 otherwise.

(20)

The necessary condition for an extremum of J̄ , Eq. (17),
are: the constraints (7), the costate dynamics

dλ/dt′ = −HT
x (x′, u′, λ, µ) (21)

λ (t+ T, t) = φTx (x′(t+ T, t)), (22)

with the Hamiltonian H as in Eq. (6), and a nonlinear
equation (Bryson and Ho (1975); Ohtsuka (2004); Noga
et al. (2010)),

F (U(t), x(t), t) = 0, (23)

F := [Hu,0 C
T
0 · · · Hu,Nt′−1 C

T
Nt′−1]T , (24)

U(t) := [u∗T0 µ∗T0 · · · u∗TNt′−1 µ
∗T
Nt′−1]T , (25)

with the integrals

Hu,i :=

∫ t′i+1

t′
i

Hu dt′, Ci :=

∫ t′i+1

t′
i

C dt′. (26)

For a given sequence of u∗i (t) and µ∗i (t), dx′/dt′ is inte-
grated over the finite horizon t < t′ < t+T , starting from
x(t). Then dλ/dt′ is integrated backwards from t+T back
to t. Finally, Hu,i and Ci are evaluated and assembled into
the residuum of the necessary optimality condition F .

Since Hu expressed directly in terms of system inputs
and states has high computational cost, the integrals
Hu,i are calculated using simple quadratures such as one-
point rectangular or two-points trapezoidal, where Hu is
evaluated exclusively at the horizon grid. However, once
the intermediate variables are introduced and are then
available at each state integration step, the Hu may also
be evaluated at each step at low additional computational
cost, resulting in a more precise calculation of the optimal-
ity condition. Also the derivative daO,k/daI,k employed
in the Newton iteration, Eq. (5), is calculated using the
intermediate variables.

The performance of the C/GMRES controller generated
using automatic and semi-automatic procedure has been
simulated, see Fig. 1. In the simulation, the predic-
tion horizon length increases at the beginning to reach
max(T ) = 50 min and is discretized with Nt′ = 10 in-
tervals. The time step for system dynamics integration
is 62 times shorter than the horizon grid interval, thus
the integrals Hu,i and Ci are evaluated using one point
and 62 points in automatic and semi-automatic code,
respectively. The observed computational cost of the semi-
automatically generated code is slightly less than that of
automatically generated and the controller performance is
similar in both cases.

4. CONCLUSIONS

AutoGenU automatically generates the C code of the
Jacobians Hx and Hu, required to evaluate the necessary

optimality condition in NMPC. For the case of the SHCC,
which is a distributed parameter system, the Jacobians
expressed using symbolic mathematics directly in terms of
system inputs, states and co-states are complex due to the
propagation of expressions along the cascading structure of
the discretized system model. Based on AutoGenU, a semi-
automatic NMPC code generation procedure has been
developed for the SHCC, where intermediate variables
are used to avoid this propagation, thereby reducing the
complexity of the Jacobians. In the case of a stiff system,
the time step of the system state dynamics integration is
small and the intermediate values, which are available at
each step, are used to evaluate the optimality condition
more precisely at low additional computational cost. The
observed computational cost of control update calculated
using the semi-automatic code is slightly less than that
generated automatically and the controller performance
is similar in both cases. However, this semi-automatic
code generation process requires significantly less memory,
which makes it possible to apply the code generation
process with analytically calculated Jacobians to more
complicated systems.
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