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Abstract: This paper is devoted to investigation of certain issues that appear in solving of
deterministic global optimization problems (GOPs). Basically, we focus ourselves on introducing
a procedure which may serve to establish tighter convex relaxations for a certain class of non-
convex optimization problems. Tightness of these convex relaxations plays important role in
speeding of the convergence of branch-and-bound algorithm which is used as a basic framework
of solving GOPs in this study. Two case studies are solved where it is shown how significant
improvement can be achieved by considering proposed framework.
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1. INTRODUCTION

Global optimization (GO) represents a set of methods
which aim to find (global) solution of non-convex opti-
mization problems which may possess multiple suboptimal
(local) solutions and are typically encountered in many
engineering fields, including chemical engineering, process
design, computational biology, and many others. Over past
two decades, there was a significant effort dedicated to
deterministic GO by many scientists. Efficient algorithms
and methods were developed, many new interesting ap-
plications were introduced and lot of existing non-convex
optimization problems were solved to global optimality.
Essence of these can be found in works Floudas and
Visweswaran (1990); Adjiman and Floudas (1996); Singer
and Barton (2001); Papamichail and Adjiman (2002);
Chachuat et al. (2003); Čižniar et al. (2009).

There is a big range of problems addressed by global
optimization. Basically non-convex non-linear programs
(NLPs) are considered. However, it is popular to con-
vert mixed-integer linear programs (MILPs) and mixed-
integer non-linear (MINLPs) to non-convex NLPs. Also
the problems of dynamic optimization are usually dis-
cretized into NLPs, e.g. by using the method of orthogonal
collocation (Biegler, 1984). In all these problems GO plays
significant role. The problems are addressed using either
stochastic approaches, such as simulated annealing, parti-
cle swarm and genetic algorithms, or deterministic ones,
such as branch-and-bound or interval analysis methods.

Branch-and-bound (BB) methods are the most popular
deterministic GO frameworks. These methods successively
partition solution space on which optimization problem is
defined into smaller regions. In each region, the upper and
lower bounds to the objective function value are generated,
by solving the original (non-convex) problem together with
its convex relaxation. According to these bounds it is
decided whether region is going to be explored further

or whether it should be fathomed out of BB tree. Global
solution is then obtained once current best (lowest) upper
bound (UB) value is close to current best (highest) lower
bound (LB) value within specified tolerance ε.

Problems of GO are typically defined over a quite large
region of decision variables. However, each deterministic
GO algorithm investigates the whole solution space in
some manner. This is a critical issue and it is a reason why
very tight convex relaxations of non-convex problems are
needed. It is the aim of this study to present a technique
which involves simple algebraic manipulations but results
in a considerable improvement in terms of number of GO
algorithm iterations and algorithm run time.

The paper is organized as follows. Section 1 gives the
mathematical formulation of the problem, it shows how the
solution can be found and points out to some issues which
are motivating our research. Section 2 gives procedure of
how certain issues revealed in Section 1 may be avoided.
Finally in Section 3 selected case studies are solved to
prove efficacy of the proposed approach.

2. GLOBAL OPTIMIZATION PROCEDURE

In this section, general procedure is described for solving
of non-convex optimization problems to global optimality.

2.1 Problem Formulation

We address an optimization problem in following form

min
x

f0(x) (1a)

s.t. fi(x) ≤ 0, i = 1, . . . , ni (1b)

fj(x) = 0, j = 1, . . . , ne (1c)

x ∈ [xL, xU ] (1d)

where x ∈ Rn is a vector of decision variables which values
are initially bounded by box constraints (1d). According
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Fig. 1. Illustration of branch-and-bound procedure.

to Boyd and Vandenberghe (2004), this is a non-convex
optimization problem with ni inequality and ne equality
constraints, if any of functions in (1a) and (1b) is non-
convex, or any of functions in (1c) is not affine. We
assume that functions fk (k = 0, . . . , ni + ne) are twice
continuously differentiable (fk ∈C2) and real-valued (fk :
Rn → R). Solution to problem (1) provides an upper
bound for BB algorithm. Lower bound is found by solving
a convex relaxation of (1).

Global minimum of the optimization problem is found
employing branch-and-bound framework (Horst and Tuy,
1990). At each branching node, original problem is solved
together with its convex relaxation. This is shown in Fig. 1
where first two stages of illustrative BB procedure are
shown. In node 0, convex relaxation (red line) of a non-
convex problem (black line) is found on a given interval
of decision variable x. This interval is then branched
creating the first and the second node. Formation of convex
relaxations of original problem on this branches follows. It
is clear that lower bound in the first node (LB1) is higher
than upper bound in the second node (UB2) and so the
first node is not considered further since global solution
does not lie there obviously. The ε-global optimum is found
once the UBi and LBi meet within specified tolerance ε.

2.2 Convex Relaxation of the Problem

According to Adjiman et al. (1998b), formulation of convex
relaxation of original (non-convex) problem requires de-
composition of each function fk (k = 0, . . . , ni+ne) in (1)
to a sum of linear, convex, special non-convex (univariate
concave UT(x), bilinear BT(x), . . . ), and arbitrary non-
convex (NT(x)) terms. These terms are then convexly
relaxed separately.

Linear terms do not require any convex relaxation since
they are already convex. The same applies for convex terms
unless they appear in equality constraint functions. In fact,
any non-linear equality constraint has to be rewritten such
that

fj(x) = 0 ⇔
{
fj(x) ≤ 0

−fj(x) ≤ 0
j = 0, . . . , ne (2)

For this inequality form, the original decomposition into
generic terms should be reconsidered. Hence that if fj is
convex then −fj is concave and vice versa.

Convex relaxation of univariate concave terms UT(x) is
done by linearization around the lower bound of the

variable range. Then, every occurrence of such term is
replaced by following expression

UT(xL) +
UT(xU )−UT(xL)

xU − xL
(x− xL) (3)

Addition of a relaxation function to the arbitrary non-
convex term NT(x) establishes convex relaxation function
for such term in a form

NT(x) +

n∑

i=1

αi(x
L
i − xi)(x

U
i − xi) (4)

where values of αi’s are non-negative scalars found such
that

αi ≥ max

{
0,−1

2
min
xi

λ
(
∇2

xi
NT(x)

)}
(5)

where λ is eigenvalue of Hessian matrix of non-convex
term. Another option is just to concentrate on finding the
overall valid α which will guarantee convexity of function

NT(x) + α(xL − x)T (xU − x) (6)

Then the value of α is computed such that

α ≥ max

{
0,−1

2
min
x

λ
(
∇2

xNT(x)
)}

(7)

Problem of minimization of eigenvalue appearing in Eq. (5)
and (7) requires solution of non-convex problem in most
cases. To avoid this, an interval arithmetic methods can
be exploited, e.g. Gerschgorin’s theorem for interval ma-
trices (Floudas, 2000). Then, problem of calculation of
αi’s values boils down to finding of a minimal eigenvalue
of interval family Hessian matrix [∇2NT(x)]. Interval ap-
proaches which can be adopted for this purpose are dis-
cussed in Adjiman et al. (1998b) in detail.

As showed in Kearfott (1996), if interval arithmetic op-
erations (multiplication, division, addition, etc.) are com-
posed the interval arithmetic calculations overestimate the
range of resulting interval. For example (taken from Kear-
fott (1996)), if interval function f(x) = x2 − x over the
interval x = [0, 1] is considered, resulting interval calcula-
tion is done such that

[0, 1]2 − [0, 1] = [0, 1]− [0, 1] = [−1, 1] (8)

This effect is illustrated in Fig. 2 which shows a plot
of considered interval function together with its real-
valued function equivalent. It can be observed that real-
valued function takes values from -0.25 to 0, while its
interval extension overestimates this values as it is shown
in Eq. (8).

Illustrative Example. Let us consider a simple example
to show the effect of the range overestimation of interval
arithmetic calculations on convex relaxation of non-convex
functions. Here, it is desired to find a convex relaxation
of a function f(x, y)=cos(x) sin(y) on the interval x ×
y=[−1, 2] × [−1, 1]. This convex relaxation is found in
form (6). Using of (4) gives the same result. Value of α
is found by computing eigenvalues of Hessian matrix

∇2f(x, y) =

(
− cos(x) sin(y) − sin(x) cos(y)
− sin(x) cos(y) − cos(x) sin(y)

)
(9)

Using Gerschgorin’s theorem for interval matrices (cur-
rently implemented in INTLAB toolbox by Rump (1999)),
the value of α was computed according to Eq. (7) to be
greater than or equal to 0.92. Exact eigenvalue calculation
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Fig. 2. Real-valued function f(x) (dashed blue line) and
its interval function equivalent (yellow box).

−1
0

1
2

−1
−0.5

0
0.5

1
−4

−3

−2

−1

0

1

xy

f(
x,

y)

(a) α = 0.92; found by interval Hessian eigenvalues calculation

−1
0

1
2

−1
−0.5

0
0.5

1
−4

−3

−2

−1

0

1

xy

f(
x,

y)

(b) α = 0.5; found by exact Hessian eigenvalues calculation

Fig. 3. Original function and its convex underestimators.

of Hessian (9) found minimal value of α that guarantee
convexity of underestimator (relaxed function) to be 0.5.
Fig. 3 compares two convex underestimators obtained by
evaluating Eq. (6) with previously computed α values. It
is clearly seen that underestimator generated using value
of α obtained by an exact Hessian calculation produces

convex underestimator tighter almost twice compared to
the other one.

Throughout the BB algorithm run, a possibly large num-
ber of nodes may appear in BB tree. This happens if loose
lower bounds are provided and it results in keeping many
nodes where only suboptimal solutions lie. Then, BB algo-
rithm spends a fair amount of time exploring these nodes
which is an unwanted feature. It is then straightforward
that tighter convex relaxation will result in less iterations
needed for a convergence of BB optimization algorithm
and less running time of the algorithm as well. In next, we
will show how a simple algebraic manipulation can lead to
a significant benefit in terms of more efficient algorithm.

3. PROPOSED REFORMULATION PROCEDURE

In previous section we showed how composition of arith-
metic operations in interval calculus may result in large
overestimation of resulting interval (function). This may
be a certain issue if tight convex relaxation functions are
wanted to be established for arbitrary non-convex terms.
Addition and subtraction operations play just marginal
role here since the non-convex term where addition (sub-
traction) occurs can be rearranged to more non-convex
(some possibly convex) terms with no addition (subtrac-
tion) operation occurring. Multiplication operations can be
decomposed using a simple algebraic transform (Williams,
1993). Suppose that non-convex term in any of functions
in (1) is such that NT(x) = f1(x)f2(x). This can be
rewritten as

f1(x)f2(x) =
1

4
(f1(x) + f2(x))

2 − 1

4
(f1(x)− f2(x))

2 (10)

Equation (10) can be simplified by considering two new
(decision) variables with two equality constraints.

f1(x)f2(x) =
1

4
u2
1 −

1

4
u2
2 (11a)

f1(x) + f2(x) = u1 (11b)

f1(x) − f2(x) = u2 (11c)

Convex relaxation of this rewritten function is now found
by the convex relaxation of concave term −u2

2 appearing in
Eq. (11a). This is done by a replacement of concave term
using (3). Convex relaxation of constraint functions follow
in the same manner as described in previous section by
rewriting (11b) and (11c) into inequality form and then
founding convex relaxations of terms f1(x), −f1(x), f2(x)
and−f2(x). These convex relaxations then produce tighter
convex relaxation of problem (1). However, it is needed to
provide bounds (box constraints) on new added optimized
variables. There are two possibilities. One, is to use interval
arithmetic calculations such that uL

1=min[f1(x) + f2(x)]
and so on. The second alternative is to consider an opti-
mization problem which minimizes/maximizes ui having
the same constraints as convex relaxation of (1). This
approach is similar to variable bound updates approach
presented in Adjiman et al. (1998a).

Illustrative Example (Continued) We continue here with
illustrative example considered previously. Non-convex
term cos(x) sin(y) is rewritten to following final form

18th International Conference on Process Control
June 14–17, 2011, Tatranská Lomnica, Slovakia Le-Fr-3, 030.pdf

539



−1
−0.5

0
0.5

1
1.5

−1

0

1

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

u
1

u
2

f(
u 1,u

2)

Fig. 4. Function f(u1, u2) (depicted in blue lines) and its
convex underestimator (red-orange surface).

cos(x) sin(y) =
1

4
u2
1 −

1

4
u2
2 (12a)

cos(x) + sin(y)− u1 ≤ 0 (12b)

− cos(x)− sin(y) + u1 ≤ 0 (12c)

cos(x)− sin(y)− u2 ≤ 0 (12d)

− cos(x) + sin(y) + u2 ≤ 0 (12e)

Convex relaxation is done by underestimation of terms
−u2

2, cos(x), − cos(x), sin(y) and − sin(y). Box constraints
used to bound new added decision variables are found
using interval arithmetic calculations. Resulting convex
relaxation of the function f(u1, u2) is shown in Fig. 4. By
transforming this function into original coordinates (by
inverting the reformulation) it can be seen that convex
relaxation of cos(x) sin(y) term using proposed transform
is clearly tighter than any of relaxations illustrated in
Fig. 3.

4. CASE STUDIES

The global optimization algorithm taken from Papamichail
and Adjiman (2004) was implemented in MATLAB 7.11.
Solution of NLP problems was found using MATLAB NLP
solver fmincon. It is an implementation of a general NLP
solver, provided by the Optimization Toolbox, uses either
a subspace trust region method, based on the interior-
reflective Newton method, or a sequential quadratic pro-
gramming method. The interval calculations needed were
performed using INTLAB toolbox by Rump (1999). This
toolbox finds the eigenvalues of interval family matrices
using Gerschgorin’s theorem for interval matrices. All case
studies were solved on a workstation with 4.0 GHz Intel R©

CoreTM 2 Duo Processor E8400 with 4GB RAM.

4.1 One dimensional non-convex problem

The first case study considers the problem of minimizing
univariate non-convex function over a box constraint of
decision variables. This problem was introduced in Pintér
(2002) as test problem for GO algorithms. Its objective
function is depicted in Fig. 5. Problem takes the form

min
x

0.05(x− x1)
2 + sin2(x − x1)+

+ sin2
(
(x− x1)

2 + (x− x1)
)

(13a)

s.t. − 10 ≤ x ≤ 10 (13b)
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Fig. 5. Plot of the objective function in first case study.

Table 1. Results of the αBB algorithm run
with different ranges of box constraints for

reformulated problem.

N No. of iterations CPU time [s]

1 4 1
10 6 1
100 10 2

Table 2. Results of the αBB algorithm run with
different ranges of box constraints for non-

reformulated problem.

N No. of iterations CPU time [s]

1 41 5
10 497 60
100 8110 1063

where x1 is a value of minimizer which can be chosen
arbitrarily. We choose a minimizer value equal to −3. The
first term present in objective function is convex and needs
no convex relaxation. The second and the third term are
non-convex due to periodicity of a sinus function. Using
the proposed procedure, we avoided the squaring of sinus
function in both of these terms by introduction of four
new decision variables and corresponding eight inequality
constraints.

Domain of the problem as it is introduced is arbitrarily set
to [−10, 10]. In our computations we allow problem domain
to be enlarged by a multiplication of box constraint by
factor N . If N is equal to 1, originally proposed domain
[−10, 10] is considered. When N is set to 10, domain of the
problem becomes [−100, 100]. This is done to investigate
how proposed procedure performs with expanded size of
box constraints. Resulting problems are solved to relative
global optimality ε = 1×10−3. Results for different values
of N are shown in Tab. 1. Comparison with performance
of non-reformulated problem αBB algorithm is shown in
Tab. 2.

It can be observed that αBB algorithm which exploits re-
formulation introduced in Section 3 performs significantly
better. This feature is most evident if the largest box
constraint (N = 100) is considered.
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Table 3. Results of the αBB algorithm run
with different ranges of box constraints for

reformulated problem.

N No. of iterations CPU time [s]

1 12 16
10 78 90
100 835 929

Table 4. Results of the αBB algorithm run with
different ranges of box constraints for non-

reformulated problem.

N No. of iterations CPU time [s]

1 20 9
10 305 111
100 3083 1243

4.2 Two-dimensional non-convex problem

In this case study, non-convex term cos(x) sin(y) appears
which was used as an illustrative example for the whole
proposed procedure. This optimization problem appears
in Adjiman et al. (1996) where it was used as tutorial ex-
ample to show how the α-based convexification procedure
works. The problem is as follows

min
x,y

cos(x) sin(y)− x

y2 + 1
(14a)

s.t. − 1 ≤ x ≤ 2 (14b)

− 1 ≤ y ≤ 1 (14c)

Second non-convex term present in objective function is
rewritten in a similar manner to avoid a multiplication
between the terms x and 1/(y2 + 1). By a reformulation
procedure, four new decision variables and eight inequality
constraints are introduced into a problem. Bounds on
new decision variables are found using interval arithmetic
calculations. To find out how reformulation procedure
performs, we consider not only the original range of
decision variables but we multiply the box constraints with
factor N equal to 10 and 100. These problems are again
solved to relative global optimality ε = 1 × 10−3. Results
are summarized in Tabs. 3 and 4 for the proposed and
original approaches, respectively.

This case study again shows that the GO of reformulated
problem performs better. However, the overall improve-
ment is not as significant as it is for the first case study. The
reduction in number of iterations is satisfying. However,
there is a room for improvement if tighter bounds on
new added optimized variables are provided. These bounds
can be obtained by considering variable bound updates
approach (Adjiman et al., 1998a). It can be observed
that computational time needed for a single iteration of
reformulated problem is almost double than CPU time
needed for a single iteration of non-reformulated problem.
This can be attributed to a greater size of the reformulated
problem.

5. CONCLUSIONS

In this paper, we focused on a problem of finding of a global
solution to non-convex non-linear problems. We considered
utilization of αBB procedure to solve GO problems in
deterministic fashion. Aim of this study was to introduce a

simple algebraic reformulation of the non-convex problem
to enhance the performance of αBB procedure. Chosen
case studies showed that proposed reformulation technique
resulted in significant improvement of αBB algorithm.
Particularly this was significant if problems were defined
over large region of decision variables.

Some issues of this approach were discussed, where one of
these is linked to increasing of order of original problem
by introducing new optimized variables into it. There is
also a possible problem of finding of tight bounds for
optimization variables added into reformulated problem.
These are the main problems which will be critically
addressed in a future work on this promising concept.
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