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Abstract: In this work we propose to reduce memory footprint of explicit MPC controllers by
eliminating a significant portion of controller’s regions in which the value of the optimal control
action attains saturated values. Such regions are then separated by a suitable function, which
serves to recover the original control behavior. As a consequence, complexity of explicit MPC
feedback laws is reduced considerably without sacrificing optimality.
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1. INTRODUCTION

Implementing MPC in the Receding Horizon fashion
(RHMPC) requires, at each sampling instance, obtaining
the optimal control input by solving a suitable optimiza-
tion problem. Difficulties arise when the sampling time is
too short to perform the optimization on-the-fly. One way
around this problem is to precompute the optimal control
action u∗ for all feasible initial conditions x in form of an
explicit feedback law u∗ = κ(x). As shown in Bemporad
et al. (2002), for a rich class of MPC problems the feedback
function κ takes the form of a piecewise affine (PWA)
function, which is defined over a set of polytopic regions.
Computing u∗ on-line then reduces to a mere function
evaluation. However, the number of regions of κ, which is
problem-dependent, tends to be large, easily exceeding the
storage capacity of a selected implementation platform.
Therefore, it is important to keep the number of regions
as low as possible.

One way to reduce complexity is to construct a sub-
optimal replacement function κ̃ ≈ κ of substantially lower
complexity, see e.g. Bemporad and Filippi (2003); Jo-
hansen and Grancharova (2003); Grieder et al. (2004); Cy-
chowski and O’Mahony (2005); Jones and Morari (2009);
Scibilia et al. (2009). Another line of research is concerned
with finding such a replacement κ̃ which is simpler than
the original function, but maintains the equivalence κ(x) =
κ̃(x) for all points x of interest, as elaborated in Baotic
et al. (2008); Geyer et al. (2008); Wen et al. (2009).

In Kvasnica and Fikar (2010) we have shown how to find a
simpler, equivalent feedback law u∗ = κ̃(x) by exploiting
geometric properties of explicit MPC solutions. Specifi-
cally, we have demonstrated that in majority of controller’s
regions the optimal control action is saturated either at the
allowable maximum or minimum limits. Such regions can
subsequently be eliminated and replaced by “extensions”
of the regions in which the control action is unsaturated.

Such a procedure leads to an equivalent controller κ̃ which
is defined over, on average, 1.3Nunsat regions, where Nunsat

is the number of unsaturated regions. In this work we show
how to construct the function κ̃ which is always defined
over Nunsat regions. This is achieved by separating the
saturated regions by a suitable function, which serves to
recover equivalence between κ̃ and the original feedback
κ. Two types of separating functions are considered: poly-
nomials and piecewise affine separators encoded as binary
search trees.

This paper is structured as follows. Theoretical concepts of
explicit model predictive control are outlined in Section 3.
The general idea of complexity reduction employing the
concept of separating functions is elaborated in Section 4.
Polynomial separators are then reviewed in Section 5,
which also reviews various approaches to computing the
separating polynomial. Construction of piecewise affine
separators is reviewed in Section 6. Finally, in Section 7 we
demonstrate viability of the presented approach by means
of a large case study with the main focus on the states
with one input variable.

2. DEFINITIONS

The interior of a set R is denoted by int (R). Given
a function κ, dom(κ) denotes its domain. A set of n
elements R := {R1, . . . ,Rn} will be denoted as {Ri}ni=1
and its cardinality by |R|. A polytope is the bounded
convex intersection of c closed affine half-spaces, i.e. R :=
{x ∈ Rnx | Fx ≤ g}. We call the collection of polytopes

{Ri}Ri=1 the partition of a polytope R if R =
⋃R

i=1 Ri,
and int (Ri)∩ int (Rj) = ∅ for all i 6= j. Each polytope Ri

will be referred to as the region of the partition. Function
κ : R → Rnz with R ⊆ Rnx , R being a polytope, is called
piecewise affine over polytopes if {Ri}Ri=1 is the partition
of R and

κ(x) := Kix+ Li ∀x ∈ Ri, (1)
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with Ki ∈ Rnz×nx , Li ∈ Rnz , and i = 1, . . . , R. PWA
function κ(x) is continuous if Kix+ Li = Kjx+ Lj holds
∀x ∈ Ri ∩Rj , i 6= j.

3. EXPLICIT MODEL PREDICTIVE CONTROL

We consider the class of discrete-time, stabilizable linear
time-invariant systems

xk+1 = Axk +Buk, (2)

which are subject to polytopic constraints x ∈ X ⊂ Rnx

and u ∈ U ⊂ Rnu . Assume the following constrained finite-
time optimal control problem:

min
UN

N−1∑

k=0

xT
k+1Qxxk+1 + uT

kQuuk (3a)

s.t. xk+1 = Axk +Buk, xk ∈ X , uk ∈ U , (3b)

where xk and uk denote, respectively, state and input pre-
dictions over a finite horizon N , given the initial condition
x0. It is assumed in (3a) that Qx = QT

x � 0, Qu = QT
u ≻ 0,

i.e. that (3) is a strictly convex quadratic programming
(QP). The receding horizon MPC feedback then becomes
u∗(x0) = [1 0 · · · 0]U∗

N , where the optimal control actions
U∗
N := [uT

0 , . . . , u
T
N−1]

T can be found by solving (3) as
a QP for a given value of the initial condition x0. For
problems of a modest size (typically for nx < 5), it is
also possible to characterize the optimal feedback u∗(x0)
explicitly as a PWA function of x0 Bemporad et al. (2002)
by solving (3) as a parametric quadratic program (pQP).

Theorem 3.1. (Bemporad et al. (2002)). The RHMPC
feedback u∗(x0) for problem (3) is given by u∗(x0) =
κ(x0) where: (i) the set of feasible initial conditions Ω :=
{x0 | ∃u0, . . . , uN−1 s.t. (3b) hold} is a polytope; (ii)
κ : Ω → U is a continuous PWA function defined over
R regions Ri, i = 1, . . . , R; (iii) Ri are full-dimensional
polytopes Ri = {x | Fix ≤ gi}; and (iv) {Ri}Ri=1 is a
partition of Ω.

The advantage of such an explicit representation is obvi-
ous: obtaining the optimal control action for a given x0

reduces to a mere evaluation of the function κ(x0), which
is henceforth denoted as the explicit RHMPC feedback law.
The crucial limitation, however, is that the number of
regions tends to be large, often above the limits of typical
control hardware implementation platforms. Method rep-
resented in Kvasnica et al. (2011) deals with the problem
how to replace the feedback function κ by a different
function κ̃ which requires significantly less memory for its
implementation in real-time arrangement and maintains
the equivalence κ̃(x0) ≡ κ(x0) ∀x ∈ Ω.

4. COMPLEXITY REDUCTION VIA SEPARATION
OF REGIONS

Denote by κ and κ the maximal and minimal values which
the PWA function κ attains over its domain Ω. Since the
set of admissible inputs U in (3) is assumed to be closed
and bounded, and since all regions Ri, i = 1, . . . , R are
bounded polytopes, κ and κ are always finite and can be
computed by solving 2R linear programs of the form

κi =max{Kix+ Li | x ∈ Ri}, i = 1, . . . , R, (4a)

κi =min{Kix+ Li | x ∈ Ri}, i = 1, . . . , R, (4b)

with κ = max{κ1, . . . , κR}, κ = min{κ1, . . . , κR}. Then
the regions of κ(x) can be classified as follows.

(1) If Ki = 0 and Li = κ, then region Ri is saturated at
the maximum,

(2) if Ki = 0 and Li = κ, then region Ri is saturated at
the minimum,

(3) otherwise the i-th region is unsaturated.

Denote by Imax and Imin the index lists of regions sat-
urated at the maximum and minimum, respectively, and
by Iunsat the index list of unsaturated regions. With this
classification, the RHMPC feedback u∗ = κ(x) can be
written as

u∗ = κ(x) =





Kix+ Li if x ∈ RIunsat ,

κ if x ∈ RImax ,

κ if x ∈ RImin.

(5)

Evaluation of κ(x) for any x ∈ Ω is therefore a two-stage
process. First, the index r of region Rr which contains
x needs to be identified. Then, the value of κ(x) is either
computed byKrx+Lr if r ∈ Iunsat, or κ(x) = κ (κ(x) = κ)
if r ∈ Imax (r ∈ Imin). Identification of the index r
can either be done by searching through all regions Ri,
i = 1, . . . , R sequentially, or by evaluating a corresponding
binary search tree (Tøndel et al., 2003). In either case,
the required memory storage is proportional to the total
number of regions R.

If the number of saturated regions is non-zero, a simpler
representation of κ can be obtained. Notice that, since
the regions Ri are non-overlapping due to Theorem 3.1,
for any x ∈ Ω, x /∈ RIunsat , κ(x) can only take two
possible values: either κ(x) = κ, or κ(x) = κ. This fact
can be exploited to derive a new PWA function κ̃(x) which
maintains the equivalence κ̃(x) = κ(x) for all x ∈ Ω, and
requires less memory for its description compared to the
memory footprint of κ(x).

Proposition 4.1. Let a function p : Rnx → R which
satisfies p(x) > 0 for all x ∈ RImax and p(x) < 0 for
all x ∈ RImin be given. Define

κ̃(x) =





Kix+ Li if x ∈ RIunsat ,

κ if p(x) > 0,

κ if p(x) < 0.

(6)

Then, for all x ∈ Ω, κ̃(x) = κ(x).

Proof. Follows directly from (5) and from the definition
of p.

With a separator p at hand, u∗ = κ(x) can be evaluated by
only looking at the unsaturated regions RIunsat . If x ∈ Rr,
r ∈ Iunsat, then u∗ = Krx + Lr. Otherwise, based on
the sign of p(x), one either takes u∗ = κ or u∗ = κ. The
separating function p always exists. Since κ is continuous
by Theorem 3.1, regions Rj and Rk cannot be adjacent
for any j ∈ Imax, k ∈ Imin, and therefore they can always
be separated by a (possibly discontinuous) function p.

As will be evidenced later, a typical explicit RHMPC
feedback laws u∗ = κ(x) exhibits usually significantly
smaller number of unsaturated regions in comparison to
the number of saturated ones, i.e. |Iunsat| ≪ |Imax|+|Imin|.
Therefore κ̃ will require significantly less memory than
κ, and will be faster to evaluate too, if p is a “simple”
separator of the two setsRImax andRImin . Various types of
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separators can be considered, either continuous (e.g. linear
or polynomial), or discontinuous (e.g. piecewise linear or
piecewise polynomial). In this work we have opted for the
polynomial type of separating functions p and the problem
which we aim at solving is formally stated as follows.

Problem 4.2. Given a RHMPC feedback law u∗ = κ(x)
with κ as in (5), construct the replacement feedback (6)
by finding the multivariate polynomial

p(x) :=
∑

i1+···+in≤δ

(αi1,...,iδx
i1
1 · · ·xin

n ), (7)

of minimum degree δmin such that p strictly separates the
sets of regions RImax and RImin , i.e. p(x) > 0 ∀x ∈ RImax

and p(x) < 0 ∀x ∈ RImin .

Solving Problem 4.2 is, however, nontrivial, since the sets

RImax = {x | x ∈ ∪iRi, i ∈ Imax}, (8a)

RImin = {x | x ∈ ∪jRj , j ∈ Imin}, (8b)

can in general be non-convex. Even deciding whether they
are convex or not is an NP-hard problem (Bemporad et al.,
2001).

5. POLYNOMIAL SEPARATION

Given are the (non-convex) sets RImax and RImin as in (8),
each of which consists of a finite number of polytopes Rk.
The knowledge of whether the sets are convex or not is
not relevant here. Denote by Vk the vertices of Rk and fix
some integer δ ≥ 1 in (7). Then the necessary condition
for the existence of a polynomial p which strictly separates
RImax andRImin is feasibility of the following optimization
problem:

ǫ∗ = max
ǫ,αi

ǫ (9a)

s.t. p(Vi) ≥ ǫ, ∀i ∈ Imax, (9b)

p(Vj) ≤ −ǫ, ∀j ∈ Imin. (9c)

ǫ ≥ 0. (9d)

The optimal value ǫ∗ then denotes the maximal separation
gap between the two sets of points VImax and VImin . It is
important to notice that (9) is a linear program since, for
some fixed argument x = vk, vk ∈ Vk, p(x) in (9b)–(9c)
are linear functions of the coefficients αi. If the LP (9)
is infeasible, then no strict polynomial separator p of the
form of (7) exists for a given degree δ.

If δ = 1 in (9) then having ǫ∗ > 0 is also sufficient for the
linear function p(x) := α0 + α1x to strictly separate the
sets RImax and RImin (Boyd and Vandenberghe, 2004).
Consider therefore δ > 1. If (9) is feasible with ǫ∗ > 0,
then one of the two possible scenarios can occur. In an
ideal case, solving for coefficients of p from (9) by only
considering separation of VImax and VImin will also provide
a separator for the sets RImax and RImin , as shown in
Fig. 1(a). In a more general case, though, strict separation
of vertices is not sufficient for p(x) to separate all points
from the associated sets.

An additional certification step therefore has to be per-
formed. At this point we remind that all regions of RImax

and RImin are polytopes described by Ri = {x | Fix ≤ gi}.

RImax

RImin

p(x)

(a) Strict separation of ver-
tices can sometimes imply
strict separation of the as-
sociated sets.

RImax

RImin

p(x)

(b) In general, p(x)
correctly separating VImax

and VImin
does not imply

strict separation of RImax

from RImin
.

RImax

RImin

p(x)

x̃1

x̃2

(c) Finding points that vi-
olate borders requires solv-
ing the problem (10).

RImax

RImin

p(x)

(d) Adding the offending
points to VImax and resolv-
ing (9) leads to a new sep-
arating polynomial p(x).

Fig. 1. Sets RImax and RImin, vertices VImax (squares),
vertices VImin (circles), and the polynomial separator
p(x).

Consider the k-th facet of Ri, i.e. {x | fi,kx − gi,k = 0}
where fi,k and gi,k are the k-th rows of the respective
matrices Fi and gi. Denote by x̃i,k all solutions to the
polynomial equation p(x) = fi,kx − gi,k, restricted to
x ∈ Ri:

x̃i,k = {x | p(x)− fi,kx+ gi,k = 0, x ∈ Ri}. (10)

Clearly, if x̃i,k = ∅ ∀i ∈ Imax ∪ Imin and ∀k, then p
as a solution to (9) strictly separates RImax and RImin

(cf. Figure 1(a)). On the other hand, the situation in
Figure 1(c) corresponds to the case where there exist some
points x̃i,k for which the polynomial p(x) intersects the k-
th facet of the i-th region, i.e. when x̃i,k 6= ∅ for some i
and k. In such a case, the existence of any such point x̃i,k

provides a certificate that p(x) does not separate RImax

from RImin .

When at least one offending point x̃i,k exists, it can be
added to the corresponding set of vertices in (9b)–(9c). I.e.,
if x̃i,k 6= ∅ for some i ∈ Imax, then VImax = VImax ∪ x̃i,k.
Otherwise, if i ∈ Imin, then VImin = VImin ∪ x̃i,k. Resolving
the LP (9) with the updated list of vertices will then give
a new polynomial p for which the certification is repeated,
cf. Figure 1(d). If more offenders are found, they are
added to the list of vertices and the procedure is repeated.
Otherwise, an empty solution to (10) provides a certificate
that p(x) strictly separates RImax from RImin, whereupon
the procedure terminates. The discussed mechanism can
be formally stated as Algorithm 1, reported next.

Remark 5.1. Vertex enumeration in Step 1 of Algorithm 1
is considered a hard problem in general. However, for
the type of small-dimensional problems considered here,
enumerating V does not pose any significant technical
difficulty and the vertices can be easily computed e.g. by
CDD (Fukuda, 1997) in a matter of seconds.
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Algorithm 1 Construction of a polynomial separator

INPUT: Sets RImax and RImin as in (8), polynomial
degree δ.

OUTPUT: Separating polynomial p as in (7).
1: Get the lists of vertices VImax and VImin.
2: repeat
3: Solve the LP (9) and obtain coefficients α0, . . . , αδ.
4: if ǫ∗ > 0 then
5: Compute the list of offending points x̃i,k

from (10).
6: Insert x̃i,k to VImax or VImin.
7: else
8: No strict polynomial separator of degree δ exists,

abort.
9: end if

10: until x̃i,k 6= ∅.
Remark 5.2. There is no theoretical guarantee that the
iterations between Steps 2–10 will terminate in finite time.
However, for more than 500 random problems reported in
Section 7, the number of iterations newer exceeded 10.
Even more importantly, in 90% of cases Algorithm 1
terminated after a single iteration.

Solving Problem 4.2 involves finding a strict separator p
of the minimum degree δmin. This can be achieved e.g. by
using bisection, i.e. by running Algorithm 1 multiple times
for various values of δ until a feasible solution is obtained
and δ is minimized.

The list of offending points x̃ in Step 5 can be obtained by
solving (10) in several ways, as reviewed in the sequel.

5.1 Certification via Root Finding

The list of offending points x̃i,k in Step 5 of Alg. 1 can be
found by interpreting (10) as a problem of finding roots of
the polynomial p(x)−fi,kx−gi,k, constrained to x ∈ Ri for
a particular index i. If nx = 1, then the roots can be found
conveniently e.g. using the roots command of MATLAB.

If nx = 2, then the problem can be solved as follows.
Consider the k-th defining hyperplane of polytope Ri,
i.e. fi,kx− gi,k = 0. Each point on this hyperplane can be
expressed as

{x | fT
i,k(x− x0,k) = 0}, (11)

where x0,k is any point on such hyperplane, e.g. a suitable
vertex of region Ri. This representation can in turn be
expressed as

{x | x = x0,k + f⊥
i,k}, (12)

where f⊥
i,k represents the orthogonal complement to fi,k,

i.e. the set of all vectors orthogonal to it

f⊥
i,k = {v | fT

i,kv = 0} (13)

Substituting the orthogonal representation (12) into the
definition of p(x) and fi,kx+ gi,k = 0 converts (10) into a
problem with only one variable:

p(v)− fi,k(x0,k + f⊥
i,kv)− gi,k = 0. (14)

Consequently, the roots command can be used to find
all roots ṽi,k of (14), from which x̃i,k can be recovered
from (12). The method is applied on the new polynomial
to compute roots v. Note that only real roots need to be
considered. Since the procedure does not limit the roots

x̃i,k to a particular domain (Ri in our case), it is necessary
to obtain all roots of (14) and subsequently exclude those
which do not belong to Ri.

5.2 Nonlinear Programming Approach to Certification

Although the root finding procedure is easy to implement,
it is limited to 1D and 2D situations, only. Another option
to find out whether the list of offenders x̃ is non-empty
is to consider (10) as a feasibility problem with linear
inequality constraints (x ∈ Ri) and nonlinear equality
constraint (p(x) = fi,kx − gi,k). Such an approach is
applicable to arbitrary dimensions of x. Recalling that
Ri = {x | Fix ≤ gi}, the list of offenders is non-empty
iff there exists a solution to the following problem:

find x (15a)

s.t. p(x) = fi,kx− gi,k, (15b)

Fix ≤ gi, (15c)

which can be solved e.g. by fmincon of MATLAB. The
practical disadvantage of such a formulation lies in the
fact that equality constraints are sensitive to numerical
noise.

An alternative way is to reformulate (15) as an NLP
with nonlinear objective function and linear inequality
constraints. Recall that a valid separator has to guarantee
that p(x) > 0 for all x ∈ RImax . Similarly, p(x) < 0 is
required for all x ∈ RImin. Let

f∗
i,max = min p(x) (16a)

s.t. Fix ≤ gi, (16b)

and

f∗
i,min = max p(x) (17a)

s.t. Fix ≤ gi. (17b)

The it immediately follows that if f∗
i,max < 0 for some

i ∈ Imax (or if f∗
i,min > 0 for some i ∈ Imin), then

the point x∗
i as an optimal solution to (16) or (17) is a

valid offending point which shows that p(x) is not a strict
separating polynomial.

6. SEPARATION BY BINARY TREES

An another alternative is to separate the sets RImax and
RImin by a (possibly discontinuous) piecewise linear func-
tion p, as shown in different context by Fuchs et al. (2010).
There the authors search for a separator represented as a
binary search tree. Each node k of the tree represents one
linear separator of the form pk(x) := αk,1x − αk,0. The
task then becomes to find the coefficients such that pk
correctly separates as many elements of RImax and RImin

as possible. The misclassified elements are treated in a
recursive fashion while building a tree. The search for pk
at each level of the tree can be cast as a mixed-integer
linear program

min
∣∣∣
∑

Ri −
∑

Lj

∣∣∣+
∑

|Ri + Lj − 1| (18a)

s.t. Ri = 1 ⇔ {pk(x) ≥ ǫ ∀x ∈ Ri, i ∈ Imax}, (18b)

Lj = 1 ⇔ {pk(x) ≤ −ǫ ∀x ∈ Rj , j ∈ Imin},(18c)
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where ǫ > 0 is a given minimal separation gap introduced
to avoid the trivial solution αk,1 = αk,0 = 0. Binary
variables Ri (Lj) denote whether or not the corresponding
region of RImax (RImin) is correctly classified by a linear
separator pk, while minimizing the number of incorrectly
separated regions by (18a). The crucial downside of such
an approach is that a total of |Imax|+ |Imin| binaries needs
to be introduced. If the number exceeds ∼ 700 (which is
considered a small case by our standards), the size of the
MILP (18) becomes prohibitive to be solved even using
state-of-the-art solvers, such as CPLEX.

Therefore we propose a different method of finding the
linear separators pk(x) := αT

k,1x−αk,0 at each level of the

tree by solving a convex relaxation of (18):

min
u,v,α

1Tu+ 1T v (19a)

s.t. αT
k,1xi + αk,0 ≥ 1− ui, i = 1, . . . ,Vmax, (19b)

αT
k,1yi + αk,0 ≤ −(1− vi), i = 1, . . . ,Vmin,(19c)

u � 0, v � 0, (19d)

where xi (yi) represent extremal vertices of regions satu-
rated at maximum Rmax (regions saturated at minimum
Rmin), and ui and vi are nonnegative support vector clas-
sifiers of xi and yi, respectively.

When u = v = 1 in (19b) and (19c), we recover original
constraints αT

k,1xi − αk,0 ≥ 0 and αT
k,1yi − αk,0 ≤ 0

as a feasible nonstrict linear discriminant of two sets of
points. Think of ui as a measure how much the constraint
αT
k,1xi−αk,0 ≥ 0 is violated and the same holds for vi. The

goal is to find αk,1, αk,0 and sparse u and v that satisfy
inequalities (19b) – (19c), maximize the slab, and minimize
the number of misclassified points. In other words, (19)
is a relaxation of the number of points misclassified by
the function αT

k,1z − αk,0, plus the number of points that

are correctly classified but lie in the slab of width {z |
−1 ≤ αT

k,1z − αk,0 ≤ 1} given by 2/‖αk,1‖2 (Boyd and

Vandenberghe (2004)).

The Algorithm 2 shows a pseudocode of the recursive
function used to build a binary tree. Inputs to the function
are 2 sets of saturated regions (Rmin,Rmax) which are
immediately transformed into 2 sets of extremal vertices
(Vmin,Vmax). Acquired PWA function splits points into
correctly and incorrectly classified ones, where regions
corresponding to the misclassified points are searched.
If the sets are empty, algorithm reached a leaf nodes,
otherwise the solution is referred as node and function is
recalled with new sets of regions. Steps of the Algorithm 2
are depicted in Fig. 2.

7. EXAMPLES

7.1 Illustrative example

Consider a 2-state 1-input system given by

x+ =

[
0.755 0.680
0.651 −0.902

] [
x1

x2

]
+

[
0.825

−0.139

]
u, (20)

which is subject to constraints X = {[ x1
x2 ] | − 10 ≤ [ x1

x2 ] ≤
10} and U = {u ∈ R | −1 ≤ u ≤ 1}. The MPC problem (3)
was formulated with prediction horizon N = 10, Qx = 1

Algorithm 2 Construction of a PWA form of separator
p(x)

INPUT: Sets RImax and RImin as in (8).
OUTPUT: Separator p encoded as a set of linear func-

tions.
1: function BINARYTREE(RImin ,RImax)
2: Get the lists of vertices Vmin and Vmax.
3: Solve the LP (19) and create a new node in the tree

defined by pk(x) := αT
k,1x− αk,0.

4: Find misclassified points Vmin, Vmax and keep corre-
sponding regions Rmin, Rmax.

5: if Rmin 6= ∅ then
6: return BINARYTREE(Rmin, RImax).
7: end if
8: if Rmax 6= ∅ then
9: return BINARYTREE(RImin , Rmax).

10: end if
11: end function
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Fig. 2. Illustration of finding a PWA separator by Algo-
rithm 2. At each iteration a new node is created which
contains a linear separator pk correctly separating as
many points as possible. Shown are the vertices Vmax

(green stars), vertices Vmin (red circles), misclassified
points (black x-marks), and the linear separator pk(x)
(continuous line) at each iteration.

and Qu = 1 and solved as a parametric QP according to
Theorem 3.1. Using the MPT Toolbox (Kvasnica et al.,
2004), the explicit RHMPC feedback u∗ = κ(x) was
obtained in 4 seconds 1 as a PWA function defined over
225 regions. The domain of κ consists of 29 unsaturated
regions, 98 regions where κ(x) = 1, and 98 regions where
κ(x) is saturated at −1.

As can be clearly seen from Figure 2(a), no linear sepa-
ration between the sets of points VImax and VImin could
be found. A polynomial separator p(x) = −x1 − x2 +
0.6103x1x

2
2 − 0.2076x2

1x2 + 0.0458x3
1 + x3

2 of the minimal
degree δmin = 3 was then found by applying bisection in
conjunction with Algorithm 1. The algorithm converged
within of one iteration. The vertices in Step 1 were com-

1 On a 2.4 GHz CPU with 4GB of RAM using MATLAB 7.9 and
MPT 2.6.3
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Fig. 3. Final form of a binary tree division. Linear sepa-
rators pk(x) represents each of the nodes from binary
tree.

puted by CDD in 0.01 seconds. Coefficients of the poly-
nomial were obtained by solving the LP (9), which took
0.7 seconds using CPLEX. Implementing the certification
in Step 5 using root finding (cf. Section 5.1) took 1.85
seconds, while the NLP-based certification of Section 5.2
took 6.55 seconds.

A binary separation tree can also be constructed by
recursively solving LP problems (19). For the sets of
points depicted in Figure 2, the procedure generated a
tree consisting of four nodes:

p1(x) = −0.38x1 + 1.96x2 (21)

p2(x) = 0.019x1 + 1.75x2 − 0.34 (22)

p3(x) = −2.26x1 + 3.87x2 + 9.12 (23)

p4(x) = −0.22x1 + 0.37x2 − 1.0 (24)

The tree is rooted at p1, with p2 visited if p1(x) < 0 and
p3 if p1(x) > 0. The next node is rooted at p2, with p4
visited if p2(x) > 0 which betrays the unbalanced binary
tree. The total runtime of LPs (19) was 4.7 seconds with
CDD.

However, as can be seen from Fig. 3, a binary tree with
just 3 nodes would be sufficient to correctly separate
the corresponding vertices. However, Algorithm 2 finds 4
nodes. This is due to the fact that Alg. 2 attempts to
find, at each iteration, a best subdivision of the points by
solving the LP (19). No effort is made to minimize the
cardinality or the depth of the resulting PWA tree. This
can, however, be achieved by an adequate post-processing
procedure.

The total memory footprint of κ (which consists of the
regions Ri and the feedback laws Kix + Li) with 225
regions, is 27 kilobytes. On the other hand, by devising
a separator p, the storage requirements of κ̃ drops to a
mere 3.5 kilobytes. Here, the unsaturated regions RIunsat

contribute by 2.8 kB, the associated feedback laws by 0.7
kB, and the memory footprint is just 24 bytes for the
polynomial separator, and 48 bytes for the binary tree.
It follows that complexity of the on-line implementation
of the RHMPC feedback law can be reduced by a factor
of 7.7 by using the modified feedback u∗ = κ̃(x) instead of
the original function u∗ = κ(x).

Table 1. Comparison of total runtimes for
different routines in polynomial separation

(δmin = 3), selected problems.

No. of Runtime [sec]
regions fmincon roots

189 6.15 2.73

199 5.69 2.85

225 7.82 2.96

257 7.61 3.46

495 14.23 6.36

Table 2. Number of nodes and runtimes nec-
essary for rooting, comparison of LP (19) with

MILP algorithm of Fuchs et al. (2010)

No. of regions LP MILP

total sat unsat
No. of total No. of total
nodes runtime nodes runtime

[sec] [sec]

189 172 17 4 4.2 3 8.6

199 154 45 4 6.7 3 7.0

225 196 29 4 6.7 3 9.1

257 208 49 4 5.0 4 17.3

283 244 39 5 6.1 4 23.7

319 260 59 4 5.6 3 12.5

495 460 35 5 13.7 48 1176.9

7.2 Random examples

Next, we have analyzed a large number of randomRHMPC
feedback laws κ generated by solving problem (3). We
have considered 100 random problems with 2 states and
1 input. For each PWA function we have constructed the
replacement κ̃ as in (6). Both polynomial and binary tree
separation were considered.

The purpose of this study was twofold. First, we have
investigated how the root-finding approach to certification
compares to the more general NLP-based procedure of
Section 5.2. Table 1 shows that the root finding procedure
performs twice as fast as the NLP approach. Moreover,
it illustrates how the computation scales with increasing
complexity of the problem. It should be noted, though,
that the NLP procedure is applicable to arbitrary dimen-
sions, while the root finding approach is limited to 2D
scenarios only.

Next, we compared the runtime needed to construct a
PWA separator, encoded as a binary search tree, using
the MILP procedure of Fuchs et al. (2010) and by the
convex LP relaxation (19). The results summarized in
Table 2 show that the LP relaxation is significantly more
efficient, for it being able to construct the PWA separator
even for large scenarios. Note also that the number of
unsaturated regions (denoted by unsat) is significantly
smaller in comparison to the number of saturated regions
(sat).

8. CONCLUSIONS

Given an explicit RHMPC feedback function κ, we have
shown how to construct its simpler replacement κ̃ which
maintains the equivalence κ(x) = κ̃(x) for all x ∈
domκ(x). The mechanism was based on devising a func-
tion p(x), which separates regions over which κ attains
a saturated value. The replacement κ̃ then requires only
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the storage of the unsaturated regions of κ, along with
the separator p. We have shown how to build such a p
by solving a linear optimization problem, followed by a
certification step which requires solution to a polynomial
equation. Two approaches to such a certification were
proposed: one based on finding roots of a polynomial,
and second one based on solving a nonlinear programming
problem. By means of a case study we have illustrated
how different approach to certification influence the total
computation time. When a piecewise affine separator is
desired, we have proposed to use a convex relaxation of the
separation problem, which is significantly more efficient
compared to the approach based on solving a mixed integer
separation problem.
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