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Abstract:  There is introduced an algorithm which provides piecewise-linear model of nonlinear plant 
using artificial neural networks, in this paper. That piecewise-linear model is precise and each linear 
submodel is valid in some neighbourhood of actual plant state. This model can be used for plant control 
design. There is presented an example at the end of this paper, where defined nonlinear plant is controlled 
via Pole Assignment technique using piecewise-linear neural model and control response is compared to 
data obtained by common PID controller. 

 

1. INTRODUCTION 

Artificial Neural Network (ANN) is a popular methodology 
nowadays with lots of practical and industrial applications. 
As introduction it is necessary to mention applications as 
mathematical modelling of bioprocesses in Montague et al. 
(1994), Teixeira et al. (2005), prediction models and control 
of boilers, furnaces and turbines in Lichota et al. (2010) or 
industrial ANN control of calcinations processes and iron ore 
processes in Dwarapudi, et al. (2007). 

Therefore, the aim of the contribution is to explain how to 
use ANN with piecewise-linear activation functions in hidden 
layer in process control. To be more specific, there is 
described technique of controlled plant linearization using 
ANN nonlinear model. Obtained linearized model is in a 
shape of linear difference equation. 

2. ANN FOR APPROXIMATION 

According to Kolmogorov's Superposition Theorem, any real 
continuous multidimensional function can be evaluated by 
sum of real continuous one-dimensional functions, see Hecht-
Nielsen (1987). If the theorem is applied to ANN, it can be 
said that any real continuous multidimensional function can 
be approximated by certain three-layered ANN with arbitrary 
precision. Topology of that ANN is depictured in Fig. 1. 
Input layer brings external inputs x1, x2, …, xP  into ANN. 
Hidden layer contains S neurons, which process sums of 
weighted inputs using continuous, bounded and monotonic 
activation function. Output layer contains one neuron, which 
processes sum of weighted outputs from hidden neurons. Its 
activation function has to be continuous and monotonic. 

So ANN in Fig. 1 takes P inputs, those inputs are processed 
by S neurons in hidden layer and then by one output neuron. 
Dataflow between input i and hidden neuron j is gained by 
weight w1

j,i. Dataflow between hidden neuron k and output 
neuron is gained by weight w2

1,k. Output of the network can 
be expressed by following equations. 
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Fig. 1. Three-layered ANN 
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In equations above, φ1(.) means activation functions of 
hidden neurons and φ2(.) means output neuron activation 
function. 

As it is mentioned above, there are some conditions 
applicable for activation functions. To satisfy those 
conditions, there is used mostly hyperbolic tangent activation 
function (eq. 5) for neurons in hidden layer and identical 
activation function (eq. 6) for output neuron. 

( )jaj yy 11 tanh=  (5) 

1
2
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Mentioned theorem does not define how to set number of 
hidden neurons or how to tune weights. However, there have 
been published many papers which are focused especially on 
gradient training methods (Back-Propagation Gradient 
Descend Alg.) or derived methods (Levenberg-Marquardt 
Alg.) – see Haykin (1994). 

3. SYSTEM IDENTIFICATION BY ANN 

System identification means especially a procedure which 
leads to dynamic model of the system. ANN has traditionally 
enjoyed considerable attention in system identification 
because of its outstanding approximation qualities. There are 
several ways to use ANN for system identification. One of 
them assumes that the system to be identified (with input u 
and output yS) is determined by the following nonlinear 
discrete-time difference equation. 
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In equation above, ψ(.) is nonlinear function, k is discrete 
time and n is difference equation order. 

The aim of the identification is to design ANN which 
approximates nonlinear function ψ(.). Then, neural model can 
be expressed by (eq. 8). 
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In (eq. 8), ψ̂  represents well trained ANN and yM is its 

output. Formal scheme of neural model is shown in Fig. 2. It 
is obvious that ANN in Fig. 2 has to be trained to provide yM 
as close to yS as possible. Existence of such a neural network 
is guaranteed by Kolmogorov's Superposition Theorem and 
whole process of neural model design is described in detail in 
Haykin (1994) or Taufer et al. (2008). 

4. PIECEWISE-LINEAR MODEL 

As mentioned in section 2, there is recommended to use 
hyperbolic tangent activation function for neurons in hidden 
layer and identical activation function for output neuron in 
ANN used in neural model. However, if linear saturated 
activation function (eq. 9) is used instead, ANN features stay 
similar because of resembling courses of both activation 
functions (see Fig. 3). 
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The output of linear saturated activation function is either 
constant or equal to input so neural model which uses ANN 
with linear saturated activation functions in hidden neurons 
acts as piecewise-linear model. One linear submodel turns to 
another when any hidden neuron becomes saturated or 
becomes not saturated. 

Let us presume an existence of some dynamic neural model 
which uses ANN with linear saturated activation functions in 
hidden neurons and identic activation function in output 
neuron – see Fig. 4. Let us also presume m = n = 2 for 
making process easier. ANN output can be computed using 
eqs. (1), (2), (3), (4). However, another way for ANN output 
computing is useful. Let us define saturation vector z of S 
elements. This vector indicates saturation states of hidden 
neurons – see (eq. 10). 
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Then, ANN output can be expressed by (eq. 11). 
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Fig. 3. Activation functions comparison 
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Fig. 2. Neural model 
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Thus, difference equation (11) defines ANN output and it is 
linear in some neighbourhood of actual state (in that 
neighbourhood, where saturation vector z stays constant). 
Difference equation (11) can be clearly extended into any 
order. 

In other words, if it is designed neural model of any nonlinear 
system in form of Fig. 4, then it is simple to determine 
parameters of linear difference equation which approximates 
system behaviour in some neighbourhood of actual state. 
This difference equation can be used then to the actual 
control action setting due to any of classical or modern 
control techniques. 

If chosen control technique requires model in form of 
difference equation with no constant term (c = 0), (eq. 11) 
can be transformed in following way. Let us define 
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where u0 is constant. Then, (eq. 11) turns into 
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Equation (13) becomes constant term free, if (eq. 14) will be 
satisfied. 
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It is obvious that mentioned procedure can be extended into 
any order of difference equation. 

Whole algorithm of piecewise-linear neural model usage in 
process control is summarized in following terms. 

1. Create neural model of controlled plant in form of 
Fig. 4. 

2. Set k = 0. 

3. Measure plant output yS(k). 

4. Determine parameters ai, bi and c of difference equation 
(11). 

5. Transform (eq. 11) into (eq. 13). 

6. Determine )(~ ku  according to some chosen control 

technique using linear plant model in form (eq. 13). 

7. Transform )(~ ku  into u(k) using (eq. 12) and perform 

control action. 

8. k = k + 1, go to 3. 

5. EXAMPLE 

Demonstrative nonlinear controlled system is defined by 
difference equation (15). 
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There are defined the boundaries of input u(k) to interval 
<0;3>. Static characteristic of the system is figured below 
(Fig. 5). 
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Fig. 4. Piecewise-linear neural model 
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Fig. 5. Static characteristic of the system 
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Firstly, system is controlled with PID controller tuned by trial 
and error – more sophisticated tuning methods fail to bring 
better performances because of significant nonlinearity of the 
plant. Control response (Fig. 6) shows serious lack of quality. 
For lower values of controlled variable yS(k), control 
performance oscillates unacceptably, while for higher values 
of yS(k), control performance is too damped. 

Then, piecewise-linear neural model is used for control. 
Neural model is designed according to information described 
in section 4. Detailed description of the process is not 
referred here, because it is standard well-known procedure. 
Certain control technique, which can use system model in 
form of (eq. 13), has to be determined. In this demonstration, 
Pole Assignment control technique (PA) of Algebraic 
Control Theory is used. 

In simple words, this control technique determines controller 
parameters so that whole closed control loop behaves as some 
defined standard. In one its version, PA uses control loop 
shown in Fig. 7. Controlled system should be described by 
polynomials A(z-1), B(z-1), where polynomial parameters are 
equal to difference equation parameters used for linear model 
of the controlled system. Both feedforward and feedback part 
of controller are defined by polynomials P(z-1), Q(z-1), R(z-1), 
which can be determined by solving of several diophantine 
equations. Standard for control loop behaviour has to be 
chosen. Whole procedure of PA is described in detail in book 
edited by K. J. Hunt (1993). 

Standard for this demonstration is defined as discrete first 
order system with unit gain and denominator (1 -0.6065z-1). 

Control performance is shown in Fig. 8. Compared to Fig. 6, 
there comes clear improvement. 

6. CONCLUSIONS 

The paper is focused on usage of neural network with linear 
saturated activation functions in process control. Neural 
model with such a neural network within is suitable for 
controller design using any of huge set of classical or modern 
control techniques. As example, there is presented control of 
nonlinear discrete plant using Pole Assignment technique. 
Comparison to control performance provided by PID 
controller proves great improvement. 

ACKNOWLEDGMENTS 

The work has been supported by the funds No. MSM 
6046137306 and No. MSM 0021627505 of Ministry of 
Education of the Czech Republic, No. MEB 0810003 of 
Ministry of Education, Science, Research and Sport of the 
Slovak Republic and of Ministry of Education of the Czech 
Republic and No. SGFEI06/2011. This support is very 
gratefully acknowledged. 

REFERENCES 

Dwarapudi, S., Gupta, P. K. and Rao, S. M. (2007). 
Prediction of iron ore pellet strength using artificial 
neural network model, ISIJ International, Vol. 47, No 1. 
pp. 67-72, ISSN 0915-1559. 

Haykin, S. (1994). Neural Networks: A Comprehensive 
Foundation. Prentice Hall. New Jersey. ISBN 
0023527617 

Hecht-Nielsen, R. (1987). Kolmogorovʼs mapping neural 
network existence theorem. In: Proc 1987 IEEE 
International Conference on Neural Networks. Vol. 3, 
pp. 11-13. IEEE Press. 

Hunt, K. J., Ed.  (1993). Polynomial methods in optimal 
control and filtering. Peter Peregrinus Ltd. Stevenage. 
ISBN 0-86341-295-5. 

Lichota, J. and Grabovski, M. (2010). Application of artificial 
neural network to boiler and turbine control, Rynek 
Energii, Vol. 16, No 1. ISSN 1425-5960. 

Montague, G. and Morris, J. (1994). Neural network 
contributions in biotechnology, Trends in biotechnology, 
Vol. 12, No 8. pp. 312-324, ISSN 0167-7799. 

0 100 200 300 400 500
-0.5

0

0.5

1

1.5

2

2.5

k

w
S, u

, y
S

 

 
wS

u

yS

 
Fig. 8. Control Response with PA Controller and 

Piecewise-Linear Neural Model  

 

0 100 200 300 400 500
-0.5

0

0.5

1

1.5

2

2.5

k

w
S, 

u
, 
y S

 

 
wS

u

yS
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