
Slovak University of Technology in Bratislava
Institute of Information Engineering, Automation, and Mathematics

PROCEEDINGS
of the 18th International Conference on Process Control

Hotel Titris, Tatranská Lomnica, Slovakia, June 14 – 17, 2011

ISBN 978-80-227-3517-9

http://www.kirp.chtf.stuba.sk/pc11

Editors: M. Fikar and M. Kvasnica

Petrík, M., Kozák, Š.: Prediction of Critical Processes in Nuclear Power Plant Using Genetically Trained Neural Networks,
Editors: Fikar, M., Kvasnica, M., In Proceedings of the 18th International Conference on Process Control, Tatranská
Lomnica, Slovakia, 77–84, 2011.

Full paper online: http://www.kirp.chtf.stuba.sk/pc11/data/abstracts/048.html

http://www.kirp.chtf.stuba.sk/pc11
http://www.kirp.chtf.stuba.sk/pc11/data/abstracts/048.html


Prediction of critical processes in nuclear

power plant using genetically trained neural

networks

Matej Petrík ∗ �tefan Kozák ∗∗

∗ Matej Petrík, Institute of Applied Informatics at FIIT SUT
(Tel: +421 910 904 516; e-mail: matej.petrik@gmail.com)

∗∗ �tefan Kozák, Institute of Automatic control systems at FEI SUT
(Tel: +421 905 581 323; e-mail: stefan.kozak@stuba.sk)

Abstract: Neural network is one of many models used in power engineering process prediction.
In most cases, the accuracy of prediction models is critical in operational safety or is used to
support human irreversible decisions. We use neural network, when the real model of process is
unknown, or it is too di�cult to identify them in domain speci�c environment. Neural networks
training algorithms are di�erent. Typically, measured data are divided into 2 sets called train
and test set. On the train set, algorithms set neural network parameters so that network simulate
process on train interval. On the test set is network tested if it can generalize the process from
train set. We take a look on special genetic training and compare it with algorithm used today
to generalize the process.

Keywords: neural network genetic plant energetics

1. INTRODUCTION

Nuclear power plant performance is the result of complex
system composed of nuclear reactor, warm and cold wa-
ter, radioactive water, turbines and electricity generator.
Source of generated energy are graphite rods containing
uranium. Uranium is fuel for controlled nuclear reactions,
which results into non-linear amount of irradiated heat.
This heat is transfered through two system of warm water
to large generator turbines - �gure 11. Even though we
know the physical background of the nuclear chain reaction
and thermodynamic laws, we are not able to compute
physical model because of many (but measurable) external
impacts. Instead of assembling mathematical model of
physical laws a�ecting the outputs in nuclear power plant,
we are trying to create soft-computing methods to solve
the prediction problem. Performance modeling is critical
in 2 cases: security and economic. To prevent and avoid
critical situation, we can't generate more energy in reactor
than the water system can absorb. From economic reasons
we have to generate just enough energy, which is possible
to consume by customers.

Described process is nonlinear dynamic system, where
the current state strongly depends on previous situation
and outside conditions. It is possible to model dynamic
systems in many ways, but with neural networks we hold a
great tool - universal approximator. O�ine training (which
is speci�c for neural networks with supervisor) bring us
opportunity to research new algorithms without a�ecting
the real world. The only important point on generated
neuro-model is generalization quality - the ratio between
test and train prediction error. Classical algorithms use
during the training process prediction error as error signal
to calculate new network parameters. In this work, we are

going to describe and show special genetic algorithm for
training neural network, and compare them with standard
methods used nowadays in nuclear plants for training
neural networks.

Main area of the proposed paper is creation of e�ective
dynamic models for prediction of possible critical situ-
ations. Created system can be used in supervisor mode
for supporting decision processes by human professionals.
Measured data were obtained from collecting the real sys-
tem values in nuclear plant.

Neural network models used nowadays in nuclear power
plants are described in APVV project documentation for
VVER 400 reactor. They are trained with iterative -
newton methods provided by toolbox NNSYSID because
of low prediction error in real usage.

There are many publications about neural networks, but
for purposes of this paper we are using only NNSYSID
toobox, which is fully described at NNSYSID homepage.

2. PROBLEM FORMULATION

Because of previously used models of neural network im-
plementations in nuclear plant 1 we are going to train
recurrent network - multilayered percepton in toolbox
NNSYSID. This architecture of recurrent connections al-
lows connect previous outputs only at input layer of neu-
rons, not hidden layers of network in input vector, as
shown in �gure 1

As an activation function we are using hyperbolic tangent
sigmoid:
1 Project APVV - Application of arti�cial intelligent methods in
modeling and control of critical processes in power industry.

18th International Conference on Process Control
June 14–17, 2011, Tatranská Lomnica, Slovakia Le-We-3, 048.pdf

77



x(t)

x(t-1)

y(t-1)

y(t-2)

y(t)

Fig. 1. Neural network architecture, x - input, y - output,
t - time sample

y = f(x) = tanh

(
n∑

i=1

wixi − wi+1θ

)
(1)

where:
x is input vector
N is number of connections to given neuron
wi is weight, which a�ects input signal
θ is threshold
wi+1 is weight for threshold

It is possible to use another activation function, for exam-
ple:

y =
1

1 + e−x
(2)

where:
e is Euler's number

Because of the gradients of those functions are similar, it is
not necessary to determine which function is better. Only
the interval used to initialize network with random weights
correlate with this gradient.

The whole network activity is computed by connected lay-
ers of neurons into one intelligent object and the resulting
signal is computed by (for MISO neuro model):

x = x1, ..., xNy1, ..., yN−1 (3)

y(t) = fact

(
i=L∑

i=1

woutfact

(
i=K∑

i=1

wi
hidx

))
(4)

where:
x1...xN are input values with delay
y1...yN−1 are previous network outputs
fact is activation sigmoid function
wout is vector of output layer weights
whid is matrix of hidden neurons weights

For simulating a dynamic system, we are searching for
speci�c hidden and output layer weights combination.
The solution can be interpolated into n-dimensional space
(where n is number of weights in network). Than we can
simply represent the solution or state of network with one
point:

y(t) = F (Ww1hid
, ...,WwKhid

Ww1out
, ...,WwLhid

) (5)

where:
F () is transfer function to y(t) from n-dimensional space
W is vector of all weights in network

To specify the su�cient condition for evaluating a quality
of prediction we use prediction error and average predic-
tion error for one sample:

ε =

N∑

i=1

1

2
(F (x)−G(x))2 (6)

εavg =

∑N
i=1

1
2 (F (x)−G(x))2

N
(7)

where:
ε is general error
εavg is average error for 1 sample
N is number of samples used in test set
F (x) is computed output of simulated system
G(x) is real output of the system

Di�erent training algorithms comparison should be done
trough monitoring the neural network state in n-dimensional
space after each iteration (if the algorithm is iterative-
based, but most are). Next preference of algorithm is one
step Hamming distance between the iterations. Stochastic
model evaluating the next-step position in n-dimensional
state is useful for measurement the probability of Ham-
ming distance:

x(t+ 1)p1...pN
∈ sph(x(t)p1...pN

; δ) (8)

δ = ∆maxp
2
1; ...; ∆maxp

2
N (9)

where:
sph(x, y) is n-dimensional spheroid function
x(t)p1...pN

are neural network state coordinates
δ is vector of n-dimensional spheroid dimensions
x(t+ 1)p1...pN

is possible state in next iteration
∆maxp is maximum possible change in current weight

Main idea - nuclear plant performance prediction, should
be computed from reactivity, neutron �ux (in nuclear
reactor) and warm and cold balance valves temperatures 2 .
Progress examples of these variables are displayed at
�gures 2, 3, 4, 5. The output of system (which is also the
expected output of our model) - performance is displayed
at �gure 6.

As seen on �gures (and also all industry data) data are
recorded with some noise (additive white noise, 1/f pink
noise, gray noise 3 ). To avoid network from learning useless
noise, it is necessary to �lter all input signals before
putting it to neural network inputs. The mostly used
�ltration methods to smooth a noise are: moving average
and Savitzky-Golay �lter. One good example of moving
average is exponential moving average:

EMAN =

∑N
i=N−n wα

N−im(i)
∑N

i=N−n wα
N−i

(10)

2 Same, as were trained models in project APVV
3 In this case we have a white noise on our data

18th International Conference on Process Control
June 14–17, 2011, Tatranská Lomnica, Slovakia Le-We-3, 048.pdf

78



Fig. 2. Time response of reactivity

Fig. 3. Time response of neuron �ux

where:
N is index of measurment
w is weight of previous measurment
α is decreasing coe�cient of previous weights
m is vector of measured values
Savitzky-Golay �lter is able to represent local extremes on
noisy data.

3. CASE STUDY: MODEL IMPLEMENTATION

The goal is to explore new methods in neural network
training, reduce known disadvantages of currently used
learning algorithms. When we use Newton optimization
methods, training process strongly depends on Gradients,
Hessians, local extremes, process characteristic. These
properties have major impact on train / test set prediction
error ratio. Genetic optimizations are di�erent. The main
di�erence is, that the steps between iterations are the
same 4 and the error signal doesn't a�ect the weights
directly, but networks with bad results are replaced with
4 not strictly, but comparing to newton optimization methods

Fig. 4. Time response of cold valve temperature

Fig. 5. Time response of warm valve temperature

better ones. Before solving an optimization problem with
genetic (evolutionary) algorithm is necessary to create
transfer function from problem state to gene. After a
transfer function is created, we have to specify a �tness
function. Fitness function is used to evaluation given gene.
After that, the optimization begins with M 5 randomly
initialized genes. These genes are evaluated with �tness
function, and sorted from the best to worst. After sort,
we take some better genes for the application of genetic
methods - crossover, mutation 6 . This process is repeated
in iterations while we found acceptable solution.

In neural networks, genes should be simple all the weights,
which represent the state. So the transfer function is simple
- matrix form hidden and output layers weights. Fitness
function should be prediction error on train data.

5 Typically M is between 20 - 40
6 These are the most used in evolutionary programming, typically
each genetic optimization problem need separate analysis of appro-
priate methods

18th International Conference on Process Control
June 14–17, 2011, Tatranská Lomnica, Slovakia Le-We-3, 048.pdf

79



Fig. 6. Time response of performance

For better understanding both approaches, lets assume
that the acceptable neuro-model solution is situated in n-
dimensional space in hypercube with dimensions [−1w1

...−
1wN

; 1w1 ...1wN
], or simply all the weights are from interval

< −1, 1 > 7 . In Newton optimization methods are
the next-step Hamming distance of weights smaller and
strongly depends on error signal, so the state where can
next state occur in n-dimensional space is very irregular
and small spheroid 8 . Otherwise, in genetic algorithm
we use mutation - random change in random weights in
some genes, so the next state, where can network occur is
situated into sphere, not spheroid, and this sphere covers
the whole hypercube of possible solutions 9 .

Before training, we must specify how much neurons should
network have, and how much earlier measured data is
necessary to put on network input. Experimentally we set
40 as number of hidden layer neurons, 3 past inputs and
previous outputs on input.

First, let's look at neural network trained with Newton
optimization method - Levenberg-Marquadt. This method
is implemented in toolbox NNSYSID used with Matlab
environment. We took some 35 minute data as a train set
10 and we started the training process. The result is shown
at �gure 7.

After that, we test the model on some randomly selected
data (more than 5 hours). The result on test set is shown
at �gure 8

In genetic training, �rst we have to specify crossover func-
tion and mutation functions(s). For crossover we choose
this function:

Gnew = MGrand1 + inv(m)Grand2 (11)

7 It's not necessary to think about bigger interval, because of fast
convergence of used sigmoid functions
8 Something like "irregular spheroid" doesn't exist, but the radiuses
of every dimensions are di�erent - also depends on error signal
9 The probability of next state in sphere is smaller with his increas-
ing radius, but always possible
10Where were performance decreasing and increasing

(a) Time response of prediction error

(b) Prediction (red) and reality (blue)

(c) Prediction error histogram

Fig. 7. Levenberg-Marquadt method, train set

18th International Conference on Process Control
June 14–17, 2011, Tatranská Lomnica, Slovakia Le-We-3, 048.pdf

80



(a) Time response of prediction error

(b) Prediction (red) and reality (blue)

(c) Prediction error histogram

Fig. 8. Levenberg-Marquadt method, test set

where:
Gnew new gene matrix, which represent neural network
state
Grand1 , Grand2 are two randomly chosen genes
M is randomly generated binary matrix
inv is inverse function

And for mutation, we choose 2 mutation: classic and
output layer moving mutation:

Gnew = Mrand(−1, 1)Grand (12)

where:
Gnew is new gene matrix
Grand are randomly chosen gene from population
M is randomly generated binary matrix
rand is random function

Gnew = rand(−1, 1)hid(Grand) (13)

where:
Gnew is new gene matrix
Grand are randomly chosen gene from population
rand() is random function
hid() is function for extracting only hidden layer weights

Our algorithm creates 40 randomly generated genes and
sorts it in every iteration, after application of genetic meth-
ods shown above. We stop the algorithm after 1370000
iterations and it takes more than 8 days to run. To bet-
ter comparison, we let the train and test set the same
as in Levenberg-Marquadt method. The result of genetic
method is shown at �gure 9 (genetic training) and 10 (test
set). Comparison of prediction errors between genetic and
Levenberg-Marquadt method is shown at table 1.

Although that the prediction error with genetic training
is greater, the important thing is, that the ratio between
train/test set error is smaller. From this point of view we
can declare, that genetic algorithm has better ability to
learn process characteristic from train set and it is valuable
alternative to another training methods.

This genetic algorithm was implemented in Matlab en-
vironment, integrated with NNSYSID toolbox using the
same data structures describing the neural network state
as have been chosen by NNSYSID toolbox authors. Al-
gorithm has constant memory requirements, uses all CPU
resources and was tested in Matlab 2010. Both approaches
were tested with NNSYSID function NNVALID.

Table 1. Levenberg-Marquadt and genetic
training method comparison

Genetic alg. LM alg.

Prediction error (Train) 3.0420× 10−6 3.0521× 10−7

Prediction error (Test) 1.5191× 10−5 3.2994× 10−6

Prediction error ratio 5 10

Runtime 8 days approx. 15 min.

18th International Conference on Process Control
June 14–17, 2011, Tatranská Lomnica, Slovakia Le-We-3, 048.pdf

81



(a) Time response of prediction error

(b) Prediction (red) and reality (blue)

(c) Prediction error histogram

Fig. 9. Genetic method, train set

(a) Time response of prediction error

(b) Prediction (red) and reality (blue)

(c) Prediction error histogram

Fig. 10. Genetic method, test set

18th International Conference on Process Control
June 14–17, 2011, Tatranská Lomnica, Slovakia Le-We-3, 048.pdf

82



4. CONCLUSION

In this paper, we provide comparison of real imple-
mented soft-computing genetic algorithm for neural net-
work training with often used Levenbeg-Marquadt op-
timization method. With these methods were 2 neural
networks trained with real data, on same test and train in-
tervals. The result is, that genetic neural network training
is acceptable alternative to other training methods with
respect on better overlearning resistance. Modeled system
provide prediction of nuclear plant power performance,
and the prediction error were calculated from real data.

Solution should help with prediction of critical situations
in nuclear engineers decisions processes with supporting
and precalculating the state of nuclear reactor and other
power systems. Main advatage of using neural networks in
proces prediction is, that there is no need to strictly de�ne
process identi�cation parameters of models (the model
shall be also very good after adding more neurons and
neuro-connections) unlike in many other system identi�-
cation techniques.

ACKNOWLEDGMENTS

This project has been supported by VEGA project No

1/1105/11. This support is very gratefully acknowledged.

REFERENCES

NNSYSID toolbox,
http://www.iau.dtu.dk/research/control/nnsysid.html

Kvasni£ka, V., Pospíchal, J., Kozák, �., Návrat, P.: Umelá
inteligencia a kognitívna veda. 1st edition. Bratislava:
Slovenská technická univerzita v Bratislave. Fakulta
informatiky a informa£ných technológií, 2009, 457

Sekaj, I.: Evolu£né výpo£ty a ich vyuºitie v praxi. 1st
edition. Bratislava: IRIS, 2005, 157

Kvasni£ka, V., Pospíchal, J., Ti¬o, P.: Evolu£né algoritmy.
1st edition. Bratislava: Slovenská technická univerzita v
Bratislave, 2000, 215

Rosinová, D., Dúbravská, M.: Optimalizácia. 1st edition.
Bratislava: Slovenská technická univerzita v Bratislave,
2007, 195

Návrat, P. a kol.: Umelá inteligencia. 1st edition.
Bratislava: Slovenská technická univerzita v Bratislave,
2007, 393

Bratko, R.: Matlab II. Optimalizácia. 1st edtion. Praha:
V�CHT, 2008, 227

National Instruments: Selecting a Model Structure in the
System Identi�cation Process
http://zone.ni.com/devzone/cda/tut/p/id/4028#toc6,
2.5.2010

Rail, R.: Neural Networks A Systematic Introduction 1st
edition. New York: Springer, 1996, 722

18th International Conference on Process Control
June 14–17, 2011, Tatranská Lomnica, Slovakia Le-We-3, 048.pdf

83



Fig. 11. Nuclear plant scheme - reactor VVER 440 Scheme

18th International Conference on Process Control
June 14–17, 2011, Tatranská Lomnica, Slovakia Le-We-3, 048.pdf

84


