
Slovak University of Technology in Bratislava
Institute of Information Engineering, Automation, and Mathematics

PROCEEDINGS
of the 18th International Conference on Process Control

Hotel Titris, Tatranská Lomnica, Slovakia, June 14 – 17, 2011

ISBN 978-80-227-3517-9

http://www.kirp.chtf.stuba.sk/pc11

Editors: M. Fikar and M. Kvasnica

Szucs, A., Kvasnica, M., Fikar, M.: MATLAB Toolbox for Automatic Approximation of Nonlinear Functions, Editors:
Fikar, M., Kvasnica, M., In Proceedings of the 18th International Conference on Process Control, Tatranská Lomnica,
Slovakia, 119–124, 2011.

Full paper online: http://www.kirp.chtf.stuba.sk/pc11/data/abstracts/054.html

http://www.kirp.chtf.stuba.sk/pc11
http://www.kirp.chtf.stuba.sk/pc11/data/abstracts/054.html

MATLAB Toolbox for Automatic
Approximation of Nonlinear Functions

Alexander Szücs ∗,1, Michal Kvasnica ∗, and Miroslav Fikar ∗

∗ Institute of Automation, Information Engineering and Mathematics,
Slovak University of Technology, 812 37 Bratislava, Slovakia

Abstract: : Given a nonlinear dynamical system in analytic form, the paper proposes a novel
method for approximating the system by a suitable hybrid model such that the approximation
accuracy is maximized. Specifically, the problem of approximating generic nonlinear functions
by piecewise affine (PWA) models is considered. We show that under mild assumptions, the
task can be transformed into a series of one-dimensional approximations, for which we propose
an efficient solution method based on solving simple nonlinear programs. Moreover, the paper
discusses a software implementation of the proposed procedure in form of a MATLAB toolbox.

Keywords: hybrid systems, approximation, nonlinear optimization

1. INTRODUCTION

Mathematical models of physical plants play a vital role
in many areas, such as in rigorous simulations, analysis, or
control synthesis. Typically, high model accuracy is usually
desired while keeping the model complexity on an accept-
able level. Traditionally, nonlinear models were preferred
from simulations, while most of available control tech-
niques are based on a local approximation around a single
operating point. The concept of hybrid systems (Branicky,
1995) can be viewed as a compromise solution between
accuracy of the model and its complexity. Hybrid models
feature a collection of local models accompanied with logic
IF-THEN conditions which enforce switching of the local
dynamics. When all local models are linear (or affine),
such systems are referred to as linear hybrid systems.
Although still nonlinear due to the presence of switches,
the underlying piecewise linearity allows for somewhat
easier control synthesis and analysis compared to using
full nonlinear models. Several mathematical frameworks
capable of capturing the relation between logic rules and
linear dynamics can be used: Piecewise Affine (PWA) mod-
els (Sontag, 1981), Mixed Logical Dynamical (MLD) sys-
tems (Bemporad and Morari, 1999), Linear Complemen-
tarity systems (Heemels et al., 2000) and max-min-plus-
scaling models (De Schutter and Van den Boom, 2001).
Under mild assumptions, all these frameworks are equiva-
lent to each other and it is possible to transform e.g. the
MLD system into a PWA model and vice-versa (Heemels
et al., 2001). For the purpose of this work we consider PWA
models, which use the concept of multiple linearization
to approximate a given nonlinear system with arbitrary
accuracy.

The problem which we address in this paper is the follow-
ing: given a nonlinear dynamical model x+ = f(x, u) and

a fixed complexity of its PWA approximation f̃(x, u) ≈
f(x, u), how should one design f̃ which minimizes the

1 Corresponding author, e-mail: alexander.szucs@stuba.sk

approximation error
∫
(f(x, u) − f̃(x, u))2? The answer is

non-trivial even putting optimality of the approximation
aside. Traditionally, two distinct approaches for deriving
PWA approximations are used. When the mathematical
formulation of the original nonlinear system is known, one
can design the approximation by hand. This is usually
done by employing human knowledge and experience to
devise several linearization points around which the origi-
nal nonlinear model should be linearized. Needless to say,
placement of such points has a crucial impact on the accu-
racy of the approximation. The HYSDEL (Hybrid Systems
Description Language) tool (Torrisi and Bemporad, 2004;
Kvasnica and Herceg, 2010) can be used to accelerate
this line of development. Formally, HYSDEL transforms
a linguistic description of a hybrid system into the cor-
responding MLD model, which can then be converted
into the PWA form. The language allows to define IF-
THEN switching rules which, based on whether some logic
condition is satisfied or not, enforce certain continuous
dynamics. Another option is to use hybrid identification
techniques (Ferrari-Trecate et al., 2001; Roll et al., 2004;
Ferrari-Trecate, 2005) to construct the PWA approxima-
tion from the input-output measurements. The crucial
advantage is that the model of the original nonlinear
system is not required to be fully available. The downside,
however, is that the approximation is only accurate in the
interval captured by the identification data. Moreover, the
procedure is computationally expensive and suited mainly
to low-dimensional problems.

In this work we propose to use an optimization-based
approach to derive PWA approximations of nonlinear sys-
tems whose vector field is an a-priori known function of
multiple variables. After formally stating the problem in
Section 2, we show in Section 3 that an optimal PWA ap-
proximation of generic nonlinear functions in one variable
can be formulated and solved as a nonlinear programming
problem. Subsequently, the approach is extended to de-
riving PWA approximations of multivariable functions in
Section 4. We show that, under a certain assumption, the

18th International Conference on Process Control
June 14–17, 2011, Tatranská Lomnica, Slovakia Le-We-5, 054.pdf

119

problem boils down to solving a series of one-dimensional
approximations.

The algorithmic and software implementation of the ap-
proximation procedure are then discussed in Section 5.
Specifically, we introduce a new software toolbox which
packs the proposed approximation strategy in an easily
accessible form. Specifically, the toolbox allows user to
perform the approximation either directly from MAT-
LAB’s command line, or by using a custom graphical user
interface. Short, yet illuminating examples are provided to
illustrate capabilities of the toolbox.

2. PROBLEM STATEMENT

We consider generic dynamic systems in discrete-time

x+ = f(x, u), (1)

where the vector field f(·, ·) is assumed to be continuous
in the state variables x ∈ Rnx and in the inputs u ∈ Rnu .
System states and inputs are assumed to be constrained
to connected and closed domains X ⊂ Rnx and U ⊂ Rnu ,
respectively.

The objective is to approximate (1) by a different dynamic

system x+ = f̃(x, u) whose vector field f̃(x, u) is a PWA
function which consists of a pre-specified number N of
local linear dynamics:

f̃(x, u) =





A1x+B1u+ c1 if [xu] ∈ R1

...
...

ANx+BNu+ cN if [xu] ∈ RN .

(2)

Here, Ai ∈ Rnx×nx , Bi ∈ Rnx×nu , ci ∈ Rnx , are the state-
update matrices of the i-th local linear approximation,
and Ri ⊂ Rnx×nu is the region of validity of the i-th
local model satisfying Ri 6= ∅, Ri ∩ Rj = ∅, ∀i 6= j, and
∪iRi = X × U .
Formally, the problem which we aim at solving can be
stated as follows:

Problem 2.1. Given a nonlinear vector field f(x, u) of
system (1), find the PWA approximation (2) of pre-
specified complexity which minimizes the approximation
error

eaprx :=

∫
(f(x, u)− f̃(x, u))2 dxdu, (3)

where the integral is evaluated over the whole region of
validity of (1), i.e. over X × U .
In the sequel we show how to solve Problem 2.1 provided
that the vector field f(z), z = [x, u]T satisfies the following
assumption.

Assumption 2.2. The function f(z1, . . . , zn) can be writ-

ten as
∑n

i=1 αi

(∏qi
j=pi

fj(zj)
)
.

As an example, the function z1e
z2 satisfies such an as-

sumption, while the function ez1z2 does not. Although
the assumption is somewhat restrictive, the gained ad-
vantage is that approximating any multivariable function
f(z1, . . . , zn) boils down to solving a series of 1D problems,
as evidenced in the following two sections.

Remark 2.3. Since the approximation procedure discussed
in the sequel considers only the vector field in the right-

hand-side of (1), continuous-time systems ẋ = f(x, u) can
be treated as well.

3. FUNCTIONS IN ONE VARIABLE

First, we consider the one-dimensional case, i.e. approxi-
mating a nonlinear function f(z) : R 7→ R, with domain

Z ⊂ R, by a PWA function f̃(z) = aiz + ci if z ∈ Ri.
Since Z is assumed to be connected and closed, it is a line
segment [z, z]. Regions Ri define the partition of such
a line into N non-overlapping parts, i.e. R1 = [z, r1],
R2 = [r1, r2], . . ., RN−1 = [rN−2, rN−1], RN = [rN−1, z]
with ∪iRi = [z, z]. Solving Problem 2.1 then becomes to
find the slopes ai, offsets ci and breakpoints ri such that
the approximation error is minimized, i.e.

min
ai,ci,ri

∫ z

z

(f(z)− f̃(z))2 dz (4a)

s.t. f̃(z) =





a1z + c1 if z ∈ [z, r1]
...

...

aNz + cN if z ∈ [rN−1, z]

(4b)

z ≤ r1 ≤ · · · ≤ rN−1 ≤ z, (4c)

airi + ci = ai+1ri + ci+1, i = 1, . . . , N − 1,(4d)

where (4d) enforces continuity of f̃(z) along the break-
points ri. The IF-THEN based nonlinear constraint (4b)
can be eliminated by observing that, by definition, regions
Ri are non-overlapping, and the integral in (4a) can hence
be written as
∫ z

z

(
f(z)− f̃(z)

)2
dz =

N∑

i=1

(∫ ri

ri−1

(
f(z)−(aiz+ci)

)2
dz

)
,

(5)
with r0 = z and rN = z. The NLP (4) can therefore be
written as

min
ai,ci,ri

N∑

i=1

(∫ ri

ri−1

(
f(z)− (aiz + ci)

)2
dz

)
(6a)

s.t. z ≤ r1 ≤ · · · ≤ rN−1 ≤ z, (6b)

airi + ci = ai+1ri + ci+1, i = 1, . . . , N − 1.(6c)

Remark 3.1. The number of approximation segments can
be be reduced by normalizing the domain of f to an
interval [−1, 1].

For simple functions f(z), the integral in (6a) can be
expressed in an analytical form in unknowns ai, ci, ri,
along with the corresponding gradients. For more complex
expressions, the integrals can be evaluated numerically,
e.g. by using the trapezoidal rule. In either case, prob-
lem (6) can be solved to a local optimality e.g. by using
the fmincon solver of MATLAB. Alternatively, one can
use global optimization methods (Adjiman et al., 1996;
Papamichail and Adjiman, 2004; Chachuat et al., 2006)
that guarantee that an ǫ-neighborhood of the global opti-
mum can be found.

Example 3.2. Consider the function f(z) = z3 on domain
−1.5 ≤ z ≤ 1.5. The analytic form of the integral (6a) is

18th International Conference on Process Control
June 14–17, 2011, Tatranská Lomnica, Slovakia Le-We-5, 054.pdf

120

−1.5 −1 −0.5 0 0.5 1 1.5
−4

−2

0

2

4

z

f
(z
),

f̃
(z
)

(a) PWA approximation with
3 regions.

−1.5 −1 −0.5 0 0.5 1 1.5
−4

−2

0

2

4

z

f
(z
),

f̃
(z
)

(b) PWA approximation with
5 regions.

Fig. 1. Graph of f(z) = z3 (blue line) and the PWA

approximations f̃(z) (red dashed lines).

N∑

i=1

(
c2i (ri + ri−1) + aici(r

2
i − r2i) +

a2i
3
(r3i − r3i−1)−

−ci
2
(r4i − r4i−1)−

2ai
5

(r5i − r5i−1) +
1

7
(r7i − r7i−1)

)
,

with r0 = −1.5 and rN = 1.5. The PWA approximation
of f(z) with N = 3 regions was found by solving the
NLP (6) using fmincon, which took 0.05 seconds on a 2.4
GHz CPU running MATLAB 2009b. The obtained PWA
approximation is then given by

f̃(z) =





4.1797z + 3.1621 if − 1.5 ≤ z ≤ −0.8423

0.4257z if − 0.8423 ≤ z ≤ 0.8423

4.1797z − 3.1621 if 0.8423 ≤ z ≤ 1.5

The approximation accuracy can be increased by roughly
a factor of 10 by approximating f(z) by N = 5 regions, as
can be seen from Figure 1.

4. MULTIVARIABLE FUNCTIONS

The task is to approximate a given multivariable function
f(z1, . . . , zn) : Rn 7→ R with domain Z ⊂ Rn by a PWA

function f̃(z1, . . . , zn), defined over the same domain, such
that the approximation error (3) is minimized.

Definition 4.1. (Williams (1993)). Function f(z1, . . . , zn)
is called separable if it can be expressed as the sum of
functions of a single variable, i.e. f(z1, . . . , zn) = f1(z1) +
· · ·+ fn(zn).

If f(z1, . . . , zn) is readily separable (e.g. when f(z1, z2) =
ez1 + sin (z2)), its optimal PWA approximation can be
obtained by applying the 1D scenario of Section 3 to the

individual components of the function, i.e. f̃(z1, . . . , zn) =

f̃1(z1) + · · · + f̃n(zn). The total number of regions over

which the PWA approximation f̃(·) is defined is hence
given by

∑n
j=1 Nj , where Nj is the pre-specified complex-

ity of the j-th approximation f̃j(zj).

A surprisingly large number of non-separable functions can
be converted into the separable form by applying a simple
trick, elaborated in more details e.g. in Williams (1993). To
introduce the procedure, consider a non-separable function
f(z1, z2) = z1z2 with domain Z := [z1, z1] × [z2, z2].
Define two new variables

y1 = (z1 + z2), y2 = (z1 − z2). (7)

Then it is easy to verify that 1/4(y21 − y22) = z1z2.
The coordinate transformation therefore transforms the

original function into a separable form, where both terms
(y21 and y22) are now functions of a single variable. The
procedure of Section 3 can thus be applied to compute
PWA approximations of fy1

(y1) := y21 and fy2
(y2) :=

y22 , where the function arguments relate to z1 and z2
via (7). Important to notice is that fy1

(·) and fy2
(·) have

different domains, therefore their PWA approximations

f̃y1
(y1) ≈ y21 and f̃y2

(y2) ≈ y22 will, in general, be
different. Specifically, the domain of fy1

(·) is [y1, y1] with
y
1
= min{z1 + z2 | z1 ≤ z1 ≤ z1, z2 ≤ z2 ≤ z2} and

y1 = max{z1+z2 | z1 ≤ z1 ≤ z1, z2 ≤ z2 ≤ z2}. Similarly,
the domain of fy2

(·) is [y
2
, y2], whose boundaries can

be computed by respectively minimizing and maximizing
z1−z2 subject to the constraint [z1, z2]

T ∈ Z. The overall

PWA approximation f̃(z1, z2) ≈ z1z2 then becomes

f̃(z1, z2) = 1/4(f̃y1
(z1 + z2)− f̃y2

(z1 − z2)). (8)

The value of f̃(z1, z2) for any points z1, z2 is obtained

by subtracting the value of the PWA function f̃y2
(·)

evaluated at the point z1 − z2 from the function value of

f̃y1
(·) evaluated at z1 + z2, followed by a linear scaling.

The procedure naturally extends to multivariable func-
tions represented by the product of two nonlinear functions
of a single variable, i.e. f(z1, z2) = f1(z1)f2(z2). Here, the
transformation (7) becomes

y1 = f1(z1) + f2(z2), y2 = f1(z1)− f2(z2). (9)

Therefore, 1/4(y21 − y22) = f(z1, z2) still holds. Let
fy1

(y1) := y21 and fy2
(y2) := y22 . The domain of fy1

(·)
is [y

1
, y1] and dom fy2

(·) = [y
2
, y2] with

y
1
= min{f1(z1) + f2(z2) | [z1, z2]

T ∈ Z}, (10a)

y1 = max{f1(z1) + f2(z2) | [z1, z2]
T ∈ Z}, (10b)

y
2
= min{f1(z1)− f2(z2) | [z1, z2]

T ∈ Z}, (10c)

y2 = max{f1(z1)− f2(z2) | [z1, z2]
T ∈ Z}, (10d)

which can be computed by solving four NLP problems.
Finally, since all expressions are now functions of a sin-

gle variable, the PWA approximations f̃1(z1) ≈ f1(z1),

f̃2(z2) ≈ f2(z2), f̃y1
(y1) ≈ fy1

(y1), and f̃y2
(y2) ≈ fy2

(y2)
can be computed by solving the NLP (6). The overall

optimal PWA approximation f̃(z1, z2) ≈ f(z1, z2) then
becomes

f̃(z1, z2) = 1/4
(
f̃y1

(
f̃1(z1)+f̃2(z2)

)
−f̃y2

(
f̃1(z1)−f̃2(z2)

))
.

(11)
The evaluation procedure is similar as above. I.e., given

the arguments z1 and z2, one first evaluates z̃1 = f̃1(z1)

and z̃2 = f̃2(z2). Subsequently, one evaluates ỹ1 = f̃y1
(·)

with the argument z̃1 + z̃2, then ỹ2 = f̃y2
(·) at the point

z̃1 − z̃2. Finally, f̃(z1, z2) = 1/4(ỹ1 − ỹ2).

Example 4.2. Consider a non-separable function given by
f(z1, z2) = f1(z1)f2(z2) with f1(z1) = z31 , f2(z2) =
|z2| + 0.5z22 − sin (z2)

3 on domain [−1.5, 1.5] × [−1, 2.5].
Graph of the function is shown in Figure 2(a). In order
to convert f(z1, z2) into a separable form, we introduce
variables y1 and y2 as per (9). The PWA approxima-

tion f̃(z1, z2) ≈ f(z1, z2) is then given by (11). Here,

f̃1(z1) was obtained by approximating f1(z1) by a PWA

18th International Conference on Process Control
June 14–17, 2011, Tatranská Lomnica, Slovakia Le-We-5, 054.pdf

121

(a) Graph of f(z1, z2). (b) Approximation f̃(z1, z2)

Fig. 2. Graph of f(z1, z2) and its PWA approximation (11)
in Example 4.2.

function with 3 regions as shown in Figure 1(a), while

f̃2(z2) ≈ f2(z2) was approximated by 7 regions. Subse-
quently, the domains [y

1
, y1] and [y

2
, y2] were computed

via (10), which resulted into dom y1 = [−3.374, 9.095]
and dom y2 = [−9.095, 3.374]. Finally, the PWA approx-

imations f̃y1
(y1) ≈ y21 and f̃y2

(y2) ≈ y22 were obtained by
solving the NLP (6) withN = 2. Graphs of y21 , y

2
2 and their

respective PWA approximations are presented in Figure 3.

The overall approximation f̃(z1, z2) therefore consists of
14 regions. Despite a rather crude approximation of the
square functions, the combined PWA function (11), shown
in Figure 2(b), features only a minor average approxi-
mation error of 3% and a worst-case error of 15%. By
increasing the number of linearizations for y21 and y22 from
N = 2 to N = 4 (hence increasing the complexity of

f̃(z1, z2) from 14 to 18 regions), the average and worst-case
errors can be further reduced to 1% and 8%, respectively.

−2 0 2 4 6 8

0

20

40

60

80

y1
(a) y21

−8 −6 −4 −2 0 2

0

20

40

60

80

y2
(b) y22

Fig. 3. Functions y2i (blue) and their PWA approximation

f̃yi
(yi) (red dashed lines) in Example 4.2.

Separation of multivariable functions with more than two
terms can be performed in an inductive manner. Consider
f(z1, z2, z3) = f1(z1)f2(z2)f3(z3). First, approximate the
product f1(z1)f2(z2) by a PWA function of the form
of (11), which requires four PWA approximations

f̃1(·) ≈ f1(·), f̃2(·) ≈ f2(·), f̃y1
(·) ≈ y21 , f̃y2

(·) ≈ y22 ,

with y1 and y2 as in (9). Let fa(z1, z2) := f1(z1)f2(z2).
Then f(z1, z2, z3) = fa(z1, z2)f3(z3), which can again be
approximated as a product of two functions. Specifically,
define

y3 = fa(·) + f3(z3), y4 = fa(·)− f3(z3), (12)

and hence fa(z1, z2)f3(z3) = 1/4(y23 − y24). The domains
over which y23 and y24 need to be approximated are,
respectively, [y

3
, y3] and [y

4
, y4] with

y
3
= min{f1(z1)f2(z2) + f3(z3) | z ∈ Z}, (13a)

y3 = max{f1(z1)f2(z2) + f3(z3) | z ∈ Z}, (13b)

y
4
= min{f1(z1)f2(z2)− f3(z3) | z ∈ Z}, (13c)

y4 = max{f1(z1)f2(z2)− f3(z3) | z ∈ Z}, (13d)

and z = [z1, z2, z3]
T . Subsequently, three additional

PWA approximations

f̃y3
(y3) ≈ y23 , f̃y4

(y4) ≈ y24 , f̃3(z3) ≈ f3(z3)

need to be computed over the corresponding domains. The

aggregated optimal PWA approximation f̃(z1, z2, z3) ≈
f(z1)f(z2)f(z3) consists of 7 individual approximations
and is given by

f̃(·) = 1/4
(
f̃y3

(
f̂a + f̃3(z3)

)
︸ ︷︷ ︸

ŷ3

− f̃y4

(
f̂a − f̃4(z3)

)
︸ ︷︷ ︸

ŷ4

)
. (14)

Here, f̂a is the function value of f̃a(z1, z2) ≈ f1(z1)f2(z2)

at z1 and z2, where f̃a(·) is obtained from (11), i.e.:

f̂a = 1/4
(
f̃y1

(
f̃1(z1) + f̃2(z2)

)
︸ ︷︷ ︸

ŷ1

− f̃y2

(
f̃1(z1)− f̃2(z2)

)
︸ ︷︷ ︸

ŷ2

)
.

(15)

The overall PWA approximation f̃(z1, z2, z3) can then be
evaluated, for any z1, z2, z3 ∈ Z, by computing the
function values of the respective approximations in the
following order:

Step 1: ŷ1 = f̃y1
(f̃1(z1) + f̃2(z2)),

Step 2: ŷ2 = f̃y2
(f̃1(z1)− f̃2(z2),

Step 3: ŷ3 = f̃y3
(1/4(ŷ1 − ŷ2) + f̃3(z3)),

Step 4: ŷ4 = f̃y4
(1/4(ŷ1 − ŷ2)− f̃3(z3)),

Step 5: f̃(z1, z2, z3) = 1/4(ŷ3 − ŷ4).

Such an inductive procedure can be repeated ad-infinitum
to derive PWA approximations of any multivariable func-
tion which satisfies Assumption 2.2. In general, the
PWA approximation will consists of 2p + n individual
PWA functions, where n is the number of variables in
f(z1, . . . , zn) and p is the number of products between
individual subfunctions fj(zj). As an example, for f(·) :=
α1f1(z1)f2(z2)f4(z4) + α2f3(z3)f5(z5) we have p = 3. We
remark that inclusion of scalar multipliers αj into the
PWA description of the form (14)–(15) is straightforward
and only requires linear scaling of the corresponding terms.

Remark 4.3. Since approximation of multivariable func-
tions boils down to a series of 1D approximations which
are then aggregated by a linear relation in (8), the overall
approximation error is proportional to the sum of individ-
ual approximation errors.

Remark 4.4. Due to a linear nature of the aggregation
in (8) and due to the fact that each single 1D approxi-
mation is continuous due to (6c), the overall multivariable

approximation f̃ is continuous as well.

5. SOFTWARE IMPLEMENTATION

Next, we discuss software implementation of the ap-
proximation procedure described above. The implementa-
tion is provided in a form of an open-source MATLAB
toolbox, called AUTOPROX, which is freely available

18th International Conference on Process Control
June 14–17, 2011, Tatranská Lomnica, Slovakia Le-We-5, 054.pdf

122

from http://www.kirp.chtf.stuba.sk/∼sw/. The tool-
box provides two types of user interfaces. Input data can
either be provided directly from the command line or,
alternatively, entered using a graphical interface.

5.1 Command-Line Interface

The command-line interface is illustrated first by revisiting
Example 3.2. To approximate the function f(z) = z3, one
proceeds as follows:

syms z

f = z^3

bounds = [-1.5, 1.5]

regions = 3

[aprx, data] = autoprox_1d(f, bounds, regions)

Here, AUTOPROX uses the Symbolic Toolbox to define
symbolic representation of the function to be approxi-
mated on a given domain (represented by the bounds
variable), with a given number of PWA segments (the
regions variable). The first output argument (denotes as
aprx here) is a function handle, which can be used e.g. to
plot the approximation:

x = -1.5:0.001:1.5

plot(x, x.^3, x, aprx(x), ’--’)

which will generate a plot as seen in Figure 1(a). The
second output (stored in the data variable) can be used
to export the PWA approximation into the HYSDEL
language:

hysdel_1d(data, ’filename.hys’)

The generated HYSDEL model can be subsequently com-
piled by the HYSDEL compiler, which will provide a
mathematical model suitable e.g. for control synthesis.

Approximation of 2D functions can be performed in a
similar manner. Let us again consider Example 4.2, i.e. the
task is to approximate the function f(z1, z2) = z31(|z2| +
0.5z22 −sin (z2)

3) on domain [−1.5, 1.5]× [−1, 2.5]. Again,
the first step is to define the function using symbolic
variables:

syms z1 z2

f1 = z1^3

f2 = abs(z2) + 0.5*z2^2 - sin(z2^3)

Next, the function domain and number of approximation
segments need to be provided:

f1_bounds = [-1.5, 1.5]

f2_bounds = [-1, 2.5]

f1_regions = 3

f2_regions = 7

y1_regions = 2

y2_regions = 2

Finally, the approximation f̃(z1, z2) can be obtained by
calling

[aprx,data] = autoprox_2d(f1,f2,f1_bounds,f2_bounds,...

f1_regions, f2_regions,y1_regions, y2_regions)

Similarly as in the previous example, the aprx output is
a function handle which can be used to directly evaluate
the approximation at some given values of z1 and z2, e.g.

z1 = 0.5

z2 = -1

true_value = z1^3*(abs(z2) + 0.5*z2^2 - sin(z2^3))

aprx_value = aprx(z1, z2)

The second output (called data) again serves to generate
the HYSDEL version of the approximation:

hysdel_2d(data, ’filename.hys’)

Approximation of n-dimensional functions can be obtained
by calling the autoprox nd function. A detailed descrip-
tion of its calling syntax is omitted due to brevity, but is
provided in the distribution package of AUTOPROX.

5.2 Graphical User Interface (GUI)

The GUI allows to perform the approximation in an
easily accessible manner where all data can be entered
conveniently without the need to remember the exact
calling syntax of individual approximation functions.

The main window of the GUI is shown in Figure 4. The
user starts by selecting the type of approximation using
radio buttons. Then, he provides the symbolic represen-
tation of the function to approximate in the FUNCTION
text box. The domain of the function, represented by its
minimal and maximal bounds, has to be filled out next.
After providing all necessary details, the user can select the

Fig. 4. Basic GUI window.

number of approximation regions by a drop-down menu,
as shown in Figure 5. Afterwards, the approximation is
computed by clicking the SPLIT button. A concise sta-
tistical evaluation of the approximation will then appear
in a corresponding section of the GUI. It informs the user
about the approximation quality, represented by average
and worst-case approximation errors. Finally, the approx-
imation can be exported to a HYSDEL source by clicking
the EXPORT button.

It should be noted that the GUI is still subject to active
development and substantial modifications are expected
within next following months.

18th International Conference on Process Control
June 14–17, 2011, Tatranská Lomnica, Slovakia Le-We-5, 054.pdf

123

Fig. 5. GUI windows after performing approximation.

6. CONCLUSIONS

We have shown that a large class of dynamical sys-
tems with nonlinear vector fields can be approximated by
PWA systems of fixed complexity in an optimal manner.
The procedure boils down to solving a series of one-
dimensional problems for which efficient solution methods
exist. Derivation of the approximation can be easily au-
tomated and the HYSDEL variant of the hybrid approx-
imation can be generated, hence allowing for subsequent
control synthesis based on the hybrid model. A MATLAB
toolbox which implements the proposed approximation
strategy was described as well. The toolbox allows user to
enter data either via command line, or by using a graphical
user interface. An experimental version of the toolbox is
available for free download at http://www.kirp.chtf.stuba.
sk/∼sw/.

ACKNOWLEDGMENT

The authors are pleased to acknowledge the financial
support of the Scientific Grant Agency of the Slovak
Republic under the grants 1/0071/09 and 1/0095/11.
This work was supported by the Slovak Research and
Development Agency under the contracts No. VV-0029-
07 and No. LPP-0092-07.

REFERENCES

Adjiman, C.S., Androulakis, I.P., Maranas, C.D., and Floudas, C.A.
(1996). A global optimization method, αBB for process design.
Computers and Chemical Engineering, 20, 419–424.

Bemporad, A. and Morari, M. (1999). Control of systems integrating
logic, dynamics, and constraints. Automatica, 35(3), 407–427.

Branicky, M. (1995). Studies in hybrid systems: modeling, analysis,
and control. Ph.D. thesis, LIDS-TH 2304, Massachusetts Institute
of Technology, Cambridge, MA.

Chachuat, B., Singer, A.B., and Barton, P.I. (2006). Global methods
for dynamic optimization and mixed-integer dynamic optimiza-
tion. Ind. Eng. Chem. Res., 45(25), 8373–8392.

De Schutter, B. and Van den Boom, T. (2001). On model predictive
control for max-min-plus-scaling discrete event systems. Auto-
matica, 37(7), 1049–1056.

Ferrari-Trecate, G. (2005). Hybrid Identification Toolbox
(HIT). Available from http://www-rocq.inria.fr/who/Giancarlo.
Ferrari-Trecate/HIT toolbox.html.

Ferrari-Trecate, G., Muselli, M., Liberati, D., and Morari, M. (2001).
Identification of Piecewise Affine and Hybrid Systems. In Proc. on

the American Control Conference, 3521–3526. Arlington (VA),
USA.

Heemels, W.P.M., De Schutter, B., and Bemporad, A. (2001).
Equivalence of hybrid dynamical models. Automatica, 37(7),
1085–1091.

Heemels, W., Schumacher, J., and Weiland, S. (2000). Linear com-
plementarity systems. SIAM Journal on Applied Mathematics,
60(4), 1234–1269.

Kvasnica, M. and Herceg, M. (2010). HYSDEL 3.0. Available from
http://kirp.chtf.stuba.sk/∼kvasnica/hysdel3/.

Papamichail, I. and Adjiman, C.S. (2004). Global optimization of
dynamic systems. Computers and Chemical Engineering, 28, 403–
415.

Roll, J., Bemporad, A., and Ljung, L. (2004). Identification of piece-
wise affine systems via mixed-integer programming. Automatica,
40, 37–50.

Sontag, E.D. (1981). Nonlinear regulation: The piecewise linear
approach. IEEE Trans. on Automatic Control, 26(2), 346–358.

Torrisi, F. and Bemporad, A. (2004). HYSDEL — A tool for
generating computational hybrid models for analysis and synthesis
problems. IEEE Transactions on Control Systems Technology, 12,
235–249.

Williams, H. (1993). Model Building in Mathematical Programming.
John Wiley & Sons, Third Edition.

18th International Conference on Process Control
June 14–17, 2011, Tatranská Lomnica, Slovakia Le-We-5, 054.pdf

124

