
Slovak University of Technology in Bratislava
Institute of Information Engineering, Automation, and Mathematics

PROCEEDINGS
of the 18th International Conference on Process Control

Hotel Titris, Tatranská Lomnica, Slovakia, June 14 – 17, 2011

ISBN 978-80-227-3517-9

http://www.kirp.chtf.stuba.sk/pc11

Editors: M. Fikar and M. Kvasnica

Paulovič, M., Kvasnica, M., Szucs, A., Fikar, M.: Safety Verification of Rule-Based Controllers, Editors: Fikar, M.,
Kvasnica, M., In Proceedings of the 18th International Conference on Process Control, Tatranská Lomnica, Slovakia,
278–283, 2011.

Full paper online: http://www.kirp.chtf.stuba.sk/pc11/data/abstracts/055.html

http://www.kirp.chtf.stuba.sk/pc11
http://www.kirp.chtf.stuba.sk/pc11/data/abstracts/055.html

Safety Verification of Rule-Based
Controllers

Michal Paulovič ∗, Michal Kvasnica ∗, Alexander Szücs ∗, and
Miroslav Fikar ∗

∗ Institute of Information Engineering, Automation, and Mathematics
Faculty of Chemical and Food Technology

Slovak University of Technology in Bratislava
Radlinského 9, 812 37 Bratislava, Slovakia

(Tel: +421 259 325 352; e-mail: michal.kvasnica@stuba.sk)

Abstract: This paper proposes how to transform a control algorithm, written in MATLAB,
into a hybrid system in order to verify its stability properties. The procedure first converts
the code into a corresponding HYSDEL equivalent, which is then used to generate a suitable
mathematical model. Safety verification is then formulated as a mixed integer linear program
with feasibility objective.

Keywords: hybrid systems, safety verification, reachability analysis, MATLAB, HYSDEL

1. INTRODUCTION

Processes that evolve according to dynamic equations and
logic rules can be described by hybrid models (Bemporad
and Morari, 1999). Typical examples are real-time sys-
tems, where physical plants are governed by embedded
rule-based controllers. When such systems are designed, it
is important to provide a certificate that they will always
operate in a safe manner, e.g. that the control rules never
drive the plant into an “unsafe” area. Such a certificate can
be provided by performing reachability analysis (Lygeros
et al., 1999; Torrisi, 2003), which answers the following
question: given a set of initial conditions X0, find the
initial condition x(0) ∈ X0 for which the plant enters a
set of unsafe states Xf in a finite number of steps T . If the
reachability problem is infeasible, there is a guarantee that
no such “unsafe” initial condition exists, hence providing
the required safety certificate.

In this paper we propose how to solve the reachabil-
ity problem when the control rules are implemented as
a standard MATLAB function, composed of several IF-
THEN-ELSE logic rules. First, the code of the function
is converted into the HYSDEL (Torrisi, 2002) language,
which is a high-level language tailored for describing be-
havior of hybrid systems. The translation process creates
a one-to-one equivalent of the MATLAB control loop from
which a suitable mathematical description is derived. The
model then captures all interconnections between continu-
ous plant dynamics and logic-based control rules. Once the
model is available, the reachability problem is formulated
as a mixed-integer linear program (MILP) with a pure
feasibility objective.

The paper is structured as follows. First we introduce basic
notion of hybrid systems and review most popular math-
ematical abstractions of such systems. Then, in Section 3
we describe the translation process in details. Reachability
problems are then formulated in Section 4 and illustrated

on a concrete example in Section 5. The paper is wrapped
up by concluding remarks.

2. HYBRID SYSTEMS

Hybrid systems represent a compact framework which
captures behavior of systems where continuous dynamics is
coupled with discrete logic. Examples include, but are not
limited to, systems with discrete-valued actuators (such as
on/off switches), piecewise linear nonlinearities, and finite
state machines. Mathematically, hybrid systems can be de-
scribed by Piecewise Affine (PWA) models (Sontag, 1981),
Mixed Logical Dynamical (MLD) systems (Bemporad and
Morari, 1999), Linear Complementarity systems (Heemels
et al., 2000) and max-min-plus-scaling models (De Schut-
ter and Van den Boom, 2001). Under mild assumptions,
all these frameworks are equivalent to each other (Heemels
et al., 2001). In the sequel we review PWA and MLD
approaches to modeling of hybrid systems. Since the aim
of the paper is on verifying safety properties of closed-
loop systems where the plant is governed by a set of
internal IF-THEN-ELSE rules, only autonomous systems
are considered.

2.1 Piecewise Affine (PWA) Systems

Autonomous PWA systems are defined by partitioning the
space into polyhedral regions,and associating each region
with a different linear (or affine) state-update equation:

x(k + 1) =





A1x(k) + f1 if x(k) ∈ R1

...

Anx(k) + fn if x(k) ∈ Rn.

(1)

Here, x(k) ∈ Rnx is the state vector at time instance
k, x(k + 1) is the successor state at the next sampling
instance, Ri ⊆ Rnx , i = 1, . . . , n are polyhedral regions
of the joint state-input space, and n is the number of

18th International Conference on Process Control
June 14–17, 2011, Tatranská Lomnica, Slovakia Po-We-8, 055.pdf

278

individual affine dynamics. PWA systems arise naturally
when nonlinear plants are approximated by the technique
of multiple linearizations.

2.2 Mixed Logical Dynamical (MLD) Systems

MLD systems represent systems governed by discrete
logic by a system of linear inequalities involving binary
variables, which can be derived using so-called big-M
formulation (Williams, 1993). To illustrate the procedure,
consider a logic statement of the following form

δ =

{
1 if aTx ≤ b

0 if otherwise
(2)

which connects the truth value of binary variable δ to sat-
isfaction of the linear inequality aTx ≤ b (which involves
a real-valued variable x ∈ Rnx) via a logic equivalence
relation. Let M and m denote, respectively, the maximum
and minimum values which the linear expression aTx − b
attains over the domain X ⊆ Rnx , i.e.

M = max
x∈X

aTx− b, (3a)

m = min
x∈X

aTx− b. (3b)

Then the IF-THEN-ELSE rule (2) is equivalent to satis-
faction of the following system of linear inequalities:

aTx− b ≤ M(1− δ), (4a)

aTx− b ≥ ǫ+mδ. (4b)

Here, ǫ is a small constant, typically the machine precision,
used to convert a strict inequality into a non-strict form.
More complex logic expressions involving e.g. one-way
implications (⇐ or ⇒) and logic operations (and, or,
negation) can be translated in a similar fashion, see
e.g. (Williams, 1993; Bemporad and Morari, 1999).

In the most general form, autonomous MLD systems are
described by

x(k + 1) = Ax(k) +Bδδ(k) +Bzz(k) +B0, (5a)

Exx(k) + Eδδ(k) + Ezz(k) ≤ E0, (5b)

where x ∈ Rnx is the vector of states, δ ∈ {0, 1}nδ is the
vector of binary variables, z ∈ Rnz is the vector of auxiliary
real variables, and A, Bδ, Bz, B0, Ex, Eδ, Ez, E0 are
matrices (or vectors) of appropriate dimensions. Given a
value of x(k), the state update x(k+1) can be computed by
solving a feasibility problem, i.e. by finding a compatible
combination of binary δ(k) and real z(k) variables which
satisfy constraints (5b).

2.3 HYSDEL

Modeling of hybrid systems involves finding parameters
of the corresponding mathematical model. In the PWA
case (1), this boils down to finding matrices Ai, Bi, and
the regionsRi. In the MLD case (5), one needs to apply the
big-M procedure to find matrices A, Bδ, Bz, B0, Ex, Eδ,
Ez, and E0. Clearly, as the system to be described becomes
more complex, such a “manual” approach to modeling can
become cumbersome and error prone.

To accelerate development of hybrid models, HYSDEL
(Hybrid Systems Description Language) was developed (Tor-
risi, 2002). It features a high-level modeling language
which allows to describe behavior of hybrid systems using

q

hmax

href

h1h1

h2

k1

k2

Fig. 1. The two-tanks arrangement.

a custom syntax, which is similar to the C language. Once
the system is described, the HYSDEL compiler parses the
model and converts it into the MLD description (5) using
the big-M technique. The MLD model can subsequently
be converted into the PWA form.

Although HYSDEL significantly simplifies synthesis of
mathematical representations of hybrid systems, it re-
quires the user to learn its syntax. Therefore it is not
directly applicable to verify control algorithms written
in standard languages, such as in MATLAB or in C. To
bridge this gap between standard control engineering tools
and HYSDEL, we have developed a novel tool which auto-
matically translates a MATLAB code to a corresponding
HYSDEL model.

3. THE MATLAB-TO-HYSDEL TRANSLATOR

This section describes the process of translating a control
algorithm written in MATLAB into the HYSDEL form.
The translator consists of a lexer, which cleans the MAT-
LAB code and identifies its key components. Operation of
this phase is reported as Algorithm 1. Following compo-
nents are being identified:

• operators: +, -, *, ˆ, /, &, |, ∼, =, >, <
• keywords: if, else, end, function, global
• names of variables

The cleaned-up code is subsequently processed by a parser,
which operates according to Algorithm 2. The parser first
creates declarations of state, input and output variables,
which serve as an interface between the control algorithm
and the outside world. Subsequently, each line of the MAT-
LAB source file is converted into its HYSDEL equivalent.
Since HYSDEL only supports linear expressions, only a
subset of valid MATLAB expressions can be converted.

To illustrate the translation, consider the following ex-
ample. Given is a system composed of two liquid tanks,
situated above each other, as shown in Figure 1. The
linearized mathematical model of such a system is given
by

18th International Conference on Process Control
June 14–17, 2011, Tatranská Lomnica, Slovakia Po-We-8, 055.pdf

279

h1(k +∆t) = h1(k) + ∆t/F1(q(k)− s1h1(k)), (6a)

h2(k +∆t) = h2(k) + ∆t/F2(s1h1(k)− s2h2(k)), (6b)

where h1 and h2 are the liquid levels in the corresponding
tanks, ∆t is the sampling period, F1, F2 are the tanks’
cross-section areas, q(k) is the liquid inflow to the first tank
(which is the control input), and s1 and s2 are linearization
coefficients. The system is to be controlled by a rule-based
controller:

q(k) =

{
qmax if h2(k) ≤ href and h1(k) ≤ hmax

0 otherwise.
(7)

The rules are such that the liquid inflow is set to a non-
zero value qmax whenever the liquid level in the bottom
tank is below its reference href and the upper tank is not
overflowing. Otherwise the control input is set to zero.
Important to notice is that due to accumulation of the
liquid in the upper tank, liquid in the lower tank may
continue to rise even after the control input is set to zero.
In the next section we will show how to verify suitability
of such a control scheme (i.e. that it guarantees a safe
operation of the equipment where none of the tanks will
overflow) by employing reachability analysis.

To illustrate the automatic code translator, suppose that
the closed-loop system is described by the following MAT-
LAB code:

1 function closed_loop

2

3 % declaration of internal states

4 global h1 h2

5

6 % declaration of parameters

7 F1 = 31.8319;

8 F2 = 31.8319;

9 s1 = 1;

10 s2 = 0.9;

11 dT = 5;

12 href = 76; % reference level in centimeters

13 hmax = 100; % safety limit for the upper tank

14 qmax = 100; % default flow rate to upper tank

15

16 % control rules

17 if (h2 <= href) & (h1 <= hmax)

18 q = qmax;

19 else

20 q = 0;

21 end

22

23 % dynamical system

24 h1 = h1 + dT/F1*(q - s1*h1);

25 h2 = h2 + dT/F2*(s1*h1 - s2*h2);

The code supported by the translator is structured as
follows. First line always contains definition of the MAT-
LAB function. State variables are represented as global
variables, since they constitute an internal storage which
needs to be updated between consecutive executions of
the code. Concrete numerical values of parameters are
provided next, followed by definition of switching control
rules (7). The rules can contains logic operators such as
and (&), or (|), and negation (∼). Multiple rules can
be used and they can be interconnected using ELSEIF
statements. The computed control action (denoted by the
q variable in the code), is then used to update the internal
state variables according to (6).

Applying the translator to such a MATLAB code produces
its HYSDEL equivalent, reported next.

1 SYSTEM closed_loop {

2 INTERFACE {

3 STATE {

4 REAL h1, h2;

5 }

6 PARAMETER {

7 REAL F1 = 31.8319, F2 = 31.8319;

8 REAL s1 = 1, s2 = 0.9;

9 REAL dT = 5, href = 76;

10 REAL hmax = 100, qmax = 100;

11 }

12 }

13 IMPLEMENTATION {

14 AUX {

15 REAL q;

16 BOOL delta1, delta2;

17 }

18 AD {

19 delta1 = (h2 <= href);

20 delta2 = (h1 <= hmax);

21 }

22 DA {

23 q = {IF (delta1 & delta2) THEN qmax ELSE 0};

24 }

25 CONTINUOUS {

26 h1 = h1 + dT/F1*(q - s1*h1);

27 h2 = h2 + dT/F2*(s1*h1 - s2*h2);

28 }

29 }

30 }

Applying the HYSDEL compiler to the generated model,
matrices of the MLD model (5) will be generated and
saved to MATLAB. The MLD model can be subsequently
converted to the PWA model (1) e.g. by using the mpt sys
function of the Multi-Parametric Toolbox (Kvasnica et al.,
2004). The translator implements Algorithms 1 and 2 in
the PHP language and is provided as a free web-based
service available at http://necron.sk/xant/. Notice that
the translator is under an active development and is
subject to frequent changes in the following months.

4. SAFETY VERIFICATION VIA REACHABILITY
ANALYSIS

To verify safety properties of closed-loop systems described
as hybrid systems, one can solve the following problem.

Problem 4.1. Given is a hybrid system either in PWA or
MLD form, a polyhedral set of initial conditions X0, a time
horizon T , and a polyhedral set of “unsafe” states Xf . Find
an initial condition x(0) ∈ X0 for which the evolution of
states reaches Xf in, at most, T steps, or determine that
no such initial condition exists.

A feasible solution to Problem 4.1 constitutes at least one
“unsafe” initial condition for which the control rules fail
to meet a given safety goal. Infeasibility of Problem 4.1,
on the other hand, provides a certificate that the system
will always evolve in a safe manner.

Remark 4.2. Problem 4.1 can be easily extended to cover
cases where the set of “unsafe” states Xf is a non-convex
set represented by a finite number of polyhedra. Moreover,
instead of verifying safety with respect to a fixed horizon

18th International Conference on Process Control
June 14–17, 2011, Tatranská Lomnica, Slovakia Po-We-8, 055.pdf

280

Algorithm 1 Lexer algorithm

INPUT: MATLAB code
OUTPUT: Cleaned MATLAB code with identified to-

kens
1: take MATLAB code as string
2: for each operator OR keyword in string do
3: if operator then
4: put space before and after operator
5: end if
6: if keyword then
7: put semicolon before and after keyword
8: end if
9: end for

10: for each character in string do
11: if it is TAB then
12: replace it with space
13: end if
14: if it is carriage return OR line feed then
15: replace it with semicolon
16: end if
17: if it is per cent sign then
18: while it is NOT (semicolon OR carriage return

OR line feed) do
19: shift to the next character
20: end while
21: end if
22: if it is space as previous character then
23: shift to the next character
24: end if
25: if it is semicolon as previous character then
26: shift to the next character
27: end if
28: end for
29: for each semicolon do
30: break the rest of the string into new line
31: end for

T , one can look for the minimal value of T for which the
system violates safety conditions. This can be achieved e.g.
by employing bisection in conjunction with Problem 4.1.

If the hybrid system to be verified is given in the MLD
form (5), Problem 4.1 can be approached by solving a
feasibility mixed-integer linear program:

find x(0) (8a)

s.t. x(0) ∈ X0, (8b)

x(k + 1) = Ax(k) +Bδδ(k) +Bzz(k) +B0, (8c)

Exx(k) + Eδδ(k) + Ezz(k) ≤ E0, (8d)

x(T) ∈ Xf . (8e)

Here, constraints (8c)–(8d), which are defined for k =
0, . . . , T − 1, describe evolution of the MLD system on
horizon T , cf. (5). Under the assumption that X0 and Xf

are polyhedral sets, they can be described by

X0 = {x | H0x ≤ K0}, (9a)

Xf = {x | Hfx ≤ Kf}, (9b)

where H0, Hf , K0, Kf are matrices which represent
the half-space representation of such sets. Therefore all
constraints in (8) are linear in the decision variables
x(k), δ(k), and z(k), for k = 0, . . . , T . Since δ(k) are
vectors of binary variables while x(k) and z(k) are real-
valued vectors, it follows that problem (8) is a mixed-
integer linear program (MILP) with a pure feasibility

Algorithm 2 Parser algorithm

INPUT: MATLAB tokens
OUTPUT: HYSDEL code
1: declare state, input and output variables
2: for each line do
3: if ”if” found then
4: parse next line
5: store condition(s)
6: parse next line
7: store ”if” value
8: parse next line
9: if ”else” found then

10: store ”else” value
11: parse next line
12: end if
13: else
14: store parameter
15: end if
16: end for
17: for each condition do
18: store auxiliary variable
19: negate condition
20: if negated condition found then
21: store negated aux var
22: end if
23: end for
24: create HYSDEL pattern
25: fill pattern with stored strings
26: generate HYSDEL code

objective. Such MILP problems can be formulated e.g. by
YALMIP (Löfberg, 2004) and solved efficiently using state-
of-the-art solvers, such as with GLPK (Makhorin, 2001) or
CPLEX (ILOG, Inc., 2003).

If the hybrid system is given in its PWA form (1), the cor-
responding reachability problem is formulated as follows

find x(0) (10a)

s.t. x(0) ∈ X0, (10b)

δi(k) ⇔ x(k) ∈ Ri, i = 1, . . . , n, (10c)

δi(k) ⇔ x(k + 1) = Aix(k) + fi, i = 1, . . . , n, (10d)
n∑

i=1

δi(k) = 1, (10e)

x(T) ∈ Xf . (10f)

Here, δi(k), i = 1, . . . , n (where n is the number of PWA re-
gions) are binary selectors which take the value of 1 if and
only if the state x(k) is contained in the i-th polyhedral
region Ri, cf. (10c). The truth value of the corresponding
binary selector then activates a particular state-update
equation in (10d). The logic equivalence (⇔) rules can
again be translated into mixed-integer inequalities using
the big-M method, as shown in Section 2.2. Finally, (10e)
is an exclusive-or condition which only allows the state to
reside in a single polyhedral region. Again, problem (10)
can be readily cast as a feasibility MILP with binary
variables δi(k), and real variables x(k), k = 0, . . . , T .

Due to equivalence between PWA andMLD systems (Heemels
et al., 2001), Problem 4.1 can be answered either by
solving (8) or (10). The particular selection depends on
the number of binary variables induced by a particular

18th International Conference on Process Control
June 14–17, 2011, Tatranská Lomnica, Slovakia Po-We-8, 055.pdf

281

choice of the hybrid model (either PWA or MLD). In
the next section we apply the described safety verification
procedure to an illustrative example.

5. EXAMPLE

We revisit the two-tanks example discussed in the previous
section. We reiterate that the aim is to verify that the
rules-based controller (7), connected with the system (6),
always meets a certain safety goal. In this example we
want to verify that the liquid level in the bottom tank
(h2) stays below a pre-defined threshold, say hunsafe. The
set of unsafe states is hence Xf = {h2 | h2 > hunsafe} with
hunsafe = 84 (all levels are expressed in centimeters). The
set of initial states is X0 = {h1, h2 | 0 ≤ h1 ≤ a, 0 ≤ h2 ≤
a}. Two scenarios were considered: one with a = 30 and
the other one with a = 70.

To formulate the verification problem, the HYSDEL model
of the closed-loop system is first compiled by the HYS-
DEL compiler, which generates the corresponding MLD
model description. This model was subsequently used to
formulate the MILP problem (8) using YALMIP (Löfberg,
2004):

1 % definition of decision variables

2 x = {}; d = {}; z = {};

3 for k = 1:T+1

4 x{k} = sdpvar(nx, 1);

5 z{k} = sdpvar(nz, 1);

6 d{k} = binvar(nd, 1);

7 end

8

9 % constraint on the initial condition

10 CON = [0 <= x{1}(1) <= a; 0 <= x{1}(2) <= a];

11

12 % constraint on the final state in the unsafe set

13 CON = CON + [x{end}(2) > 84];

14

15 % time evolution of the MLD model

16 for k = 1:T

17 CON = CON + [x{k+1} == A*x{k}+Bd*d{k}+Bz*z{k}+B0];

18 CON = CON + [Ex*x{k} + Ed*d{k} + Ez*z{k} <= E0];

19 end

20

21 % solve the fesibility problem

22 solution = solvesdp(CON, []);

23

24 % return the "unsafe" initial condition if it exists

25 if solution.problem == 0

26 xunsafe = double(x{1});

27 end

Here, the decision variables x(t), δ(t), z(t) are first defined
on lines 2–7 for t = 0, . . . , T . Notice that variables δ(t)
are declared as binary variables on Line 6. Line 10 then
specifies the set of initial conditions for both state variables
(the index in {·} denotes the time step k, while the index
in (·) specifies position of the particular element in the
state vector). Similarly, the set of unsafe states is defined
on Line 13. Then, constraints (8c)–(8d) are repeated for
k = 0, . . . , T−1 on Lines 17 and 18. Finally, the formulated
verification problem is solved by calling the solvesdp
command. If the problem is feasible for some value of T ,
(cf. Lines 25–27), value of the “unsafe” initial condition
is returned. If the problem is infeasible for all T ≤ Tmax,
then there is no such unsafe starting point and therefore

0 10 20 30 40 50
10

20

30

40

50

60

70

80

90

100

Sampling instances

Li
qu

id
 le

ve
ls

 [c
m

]

hunsafe

h1

h2

Fig. 2. Simulation scenario for an unsafe initial condition.

the controller always operates in a safe manner within of
Tmax time steps.

For a = 30 we have solved problem (8) for T = 0, . . . , 50
(which corresponds to 250 seconds) using the GLPK
MILP solver. The problem was infeasible for any value
of T ≤ Tmax, which certifies a safe behavior of the control
system (7) for any initial condition bounded by 0 ≤ hi ≤ a,
i = 1, 2. However, for a = 70 the safety verification
problem was feasible for T = 12, which resulted into
the unsafe initial condition h1(0) = 70 and h2(0) =
17.2606. Simulation of the closed-loop system starting
from this initial condition is shown in Figure 2, which
indeed confirms that the safety barrier h2 > 84 is violated
after 12 sampling instances.

6. CONCLUSIONS

In this paper we have proposed how to verify safety prop-
erties of logic-based control laws written in MATLAB.
First, the MATLAB code was converted into its HYSDEL
equivalent by means of an automated lexing and parsing
procedure. The HYSDEL model was subsequently con-
verted into a mathematical form, represented either by a
PWA or by an MLD model. Finally, the verification was
performed by solving a mixed-integer linear program. A
motivating example was provided to illustrate individual
steps. The main benefit of this work is that it allows
theoretical verification algorithms to be applied to a subset
of ordinary computer code, in this case represented by
MATLAB. However, the translator can be easily modi-
fied to support other programming languages as well, for
instance the C language or Java.

ACKNOWLEDGMENTS

The authors are pleased to acknowledge the financial sup-
port of the Scientific Grant Agency of the Slovak Republic
under the grant 1/0095/11. This work was supported by
the Slovak Research and Development Agency under the
contracts No. VV-0029-07 and No. LPP-0092-07.

18th International Conference on Process Control
June 14–17, 2011, Tatranská Lomnica, Slovakia Po-We-8, 055.pdf

282

REFERENCES

Bemporad, A. and Morari, M. (1999). Control of systems
integrating logic, dynamics, and constraints. Automat-
ica, 35(3), 407–427.

De Schutter, B. and Van den Boom, T. (2001). On
model predictive control for max-min-plus-scaling dis-
crete event systems. Automatica, 37(7), 1049–1056.

Heemels, W.P.M., De Schutter, B., and Bemporad, A.
(2001). Equivalence of hybrid dynamical models. Auto-
matica, 37(7), 1085–1091.

Heemels, W., Schumacher, J., and Weiland, S. (2000).
Linear complementarity systems. SIAM Journal on
Applied Mathematics, 60(4), 1234–1269.

ILOG, Inc. (2003). CPLEX User Manual. Gentilly Cedex,
France. http://www.ilog.fr/products/cplex/.

Kvasnica, M., Grieder, P., and Baotić, M. (2004). Multi-
Parametric Toolbox (MPT). Available from http://
control.ee.ethz.ch/~mpt/.

Löfberg, J. (2004). YALMIP. Available from http://
users.isy.liu.se/johanl/yalmip/.

Lygeros, J., Tomlin, C., and Sastry, S. (1999). Controllers
for reachability specifications for hybrid systems. Auto-
matica, 35(3), 349–370.

Makhorin, A. (2001). GLPK - GNU Linear Program-
ming Kit. http://www.gnu.org/directory/libs/
glpk.html.

Sontag, E.D. (1981). Nonlinear regulation: The piecewise
linear approach. IEEE Trans. on Automatic Control,
26(2), 346–358.

Torrisi, F.D. (2002). Hybrid System DEscription Language
(HYSDEL). Available from http://control.ee.ethz.
ch/~hybrid/hysdel/.

Torrisi, F. (2003). Modeling and Reach-Set Computation
for Analysis and Optimal Control of Discrete Hybrid
Automata. Ph.D. thesis, ETH Zurich.

Williams, H. (1993). Model Building in Mathematical
Programming. John Wiley & Sons, Third Edition.

18th International Conference on Process Control
June 14–17, 2011, Tatranská Lomnica, Slovakia Po-We-8, 055.pdf

283

