
Slovak University of Technology in Bratislava
Institute of Information Engineering, Automation, and Mathematics

PROCEEDINGS
of the 18th International Conference on Process Control

Hotel Titris, Tatranská Lomnica, Slovakia, June 14 – 17, 2011

ISBN 978-80-227-3517-9

http://www.kirp.chtf.stuba.sk/pc11

Editors: M. Fikar and M. Kvasnica

Ošmera, P.: Transplant Evolution for Optimization of General Controllers, Editors: Fikar, M., Kvasnica, M., In Proceed-
ings of the 18th International Conference on Process Control, Tatranská Lomnica, Slovakia, 366–372, 2011.

Full paper online: http://www.kirp.chtf.stuba.sk/pc11/data/abstracts/059.html

http://www.kirp.chtf.stuba.sk/pc11
http://www.kirp.chtf.stuba.sk/pc11/data/abstracts/059.html


Transplant Evolution for Optimization of general 

Controllers 

 
Jindřich Petrucha  

e-mail:petrucha@edukomplex..cz 

 

 

Pavel Ošmera  

Institute of Automation and Computer 

Science 

Brno University of Technology  

Faculty of Mechanical Engineering 

Brno, Czech Republic 

osmera@fme.vutbr.cz 

 

 

Milos Seda  

Institute of Automation and Computer 

Science 

Brno University of Technology  

Faculty of Mechanical Engineering 

Brno, Czech Republic 

seda@fme.vutbr.cz 

 

 

ABSTRACT 

This paper describes a new method of evolution that is named 

Transplant Evolution (TE). None of the individuals of the 

transplant evolution contains genotype. Each individual of the 

transplant evolution contains only phenotype. Reproduction 

methods as crossover and mutation work and store only the 

phenotype. The hierarchical structure of grammar-differential 

evolution that is used for finding optimal structures and 

parameters of general controllers is described. 
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1. INTRODUCTION 
The aim of this paper is to describe a new optimization method 

that can create control equations of general regulators. For this 

type of optimization a new method was created and we call it 

Two-Level Transplant Evolution (TLTE). This method allowed us 

to apply advanced methods of optimization, for example direct 

tree reducing of tree structure of control equation. The reduction 

method was named Arithmetic Tree Reducing (ART). For 

optimization of control equations of general controllers is suitable 

combine two evolutionary algorithms. Main goal in the first level 

of TLTE is the optimization of structure of general controllers. In 

the second level of TLTE the concrete parameters are optimized 

and the unknown abstract parameters in structure of equations are 

set. The method TLTE was created by combination of Transplant 

Evolution method (TE) [1,2,3,8,9,10] and Differential Evolution 

method (DE) [7]. The Transplant Evolution (TE) optimizes 

structure of solution with unknown abstract parameters and the 

DE optimizes the parameters in this structure. The parameters are 

real numbers. The real numbers are not easy find directly in TE 

without DE. For evaluation of quality of found control equation 

are described new methods, which allow us evaluate their quality. 

It can be used in the case when the simulation of control process 

cannot be finished. In results are shown some practical 

application. In all results we received the control equation that 

reached better quality of control process, than classical PSD 

controllers and Takahashi`s modification of PSD controller. 

 

2. THE  PRESENTATION OF OBJECT 

TREE STRUCTURES  
 

The phenotype representation 

of the individual is stored in the 

object tree structure. Each of 

nodes in the tree structure, 

including the sub-nodes, is an 

object that is specified by a 

terminal symbol and the type of 

terminal symbols. All nodes are independent and correctly defined 

mathematical functions that can be calculated, e.g. the function x-

3, shown on Fig. 1, is a tree structure containing a functional 

block (sub-tree). 

Creating the object tree is a key part of GEOS, which this method 

differs from other evolutionary algorithms. When the object tree is 

generated, similar methods to a traditional grammatical evolution 

are used. But the GEOS does not store the genotype, because the 

production rules are selected by randomly generated genes that 

are not saved in chromosomes of individuals. The final GEOS’s 

individual contains only phenotype expressed in an object tree 

structure. 

The algorithm of GEOS uses a generative grammar [4,5,6] whose 

translation process starts from the initial symbol S and continues 

randomly with using the rules of defined grammar [2]. The basic 

procedure of the translation algorithm is shown on Fig. 2 where is 

explain to why is unnecessary to store the genotype. 
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Fig. 1. Function block 
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3. CROSSOVER 
The crossover is a distinctive tool for genetic algorithms and is 

one of the methods in evolutionary algorithms that are able to 

acquire a new population of individuals. For crossover of object 

trees can be used following methods: 

Crossover the parts of object trees (sub-trees) 

The method of crossover object trees is based on the selection of 

two parents from the population and changing each other part of 

their sub-trees. For each of the parents cross points are randomly 

selected and their nodes and sub-trees are exchanged. This is the 

principle of creating new individuals into subsequent population 

as is shown on Fig. 3.  

Crossover by linking trees or sub-trees 

This method, as well as the previous one, is based on the 

crossover of two parents who are selected from the previous 

population. But the difference is in the way how the object trees 

are crossed. This method, unlike the previous one, does not 

exchange two randomly selected parts of the parents but parts of 

individuals are linked together with new and randomly generated 

node. This node will represent a new root of the tree structure of 

the individual. This principle is shown on Fig. 4.  

 

Fig.4. Crossover by linking method  

4. MUTATION 
Mutation is the second of the operators to obtain new individuals. 

This operator can add new structures, which are not included in 

the population so far. Mutation is performed on individuals from 

the old population. In the selected individual are randomly chosen 

nodes which are then subjected to mutation. The mutation 

operator can be subdivided into two types: 

 Non-structural Mutation (NM) 

 Structural Mutation (SM) 

Non-structural Mutation (NM) 

Non-structural mutations do not affect the structure of already 

generated individual. In the individual who is selected for 

mutation, chosen nodes of object sub-tree are further subjected to 

mutation. The mutation will randomly change chosen nodes, 

whereas used grammar is respected. For example it means that 

mutated node, which is a function of two variables (i.e. + - × ÷) 

cannot be changed by node representing function of one variable 

or only a variable, etc. see Fig. . 

Parrents

Offsprings

num

–

Uk

–

num

Node of 

crossing

U-

num

Randomly 

generated 

node

×

DEk

+

Uk

U-

num

Node of 

crossing

Uk

–

num

/

U-

numUk

–

num

–

Randomly 

generated 

node

Fig. 4. Crossover by linking method (LC - Linking 

Crossing) 

Parrents

Offsprings

num

–

Uk

–

num

Node of 

crossing

U-

num

num

–Crossed 

nodes

×

DEk

+

Uk

U-

num

Node of 

crossing

×

DEk

+

Uk Uk

–

num

Crossed 

nodes

 

Fig. 3. Classical Crossover (CC) 
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Fig. 2 Flowchart creation of object tree 
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Structural Mutation (SM) 

Structural mutations, unlike non-structural mutations, affect the 

tree structure of individuals. Changes of the sub-tree by extending 

or shortening its parts depend on the method of structural 

mutations. Structural mutation can be divided into two types: 

Structural mutation which is extending an object tree structure 

(ESM) and structural mutation which is shortening a tree structure 

(SSM). This type of mutation operator can be subdivided into two 

types:  

 

Extending Structural Mutation (ESM) 
In the case of the extending mutation, a randomly selected node is 

replaced by a part of the newly created sub-tree that respects the 

rules of defined grammar (see fig. 3). This method obviously does 

not always lead to the extension of the sub-tree but generally this 

form of the mutation leads to extension of sub-tree. (see Fig. ). 

Shortening Structural Mutation (SSM) 
Conversely the shortening mutation replaces a randomly selected 

node of the tree, including its child nodes, by node which is 

described by terminal symbol (i.e. a variable or a number). This 

type of mutation can be regarded as a method of indirectly 

reducing the complexity of the object tree (see Fig. ).  

The complexity of the tree structure can be defined as the total 

number of objects in the tree of individual.  

5. DIRECT TREE REDUCTION 
The minimal length of an object tree is often one of the factors 

required in the optimal problem solution. This requirement can be 

achieved in several ways: 

 By penalizing the part of the individual fitness which 

contains a complex object tree, 

 Method of targeted structural mutation of individual (see 

SSM), 

 The direct shortening of the tree using algebraic 

adjustments - algebraic reducing tree (ART). 

The last-mentioned method can be realised by the GEOS, where 

all of individuals does not contain the genotype, and then a 

change in the phenotype is not affected by treatment with 

genotype. The realisation of above mentioned problem with 

individual, which use genotype would be in this case very 

difficult. This new method is based on the algebraic arrangement 

of the tree features that are intended to reduce the number of 

functional blocks in the body of individuals (such as repeating 

blocks "unary minus", etc.). The method described above is 

shown on Fig.  and Fig. . 
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Fig. 5. Nonstructural mutation 
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In view of the object tree complexity of the individual and also for 

subsequent crossover is preferable to have a function in the form 

 than x = a + a + a, or more generally x = n × A. 

Another example is the shortening of the function x = ─ (─ a), 

where is preferable to have the form x = a (it is removing 

redundant marks in the object tree individual). The introduction of 

algebraic modifications of individual phenotype leads to the 

shorter result of the optimal solution and consequently to the 

shorter presentation of the individual, shortening the time of 

calculation of the function that is represented in object tree and 

also to find optimal solutions faster because of higher probability 

of crossover in the suitable points with higher probability to 

produce meaningful solutions. The essential difference stems from 

the use of direct contraction of trees, which leads to significantly 

shorter resulting structure than without using this method. 

6. HIERARCHICAL STRUCTURE OF TE 

(GDEOS) FOR OPTIMISATION OF THE 

CONTROLLER 
The hierarchical structure of the transplant evolution can be used 

for optimisation of the structure and parameters of a general 

controller. This structure contains three layers. First two layers 

(GE + DE) are contained in TE. Those two layers are used for 
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Fig. 9. Flowchart of TE (GDEOS) for controller 
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optimisation of the structure and parameters of general controller. 

The third layer which is named layer of controller is used for 

computation of fitness in TE. 

At the beginning of GDEOS an initial population is created (see 

Fig. 2) and then fitness of individuals is calculated. In the case of 

finding the optimal solution in the first generation, the algorithm 

is terminated, otherwise creates a new population of individuals 

by crossover and mutation operators, with the direct use of 

already created parent’s object tree structures (it is analogy as 

transplantation of already created organs, without necessary 

know-ledge of DNA – “Transplant Evolution (TE)”). If the result 

of GDEOS needs some numerical parameters (for example num in 

(Weisser 2010)), the second level with Differential Evolution 

(DE) is used for optimization their parameter setting. The DE 

gives better results in finding optimal values of unknown 

numerical parameters that are expressed in the form of real 

numbers, then in the GE. Due to the use of GDEOS for 

optimization of controllers in the next stage of calculation of 

fitness is model of controller used which is represented by the 

equation in incremental form (recurrent algorithm). Quality of 

controller is determined depending on the type of criterial 

function (see equation 3). For fitness calculation are various 

criterial functions used. Basic criterion is linear control area, 

quadratic control area, linear or quadratic control area extended 

with overshoot, oscillation of action value of the controller. 

The flowchart of TE (GDEOS) for a controller is shown on Fig.  

7. RESULTS 
The TE and TE + ART methods for optimization of equation for 

general controller were compared.  

The resulting form of the recurrent equation of general controller 

without using the direct method shortening of the tree (ART) is 

following (equation 1): 

uk=((((((Ek-(-((Ek+Ek))))×3)×2)+Ek-3)-(-(2)))-(-(((((((Ek-3+((((((Ek×3) 

+(Ek+(((dEk-1+Ek)×2)×1.63)))×2)×2)+(-(((Ek-4+(Ek-(-(3))))+Ek-2)))) 

×3))+(-(((Ek-4+(Ek-Ek))+Ek-2))))×2)+((dEk-1+(4.47-((((Ek-(-

((((((((((Ek×3)+(Ek+(((dEk-1+Ek)×2)×2)))×2)×2)×2)+(-(3.61)))+Ek) 

+Ek)+(-((3+Ek-2)))))))+((Ek×2)+Ek))+Ek)-(-(((Ek+2)×(3×((Ek-4+2) +Ek-

2))))))))-((((Ek+((((Ek+2)+Ek)+Ek)+(Ek/(-((6.88-((dEk-1+(1.79-Ek-3))-

2))))))) ×2)×3)+(-(((Ek-4+((Ek+Ek)×2)) +Ek))))))+Ek)-(-(Ek-2))))) 

 (1) 

 

The resulting form of the recurrent optimization algorithm in the 

case with using the direct method of contraction tree is following 

(equation 2):  

 

uk = ( Ek-3 - Ek × 1.93 ) × 33.97 + Ek-1 + Ek-2 (2) 

 

As you can see, the resulting lengths of recurrent equation of the 

general controller, is shorter in case of using TE + ATR then TE 

without ART.  

Bellow is shown result of optimisation parameters of PSD 

controllers and optimisation of the structure and parameters of 

general controllers. The parameters of PSD controllers were 

optimised with using DE and structure and parameters of general 

controller were optimised with using TE + ART method. 

The basic criterion of minimal integral control area was used as 

criterial function for optimisation of PSD or general controllers, 

(see equation 3) 

 

(3) 

On the Fig. and Fig.  are result of optimisation of PSD controller 

and general controller to control the identical system with 5 

second time delay. 

On the Fig. is shown regulatory process of PSD controller. The 

parameters of PSD controller were optimised with using DE. 

 

On the Fig.  is shown regulatory process of general controller. The 

structure and parameters of this controller was optimised with 

using TE (GDEOS) + ART method. The equation of general 

controller is following (see equation 4). 

uk = Ek × 23.01 + 10.91 × Ek-3 + Ek-1 × (-33.91) + Uk-1 (4) 

On the Fig. and  

Fig.  are result of optimisation of PSD controller and 

general controller to control the identical system with 2 

second time delay. 

On the Fig.  is shown regulatory process of PSD controller. 

The parameters of PSD controller were optimised with 

using DE. 

 

Fig.10. Regulatory process of PSD controller for second order 

system with 5s time delay 

(Top figure shows the system response and on the bottom 

part of the figure is shown the action output of controller) 
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On the Fig.13 is shown regulatory process of general controller. 

The structure and parameters of this controller was optimised with 

using TE (GDEOS) + ART method. The equation of general 

controller is following (see equation 5). 

uk = (32.55×Ek-5) + (58.79×Ek) + 7.08 + (-89.97×Ek-2)  (5) 

 

We tested the TLTE method for optimization of recurrent 

equation of general controllers. There is some results of 

optimization for one following system:. 

Integral system with transport delay 

                                     (5) 

In Fig.14 we compare 3 types of controllers. There is one PSD 

controller marked PSD_DE and two general controllers marked 

General_DE and General_TLTE. The curve marked PSD_DE is 

PSD controller. Parameters (Kr, Ti, Td) of this controller were 

optimized by Differential Evolution (DE). The curve marked 

General_DE is for general controller which has the control 

equation in PSD equation form, but parameters q0, q1, q2 were 

optimized directly by DE. The curve marked General_TLTE is for 

general controller with general control equation that was 

optimized by Two-Level Transplant Evolution (TLTE). As you 

can see, the best result gives the General_TLTE. In this case we 

receive the recurrent control equation with following form: 

 

 

 

Fig. 13. Regulatory process of general controller for second order 

system with 2s time delay 

(Top figure shows the system response and on the bottom part 

of the figure is shown the action output of the controller) 

 

Fig. 12 Regulatory process of PSD controller for second 

order system with 2s time delay 

(Top figure shows the system response and on the bottom 

part of the figure is shown the action output of controller) 

Fig. 11 Regulatory process of general controller for 

second order system with 5s time delay 

(Top figure shows the system response and on the bottom 

part of the figure is shown the action output of the 

controller) 
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8. CONCLUSION 
The Two-Level Transplant Evolution (TLTE) was successfully 

use for automatic generation of control programs of general 

controllers. We tested this algorithm on many problems, only one 

example was described in this paper. We hope that this new 

method of controller design will be use in practice, not only for 

simulation.  

Although we are at early stages of experiments, but it seems that it 

is possible to use parallel grammatical evolution with backward 

processing to generate combinatorial logic circuits. The 

grammatical algorithm can be outperformed with algorithms, 

which are designed specifically for this purpose. 
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 (2)  

 

Fig.14. Step response for integration system with time delay 
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