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Abstract: The following paper describes the control of air/fuel ratio (AFR) of a spark
ignition engine utilizing the analytical model predictive controller based on the multi-model
approach. The multi-model approach employs the autoregressive model (ARX) network, using
the weighting of local models, coming from the sugeno-type fuzzy logic. The weighted ARX
models are identified in the particular working points and are creating a global engine model,
covering its nonlinearity. Awaited improvement of a proper air/fuel mixture combusted in a
cylinder is mostly gained in the transient working regimes of an engine. In these regimes, the
traditional control approach looses its quality, compared to steady state working regimes of an
engine. This leads to higher fuel consumption and level of emissions from an engine. Presented
results of the air/fuel ratio control are acquired from the real-time control of the VW Polo
1390cm3 engine, at which the original electronic control unit (ECU) has been replaced by a
dSpace system executing the model predictive controller. It has been proven, that the proposed
controller is suitable for the air/fuel ratio control giving sufficiently good and steady system
output.

Keywords: model predictive control, analytical solution, air/fuel ratio, SI engine, ARX models

1. INTRODUCTION

A run of a spark ignition engine (SI) is highly depen-
dent on the mixture of the sucked air and injected fuel
present in the cylinder, waiting to be ignited by the spark.
Incorrect ratio of this two components may lead to the
poor engine power, ineffective functionality of the catalytic
converter resulting in higher level of emissions polluting
the environment and in the extreme case this can lead to
the engine stoppage. Due to this reason it is crucial to
keep the air/fuel ratio (AFR) at the stoichiometric level,
which means, that both, the air and the fuel are completely
combusted. Due to above mentioned reasons and all the
time tightening emission standards the car producers are
improving the control of the air/fuel ratio.
Traditional control of air/fuel ratio is based on a feed-
forward control using predefined tables determining how
much fuel has to be injected into a cylinder, based on
the information from the mass air flow meter. This fuel
amount is subsequently corrected using the information
from the lambda probe, so the stoichiometric mixture can
be reached. Due to a lambda probe position (at the engine
exhaust) a delay arises, causing an improper feedback
correction at the unstable engine regimes, like acceleration,
or deceleration. On the other side, this kind of control
guarantees stability and robustness at all conditions and
therefore is still preferred by car producers, despite its
disadvantages in control.
The academic field have started to publish other kinds
of air/fuel control, mostly model-based ones. The model-

based approaches are bringing good quality of control, but
are also more sensitive to the model precision and issues
with stability and robustness appear. A survey through
popular "mean value engine modeling" is described in
Bengtsson et al. (2007). This analytical way of engine
modeling is very clear, but requires exact knowledge of the
system and the model error has to be taken into account
explicitly. Other ways of a model acquisition are based
on the experimental identification (black box modeling).
Works of Zhai et al. (2010), Zhai and Yu (2009) and Hou
(2007) are specialized in employment of neural networks,
while Mao et al. (2009) uses for engine modeling CARIMA
models.
In the engine control itself became popular fuzzy logic
(Hou (2007)), neural network control (Arsie et al. (2008))
and model predictive control (MPC) approaches (Lorini
et al. (2006) and Muske and Jones (2006)). General topics
on an issue of stability and robustness in MPC can be
found in Mayne et al. (2000), or Zeman and Rohal-Ilkiv
(2003).
Our approach, introduced in Polóni et al. (2007) is uti-
lizing an analytical model predictive controller with a
penalization of a terminal state. It uses a multi-model
approach using a weighted net (sugeno-type fuzzy logic)
of autoregressive models (ARX) as a system model. The
ARX models were identified in the particular working
points of the engine as black box models. This method
of engine modeling offers an easy way of "global nonlinear
system model" acquisition with subsequent utilization in
the model based system control. The preliminary real-
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time predictive control results presented in this paper
indicate that the proposed controller could be suitable
alternative toward the air/fuel ratio control through the
look-up tables.

2. AIR/FUEL RATIO

The model of the air/fuel ratio dynamics λ of a spark
ignition engine is based on the mixture, defined as a
mass ratio of the air and fuel present in a cylinder at
a time instance k. Due to the fact, that the air mass
flow is measured as an absolute value, it was necessary
to integrate this amount during the particular time and
express the air and fuel quantity as relative mass densities
(grams/cylinder
grams/cylinder ). Hence, the air/fuel ratio is defined, as:

λ(k) =
ma(k)

mf (k)

1

Lth
(1)

Where ma(k) and mf (k) are relative mass amounts of air
and fuel in a cylinder and Lth ≈ 14.64 is the theoretical
amount of air necessary for the ideal combustion of a unit
amount of fuel. The Lth constant normalizes the ideal
value of λ to be 1.0.

3. SI ENGINE MODELING USING ARX MODELS

The engine modeling is based on the weighted linear lo-
cal model with single input single output (SISO) struc-
ture (Polóni et al., 2008). The parameters of local linear
ARX models with weighted validity (Murray-Smith and
Johanssen, 1997) are identified to model the nonlinear
dynamics of the AFR. The principle of this nonlinear mod-
eling technique is in partitioning of the engine’s working
range into smaller working points.

A net of local ARX models weighted for a particular
working point φ is defined, as:

nM∑

h=1

ρh(φ(k))Ah(q)y(k) =

nM∑

h=1

ρh(φ(k))Bh(q)u(k) +

nM∑

h=1

ρh(φ(k))ch + e(k)

(2)

defined by polynomials Ah and Bh:

Ah(q) = 1 + ah,1q
−1 + . . .+ ah,nyq

−ny

Bh(q) = bh,1+dh
q−1−dh + . . .+ bh,nu+dh

q−nu−dh
(3)

where symbolics q−i denotes a sample delay, e.x. q−iy(k) =
y(k − i), ah,i and bh,(j+dh) are parameters of hth local
function and dh is its delay. Parameter nM represents the
number of local models.

The ρh denotes a weighting function of a particular ARX
model (see Sec. 3.1) and the e(k) is a stochastic term with
a white noise properties. The engine working point itself
is defined by engine revolutions nen and the throttle valve
position tr, hence: φ(k) = [nen(k), tr(k)]

T . The absolute

term ĉh of the equation is computed from the steady state
values of the system output ye,h and the system input ue,h,
as:

ĉh = ye,h + ye,h

ny∑

i=1

âh,i − ue,h

nu∑

j=1

b̂h,j (4)

The model output is computed from the equation:

ys(k) =

nM∑

h=1

ρh(φ(k))

·




ny∑

i=1

âh,iq
−iys(k) +

nu∑

j=1

b̂h,(j+dh)q
−j−dhu(k) + ĉh




(5)

which after the introduction of the estimated parameter
vector θ̂h and the regression vector γ(k), becomes:

ys(k) = γT (k)

nM∑

h=1

ρh(φ(k))θ̂h +

nM∑

h=1

ρh(φ(k))ĉh (6)

3.1 Weighting functions

The full working range of the engine has been covered by a
discrete amount of local linear models (LLMs), identified
at particular working points. The LLMs are being weighted
by a weighting functions defining validity of each local
model according to an instantaneous working point of
the engine. Due to a request of a smooth and continuous
global engine model, design of those weighting functions
was crucial.
There were designed particular interpolation functions for
every LLM, assigning it 100% validity exactly at the be-
longing working point with a decreasing tendency in the
directions of the deviation of the throttle valve opening
∆tr and the engine revolutions ∆nen from the particular
working point. The "three dimensional" Gaussian func-
tions:

ρ̃h(φ(k)) =

exp


− [ ∆nen(k) ∆tr(k) ]




1

σ2
h,1

0

0
1

σ2
h,2



[
∆nen(k)
∆tr(k)

]



(7)

were used as the local weighting functions, due to their
suitable shape fulfilling the approximation properties. The
choice of tuning parameters σh,1 = 250 and σh,2 = 0.8 used
in the weighting functions has been chosen experimentally,
awaiting continuous and smooth output of the modeled
system. At the same time the experiments have shown,
that there can be used identical weighting functions for
weighting of the air and fuel path parameters.
All the weighting functions were at the end normalized by
creating normalized weighting functions:

ρh(φ(k)) =
ρ̃h(φ(k))∑nM

h=1 ρ̃h(φ(k))
(8)
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so the sum of values of all weighting functions belonging
to a particular working point (Fig. 1), equals exactly one:∑nM

h=1 ρh(φ(k)) = 1.
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Fig. 1. Relative weighting Gaussian functions

3.2 Model identification

Considering the λ(k) modeling, the engine has been
divided into two subsystems with independent inputs,
namely into:

air path with the air throttle position
as the disturbance input, and

fuel path with the input of fuel injector opening time.

Another disturbance-like acting quantity in the air path
were engine revolutions, implicitly included in the engine
model, particularly for each working point.

Parameters of the local ARX models have been estimated
from the data acquired from the exhaust gas oxygen
sensor and an air flow sensor. The identification has been
designed so, that the dynamics of the air path and fuel
path stayed uncoupled, hence the dynamics of both paths
were measured indirectly.

Air path identification The first experiment started at
the stoichiometric value of λa in the operation point φ. To
excite the air path dynamics, the throttle valve position
was oscillating around its steady position according to a
pseudo-random binary signal (PRBS), while the fuel injec-
tors were delivering constant fuel mass mf,e. The change
in λa value has been recorded. During the experiment the
engine had been braked at constant revolutions.

Fuel path identification The identification of the fuel
path dynamics has been done similarly, but with the fixed
throttle valve delivering a constant air mass ma,e. The
PRBS was varying the fuel injectors’ opening time and
the value of λf had been measured again.

In both experiments it was necessary to wisely propose
a PRBS, so that the air/fuel mixture is always ignitable.
The local ARX models can be subsequently determined
from the measured values of instantaneous λa(k) and
λf (k) belonging to the air path and fuel path, utilizing
relative air and fuel mass densities:

ma(k) = ma,e(φ)λa(k) (9)
and

mf (k) =
mf,e(φ)

λf (k)
(10)

The final formula describing the aif/fuel ratio dynamics is
built up of local linear ARX models of the air and fuel
paths is in the form:

λs(k) =
1

Lth

·
[
γT
a (k)

∑nA

h=1 ρa,h(φ(k))θ̂a,h +
∑nA

h=1 ρa,h(φ(k))ĉa,h

γT
f (k)

∑nF

h=1 ρf,h(φ(k))θ̂f,h +
∑nF

h=1 ρf,h(φ(k))ĉf,h

]

(11)

Where:

γ is the regression vector of system inputs and outputs
nA is the amount of working points
ρ is the interpolation function
φ is the vector of a working point
θ is the vector of ARX parameters
c is the absolute term of an ARX model

In accordance with the general model structure presented,
the key variables are defined in the Table 1.

Table 1. Symbol connection between the gen-
eral expression and the model

general air-path fuel-path operating
symbol model model point
y(k) ma(k) mf (k)
u(k) tr(k) uf (k)
γ(k) γa(k) γf (k)

θ̂h θ̂a,h θ̂f,h
ρh(φ(k)) ρa,h(φ(k)) ρf,h(φ(k))
ĉh ĉa,h ĉf,h
φ(k) [ne(k), tr(k − δ)]T

4. PREDICTIVE CONTROL

The strategy of an "exceeding oxygen amount" control
using a predictive controller is based on a prediction of
a controlled quantity λ and subsequent minimization of
a chosen cost function on the horizon Np expressed in a
standard quadratic form. The value of λ is predicted by
utilization of partially linear models of the air and fuel
path. Through the independent air path model the proper
amount of fuel is predicted and enters the cost function J .
Hence, the target of the cost function minimization is to
determine such a control law, that the measured system
output λ is stoichiometric. The second modeled subsystem,
the fuel-path, is an explicit component of the objective
function where the amount of the fuel is the function of
optimized control action (Polóni et al. (2008)).

4.1 Predictive model

The applied control strategy is based on the knowledge of
the internal model (IM) of air-path, predicting the change
of air flow through the exhaust pipe, and consequently, set-
ting the profile of desired values of the objective function
on the control horizon. In this case we will consider the
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state space (SS) formulation of the system and therefore
it is necessary to express linear local ARX models in the
SS structure with time varying parameters:

x(a,f)(k + 1)=A(a,f)(φ)x(a,f)(k) +B(a,f)(φ)u(a,f)(k)

ms,(a,f)(k) =C(a,f)x(a,f)(k) (12)

The weighted parameters of multi-ARX models are dis-
played in matrices Aa,f and Ba,f for both subsystems.
This is a non-minimal SS representation whose advantage
is, that no state observer is needed. The "fuel pulse width
control" is tracking the air mass changing on a prediction
horizon from IM of the air-path, by changing the amount
of injected fuel mass. Due to tracking offset elimination,
the SS model of the fuel-path (12) (index f ), with its state
space vector xf , is written in augmented SS model form
to incorporate the integral action:

x̃f (k + 1) = Ãf (φ)x̃f (k) + B̃f (φ)∆uf (k) (13)

or[
xf (k + 1)
uf(k)

]
=

[
Af (φ) Bf (φ)

0 1

] [
xf (k)

uf (k − 1)

]
+

+

[
Bf (φ)

1

]
∆uf (k)

ms,f (k) = C̃f x̃f (k) +Df∆uf (k) (14)

or

ms,f (k) = [Cf Df ] x̃f (k) +Df∆uf (k)

The prediction of the air mass (m−→a) on the prediction
horizon (Np) is dependent on the throttle position ( t−→r)
and is computed as

m−→a(k) = Γa(φ)xa(k) + Ωa(φ) t−→r(k − 1) (15)
where the xa denotes the state space vector of the air path.

Due to the unprecise modeling (IM strategy), the biased
predictions of the air mass future trajectory and conse-
quently biased fuel mass might occur. This error is com-
pensated incorporation the term L[m̂f(k) −ms,f (k)] into
the fuel mass prediction equation:

m−→f (k) = Γf (φ)x̃f (k) + Ωf (φ)∆ u−→f (k − 1)+

+ L[m̂f(k)−ms,f (k)]
(16)

The matrices of free response Γa, Γf and forced response
Ωa, Ωf are computed from the SS model (12), respectively
(Maciejowski, 2000). Since there is only λ(k) measurable
in equation (1), the value of ma(k) needs to be substituted
using IM of the air-path, then:

m̂f (k) =
1

Lth

ms,a(k)

λ(k)
(17)

The estimate m̂f (k) is used to compensate for possible
bias errors of predicted m−→f (k) in (16).

4.2 Analytical solution

The analytical solution is based on the cost function (18),
encompassing deviations of predicted fuel mass amounts

between the air and fuel path (based on (1)); a penalization
of control increments r; and a penalization p of a deviation
between a predicted and desired end state.

Jλ =

∥∥∥∥∥
m−→a(k)

Lth
− m−→f (k)

∥∥∥∥∥

2

2

+ r‖∆ u−→f (k − 1)‖22
+p‖x̃f(N)− x̃f,r(N)‖22

(18)

The chosen MPC approach utilizes the state space repre-
sentation with an integral control for the correction of the
prediction.
Due to a disturbance d(k), the steady state values of u
and x have to be adapted so, that the assumption J = 0
is valid. This problem solves an explicit inclusion of the
disturbance into the model.
The fuel injectors are controlled by a fuel pulse width, what
is at the same time the control uf . The optimal injection
time can be computed by minimization of a cost function
(18), which has after expansion by the fuel path prediction
equation, form:

Jλ =

∥∥∥∥
m−→a

Lth
− Γf x̃f (k) + Ωf∆ u−→f (k − 1)

∥∥∥∥
2

2

+r
∥∥∥∆ u−→f (k − 1)

∥∥∥
2

2
+ p‖x̃f (N)− x̃f,r(N)‖22

(19)

An analytical solution of dJλ

∆ u−→
= 0 of (19) without con-

straints leads to an expression determining the change of
"fuel injector opening time" in a step (k), as:

∆u =
(
ΩTΩ+ Ir + pΩT

xNΩxN

)−1

·
[
ΩT [w(k)− Γx̃(k)]− pΩT

xNAN x̃(k) + pΩT
xN x̃f,r(N)

] (20)

Hence, the absolute value of the control action in a step
k is given by a sum of a newly computed increment in a
control (20) and an absolute value of the control in a step
(k − 1):

uf (k) = uf (k − 1) + ∆uf(k) (21)

5. RAPID CONTROL PROTOTYPING SYSTEM

The computational unit necessary for the real-time imple-
mentation of the MPC control is based on a powerful and
freely programmable control system based on dSpace and
RapidPro units; or "Rapid Control Prototyping System"
(RCP), (Fig. 2, dSPACE GmbH. (2009)). It is built-up on
the processor board ds1005 and hardware-in-loop platform
dS2202 HIL. The RCP ensures sufficient headroom for the
real-time execution of complex algorithms (Arsie et al.
(2008)) and lets all engine tasks to be controlled directly.
Also, the customized variants of the controller can be
performed immediately.

Typical RCP system consists of:

• A math modeling program (prepared in Simulink)
• Symbolic input/output blocks
• A real-time target computer (embedded computer

with an analog and digital I/O)
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• A host PC with communication links to target com-
puter

• A graphical user interface (GUI) which enables to
control the real time process

The RCP system enables to use a support in the form
of embedded functions which make the preparation of
algorithms easy and fast. It is a great help, because one
can then concentrate on significant problems (development
and debugging of algorithms) without the spending time
on not so important tasks (how to handle features of RCP
system at low level programming).

Fig. 2. Rapid control prototyping scheme

6. REAL-TIME APPLICATION OF A PREDICTIVE
CONTROL

The ability to control the mixture concentration at sto-
ichiometric level using MPC is demonstrated through
the real-time SI engine control (Fig. 3). This has been

Combustion
Engine

MPC

Controller

tr

uf

ne

λ

Fig. 3. Control scheme

performed using the AFR predictive control strategy
described in the previous section, designed in Mat-
lab/Simulink environment and compiled as a real-time
application for a dSpace platform. It has been applied to
the VW Polo engine (Fig. 4), 1390 cm3 with 55kW@5000
rpm, not equipped with a turbocharger or an exhaust gas
recirculation system. The control period was 0.2s. The
result of an identification are 9 local linear models (LLM)
for each, air and fuel path, dependent on a throttle valve
opening and engine revolutions.

The primary target of a control (Fig. 5) was to hold the
air/fuel ratio in a stoichiometric region (λ = 1), in the
worst case to keep the mixture ignitable (0.7 ≤ λ ≤ 1.2).
During the experiment, the change in throttle valve open-
ing, between 21 and 22 degrees (Fig. 5, variable tr) and

Fig. 4. Spark ignition engine VW Polo 1.4

the change of engine revolutions (Fig. 5, variable nen),
has been performed several times. These changes simulate
varying working regimes of an engine, which is adapting
its run to a daily traffic. Changes in tr and nen quanti-
ties are determining the engine load, at the same time,
ensuring, that the engine passes through several working
points during its operation. As mentioned in Section 3,
the engine revolutions are not included among explicit
variables of local models, but they build together with a
delayed throttle valve position a vector of an working point
φ(k).
The quality of control is sufficient (Fig. 5, variable λ),
with exceptional acceptable overshoots in both directions.
These overshoots of the controlled variable λ have been
caused by smaller model precision, due to its distance from
the working point, at which the system identification has
been performed. This effect is caused by the approxima-
tion of a particular model from the other working points’
models.
The corresponding control (fuel injection time) computed
by the controller is shown in (Fig. 5, variable tinj).

The initial engine warm-up (to 80 ◦C ) eliminated model-
plant mismatch caused by temperature dependent behav-
ior of the engine.

The control has been performed by choosing the penaliza-
tion r = 0.1. Utilizing the member p‖x̃f (N)− x̃f,r(N)‖22 of
a cost function by setting p = 1.0 allowed us to shorten the
control horizon to Np = 20 what significantly unloaded the
computational unit and stabilized the controlled output of
the engine on this shortened horizon, as well. The best
control has been achieved in the neighborhood of working
points, what is logically connected to the most precise
engine model at those points. In other working points the
control is still good enough, with small deviations from the
stoichiometric mixture.

7. CONCLUSION

Considering the preliminary results from the real-time
experiments at the engine, it can be concluded, that
the idea of the AFR model predictive control based on
local ARX models is suitable and applicable for the SI
engine control. The proposed flexible design of a predictive
controller offers easy tuning possibilities and a potential for
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Fig. 5. Results of an AFR SI engine control

the model accuracy improvement by the extension of the
global engine model to other working regimes of the engine.
The next project step shall be the overshoot elimination in
the λ - control by the identification of wider net of "local
linear engine models" and implementation of constraints.
Another task which has to be done is a comparison of
the quality of control gained by the MPC controller with
a baseline electronic control unit. This goal has been not
yet achieved, as the original ECU has been replaced by the
dSpace system running our controller.
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