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Abstract: The paper concerns the problem of the bounded real lemma for linear continuous-
time systems. Using free weighting matrices to express the relationship between the terms
of the system state equation a modified equivalent LMI approach to bounded-real-lemma
representation is presented. Immediate extension to design method of a memory-free feedback
controller, which performs H∞ properties of the closed-loop system, is formulated as a feasibility
problem and expressed over a set of LMIs. Numerical example is included to illustrate the
feasibility and properties of the proposed representations.
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1. INTRODUCTION

Over the past decade, H∞ theory seems to be one of the
most sophisticated frameworks for robust control system
design. Based on concept of quadratic stability which at-
tempts to find a quadratic Lyapunov function (LF), H∞
norm computation problem is transferred into a standard
linear matrix inequality (LMI) optimization task, which
includes bounded real lemma (BRL) formulation (Her-
mann et al. (2007), Veselý and Rosinová (2009), Wu et
al. (2010)). A number of more or less conservative analysis
methods are presented to assess robust stability for linear
systems using a fixed Lyapunov function.

The first version of the BRL presents simple conditions
under which a transfer function is contractive on the
imaginary axis. Using it, it was possible to determine the
H∞ norm of a transfer function, and the BRL became a
significant element to shown and prove that the existence
of feedback controllers (that results in a closed loop trans-
fer matrix having the H∞ norm less than a given upper
bound), is equivalent to the existence of solutions of certain
LMIs (Boyd et al. (1994), Filasová et al. (2010)). Linear
matrix inequality approach based on convex optimization
algorithms is extensively applied to solve the above men-
tioned problem (Jia (2003), Pipeleers et al. (2009)) since
it can be solved numerically efficiently by using developed
interior-point algorithm.

In this paper, equivalent LMI representations of BRL for
linear continuous-time systems are introduced. Motivated
by the underlying ideas in Filasová and Krokavec (2009),
Wu and Duan (2006), and Xie (2008) a simple technique
for the BRL representation of linear systems is presented,
and used modifications are explained in a context. The
proposed LMI representations are proven to be necessary
and sufficient and their extensions to state feedback con-

troller design, performing system H∞ properties is im-
mediate. Translating into LMI framework the closed-loop
system stability is characterized in the terms of convex
LMIs.

2. PROBLEM DESCRIPTION

Through this paper the task is concerned with the com-
putation of a state feedback u(t), which control the linear
dynamic system given by the set of equations

q̇(t) = Aq(t) + Bu(t) (1)

y(t) = Cq(t) + Du(t) (2)

where q(t) ∈ IR n, u(t) ∈ IR r, and y(t) ∈ IR m are
vectors of the state, input and measurable output vari-
ables, respectively, nominal system matrices A ∈ IR n×n,
B ∈ IR n×r, C ∈ IR m×n and D ∈ IR m×r are real matrices.

Problem of the interest is to design asymptotically stable
closed-loop system with the linear memoryless state feed-
back controller of the form

u(t) = −Kq(t) (3)

where matrix K ∈ IR r×n is a gain matrix.

3. BASIC PRELIMINARIES

Proposition 1. (Bounded real lemma) System (1), (2) is
asymptotically stable if there exist a symmetric positive
definite matrix P > 0 and a positive scalar γ > 0 such
that 


ATP + PA PB CT

∗ −γ2Ir DT

∗ ∗ −Im


 < 0 (4)

where Ir ∈ IR r×r, Im ∈ IR m×m are identity matrices,
respectively,
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Hereafter, ∗ denotes the symmetric item in a symmetric
matrix.

Proof. (see. e.g. Krokavec and Filasová (2008)) Defining
Lyapunov function as follows

v(q(t)) = qT(t)Pq(t)+

+

t∫

0

(yT (r)y(r)− γ2uT (r)u(r))dr > 0
(5)

where P = P T > 0, P ∈ IR n×n, γ > 0 ∈ IR, and
evaluating the derivative of v(q(t)) with respect to t along
a system trajectory then it yields

v̇(q(t)) = q̇T (t)Pq(t) + qT (t)P q̇(t)+

+yT (t)y(t)− γ2uT (t)u(t) < 0
(6)

Thus, substituting (1), (2) into (6) gives

v̇(q(t)) = (Aq(t) + Bu(t))T Pq(t)+

+qT (t)P (Aq(t)+Bu(t))−γuT(t)u(t)+

+(Cq(t)+Du(t))T (Cq(t)+Du(t)) < 0

(7)

and with the next notation

qT
c (t) =

[
qT (t) uT (t)

]
(8)

it is obtained

v̇(q(t)) = qT
c(t)P cqc(t) < 0 (9)

where

P c =

[
ATP + PA PB

∗ −γ2Ir

]
+

[
CTC CTD

∗ DTD

]
< 0 (10)

Since [
CTC CTD

∗ DTD

]
=

[
CT

DT

]
[ C D ] ≥ 0 (11)

Schur complement property implies



0 0 CT

∗ 0 DT

∗ ∗ −Im


 ≥ 0 (12)

and using (12) the LMI condition (10) can be written
compactly as (4). This concludes the proof.

4. IMPROVED BRL REPRESENTATION

Theorem 1. System (1), (2) is asymptotically stable if
there exist a symmetric positive definite matrix P > 0,
P ∈ IR n×n, matrices S1, S2 ∈ IR n×n, and a positive
scalar γ > 0, γ ∈ IR such that




−S1A−ATST
1 −S1B P +S1−ATST

2 CT

∗ −γ2Ir −BTST
2 DT

∗ ∗ S2+ST
2 0

∗ ∗ ∗ −Im


 < 0 (13)

Proof. Since (1) implies

q̇(t)−Aq(t)−Bu(t) = 0 (14)

then with arbitrary square matrices S1, S2 ∈ IR n×n it
yields

(
qT(t)S1+q̇T(t)S2

)(
q̇(t)−Aq(t)−Bu(t)

)
= 0 (15)

Thus, adding (15), as well as its transposition to (6) and
substituting (2) it can be written

v̇(q(t)) = −γuT(t)u(t)+q̇T(t)Pq(t)+qT(t)P q̇(t)+

+(Cq(t)+Du(t))T (Cq(t)+Du(t))+

+
(
q̇(t)−Aq(t)−Bu(t)

)T(
ST

1 q(t)+ST
2 q̇(t)

)
+

+(qT(t)S1+q̇T(t)S2)(q̇(t)−Aq(t)−Bu(t)) < 0

(16)

and using the notation

qT
c (t) =

[
qT (t) uT (t) q̇T (t)

]
(17)

it can be obtained

v̇(q(t)) = qT
c(t)P

◦
cqc(t) < 0 (18)

where

P ◦
c =




CTC CTD 0
∗ DTD 0
∗ ∗ 0


+

+



−S1A−ATST

1 −S1B P +S1−ATST
2

∗ −γ2Ir −BTST
2

∗ ∗ S2+ST
2


 < 0

(19)

Thus, analogously using (11), (12) the inequality (19) can
be written compactly as (13). This concludes the proof.

Remark 1. Setting S1 =−P then (13) is transformed in



PA+ATP PB −ATST
2 CT

∗ −γ2Ir −BTST
2 DT

∗ ∗ S2+ST
2 0

∗ ∗ ∗ −Im


<0 (20)

Thus, inserting S2 = −δI, where δ > 0, δ ∈ IR gives



PA+ATP PB δAT CT

∗ −γIr δBT DT

∗ ∗ −2δIn 0
∗ ∗ ∗ −Im


<0 (21)




PA+ATP PB AT CT

∗ −γIr BT DT

∗ ∗ −2δ−1In 0
∗ ∗ ∗ −Im


<0 (22)

respectively. Then (22) can be written as



ATP + PA PB CT

∗ −γIr DT

∗ ∗ −Im


+

+0.5 δ




AT

BT

0


 [A B 0] < 0

(23)

Choosing δ as a sufficiently small positive scalar satisfying
the condition

0 < δ < 2
λ1

λ2
(24)
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λ1 =λmin



−



PA+ATP PB CT

∗ −γ2Ir DT

∗ ∗ −Im






 (25)

λ2 =λmax








ATA ATB 0
BTA BTB 0

0 0 0






 (26)

(21) be negative definite for a feasible P of (4).

Corollary 1. Setting S1 = −P , and S2 = δI, where
0 < δ ∈ IR then (20)-(22) implies




ATP + PA PB CT

∗ −γIr DT

∗ ∗ −Im


−

−0.5 δ



−AT

−BT

0


 [−A −B 0] < 0

(27)

and a feasible solution P of (4) is also a feasible solution
of (27) for all δ > 0, δ ∈ IR.

Theorem 2. System (1), (2) is asymptotically stable if
there exist a symmetric positive definite matrix P > 0,
P ∈ IR n×n, matrices S1, S2 ∈ IR n×n, and a positive
scalar γ > 0, γ ∈ IR such that




PA+ATP PB P +S1+ATS2 CT

∗ −γ2Ir BTS2 DT

∗ ∗ S2+ST
2 0

∗ ∗ ∗ −Im


 < 0 (28)

Proof. Defining the congruence transform matrix

T 1 =




I
I

A B I
I


 (29)

and multiplying right-hand side of (13) by T 1 and left-

hand side of (13) by T T
1 then after tedious calculation

(28) is obtained. This concludes the proof.

Remark 2. Setting S1 =−P , S2 =−δP then (28) leads to



PA+ATP PB −δATP CT

∗ −γ2Ir −δBTP DT

∗ ∗ −2δP 0
∗ ∗ ∗ −Im


 < 0 (30)




PA+ATP PB −ATP CT

∗ −γ2Ir −BTP DT

∗ ∗ −2δ−1P 0
∗ ∗ ∗ −Im


 < 0 (31)

respectively, and using Schur complement property then
(31) can be rewritten as




PA+ATP PB CT

∗ −γ2Ir DT

∗ ∗ −Im


+

+
δ

2



−ATP
−BTP

0


P −1[−PA −PA 0] < 0

(32)




PA+ATP PB CT

∗ −γ2Ir DT

∗ ∗ −Im


+

+
δ

2




ATPA ATPB 0
BTPA BTPB 0

0 0 0


 < 0

(33)

respectively. Choosing δ satisfying (24), then with (25) and

λ2 = λmax








ATPA ATPB 0
BTPA BTPB 0

0 0 0






 (34)

(31) be negative definite for a feasible P of (4). This
concludes the proof.

Corollary 2. Considering (32), (33) it is evident that the
inequality



PA+ATP PB ATP CT

∗ −γ2Ir BTP DT

∗ ∗ −2δ−1P 0
∗ ∗ ∗ −Im


 < 0 (35)

and (31) are equivalent.

5. CONTROL LAW PARAMETER DESIGN

Theorem 3. Closed-loop system (1), (2), (3) is stable if
there exists a symmetric positive definite matrix X > 0,
X ∈ IR n×n, a regular square matrix Z ∈ IR n×n, a matrix
Y ∈ IR r×n, and a scalar γ > 0, γ ∈ IR such that

X = XT > 0, γ > 0 (36)


Π11 B XAT−Y TBT XCT−Y TDT

∗ −γ2Ir BT DT

∗ ∗ Z+ZT 0
∗ ∗ ∗ −Im


 < 0 (37)

Π11 = AX+XAT−BY −Y TBT (38)

The control law gain matrix is given as

K = Y X−1 (39)

Proof. Setting S1 = −P then (28) implies


PA+ATP PB ATS2 CT

∗ −γ2Ir BTS2 DT

∗ ∗ S2+ST
2 0

∗ ∗ ∗ −Im


 < 0 (40)

Supposing that det(S2) ̸= 0 then it can be defined the
congruence transform matrix

T 2 = diag
[
P −1 Ir S−1

2 Im

]
(41)

and pre-multiplying right-hand side of (40) by T 2, and

left-hand side of (40) by T T
2 leads to



AP −1+P −1AT B P −1AT P −1CT

∗ −γ2Ir BT DT

∗ ∗ S−1
2 +S−T

2 0
∗ ∗ ∗ −Im


 < 0 (42)

Thus, denoting

P −1 = X, S−1
2 = Z (43)
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(42) can be written as



AX+XAT B XAT XCT

∗ −γ2Ir BT DT

∗ ∗ Z+ZT 0
∗ ∗ ∗ −Im


 < 0 (44)

Inserting A← Ac = A−BK, and C ← Cc = C−DK it
yields



Π11 B X(AT−KTBT ) X(CT−KTDT )
∗ −γ2Ir BT DT

∗ ∗ Z+ZT 0
∗ ∗ ∗ −Im


< 0 (45)

where

Π11 = AX+XAT−BKX−XKTBT (46)

and with

Y = KX (47)

(45), (46) implies (37), (38), respectively. This concludes
the proof.

Remark 3. Setting Z = −δX then with D = 0 the control
law design condition (36)-(38) can be rewritten as

X = XT > 0, δ > 0 (48)



Π11 B XAT−Y TBT XCT

∗ −γ2Ir BT 0
∗ ∗ −2δIn 0
∗ ∗ ∗ −Im


 < 0 (49)

Π11 = AX+XAT−BY −Y TBT (50)

where feasible X, Y , δ implies gain matrix parameter (39).

Therefore, it is evident that the design standard form of
BRL is 


Π11 B X(CT−KTDT )
∗ −γ2Ir 0
∗ ∗ −Im


 < 0 (51)

Note, other nontrivial solutions can be obtained using
different setting of Sl, l = 1, 2.

6. ILLUSTRATIVE EXAMPLE

The approaches given above are illustrated by the numer-
ical example where the parameters of (1), (2) are

A =

[
0 1 0
0 0 1
−5 −9 −5

]
, B =

[
1 3
2 1
1 5

]
, CT =

[
1 1
2 1
1 0

]

Solving (48), (49) with respect to LMI matrix variables
X, Y , γ, and δ using SeDuMi (Self-Dual-Minimization)
package for Matlab (Peaucelle et al. (1994)) given task
was feasible with

X =

[
3.7160 −2.6784 1.2147
−2.6784 3.0184 −1.8970

1.2147 −1.8970 3.2896

]

Y =

[
0.8937 2.1673 −1.4078
−0.0801 −0.0207 0.5383

]

γ = 11.0242, δ = 6.7040

and results the control system parameters

K =

[
2.2731 3.0405 0.4860
0.0152 0.1662 0.2538

]

ρ(Ac) = {−0.9398, −3.1252, −11.2561}

It is evident, that the eigenvalues spectrum ρ(Ac) of the
closed control loop is stable.

Solving (48), (51) with respect to LMI matrix variables
X, Y , and γ given task was feasible, too. Obtained LMI
variables were

X =

[
2.7637 −1.7983 0.6386
−1.7983 2.2479 −1.2081

0.6386 −1.2081 3.0925

]

Y =

[
0.9127 1.6581 −0.8163
0.2802 0.1304 −0.2269

]

γ = 6.9412

and implies

K =

[
1.7557 2.2852 0.2662
0.2837 0.2709 −0.0261

]

ρ(Ac) = {−0.8968, −5.8435± 1.7282 i}

It is evident, that performance γ is less then one obtained
with respect to (49) but this fetches worst dynamic prop-
erties.

It also should be noted, the cost value γ will not be a
monotonously decreasing function with the decreasing of
δ, if δ is chosen.

7. CONCLUDING REMARKS

This paper describes a simple technique for equi-valent
BRL representation and its application to the H∞ control
of linear systems. Standard criterion is extended for a
system with constant coefficient matrices employing free
weighting matrices to take the relationship between the
terms of the system equation into account in the structure
of BRL. The method is further extended to the design of an
H∞ state-feedback controller. Numerical example demon-
strates that principles described in this paper are effective,
although some computational complexity is increases.

The advantage of this approach is that in Theorem 1
Lyapunov matrix P is separated from A, BT , C, and
DT , i.e. there are no terms containing the product of
P and any of them. This enables a new robust BRL to
be derived for a system with polytopic uncertainties by
using a parameter-dependent Lyapunov function, and to
deal with linear systems with parametric uncertainties. It
seems to be a useful extension to other control performance
synthesis problems, too.
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