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Abstract: The paper devotes analysis of environmental time series by using the on-line empirical mode 
decomposition (OEMD). The environmental data were measured by meteorological stations which are 
deployed in the southern part of Czech Republic. The EMD algorithm was modified for the possibility 
of the on-line analysis of environmental time series.  

 

1. INTRODUCTION 

During processing of environmental data to consider the state 
of the ecosystem, the stationarity or periodicity of the 
measured data is usually assumed. In fact, the observed data 
reflect the characteristics of the ecosystem, which is generally 
nonlinear, stochastic and nonstationary. The results obtained, 
given the very simplistic assumptions might therefore lead to 
incorrect conclusions and to obtain distorted characteristics 
either in time or frequency domain. Since similar problems 
encountered at each analyzing nonstationary stochastic 
systems, the EMD (Empirical Mode Decomposition) 
algorithm, developed by N. E. Huang in 1998 for NASA 
(Huang, et al. 1998), attracted much attention. Huang 
combined EMD algorithm with the algorithm for the Hilbert 
spectral analysis and created the so-called Hilbert-Huang 
Transformation (HHT), which is applicable for analysis of 
nonlinear, stochastic and nonstationary processes.  

 

2. EMPIRICAL MODE DECOMPOSITION 

An EMD algorithm decomposes adaptively the signal x(t) 
into intrinsic mode functions ci(t), i = 1, 2, …, n and into 
residue r(t): 

( ) ( ) ( )∑
=

+=
n

i
i trtctx

1

, (1) 

where n means the number of IMF functions. Residue r(t) 
reflects the average trend of a signal x(t) or a constant value.  
Intrinsic mode functions (IMF) are signals with following 
characteristics: 

In the whole dataset, the number of extremes (minima and 
maxima) and the number of zero-crossings must either equal 
or must differ by a maximum of one. 

Each point, that is defined as mean value of envelopes 
defined by local maxima and local minima is zero. 

The algorithm for searching of intrinsic mode functions is 
based on a procedure called “sifting”, described e.g. in 
(Zhaohua 2009) and (Zhaohua 2010).  

 

 

Fig 1.Flowchart of Empirical Mode Decomposition algorithm 
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The algorithm proceeds in the following steps (see Fig. 1): 

1. Create upper envelope Eu(t) by local maxima and lower 
envelope El(t) by local minima of data x(t). 

2. Calculate the mean of upper and lower envelope  

( ) ( ) ( )
2

11
1

tEtE
tm lu +

= . (2) 

3. Subtract the mean from original data  
( ) ( ) ( )tmtxth 11 −= . (3) 

4. Verify that h1(t) satisfies conditions for IMFs. Repeat 
steps 1 to 4 with h1(t), until it is an IMF. 

5. Get first IMF (after k iterations)  
( ) ( ) ( ) ( )tmthtc kk 1111 −= − . (4) 

6. Calculate first residue  
( ) ( ) ( )tctxtr 11 −=  (5) 

7. Repeat whole algorithm with r1(t), r2(t), … until residue 
is monotonic function. 

8. After n iterations x(t) is decomposed according 
to equation (1). 

 

3. ON-LINE ANALYSIS 

The algorithm described in chapter 2. is calculated off-line 
over the entire measured data range. Since the dataset can be 
very large, the sifting process can be time-consuming and 
computationally very demanding. Therefore, an algorithm 
that processes the data gradually, by moving time windows, 
was created. The advantage of floating time windows is 
mainly significant in accelerating of decomposition into IMF 
functions. 

For off-line decomposition, the computation time is not so 
much restricted and the interval edges, that might be 
distorted, can be omitted from the analysis. But these two 
problems become serious, when the EMD algorithm for on-
line analysis is used. The following procedure was used to 
overcome these problems: 

• The floating time window is created. The window range:  

( ) ;wt T t− , (6) 

where t is actual time point and a Tw is length of window. 
The decomposition process is at any point of time 
evaluated only in the appropriate window range. So the 
time needed for compute IMFs does not grow with 
simulation time. 

• To reduce distortion of decomposition at the end of 
measurement interval, the currently known courses of 
IMFs are used to estimate their future course and to 
estimate their future local extremes needed for EMD 
algorithm. 

The size of the time window affects frequencies, which ones 
will be detected during sifting in the IMFs and which ones 
will be included within residue. Generally, the longer the 
window, the lower frequencies (and therefore the longer 
periods) will appear in IMFs. 

 

The practical realization of algorithm is implemented in the 
software MATLAB and its simulation toolbox SIMULINK. 
As a basis for the algorithm is used modified Zhaohua 
MATLAB function „eemd()“ – see (Zhaohua 2010). The 
modification consists in replacing the interpolation functions 
for creating of envelopes with functions that allow also 
interpolation. The modified eemd() function is built into the 
s-function „s-emd()“.  The main tasks of the s-function are: 

• To create and to maintain moving time window during 
simulation. 

• To maintain dynamic global variables of type one-, two- 
and three-dimensional array of variable length. These 
variables store the source data, residue and IMFs with 
their variances. 

 

4. IMPLEMENTATION 

Modified On-line Empirical Mode Decomposition (OEMD) 
algorithm described in chapter 3 is demonstrated on soil 
temperature measurements from the meteorological station 
by the environmental project TOKENELEK. (Fig. 2) shows 
the temperature ϑ during September 2010, the sampling 
period is 10 minutes.  
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Fig. 2  The time range of temperature ϑ. 
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Fig. 3  Intrinsic Mode Functions (IMF) and Residue obtained 
off-line once around a course. Pay attention to changing 
scale of vertical axis. The residue is compared to measured 
data ϑ. 
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Fig. 4  Comparison of variances of (off-line) IMF. The larger 
variance, the more important component it represents. 

 

 

The experimental analysis has been divided into two parts. 
An off-line EMD analysis was carried out in the first part. 
The resulting functions are shown in the graph (Fig. 3) and 
serve as reference samples of IMF functions. Variance was 
also found for every IMF. Variances were used as a simple 
benchmark to determine how significant component of the 
initial data each IMF represents. As shown in (Fig. 4), the 
most important component is c4.  

(Fig. 5) compares original data ϑ with filtered temperature ϑf, 
that is declared by formula: 

( ) ( ) ( )trtct
i

if +=∑
=

9

2

ϑ . (6) 

 
 
The same source data (Fig. 2) has been processed by on-line 
EMD algorithm in the second part of the experiment. The 
size of the time window has been set at 1008, which given the 
sampling density represented 7 days.  

The rectangle shown in graph (Fig. 6) represents the time 
window during the simulation. One set of IMF functions that 
has been generated inside the time window is shown in the 
graph (Fig. 7). It is obvious that the residue is more curved 
in comparison to off-line decomposition and also some IMFs 
have higher variance. This phenomenon is a necessary and 
expected consequence of a shorter time range of analyzed 
data.  

Along with finding the IMF functions their variance were 
estimated. On the basis of the variances it was decided which 
IMFs will be included into partial filtered function ϑf(t). 
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Fig. 5  Comparison of temperature trends ϑ and ϑf. The thick 
line represents the original measured data; the thin line 
represents the filtered function obtained by adding the 
selected major IMFs and residue. 

 

 

 (Fig. 8) shows the course of several partial filtered functions 
compared to the original source data. Thick light line 
represents the source data; thin gray scaled lines show partial 
filtered functions from selected time windows. 
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Fig. 6  The symbolic representation of moving time window. 
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Fig. 7  Comparison  of on-line IMF  obtained by on-line 
EMD analysis for one time point t and offline IMF (see 
Fig. 3). The number of on-line and off-line IMF differs, so the 
comparison mainly illustrates how sifting process depends on 
window size. 
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Fig. 8  Comparison of measured temperature ϑ and (on-line) 
partial filtered functions ϑfi. The measured temperature is 
represented by thick light line; the courses of filtered 
temperatures for selected time windows are represented by 
thin lines with varying greyscales. The intervals between 
displayed partial functions are 1 day; the length of time 
window is Tw=7 days. 

 

 

5. CONCLUSION 

Empirical Mode Decomposition (EMD) is a progressive 
method that combines the signal analysis in time even in 
frequency domain. In field of environmental non-stationary 
data streams, almost repetitive sequences with very various 
periodicities often appear, but exact repetition of events 
occurs rarely. For this reason, the EMD analysis of these 
systems is very convenient. Real-time data processing 
provides results qualitatively similar to the offline analysis. 
Comparing of both methods shows that on-line analysis with 
a moving time window is much faster and significantly 
reduces the computational complexity. Off-line analysis on 
the contrary provides a slightly more detailed decomposition 
because it captures even very low frequencies. Data obtained 
from the experiments provided a number of suggestions for 
further work, with a wide range stems mainly from the short-
term prediction of the internal mode functions for more 
precise decomposition in real time. 
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