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Abstract: The aim of this paper is to compare two toolboxes used for solving the robust
stabilization problem. Robust static output feedback controller was designed for a continuous
stirred tank reactor (CSTR) in which two parallel exothermic reactions take place. The reactor
is a system with parametric uncertainty and multiple steady states. The problem of robust
controller design was converted to a problem of solution of linear matrix inequalities (LMIs)
and computationally simple non-iterative and iterative algorithms can be used for controller
tuning. The MATLAB–Simulink environment enables to compare the results of the YALMIP
and the Robust Control toolboxes.
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1. INTRODUCTION

Continuous-time stirred tank reactors (CSTRs) belong to
the most important plants in chemical and food industries.
From the control viewpoint, CSTRs are very interesting
systems, because of their potential safety problems and
the possibility of exotic behavior such as multiple steady
states, see e.g. Molnár et al. (2002). Furthermore, opera-
tion of chemical reactors is corrupted by various uncertain-
ties. Some of them arise from varying or not exactly known
parameters, as e.g. reaction rate constants, reaction en-
thalpies, heat transfer coefficients, etc. Operating points of
reactors change in other cases. All these uncertainties can
cause poor performance or even instability of closed-loop
control systems. Application of robust control approach is
one way for overcoming all these problems, as it is shown
e.g. in Alvarez-Ramirez and Femat (1999), Gerhard et al.
(2004), Bakošová et al. (2005), Tlacuahuac et al. (2005)
and others. From the viewpoint of safety operation or in
the case when the unstable steady state coincides with
the point that yields the maximum reaction rate at a pre-
scribed temperature, it is necessary to control CSTRs into
the prescribed open-loop unstable steady state (Bakošová
and Oravec (2010), Bakošová et al. (2009), Bakošová et al.
(2006), Puna et al. (2006)).

One of solved problems in robust control theory is the
problem of robust static output feedback control (Dong
and Yang (2007), Iwasaki et al. (1994), Syrmos et al. (1997)
and references therein). This approach can be success-
fully used for solving the problem of robust stabilization
of CSTRs. For obtaining robust stabilizing controllers,
the non-iterative and iterative algorithms can be applied
(Veselý (2002)).

In this paper, the problem of robust stabilization of a
CSTR is solved. The conditions for robust stabilization
are formulated in the form of linear matrix inequalities
(LMIs). Solution of LMIs represents a convex optimization
problem that has been solved in the MATLAB environ-
ment by Robust Control toolbox (Balas et al. (2006))
and YALMIP toolbox (Löfberg (2004), Kvasnica and
Fikar (2010)) with solver SeDuMi (Henrion and Lasserre
(2003)).

2. CONTROLLED CSTR

The controlled reactor is a continuous-time stirred tank
reactor with two first order irreversible parallel exothermic

reactions according to the scheme A
k1→B, A

k2→ C, where
B is the main product and C is the side product. Chemical
reactions are performed in a reaction vessel and reaction
heat is removed from the reactor by coolant in a reactor
jacket. Because of the exponential dependency of reactant
concentrations on the temperature of the reaction mixture
known as the Arrhenius equation (Molnár et al. (2002)), it
is supposed that it is not necessary to control directly con-
centrations. The multivariable controller is used in order to
achieve control of the reaction mixture temperature in the
reaction vessel and the coolant temperature in the jacket.
Control inputs are flow rates of reaction mixture and
coolant. Parameters and inputs of the considered CSTR
(Bakošová et al. (2006)) are shown in Table 1 and Table 2.

Model uncertainties of the over described reactor follow
from the fact that there are four only approximately
known physical parameters in the reactor, which values
are shown in Table 3. Here, ∆rH1, ∆rH2 are reaction
enthalpies of the chemical reactions and k∞1, k∞2 are
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Table 1. Parameters of CSTR

Variable Value Unit

V 0.23 m3

VC 0.21 m3

ρ 1020 kg m−3

ρC 998 kg m−3

cP 4.02 kJ kg−1K−1

cPC
4.182 kJ kg−1K−1

A 1.51 m2

α 42.8 kJ min−1m−2K−1

g1 = E1/R 9850 K
g2 = E2/R 22019 K

Table 2. Steady-state inputs of CSTR

Variable Value Unit

cA,0 0.0824 kmol m−3

cB,0 0 kmol m−3

T0 310 K
TC,0 288 K
qs 0.015 m3min−1

qsC 0.004 m3min−1

pre-exponential factors in the reaction rate constants. The
nominal values of uncertain parameters are considered
to be mean values of given intervals. These uncertainties
represent parametric uncertainties.

Table 3. Uncertain parameters of CSTR

Variable Minimal value Maximal value Unit

∆rH1 −8.8× 104 −8.4× 104 kJ kmol−1 min−1

∆rH2 −5.7× 104 −5.3× 104 kJ kmol−1 min−1

k∞1 1.5× 1011 1.6× 1011 min−1

k∞2 4.95 × 1026 12.15 × 1026 min−1

It follows from the steady-state analysis that the reactor
has three steady states, two of them are stable and
one is unstable. The situation for the nominal model is
shown in Figure 1, where the curve QGEN (red line)
represents the heat generated by the reactions and the line
QOUT (blue line) represents the heat withdrawn from the
reactor. The steady-state operating points of the reactor
are points, where the curve and the line intersect. The
steady states are stable if the slope of the cooling line
is higher then the slope of the heat generated curve.
This condition is satisfied in the steady states at the
temperatures T = 308.4 K and T = 352.6 K, and it is not
satisfied in the steady state at T = 338.4 K. The steady-
state behavior of the chemical reactor is similar for all
vertex systems, which are obtained for all combinations of
minimal and maximal values of uncertain parameters. The
maximal concentration of the main product B (red line) is
always obtained when the reactor operates in the unstable
steady state as it is shown in Figure 2 (Bakošová et al.
(2006)).

Linearized mathematical model of the reactor has been
derived under the assumption that the control inputs are
the reactant flow rate q and the coolant flow rate qC , the
controlled outputs are the reaction mixture temperature T
and the coolant temperature TC and the operating point
of the reactor is its open-loop unstable steady state. Then
the linearized model of the CSTR is in the form

ẋ (t) =Ax (t) +Bu(t), x (t0) = x 0

y(t) =Cx (t) (1)
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Fig. 1. Steady states of CSTR with nominal values of
uncertain parameters
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Fig. 2. Concentration of components A and B in depen-
dence on the reaction mixture temperature – nominal
model

where again x(t) ∈Rn is the state, u(t) ∈Rm the control,
y(t) ∈Rr the output. Matrices A, B, C are in the form

A =




a11 0 a13 0
a21 a22 a23 0
a31 0 a33 a34
0 0 a43 a44


 (2)

B =




b11 0
b21 0
b31 0
0 b42


 (3)

C =

(
0 0 1 0
0 0 0 1

)
(4)

Matrices A, B have varying coefficients as according to
the values of uncertain parameters steady states of the
reactor vary. For coefficients of matrices A and B see
Table 4.

For all combinations of boundary values of 4 uncertain
parameters, we have obtained 24 = 16 linearized mathe-
matical models with matrices Ai, Bi. These systems rep-
resent vertices of an uncertain polytopic system. All these
vertices are unstable systems as between the eigenvalues of
Ai, i = 1, ..., 16, are also positive eigenvalues. Unstable is
also the linearized nominal model (Bakošová et al. (2006)).
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Table 4. Matrices parameters

Parameter Value

a11 −
(
qs

V
+ ks1 + ks2

)

a13 − cs
A
(ks

1g1+ks
2g2)

(Ts)2

a21 ks1
a22 − qs

V

a23
ks
1∆rH1+ks

2∆rH1

qscP

a31 −
(

qs

V
+ αA

V ρcp
+

csA(ks
1g1∆rH1+ks

2g2∆rH1)

ρcP (Ts)2

)

a34
αA

V ρcP
a43

αA
VCρCcPC

a44 −
(

qs
C

VC
+ αA

VCρCcC

)

b11
cA,0−cs

A
V

b21
cB,0−csB

V

b31
T0−Ts

V

b42
TC,0−Ts

C
V

3. ROBUST STATIC OUTPUT FEEDBACK
STABILIZATION OF CSTR

Design of a robust static output feedback controller is
based on having a linear time-invariant state space model
(1) of the controlled system. For the system (1), it is
necessary to find a static output feedback u(t) = Fy(t).
Using this static output feedback we obtain an uncertain
polytopic closed-loop system

ẋ (t) = [A+BFC ] x (t) = ACLx (t) (5)

The system (1) is simultaneously static output feedback
stabilizable with guaranteed cost

∞∫

0

(
x (t)TQx (t) + u(t)TRu(t)

)
dt ≤ xT

0 Px 0 = J∗

P > 0 (6)

if there exist matrices P > 0,Q > 0,R > 0 and a matrix
F such that the following inequalities hold (Veselý (2002))

ΩT
i P +PΩi +Q +CT

i F
TRFC i < 0

i = 1, . . . , N (7)

where

Ωi = Ai +B iFC i (8)

The system (1) is simultaneously static output feedback
stabilizable with guaranteed cost (6) also if there exist
matrices P > 0,Q > 0,R > 0 and a matrix F such that
the inequalities hold (Veselý (2002))

AT
i P +PAi −PB iR

−1BT
i P −Θi +Q ≤ 0

i = 1, . . . , N (9)

where

Θi = CT
i F

TRFC i (10)

and also the inequalities hold

λiφ
−1
i λT

i −R ≤ 0

i = 1, . . . , N (11)

where

λi = BT
i P +RFC i (12)

φi = −(AT
i P +PAi −PB iR

−1BT
i P −Θi +Q) (13)

The non-iterative and iterative procedures for simulta-
neous static output feedback stabilization of the system
(1) with guaranteed cost (6) are based on statements
formulated above (Veselý (2002)).

3.1 Non - iterative algorithm

Using the Schur complement formula and defining S is
equal to P−1 and considering Θi is equal zero, the in-
equality (9) is transformed to the following LMIs

[
SAT

i +AiS −B iR
−1BT

i S
√
Q√

QS −I

]
≤ 0

γI < S , i = 1, . . . , N (14)

where γ > 0 is any positive constant.

Using P = S−1, the inequality (11) can be rewritten to
the following LMIs

[
−R BT

i P +RFC i

(BT
i P +RFC i)

T −φi

]
≤ 0

i = 1, . . . , N (15)

The non-iterative algorithm for static output simultaneous
stabilization of the system (1) with the guaranteed cost (6)
is following (Veselý (2002)).

(1) Set parameter γ and required values of the weight
matrices Q, R in the cost function (6).

(2) Compute S = ST > 0 from the inequalities (14). If
the solution of (14) is not feasible, the system (1)
is not simultaneously stabilizable by static output
feedback.

(3) Set P := S−1.
(4) Compute F from the inequalities (15). If the solution

of (15) is not feasible, the closed-loop system (5) is
not quadratically stable with guaranteed cost. Then
change Q, R or γ in order to find feasible solutions.

(5) If the solutions of (14), (15) are feasible, then the
system (1) is simultaneously stabilizable and the sys-
tem (5) is quadratically stable with guaranteed cost
control algorithm u∗(t) = Fy(t) and J∗ = xT0 Px0 is
the guaranteed cost.

3.2 Iterative algorithm

Using the Schur complement formula and defining S is
equal to P−1, the inequality (7) is transformed to the
following LMIs

[
SkA

T
i +AiSk −B iR

−1BT
i Sk

√
Ψi√

ΨiSk −I

]
≤ 0

γI < Sk, i = 1, . . . , N (16)
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where

Ψi = C T
i F

T
k−1RF k−1C i +Q (17)

and γ > 0 is any positive constant.

Using P = S−1, the inequality (11) can be rewritten to
the following LMIs




−R BT
i P +RF iC i 0

PkB i +C T
i F

T
kR ϕi C iF

T
k

0 F kC i R


≤ 0

i = 1, . . . , N (18)

where

ϕi = AT
i Pk +PkA

T
i −PkB

T
i R

−1BT
i Pk +Q (19)

The iterative algorithm for static output simultaneous
stabilization of the system (1) with the guaranteed cost
(6) is following (Veselý (2002)).

(1) Set parameter γ and required values of the weight
matrices Q, R due to the cost function (6).

(2) Set k := 0 and initial value of matrix F 0.
(3) Set k := k + 1.

(4) Compute Sk = ST
k > 0 from the inequalities (16). If

the solution of (16) is not feasible, the system (18)
is not simultaneously stabilizable by static output
feedback.

(5) Set Pk := S−1
k .

(6) Compute F k from the inequalities (18). If the solution
of (18) is not feasible, the closed-loop system (5) is
not quadratically stable with guaranteed cost. Then
change Q, R or γ in order to find feasible solutions.

(7) If ||Fk − Fk−1|| ≤ tolerance then stop else go to the
Step 3.

(8) If the solutions of (16), (18) are feasible, then the
system (1) is simultaneously stabilizable and the sys-
tem (5) is quadratically stable with guaranteed cost
control algorithm u∗(t) = Fy(t) and J∗ = xT0 Px0 is
the guaranteed cost.

4. CASES OF ROBUST CONTROLLER DESIGN

Solving presented algorithms represents the feasibility
problem of convex optimization. The MATLAB environ-
ment enables to solve this problem by Robust Control
toolbox and YALMIP toolbox with solver SeDuMi. The
Robust Control toolbox uses function setlmis to initial-
ize the LMI generating. Function lmivar enables to define
the properties of optimization variable. Function getlmis
generates LMI in the form required for processing by the
function feasp. This function enables to solve the LMI fea-
sibility optimization problem. The YALMIP uses function
sdpvar to set the properties of optimization variable. The
constraints are set simple by using the parentheses in the
form [ expression ] . Function solvesdp enables to
solve the optimization problem. To obtain the calculated
value, the function double can be used.

For robust controller design the above presented non-
iterative algorithm has been applied. The values of ma-
trices Q, R in the cost function (6) and parameter γ used
for controller tuning are shown in Table 5.

Table 5. Parameters for controller design

Cost function Q R γ

1




0.1 0 0 0
0 0.1 0 0
0 0 0.01 0
0 0 0 0.01




(
10 0
0 10

)
0.001

2




0.1 0 0 0
0 0.1 0 0
0 0 0.01 0
0 0 0 0.01




(
100 0
0 100

)
0.001

Due to the various weight matrices in the cost function (6)
and using different MATLAB toolboxes, the four different
cases of controller tuning have been obtained (Table 6).
The following initial conditions of system (1) have been
considered (Bakošová and Oravec (2010))

x 0 = (∆cA,∆cB,∆T,∆TC)
T (20)

x 0 = (2.1210, 0.8644, 335.4726, 325.7271)T −
−(1.8614, 1.0113, 338.4080, 328.0599)T =

= (0.2596,−0.1469,−2.9354,−2.3328)T (21)

Table 6. Cases of the robust controller design

Case Method Cost function Used toolbox

1 non-iterative 1 Robust Control
2 non-iterative 1 YALMIP
3 non-iterative 2 Robust Control
4 non-iterative 2 YALMIP

5. RESULTS AND DISCUSSION

Four different controllers (F1–F4) for considered system
(1) have been designed for various cases of the robust
stabilization controller tuning (Table 6). The designed
controllers are shown in Table 7. In this table are shown the
maximal evaluated values of cost function J in comparison
to guaranteed values of the cost function J∗ for each
designed controller. These values have been evaluated for
considered initial values (21). The maximal eigenvalue of
all uncertain systems (EVmax) have been calculated. The
time measured in seconds needed for each LMI solving
procedure is shown in column tCPU . These data have been
evaluated by computer with 3.20 GHz CPU and memory
4 GB RAM.

Table 7. Properties of the designed robust
static output feedback controllers

Case Controller Fc J∗ J EVmax tCPU

1

[
0.0456 0.0294
0.0569 0.0496

]
0.2765 0.1286 −0.016

[
0.08
0.05

]

2

[
0.0026 −0.0026
0.0179 0.0160

]
0.3221 0.2151 −0.036

[
0.58
0.25

]

3

[
0.0333 0.0170
0.0261 0.0189

]
0.7340 0.2638 −0.020

[
0.08
0.05

]

4

[
0.0028 −0.0029
0.0020 0.0005

]
0.5546 0.4158 −0.033

[
0.51
0.47

]

All the designed controllers assure the lower value of cost
function J than the guaranteed value J∗ as the theory
predicts. All designed controllers guarantee the negative
value of maximal eigenvalue for all uncertain closed–loop
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systems. The lower values of cost function J have been
obtained for the controllers tuned by Robust Control
toolbox.

In general, YALMIP toolbox needs more CPU time for
solving the optimization problem than Robust Control
toolbox. On the other hand, the YALMIP toolbox offers
more comfortable environment. For system (1) and all the
controllers F1–F4, closed–loop behaviours have been gen-
erated with corresponding control inputs using MATLAB–
Simulink environment. In the Figures 3 – 12 are shown
performances of the closed–loop system controlled using
controllers designed by non-iterative algorithm.
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Fig. 3. Closed-loop behaviour of CSTR using the robust
controller F1

0 2 4 6 8 10
−0.04

−0.035

−0.03

−0.025

−0.02

−0.015

−0.01

−0.005

0

0.005

0.01

time [min]

u 1, u
2 [m

3  m
in

−
1 ]

Fig. 4. Control inputs generated by the controller F1

The controllers F1, F2 have been designed for the cost
function 1 and the controllers F3, F4 have been tuned
for the cost function 2 (Table 6). As can be seen in the
Figure 3 and Figure 5 the control performances of the
CSTR assured by the controllers F1, F2 obtain similar
overshoot (Bakošová et al. (2003)). The Figure 3 show
that using the controller F1 tuned by Robust Control
toolbox leads to the lower value of settling time (Bakošová
et al. (2003)) in comparison to the control performance
assured by the controller F2 tuned by YALMIP (Figure 5).
The control performance assured by the controller F4

tuned by YALMIP toolbox obtain lower value of overshoot
(Figure 9) than is assured by using the controller F3

(Figure 7). On the other hand, the setling time obtained
using the controller F4 is much longer (Figures 11, 12) in
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Fig. 5. Closed-loop behaviour of CSTR using the robust
controller F2
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Fig. 6. Control inputs generated by the controller F2
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Fig. 7. Closed-loop behaviour of CSTR using the robust
controller F3

comparison to the performance assured by the controller
F3 (Figure 7, 8) tuned by Robust Control toolbox.

6. CONCLUSION

Robust stabilization of the exothermic CSTR with four
uncertain parameters using static output feedback con-
trollers was studied. The robust stabilizing multivariable
controllers have been designed using the presented simple
non-iterative and iterative algorithms, which are based on
solving of two sets of LMIs. The problem of their solutions
represents the feasibility problem of convex optimization.
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Fig. 8. Control inputs generated by the controller F3

0 2 4 6 8 10
−3

−2

−1

0

1

2

3

time [min]

y 1, y
2 [K

]

Fig. 9. Closed-loop behaviour of CSTR using the robust
controller F4
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Fig. 10. Control inputs generated by the controller F4

The Robust Control toolbox and YALMIP toolbox have
been used for solving the LMIs and the results have
been compared using MATLAB–Simulink environment.
Description of optimization problem using YALMIP is
more user-friendly. On the other hand, the CPU time
decreases using Robust Control toolbox. Despite of simple
using of YALMIP, using Robust Control toolbox seems to
be more suitable for solving the problem of robust static
output feedback stabilization.
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Fig. 11. Closed-loop behaviour of CSTR using the robust
controller F4 using longer evaluation time
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Fig. 12. Control inputs generated by the controller F4

using longer evaluation time
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ed. edition.

18th International Conference on Process Control
June 14–17, 2011, Tatranská Lomnica, Slovakia Po-We-8, 069.pdf

331



Balas, G., Chiang, R., Packard, A., and Safonov,
M. (2006). Robust Control Toolbox. For use
with MATLAB. The MathWorks. Available from
http://www.mathworks.com/products/robust/.

Dong, J. and Yang, G. (2007). Robust static output
feedback control for linear discrete-time systems with
time-varying uncertainties. Systems & Control Letters,
57, 123–131.

Gerhard, J., Monningmann, M., and Marquardt, W.
(2004). Robust stable nonlinear control and design of a
CSTR in a large operating range. In Proceedings of the
7th International Symposium on Dynamics and Control
of Process Systems, 92.pdf. Massachusetts, USA.

Henrion, D. and Lasserre, J. (2003). Gloptipoly: Global
optimizaton over polynomials with matlab and SeDuMi.
ACM Transactions on Mathematical Software, Vol. 29,
No. 2, 165–194.

Iwasaki, T., Skelton, R.E., and Geromel, J.C. (1994).
Linear quadratic suboptimal control with static output
feedback. Systems Control Lett., 23, 421–430.

Kvasnica, M. and Fikar, M. (2010). Design and Imple-
mentation of Model Predictive Control using Multi-
Parametric Toolbox and YALMIP. In Proceedings of
the 2010 IEEE International Symposium on Computer-
Aided Control System Design, 999–1004. Yokohama,
Japan.
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curacy of mathematical model with regard to safety
analysis of chemical reactors. Chemical Papers, 56, 357–
361.
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