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Abstract: Modern wind turbines operate in a wide range of wind speeds. Power contained
in the wind is proportional to the third power of wind speed and therefore increases rapidly
with increase of wind speed. To enable wind turbine operation in such a variety of operating
conditions, sophisticated control and estimation algorithms are needed. In this paper, a method
for wind turbine state and parameter estimation is proposed. The described estimation is
experimentally tested on laboratory wind turbine.
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1. INTRODUCTION

Modern wind turbines operate in a wide range of wind
speeds, typically from 3m/s to 25m/s. Power contained
in wind is proportional to the third power of wind speed
and therefore increases rapidly with increased wind speed,
Burton et al. (2001). To enable wind turbine operation
in such a variety of operating conditions, a sophisticated
control system is needed. During weak winds, the control
system has to optimise wind energy conversion by using
appropriate generator torque. On the other hand, during
strong winds, wind turbine power has to be constrained.
An efficient way to constrain wind energy capture is
pitching the rotor blades around their longitudinal axis,
i.e. pitch control.

To employ more complex control algorithms, state estima-
tion is often needed, Simon (2006). Due to wind turbine
high nonlinearity and parameters uncertainty, it is not pos-
sible to use a linear model for control design and state esti-
mation in the whole operating region. Therefore, Kalman
filter for state and parameter estimation is proposed in
this paper. The estimation is experimentally verified in
Laboratory for Renewable Energy Sources (LARES) on
Faculty of Electrical Engineering and Computing, Univer-
sity of Zagreb. Brief description of LARES can be found
in Section 2. In Section 3, mathematical model of the wind
turbine is given. State and parameter estimation method
based on Kalman filter theory is presented in Section 4.
Wind speed estimation is described in Section 5. Finally,
in Section 6, experimental results are shown with brief
conclusion.

2. DESCRIPTION OF THE LABORATORY

Laboratory for Renewable Energy Sources is located at
the Faculty of Electrical Engineering and Computing,
University of Zagreb. The research in the laboratory is
focused on three areas: (i) wind energy, (ii) solar energy
and (iii) energy storage using hydrogen fuel cell stack

with metal hydride storage. Besides the research of each
area independently, their connection into a micro grid is
also being investigated, see Perić et al. (2010) for more
details. The principle scheme of the laboratory is shown in
Figure 1.
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Fig. 1. Principle scheme of the Laboratory for Renewable
Energy Sources, Perić et al. (2010).

The laboratory’s wind turbine set-up consists of scaled
wind turbine placed in air chamber with wind blower for
generating wind, as shown in Figure 2.

The laboratory wind turbine is specially constructed so
all aerodynamic relations present at MW-scale wind tur-
bines are preserved. Furthermore, construction of labora-
tory wind turbine tower enables oscillatory fore-aft tower
motion. To be able to use the same control strategies as
on MW-scale wind turbine, the laboratory wind turbine
is equipped with: (i) three servo drives that enable indi-
vidual pitch control and (ii) synchronous generator with
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Fig. 2. The laboratory wind turbine set-up.

frequency converter for torque control. Control algorithms
are implemented on PC using LabVIEW (Laboratory Vir-
tual Instrumentation Engineering Workbench) platform,
Johnson and Jennings (2006). Measurements of the system
variables and control signal generation are obtained by a
specialized input-output PXI and cRIO circuits, as shown
in Figure 3.
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Fig. 3. The basic wind turbine control scheme.

3. WIND TURBINE MATHEMATICAL MODEL

Very common method used for wind turbine modelling is
blade element and momentum theory which yields reliable
and detailed wind turbine model (Burton et al. (2001)).
However, such models describe wind turbine behaviour
with implicit equations which are not suitable for con-
troller design. Therefore, a simpler model that uses quasi
steady state relations for aerodynamic phenomena is pre-
ferred. Such model can easily be used for control and
estimator design, but it is still detailed enough to offer
necessary insight into physics of the wind turbine.

The motion of the rotor can be described with equation:

Jtω̇ = Ma −Mg, (1)

where ω is rotor speed, Mg is generator electromagnetic
torque, Ma is aerodynamic torque and Jt is turbine mo-

ment of inertia. The aerodynamic torque can be computed
as:

Ma =
π

2
ρaR

3
b v̄

2
wCQ(v̄w, ω, β), (2)

where v̄w is effective wind speed on wind turbine rotor, Rb

is blade length, and ρa is air density and CQ is torque
coefficient. Torque coefficient CQ describes the steady
state dependence of aerodynamic torque on wind speed,
rotor speed and pitch angle β, Hau (2006).

It should be noted that wind is not uniform and its speed
varies over the rotor area. Therefore effective wind speed
v̄w used in this model is not wind speed in any particular
point on rotor area. The effective wind speed v̄w is defined
as wind speed of uniform wind that would have the same
effect on wind turbine as real nonuniform wind. For most
applications, information about effective wind speed is
more useful than information about wind speed on any
particular point on rotor area, cf. van der Hooft and van
Engelen (2003).

Important parts of wind turbine dynamics are tower os-
cillations. Namely, wind turbine structure is very flexible
due to great dimensions of its components and need for
their moderate mass. In this paper, only tower flexibility is
considered, while blades are assumed to be completely stiff.
This assumption is valid for most MW-scale wind turbines
that are in use at the present time and for the laboratory
wind turbine described in Section 2. However, for larger
turbines, (5MW and more) we should probably take into
account flexing of the blades as well. The first harmonic in
tower oscillations is the most dominant, so tower dynamics
can be approximated by (van Engelen et al. (2007)):

Mẍt +Dẋt + Cxt = Ft, (3)

where xt is the tower top deflection and M , D and C are
the modal mass, damping and stiffness, respectively. The
aerodynamic thrust force is defined similarly to aerody-
namic torque:

Ft =
π

2
ρaR

2
b v̄

2
wCT (v̄w, ω, β), (4)

where thrust coefficient CT describes the steady state
dependence of aerodynamic thrust force on wind speed,
rotor speed and pitch angle, Hau (2006).

Due to tower motion, wind turbine rotor is not influenced
by absolute wind speed vw, but by apparent wind speed
that is derived from absolute wind speed and tower top
speed:

v̄w = vw − ẋt. (5)

Tower oscillations are small in magnitude compared to
wind speed, but they significantly contribute to wind tur-
bine behaviour and pose main limitation to wind turbine
pitch control (Jelavić and Perić (2009)).

For parameter estimation, it is more convenient to have
a linear discrete-time state space model of the system. To
this end we introduce state vector x ∈ R3 and input vector
u ∈ R3 as follows:

x =

[
ω
xt

ẋt

]
, u =

[
vw
β
Mg

]
. (6)
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The nonlinear mathematical model (1) – (5) can now be
linearised around an operating point (O.P. ≡ (x0, u0)) and
written in the state space form:

ẋ = Ax+Bu, (7)

with matrices A ∈ R3×3 and B ∈ R3×3 as follows:

A =




Mω

Jt
0 −Mv

Jt
0 0 1

Fω

M
− C

M
−Fv +D

M



, (8)

B =




Mv

Jt

Mβ

Jt
− 1

Jt
0 0 0

Fv

M

Fβ

M
0



, (9)

The coefficients Mω, Fω , Mv, Fv, Mβ and Fβ , introduced
in (8) and (9), are partial derivatives of aerodynamic
torque and thrust force around operating point:

Mω =
∂Ma

∂ω

∣∣∣∣
O.P.

, Fω =
∂Ft

∂ω

∣∣∣∣
O.P.

,

Mv =
∂Ma

∂vw

∣∣∣∣
O.P.

, Fv =
∂Ft

∂vw

∣∣∣∣
O.P.

,

Mβ =
∂Ma

∂β

∣∣∣∣
O.P.

, Fβ =
∂Ft

∂β

∣∣∣∣
O.P.

.

(10)

Partial derivatives (10) and other wind turbine parameters
used in this section can be obtained from professional wind
turbine simulation tools, e.g., GH Bladed Bossanyi (2009).

Finally, a discrete time model of the wind turbine in the
form:

x(k + 1) = Φx(k) + Γu(k), (11)

can be obtained from the continuous-time model (7)–(10)
with the following approximation (Franklin et al. (1997)):

Φ = eAT ≈ I +AT, (12)

Γ =

∫ T

0

eAτBdτ ≈ BT, (13)

where T is the sampling time.

4. STATE AND PARAMETER ESTIMATION

As shown in Section 3, wind turbine is a highly nonlinear
system. For this reason we have chosen the extended
Kalman filter (EKF) as an algorithm for the state and
parameter estimation, cf. Simon (2006).

In general, the discrete-time EKF considers the nonlinear
system in the state space form:

xk = fk−1(xk−1, uk−1, wk−1),
yk = hk(xk, vk),

(14)

where xk ∈ Rn is the state vector, uk ∈ Rm is the input
vector, yk ∈ Rp is the output (measurement) vector, wk

is the process noise, and vk is the measurement noise

at time step k. The process and measurement noise are
assumed to be zero-mean stochastic variables with normal
distribution, i.e.,

wk ∼ (0, Qk),
vk ∼ (0, Rk),

(15)

where Qk and Rk are corresponding covariances.

The basic idea of the extended Kalman filter is to linearise
(i.e., compute the first order Taylor approximation of) the
nonlinear system (14) around the Kalman filter estimate
of the states. At the same time the Kalman filter estimate
of the states is based on the obtained linearised system.

Kalman filter is a recursive estimator that can be decom-
posed into two phases: prediction and correction, which
are performed at every time instant k. In the prediction
phase a priori estimation of the state (x̂−

k ) is obtained
from the system model (14) as if there was no process
noise. In the correction phase an improved state estimate
is found (x̂+

k ) by utilizing the actual measurements. This
update is achieved via the so-called Kalman gain matrix,
Kk. The quality of the estimation is captured in the error
covariance matrix Pk, which is also updated in two phases,
i.e., we have a priori value P−

k and a posteriori value P+
k .

In the following we give brief summary of the computa-
tional steps for discrete-time extended Kalman filter, see
Simon (2006) for more details:

(1) Initialize the filter

x̂+
0 = E(x0),

P+
0 = E

[
(x0 − x̂+

0 ) · (x0 − x̂+
0 )

T
]
,

k = 1.

(16)

(2) Prediction phase: compute the time update of the
state estimate and estimation-error covariance

x̂−
k = fk−1(x̂

+
k−1, uk−1, 0),

P−
k = Fk−1P

+
k−1F

T
k−1 + Lk−1Qk−1L

T
k−1,

(17)

where

Fk−1 :=
∂fk−1

∂x

∣∣∣∣
(x̂+

k−1
,uk−1,0)

Lk−1 :=
∂fk−1

∂w

∣∣∣∣
(x̂+

k−1
,uk−1,0)

(18)

(3) Correction phase: compute the measurement update
of the state estimate and estimation-error covariance

Kk = P−
k HT

k

(
HkP

−
k HT

k +MkRkM
T
k

)−1
,

x̂+
k = x̂−

k +Kk

[
yk − hk(x̂

−
k , 0)

]
,

P+
k = (I −KkHk)P

−
k ,

(19)

where

Hk :=
∂hk

∂x

∣∣∣∣
(x̂−

k
,0)

Mk :=
∂hk

∂v

∣∣∣∣
(x̂−

k
,0)

(20)

(4) Increase k and go to step 2.

The estimation process is illustrated in Figure 4.

As already mentioned, besides estimation of the signals,
the extended Kalman filter can be used for parameter
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Fig. 4. Kalman filter estimation process.

estimation as well, cf. Wan and Nelson (2001). Basic idea
is to define state vector with parameter values and perform
estimation procedure.

In control systems one usually assumes that the parameter
changes are slow, i.e., that one can write:

pk+1 = pk + δk, (21)

where pk is the parameter vector and δk is the parameter
uncertainty at discrete time step k. The parameter uncer-
tainty δk is defined as a stochastic variable with a zero
mean value and standard deviation Qδ.

In case of a wind turbine, the parameter changes cannot
be observed as in (21), because parameter values depend
on wind speed. So, mathematical model, given in (12) and
(13) is used to obtain expected parameter values. In this
paper, both of these approaches are used in order to obtain
a priori estimation as it is proposed in following equation:

p−k = α · p+k−1 + (1− α) · p̃k, (22)

where p−k is a priori parameter estimation at discrete

time step k, p+k−1 is a posteriori parameter estimation at
discrete time step (k − 1), p̃k is expected parameter value
based on mathematical model and α is tuning coefficient.

It must be noted that a posteriori estimation is calculated
using Kalman gain matrix as in case of state estimation.

Wind turbine is a highly nonlinear system whose dynamics
strongly depend on wind speed, so its parameters are
changing in time. The goal of this paper is to estimate
the changing parameters and use obtained estimates to
improve estimation of the system states. To this end
we employ extended Kalman filter, which is suitable for
parallel estimation of the system states and parameters,
see Wan and Nelson (2001) for more details.

To carry out the dual task of state and parameter esti-
mation it is necessary to enable synchronous operation
of two Kalman filters as it is shown in Figure 5. This is
achieved using the state estimator and available measure-
ments, which will converge towards the correct estimation
values. Furthermore, these values will be used as an input
data to parameter estimator. Finally, calculated values are
returned in the first estimator using feedback. In this way,
one gets two estimators, which interact with each other,
and thus provide two types of data from the process, state
and parameters values. These data are usually hard or
even impossible to measure. It is necessary to point out
that possible estimation problems are expected because of
limited number of signals that are actually measurable.

Note that, in general, the algorithm is able to calculate
all parameters and state values. However, the obtained

STATE

PREDICTION

STATE

CORRECTION

q
-1

PARAMETER

PREDICTION

PARAMETER 

CORRECTION

q
-1

x k-1
^ + ^ -

x k x k
^ +

measurement yk

^ +
p k-1 p k

^ - ^ +
p k

Fig. 5. Dual Kalman filter scheme.

solution may not be accurate, because estimated values
may be only one of possibly many solutions that satisfy
system dynamics and initial conditions. So, there are
limitations to the number of signals which can be reliably
estimated.

5. WIND SPEED ESTIMATION

As it can be seen in (6), wind speed is one of process
inputs and it can be shown that it contributes significantly
to wind turbine behaviour. Although it would be possible
to use the wind speed measurement in the Laboratory,
such information about wind speed on the rotor is typi-
cally not available on a MW-scale wind turbines. Namely,
anemometers are placed on wind turbine nacelle, so wind
speed measurement has a significant time lag. Also, wind
measured by the anemometer on a MW-scale turbine is
deformed due to passing through the wind turbine rotor.
Therefore, wind speed estimation is used in this paper
instead of the real wind speed measurement.

Furthermore, in Section 4, it is mentioned that there may
be a limit on a number of states and parameters one
could estimate sufficiently well depending on the number of
measured outputs. Therefore, instead of augmenting EKF
from Section 4 to estimate wind speed, another approach
is used. As it is shown by van der Hooft and van Engelen
(2003), the effective wind speed can be estimated from (1)
that describes the wind turbine rotor motion. By using
expression for aerodynamic torque (2), one can readily
form the following nonlinear function:

fw(v̂w) =
π

2
ρaR

3
b v̂wCQ(v̂w , ω, β)−Mg − Jtω̇. (23)

Pitch angle β and electromagnetic torque Mg can be
easily measured, while rotor speed ω can be obtained
from Kalman filter described in Section 4. The torque
coefficient CQ is based on the aerodynamic characteristics
of the turbine, and can be calculated using professional
simulation tools, e.g. GH Bladed, Bossanyi (2009). Clearly,
when the estimated wind speed v̂w is equal to the effective
wind speed on the wind turbine rotor v̄w then the function
(23) has a zero value. Therefore, the wind speed estimation
can be done by numerically solving the nonlinear equation:

fw (v̂w) = 0. (24)
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Figure 6 shows comparison between wind speed estimation
and measurement.

6. EXPERIMENTAL RESULTS

The state and parameter estimation method described
in Section 4 was experimentally tested in Laboratory
for Renewable Energy Sources (LARES) at the Faculty
of Electrical Engineering and Computing, University of
Zagreb. The wind turbine in question has the following
parameters:

Jt = 4Nms2,
M = 2.321 · 104Ns2/m,
D = 4.672 · 103Ns/m,
C = 8.468 · 105N/m.

In the Laboratory setup the control system comprises
two separated control loops. First controller is used below
rated wind speed to set up the moment reference. The
second controller is used above rated wind speed to obtain
pitching of the rotor blades around their longitudinal
axis in order to constrain the capturing of wind energy.
The goal of the experiment was to verify the state and
parameter estimation based on the Kalman filter theory.

Two series of experiments were made. In the first set
of experiments the state and parameter estimation is
performed below rated wind speed. In that case the blade
pitch angle is constant and the moment controller is active.
In the second set of experiments, during strong winds
above rated wind speed, generator torque is on its rated
value and pitch controller is active.

Estimated wind speed and rotor speed in the experiment
below rated wind speed are shown in Figure 7 and Figure 8,
respectively. Initial values of parameters in (10) are

Mω = −0.082663Nms/rad,
Fω = −19.774Ns/rad,
Mv = 1.26908Ns,
Fv = 5.06419Ns/m,
Mβ = 0.048625Nm/rad,
Fβ = −19.774N/rad,

and initial continuous-time model (7) with

A =




−0.0207 0 −0.3173
0 0 1

−8.55 · 10−4 −36.627 −0.2023


 ,

B =




0.3173 0.012156 −0.25
0 0 0

2.19 · 10−4 −6.364 · 10−4 0


 ,

is discretized with the sampling time of 20ms to get a
discrete-time model (11).
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Fig. 7. Wind speed estimation below rated wind speed.

Representative results in experiments above rated wind
speed are reported in Figure 9 (estimated wind speed) and
Figure 10 (estimated rotor speed).

Estimation results show that the measurement noise is
suppressed and estimation error is negligible in both cases
– both below and above rated wind speed.

For illustration, in Figure 11 we report one representative
sample of the parameter estimation results: estimation of
parameter Γ1,1. The blue line represents the expected value
of Γ1,1 based on the mathematical model (13). A posteriori
estimation using the extended Kalman filter is plotted with
a red line.
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7. CONCLUSION

In this paper, wind turbine state and parameter estimation
based on a dual Kalman filter theory is implemented and
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Fig. 11. Parameter estimation below rated wind speed,
parameter Γ1,1.

experimentally tested in Laboratory for Renewable Energy
Sources. A modification of the parameter estimation is
used to improve a priori estimation of the state vector.

We report results for wind speed estimation and rotor
speed estimation. Experiment is performed in two different
operating modes, below and above rated wind speed. It
is shown that the rotor speed can be estimated with a
high quality in both cases. It is also possible to implement
this estimation method for other states, e.g. tower top
deflection.

ACKNOWLEDGEMENTS

This research has been financially supported by the Min-
istry of Science, Education and Sports of the Republic of
Croatia under grant No 036-0361621-3012; by the National
Foundation for Science, Higher Education and Techno-
logical Development of the Republic of Croatia; and by
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