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Abstract: A linear algebra result known as Elimination lemma is frequently used in lot of filtering and 
control problems to transform products of unknown matrices to LMI form, however, the robust counterpart 
to elimination lemma is not known. In this paper, sufficient robust stability condition inspired by 
elimination lemma is developed and the respective robust static output feedback controller design 
procedure based on LMI formulation and solution is proposed. The proposed robust controller design 
procedure is computationally not demanding and is illustrated on examples. 

 

1. INTRODUCTION 

Linear algebraic result known as Elimination lemma plays an 
important role in the study of robust stability conditions for 
linear systems with polytopic uncertainties (Boyd et al. 1994, 
Skelton et al. 1998). The following matrix inequality often 
appears in robust control problem formulation 

         NiUXVXVUG T
i

TT
iiii ,...,2,1,0 =<++  (1) 

The matrices XVUG iii ,,,  may all depend on the control 
system parameters to be designed; X may represent control 
gain which is the same for the whole uncertainty domain, 
when robust controller is concerned. Elimination lemma 
enables to eliminate unknown matrix X from (1) when N = 1, 
thus simplifying the resulting design inequality, which then 
often turns to LMI. Unfortunately, for 1>N , which is the 
case of uncertain polytopic linear system, the elimination 
lemma cannot be directly extended, (deOliveira 2005; 
Vesely, et al 2009). Moreover, it is not clear if such 
counterpart in the form of necessary and sufficient condition 
can be found since the class of structured linear control 
problems such as decentralized control and simultaneous 
static output feedback (SOF) belongs to NP hard problems as 
have been proven in (Blondel and Tsitsiklis, 1997). 
Nevertheless, various techniques have been developed to 
reformulate the problem as LMI one using certain convex 
approximation as linearizing or convexifying functions 
(deOliveira et al., 2000; Han and Skelton, 2003, Veselý, 
2003; Rosinová and Veselý, 2003). The problem remains in 
linearizing the off-diagonal terms, since in this case, the 
upper bound based linearization formulas are not quite 
suitable to receive workable results. 
In this paper, sufficient condition for (1) is developed, which 
can be advantageously used for robust static output feedback 
controller design. The respective control design procedure, 
which is computationally not demanding, is presented. 

Section 2 brings problem formulation and preliminaries. In 
Section 3, the sufficient condition for (1) is developed, in 
which the unknown matrix X is eliminated from off-line 
terms of the respective matrix determining robust stability 
condition. The corresponding robust control design procedure 
is proposed and in Section 4 it is illustrated on two examples.    

2. PRELIMINARIES AND PROBLEM FORMULATION 

The robust static output feedback control design problem is 
formulated in this section and the respective sufficient robust 
stability condition in the form (1) is presented. Consider the 
class of linear uncertain continuous or, alternatively, discrete-
time systems described by convex polytopic model: 
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 (3) 
Consider a static output feedback control law 

)()()( tFCxtFytu ==   (4) 

and the respective closed loop uncertain system 
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where 
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FCBAA iiCi +=  
To study the stability of uncertain linear system (2), the 
parameter-dependent quadratic Lyapunov function is used 

( ) )()()( txPtxtV T α=  (7) 

and the respective robust stability condition is considered in 
compliance with (Oliveira et al. 1999).  

Definition 1  

System (5) is robustly stable in the convex uncertainty 
domain (6) with parameter-dependent Lyapunov function (7) 
if and only if there exists a matrix 0)()( >= TPP αα such 
that 
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for all α such that ( )αCA  is given by (6) and r11= 0, r12= 1, 
r22= 0  for a continuous-time system; r11= -1, r12= 0, r22= 1 
for a discrete-time system.        

In the following we consider Lyapunov matrix )(αP  in the 
form 

0where)(
1

>== ∑
=

T
ii

N

i
ii PPPP αα , Nj ,...,1=  (9) 

Robust static output feedback control design aims at finding 
an output feedback gain matrix F for control law (4) so that 
the uncertain closed loop system (5) is robustly stable.  

Recall a sufficient robust stability condition proposed in 
(Peaucelle et al., 2000), which has been favoured in 
comparison of several available results (Grman et al. 2005) 
 

Lemma 1 
If there exist matrices nxnnxn RHRE ∈∈ ,  and N symmetric 

positive definite matrices nxn
i RP ∈  such that for all 

i=1,…,N:  
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    (10)           

FCBAA iiCi +=  
then system (5) is robustly stable, where  r11= 0, r12= 1, r22= 0  
for a continuous-time system; r11= -1, r12= 0, r22= 1 for a 
discrete-time system.   

Matrix inequality (10) is in the form of LMI for robust 
stability analysis with for unknown matrices iPHE ,, . On the 
contrary, for robust control design (10) is no more LMI since 
in this case, F is unknown matrix as well as iPHE ,, , and 

these unknown matrices appear in bilinear terms. One 
possibility to cope with nonlinear (bilinear) terms is to use 
bilinear matrix inequality (BMI) solvers; this approach, 
however, has its limitations (e.g dimension of problem, case 
sensitivity). To improve numerical tractability, there is an 
effort to transform (10) to LMI, the frequent approach is to 
employ linearization (deOliveira et al. 2000). In this paper the 
upper bound on the left hand side of (10) is used, based on 
the following well known matrix inequality. 

Lemma 2 

For any 0>iε following inequalities hold for any matrices 
XVU ii ,,   

Ni
XVXVUUUXVXVU i

TT
ii

T
iii

T
i

TT
iii

,...,2,1
,1

=
+≤+ = εε  (11) 

Lemma 2 immediately follows from inequality  
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                         (12) 
which holds for any 0>iε and any matrices XVU ii ,, .  

A closed loop performance is assessed considering the 
guaranteed cost notion. The quadratic cost function is used.  
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for a discrete-time system,      (13) 

where mmnn RRRQ ×× ∈∈ , are symmetric positive definite 
matrices. 

Control law (4) is called guaranteed cost control when there 
exist a feedback gain matrix F and a constant J0  such that  
 

0JJ ≤                                    (14) 

holds for the closed loop system (5), (6); J0 is the guaranteed 
cost. 

Extending robust stability condition (10) by guaranteed cost 
requirement as known from LQ theory, the robust stability 
condition with guaranteed cost is obtained in the form 
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 (15) 
Inequality (15) is LMI for stability analysis, i.e. for unknown 
matrices HEPi ,, . In the case of controller design, where F is 
also unknown, the bilinear terms appears in (15) both in 
diagonal and off-diagonal terms. Nonlinear diagonal terms in 
(15) can be treated by existing convexifying approaches as in 
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(deOliveira et al., 2000; Han and Skelton, 2003, Veselý et al, 
2009). 
The respective potential convexifying function for terms as 

1−X  and XWX has been proposed in the linearizing form 
(Han and Skelton, 2003): 

- The linearization of  nxnRX ∈−1  about the value 0>kX is  

 1111 )(),( −−−− −−=Φ kkkkk XXXXXXX  (16)      (13) 

-  The linearization of  nxnRXWX ∈  about kX is  

 WXXXWXWXXXXWX kkkkk ++−=Ψ ),( .  (17) 

Both functions defined in (16) and (17) meet one of the basic 
requirements on convexifying function: to be equal to the 
original nonconvex term if and only if XX k = . However, 
the question how to choose the appropriate “nice” 
convexifying function remains still open. 

In fact, linearization (16) and (17) is based on using upper 
bounds on bilinear terms, which is suitable for treating 
diagonal terms in (15). As soon as the bilinear terms in the 
off-diagonal part of testing matrix are to be linearized, the 
upper bounds based approaches are no more appropriate and 
a different way to linearization must be found. One possible 
way to transform robust stability condition to LMI is 
proposed in the next section.   

In the sequel, 0>X denotes positive definite matrix; * in 
matrices denotes the respective transposed term to make the 
matrix symmetric; I denotes identity matrix and 0 denotes 
zero matrix of the respective dimensions. 

3. ROBUST SOF CONTROLLER DESIGN PROCEDURE 

In this section, the novel static output feedback design 
procedure is proposed based on sufficient robust stability 
condition, which yields LMI formulation for controller 
design. 

The following corollary of Lemma 2 provides the bound 
(sufficient condition) which will be used below. 

Corollary 1 

If there exists 0>iε such that  
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then 
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Sufficient robust stability condition is then formulated in 
Theorem 1.  

Theorem 1 
If there exist matrices nxnnxnnxn RHRHRE ∈∈∈ 21 ,, , N 

symmetric positive definite matrices nxn
i RP ∈  and 0>iε  

such that for all  i = 1,…,N: 
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and Xρ  is a chosen positive constant, 

then closed loop uncertain system (5), (6) is stable with 
guaranteed cost.   

Proof 

Robust stability condition (10) can be for 
21 HHH += rewritten in the form (19) where 
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Let us apply now Corollary 1 to the matrices defined in (21).  
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2H  is any matrix, let us consider it as diagonal: IH Xρ=2 , 
where Xρ  is a chosen constant.  

Substituting (21) and (22) into (18), the sufficient robust 
stability condition (20) is obtained.    □ 

Note, that the nonlinear (bilinear) terms appear only in the 
diagonal part of matrix iG~ in robust stability condition (20). 

The robust SOF controller can be now designed using (20) as 
described above, by the following proposed procedure. 

Procedure for robust SOF controller design: 

1. Choose an upper bound constant 0r  for 

                      IrPi 00 ≤≤  

2.  Choose 01 8.0 rH ≈  and 004.0 rX ≈ρ . 

3.  Choose starting value of 0>iε  

4.  Apply linearization of the diagonal terms using (17) and 
the respective iterative procedure and solve LMI (20) for 
unknown matrices FHEPi ,,, . 

If (20) is infeasible, change the constant 0>iε and repeat 
steps 3. and 4. 
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The outlined procedure requires iterative computation in 
steps 3. and 4., in fact it is one dimensional search for 
appropriate value of  0>iε  so that the outlined procedure 
provides feasible solution of  (20). 

4. EXAMPLES 

In this section the proposed robust controller design 
procedure is illustrated on two examples. The previous result  
for robust SOF design with guaranteed cost (Veselý et al, 
2009) is recalled and used for comparison. 

Sufficient robust stability condition for uncertain system (5), 
(6) with guaranteed cost can be formulated in the following 
form (Veselý et al, 2009): 

If there exist matrices nxnnxn RHRE ∈∈ , , N symmetric 

positive definite matrices nxn
i RP ∈  and 0>γ  such that for 

all  i = 1,…,N: 
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where  

RFCFCQEAEAPrw TT
Ci

TT
Cii ++++= 1111  

then closed loop uncertain system (5), (6) is stable with 
guaranteed cost. 

In inequality (23) scalar parameter 0>γ is to be 
appropriately chosen. 

Example 1 

Consider uncertain system with 10 states, 2 inputs and 4 
outputs with nominal model described by matrices CBA ,, 00  
and uncertainty matrices 2121 ,,, uuuu BBAA . 
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The respective uncertain polytopic model (2), (3) for the 
above matrices has 4 vertices given by: 

2211022110 , uuiuui BqBqBBAqAqAA ++=++= , (24) 
where { }1,1, 21 −∈qq . 
Output matrix is 
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Cost function matrices are: IRIQ == ,1.0 . 

The robust controller design procedure proposed in the end of 
Section 3 has been realized for the above described uncertain 
system. Upper bound on Lyapunov matrix iP  has been 
chosen as 10000 =r , 01 8.0 rH =  and 004.0 rX =ρ . Results 
obtained using new design procedure and results 
corresponding to a solution of (23) are summarized as 
follows. 

New procedure based on (20): 

values of ε  providing a feasible solution to 
(20): 016.0,006.0∈ε  

SOF gain matrix for 0075.0=ε : 

⎥
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=

0586.007996.00
01462.001873.1

1F  

maximal closed-loop system eigenvalue = -0.0397 

maximal eigenvalue of Lyapunov matrices = 999,899. 

Results for previously designed procedure  – solution of (23): 

values of γ  providing a feasible solution to 
(23): 71.4,51.0∈γ  

SOF gain matrix for 51.1=γ : 
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⎡
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−−
=

1026.004172.10
02725.009138.1

2F  

maximal closed-loop system eigenvalue = -0.0496 

maximal eigenvalue of Lyapunov matrices = 942,388. 

Example 2 

Consider double integrator described by a nominal model 
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Analogically as in Example 1, uncertain system is described 
by a polytope with four vertices given by (24). 

Cost function matrices are: IRIQ == ,1.0 . 

Parameters for new design procedure has been the same as in 
Example 1: Upper bound on Lyapunov matrix iP  chosen as 

10000 =r , 01 8.0 rH =  and 004.0 rX =ρ . Results obtained 
using new design procedure and results corresponding to a 
solution of (23) are summarized below. 

New procedure based on (20): 

values of ε  providing a feasible solution to 
(20): 026.0,001.0∈ε  

SOF gain matrix for 0055.0=ε : 

[ ]9369.13716.01 −−=F  

maximal closed-loop system eigenvalue = -0.2275 

maximal eigenvalue of Lyapunov matrices = 866.95. 

Results for previously designed procedure  – solution of (23): 

values of γ  providing a feasible solution to 
(23): 51.10,51.0∈γ  

SOF gain matrix for 31.2=γ : 

[ ]0514.2664311.222 −−=F  

maximal closed-loop system eigenvalue = -0.0675 

maximal eigenvalue of Lyapunov matrices = 889,52. 

In both examples the proposed procedure has been 
successfully applied to compute the robust control gain 
matrix including guaranteed cost requirement. 

5. CONCLUSION 

Robust static output feedback control design procedure has 
been proposed based on new developed sufficient robust 
stability condition. This condition is in the form of matrix 

inequality, where the off diagonal terms of testing matrix are 
linear with respect to unknown matrices and bilinear terms in 

the matrix diagonal can be readily linearized using upper 
bound linearization approach. The proposed procedure 

includes scalar parameters to be chosen by a designer, the 
proposed values of these parameters have been tested on 

various examples, and two of them are shown in Section 4. 
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