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Integrated Two-Time-Scale Scheme
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{marian.podmajersky,miroslav.fikar}@stuba.sk

Abstract: This paper deals with the problem of uncertainties in optimal control of real process.
The measurement-based optimisation is used to treat variations in terminal constraints, model
mismatch and process disturbances. It is assumed that this process will be carried out several
times in a row and so that run-to-run optimisation can be performed. The paper presents
an integrated two-time-scale control where constraints in optimisation problem are adopted
between runs and the pre-computed optimal inputs are corrected according to the on-line output
measurements during the run. Moreover, the proposed control approach has been implemented
to control level transition in two connected tanks with liquid interaction. The results uncover
better convergence properties with the resulting control scheme than individual schemes dealing
either with run-to-run adaptation or with neighbouring extremal corrections inside the run.

Keywords: dynamic optimisation, neighbouring-extremal control, optimal control, integrated
control scheme

1. INTRODUCTION

The processes in general are subject to substantial un-
certainty during their operation what lowers quality of
the performance and quantity along with operational con-
straint violations. Common sources of uncertainty include
measurement noise, inaccurate model, perturbations in
initial conditions, and disturbances during a run-time.
Model-based and measurement-based optimisation of dy-
namic processes are established frameworks that have the
ability to mitigate the effect of uncertainty on process per-
formance, especially in the presence of constraints (Kadam
and Marquardt, 2007).

In current literature, various optimisation techniques can
be found that improve process operation and deal with
the influence of uncertainty during the process operation.
The most straightforward approach is to implement the
optimal inputs obtained as off-line solution of dynamic
optimisation problem for the process model and then to
track the optimal trajectory on-line. However, in reality,
the presence of model mismatch shifts the precomputed
optimum what requires on-line corrections of the nominal
trajectory in order to ensure optimal operation policy. Dif-
ferent strategy, model predictive control (MPC) (Allgöwer
and Zheng, 2000; Garcia et al., 1989; Maciejowski, 2002),
implements a re-optimisation of the problem and uses
the measurements to update the current state of the
model. This strategy suffers two important deficiencies:
i) the presence of constraints may result in an infeasible
solution; ii) the re-optimisations may not be tractable
in real-time. Clearly, the time needed to re-optimise the
system depends on both the problem complexity and the
computing performance. Long computational time may
lead to performance loss, or worse constraint violations,
especially in processes with fast process dynamic. Some

efficient implementations have been proposed by Biegler
(2000); Diehl et al. (2002); Cannon et al. (2001). Explicit
MPC approach (Bemporad et al., 2002), multi-parametric
programming is used to pre-compute off-line all possible
control actions for a given range of the state variables.
The control inputs are then adjusted by simply selecting
the control law that corresponds to the actual state of the
process, as given by the latest measurements. Although
this method can accommodate fast sampling times, its
foremost limitation comes from the curse of dimensionality
and from the quality of the linearisations. This currently
limits the application of explicit MPC to problems having
no more than a few state variables as well as piece-wise
linear dynamics.

In the literature, another control strategy that reduces the
online computational effort can be found. Neighbouring
extremal (NE) control provides fast suboptimal solutions
by not re-solving optimisation problem thus it reduce
computational expense. This method was introduced in
seventies and eighties by Bryson and Ho (1975); Pesch
(1989). In neighbouring extremal control an optimum feed-
back law is applied to compute control corrections for small
variations in state vector. The feedback law is derived
around nominal control trajectory obtained from offline
solution of dynamic optimisation problem. The optimal
control problem and the approximation of the solution for
perturbed process are subject to boundary value problem.
The derivation of the boundary problem is not straightfor-
ward and the good initial guess are required to estimate
adjoint variables. Further drawback is a suboptimality of
the solution as the feedback law is derived for the small
variations in states in the neighbourhood of the nominal
solution. Also, the neighbouring extremal control exhibits
lower performance when applied to very non-linear pro-
cesses, e.g. chemical processes. Closely related real-time
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strategy has been proposed by Kadam and Marquardt
(2007) for computation of neighbouring extremal solution
using direct optimisation methods. With this strategy
neighbouring extremal is computed through sensitivity
information of the discretised optimal solution, instead of
deriving an optimum feedback law.

This paper presents a two-time-scale approach, whereby
a run-to-run adaptation strategy (Bonvin et al., 2006) is
implemented at the slow time scale (outer loop) and is in-
tegrated with a (constrained) neighbouring extremal con-
troller (Bryson and Ho, 1975) that operates at the fast time
scale (inner loop). More specifically, run-to-run adaptation
of the terminal constraints (Marchetti et al., 2007) is con-
sidered for the outer loop. In its original form, this scheme
proceeds by re-optimising the batch operation between
each run and adapting the terminal constraints based
on the mismatch between their predicted and measured
values; but no adaptation is made within a run. In order
to reject disturbances within each run and at the same
time promote feasibility and optimality, a NE controller is
here considered as the inner loop. The NE control which
avoids the costly re-optimisation of dynamic systems and
approximates the optimal solution of perturbed system,
is well-suited for this purpose. The integration between
the outer- and inner-loops occurs naturally since the NE
controllers are recalculated after each run based on the
solution to the outer-loop optimization problem. The re-
sulting integrated two-time-scale optimization scheme thus
offers promise to enhance performance and tractability.

The paper is structured as follows. Section 2 defines
dynamic optimisation problem and necessary conditions
of optimality, Next, Section 3 provides theoretical back-
ground on NE control and its numerical computation.
Run-to-run constraint optimisation is outlined in Sec-
tion 4. The proposed integrated two-times-scale optimisa-
tion scheme is closely described in Section 5. The perfor-
mance of the proposed approach is demonstrated on level
control of two connected tanks with liquid interaction, in
Section 6. Finally, Section 7 concludes the paper.

2. DYNAMIC OPTIMISATION PROBLEM

2.1 Problem Formulation

Throughout the paper, the following dynamic optimisation
problem with control and terminal bound constraints is
considered:

min
u

J = φ(x(tf )) +

∫ tf

0

L(x(t),u(t))dt (1)

s.t. ẋ = F (x(t),u(t)), 0 ≤ t ≤ tf (2)

x(0) = x0 (3)

ψ(x(tf ), tf ) ≤ ψref (4)

uL ≤ u(t) ≤ uU . (5)

In (1)–(5), t ≥ 0 denotes the time variable, with tf the final
time; u ∈ Rnu the control vector; x ∈ Rnx the state vector,
with initial value x0; J , φ and L the scalar cost, terminal
cost, and integral cost, respectively; and ψ the vector of
nψ terminal constraints. All the functions in (1)–(5) are
assumed to be continuously differentiable with respect to
all their arguments.

2.2 Necessary Conditions for Optimality

Following Bryson and Ho (1975), the Hamiltonian function
H is defined as follows:

H(x,u,λ,µL,µU ) = L(x,u) + F (x,u)Tλ+ (6)

+ µL(uL − u) + µU (u − uU ), (7)

λ ∈ Rnx denotes the so-called adjoint (or costate) vector
which satisfies

λ̇ = −Hx = −F Txλ−Lx, 0 ≤ t ≤ tf , (8)

with the terminal conditions given by

λ(tf ) =
[
φx + νTψx

]
t=tf

, (9)

µL(t),µU (t) ∈ Rnu are Lagrange multiplier vector func-
tions satisfying

µL
T

(uL − u) = 0; µL ≥ 0 (10)

µU
T

(u− uU ) = 0; µU ≥ 0, 0 ≤ t ≤ tf . (11)

and ν ∈ Rnψ are Lagrange multipliers for the terminal
constraints such that

0 = νkψk, νk ≥ 0, for each k = 1, . . . , nψ. (12)

Provided that the optimal control problem is not abnor-
mal, the first- and second- order necessary conditions for
optimality (NCO) read:

Hu = Lu + F Tuλ− µL − µU = 0 (13)

Huu ≥ 0 (14)

This latter determines the set of active terminal con-
straints at the optimum, which is denoted by the vector ψ̄
of dimension nψ̄ and by complementary multiplier ν̄∗. The
constraints are inactive when the crresponding Lagrange
multiplier is equal to zero. (The subscript such as y for a
given variable denotes partial derivatives of that variable
with respect to y.)

3. NEIGHBOURING-EXTREMAL CONTROL

3.1 Neighbouring Control

Let’s assume that the optimal control trajectory u∗(t) for
the optimisation problem (1)–(5) consists of a sequence of
constrained and unconstrained arcs. The optimal solution
then comprises x∗(t), λ∗(t), ν̄∗,µL,µU , 0 ≤ t ≤ tf .
For the control sequence, it is also assumed that the
uncertainty is sufficiently small for the perturbed optimal
control to have the same sequence of constrained and
unconstrained arcs as the nominal solution.

The constrained optimal control problem obtained with
a small variation in the initial condition x(0) = x0 +
δx0 and in active terminal constraints ψ̄(x(tf ), tf ) = δψ̄
produces variations in optimal control vector δu(t), state
vector δx(t), adjoint vector δλ(t) and Lagrange multiplier
vector δν̄ (for the active terminal constraints ψ̄). Along
unconstrained arcs, these variations can be calculated from
the linearisation of the first-order NCO (10)–(12) around
the extremal path (Bryson and Ho, 1975):

δẋ = F ∗
xδx+ F ∗

uδu (15)

δλ̇ = −H∗
xxδx− F ∗T

x δλ−H∗
xuδu (16)

0 =H∗
uxδx+ F ∗T

u δλ+H∗
uuδu (17)

δx(0) = δx0 (18)
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with additional conditions:

δλ(tf ) =
[(
φ∗

xx + ν̄∗T ψ̄∗
xx

)
δx+ ψ̄∗T

x δν̄
]
t=tf

(19)

δψ̄ =
[
ψ̄∗

xδx
]
t=tf

. (20)

A superscript ∗ indicates that the corresponding quantity
is evaluated along the extremal path u∗(t), 0 ≤ t ≤ tf , and
corresponding states, adjoints and Lagrange multipliers.

Let us assume that the Hamiltonian function is regular,
so that H∗

uu is invertible along 0 ≤ t ≤ tf . The control
variation δu(t) for these unconstrained arcs µL = µU = 0
is then given from (17):

δu(t) = −(H∗
uu)

−1
[
F ∗T

u δλ(t) +H∗
uxδx(t)

]
. (21)

Overall, along constrained arcs, the control variation is
equal to zero δu(t) = 0. Then, δx(t) and δλ(t) satisfy the
following multi-point boundary value problem (MPBVP):(

δẋ(t)

δλ̇(t)

)
= ∆(t)

(
δx(t)
δλ(t)

)
,

δx(0) = δx0, δψ̄ =
[
ψ̄∗

xδx
]
t=tf

,

δλ(tf ) =
[(
φ∗

xx + ν̄∗T ψ̄∗
xx

)
δx+ ψ̄∗T

x δν̄
]
t=tf

(22)

where:

∆(t) =





(
α(t) −β(t)
−γ(t) −α(t)T

)
along unconstrained arcs

(
F ∗

x 0
−H∗

xx −F ∗T
x

)
along constrained arcs

(23)

and

α(t) := F ∗
x − F ∗

u(H
∗
uu)

−1H∗
ux (24)

β(t) := F ∗
u(H

∗
uu)

−1F ∗T
u (25)

γ(t) :=H∗
xx −H∗

xu(H
∗
uu)

−1H∗
ux. (26)

Clearly, at each switching point between an unconstrained
and a constrained arcs, a continuity of control, state and
adjoint profiles must be preserved. For example, at a
switching point between a lower bound and an interior arc,
the value of control on lower bound matches the value of
control in the interior arc uH = uL. Here, uH represents
the control obtained from solving the condition Hu = 0.
In addition, state and adjoint trajectories are continuous
at this point, too:

x∗(t+k ) = x
∗(t−k ), λ∗(t+k ) = λ

∗(t−k ) (27)

Variations in switching times are difficult to determine and
complicate the calculation of the NE control. To make
this implementable, it is considered that the switching
points are constant at their nominal times. The control
values are then updated only between the fixed times. In
practice, performance loss is negligible for small variations
of switching times.

3.2 Numerical Computation of Neighbouring Feedback
Control

The linear MPBVP (22) can be used to calculate the
neighboring-extremal control correction δu(t), 0 ≤ t ≤ tf ,
in either one of two situations:

i. The initial state and (active) terminal constraint
variations δx0 and δψ̄ are available at discrete time
instants, in which case the discrete feedback control

can be obtained by directly re-solving the MPBVP.
This can be done via a shooting method as described
in Pesch (1989);

ii. The variations δx0 and δψ̄ are available continu-
ously in time, in which case the backward sweep
method (Bryson and Ho, 1975) can be used to derive
an explicit feedback control law. This approach is
closely explained by Bryson and Ho (1975).

In this paper, we consider the first approach that is
summarised in Subsection 3.3.

3.3 Shooting Method

The linear TPBVP (22) can be rewritten in the form
(
δẋ(t)

δλ̇(t)

)
=

(
α(t) β(t)
−γ(t) −α(t)

)

︸ ︷︷ ︸
=: ∆(t)

(
δx(t)
δλ(t)

)
, (28)

with the boundary conditions(
I 0
0 0

)(
δx(0)
δλ(0)

)
+

(
0 0
B1 I

)(
δx(tf )
δλ(tf )

)
=

(
δx0

B2

)
, (29)

where

B1 = −
[
φ∗

xx + ν̄∗T ψ̄∗
xx

]
tf

B2 =
[
ψ̄∗T

x

]
tf
δν̄ (30)

The shooting approach proceeds by guessing the missing
initial (or terminal) conditions in (29), and adjusting them
in such a way that the corresponding terminal (or initial)
conditions are satisfied (see, e.g., Pesch, 1989). Given the
guess δλ(0) = δλ0 for the adjoint variations at initial time
t = 0, the (unique) solution to the linear ODE system (28)
is of the form:(

δẋ(t; δλ0)

δλ̇(t; δλ0)

)
=

(
Υ1(t; 0) Υ2(t; 0)
Υ3(t; 0) Υ4(t; 0)

)

︸ ︷︷ ︸
=: Υ(t; 0)

(
δx0

δλ0

)
, (31)

where the transition matrix Υ(t; 0) is obtained as the
solution to the initial value problem

∂

∂t
Υ(t; 0) = ∆(t)Υ(t; 0), 0 ≤ t ≤ tf ; Υ(0; 0) = I.

(32)

Substituting (31) into (29) and (20) leads to the following
linear system in the variables δλ(0), δν̄:

(
Z1 Z2

Z3 0

)(
δλ(0)
δν̄

)
=

(
0
I

)
δψ̄ −

(
Z4

Z5

)
δx0, (33)

where

Z1 =
[
φ∗

xx + ν̄∗T ψ̄∗
xx

]
tf
Υ2(tf ; 0)−Υ4(tf ; 0)

Z2 =
[
ψ̄∗T

x

]
tf

Z3 =
[
ψ̄∗

x

]
tf
Υ2(tf ; 0)

Z4 =
[
φ∗

xx + ν̄∗T ψ̄∗
xx

]
tf
Υ1(tf ; 0)−Υ3(tf ; 0)

Z5 =
[
ψ̄∗

x

]
tf
Υ1(tf ; 0) (34)

For given initial state and active terminal constraint vari-
ations δx0 and δψ̄, the solution to the linear system (33)
provides the corresponding initial adjoint and Lagrange

18th International Conference on Process Control
June 14–17, 2011, Tatranská Lomnica, Slovakia Le-Fr-3, 081.pdf

545



multiplier variations δλ(0) and δν̄. Finally, the NE control
variation can be calculated from (21) as

δu(t) = −(H∗
uu)

−1
(
H∗

ux F
∗T
u

)
Υ(t; 0)

(
δx0

δλ(0)

)
. (35)

4. RUN-TO-RUN CONSTRAINT ADAPTATION

The principle behind run-to-run optimization is similar
to MPC. But instead of adapting the initial conditions
and moving the control horizon as is done in MPC, the
adaptation is performed on the optimization model (e.g.,
model parameters or constraint biases) before re-running
the optimizer. In run-to-run constraint adaptation, more
specifically, the terminal constraints (4) in the optimiza-
tion model are adapted after each run as (Marchetti et al.,
2007):

ψ(x(tf ), tf ) ≤ δψ, (36)

where δψ stands for the terminal constraint bias. Such a
bias can be directly updated as the difference between the
available terminal constraint measurements, ψmeas, at the
end of each run and the predicted constraint values. This
simple strategy may however lead to excessive correction
when operating far away from the optimum, and it may
also exacerbate the sensitivity of the adaptation scheme to
measurement noise. A better strategy consists of filtering
the bias, e.g., with a first-order exponential filter:

δψk+1 = [I −W ] δψk+

+W [ψmeas
k −ψ(xk(tf ), tf )] , (37)

with k the run index, and W a gain matrix—typically, a
diagonal matrix.

u∗
k[0, tf ]

ψ(x∗
k(tf ), tf )

ψmeas
k

δψk

δψk+1

Fig. 1. Run-to-run constraint adaptation scheme.

The run-to-run constraint-adaptation scheme is shown in
Figure 1. The constrained dynamic optimisation problem
uses the available nominal process model. It is solved
between each run, using any numerical procedure, such as
the sequential or the simultaneous approach of dynamic
optimisation. The optimal control trajectory u∗

k(t), 0 ≤
t ≤ tf , is computed and applied to the plant during the
kth run. The predicted optimal response is denoted by
x∗
k(t). The discrepancy between the measured terminal

constraint values ψmeas
k and the optimizer predictions

ψ(x∗
k(tf ), tf ) is then used to adjust the constraint bias

as described earlier, before re-running the optimizer for
the next run.

Of course, optimal control trajectory calculated between
runs is suboptimal as the real process is never known
perfectly.

5. TWO-TIMES-SCALE OPTIMISATION SCHEME

Run-to-run constraint adaptation was shown to be a
promising technology in Marchetti et al. (2007). This ap-
proach provides a natural framework for handling changes
in active constraints in dynamic process systems and it is
quite robust towards model mismatch and process distur-
bances. Moreover, its implementation is simple. Inherent
limitations of this scheme, however, are that (i) it does not
perform any control corrections during the runs, and (ii)
it typically leads to suboptimal performance.

On the other hand, neighbouring-extremal control is able
to correct small deviations around the nominal extremal
path in order to deliver similar performance as with re-
optimisation. Since no costly on-line re-optimisation is
needed, this approach is especially suited for processes
with fast dynamics. However, the performance of NE
control typically decreases dramatically in the presence
of large model mismatch and process disturbances, and
it requires a full-state measurement. This leads to sub-
optimality or, worse, infeasibility when constraints are
present or limited measurements are available.

Our proposal is to combine the advantages of these two
approaches: Run-to-run constraint adaptation is applied
at a slow time scale (outer loop) to handle large model
mismatch and changes in active constraints, based on run-
end measurements only. Further, NE control is applied
at a fast time scale (inner loop) and uses measurement
information available within each run, in order to enhance
convergence speed and mitigate sub-optimality. It need to
be stated that full-state measurement is required even in
case of integrated scheme. The proposed integrated two-
time-scale optimization scheme is depicted in Figure 2.

The implementation procedure is as follows:

Initialisation:
(0) Initialise the constraint bias δψ = 0, select a gain

matrix W and set the run index to k = 1
Outer Loop:

(1) Determine u∗
k by solving the optimal control prob-

lem (1)–(5), then obtain the corresponding states
x∗
k and adjoints λ∗

k, with the active terminal con-
straints ψ̄ and Lagrange multipliers ν̄∗

k, and to-
gether with Lagrange multipliers for boundary con-
straints µL and µU that satisfy NCO (10)–(13).

(2) Design a NE controller around the extremal path
u∗
k, either by using the backward sweep approach

(continuous measurements), or by applying the
shooting method (discrete measurements).

(3) Inner Loop:
Implement the NE controller during the kth run in
order to calculate the corrections δuk(t) to u∗

k(t)
based on the available (continuous or discrete) pro-
cess measurements.
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u∗
k[0, tf ]

x∗
k[0, tf ]

λ∗
k[0, tf ]

ν∗
k

µL

µU

ψ(x∗
k(tf ), tf )

ψmeas
k

δψk+1

δψk

u∗
k[0, tf ]

x∗
k[0, tf ]

λ∗
k[0, tf ]

ν∗
k

δuk(t)

u∗
k(t) u∗

k(t) + δuk(t) xmeas
k (t)

x∗
k(t)

δxk(t)

Fig. 2. Two-times-scale optimisation scheme employing
NE control in the inner loop and run-to-run constraint
adaptation in the outer loop.

(4) Update the constraint bias δψk+1 as the filtered dif-
ference between the measured values of the terminal
constraints and their predicted counterparts.

(5) Increment the run index k ← k + 1, and return to
Step 1.

6. TWO CONNECTED TANKS WITH LIQUID
INTERACTION

The case study compares the performance of the two-
time-scale integrated solution with a pure constraint adap-
tation control scheme and a pure neighbouring-extremal
controller. At first, these control methods are tested in
simulations and then they are verified in experimental
conditions. The process and its model is introduced next.

6.1 Process Description

Level control of two connected tanks with liquid interac-
tion is considered to illustrate integrated two-times-scale
approach as can be seen in Figure 4. The experiment
has been carried out on Amira DTS200 device (see Fig-
ure 3). There are 3 connected tube-shaped tanks connected
through the bottoms and six valves to regulate the out-
flows. The levels are measured by pressure sensors situated
at the bottom of tanks. Also, two inlet flows are available:
the first pumps liquid to the first tank and the second
pumps liquid to the third tank.

For our purposes, only the first two tanks have been used.
The objective is to control level transition from an initial

level to the terminal level given for the second tank. The
manipulated variable is an inlet flow u(t) pumped into
the first tank at the top. The levels h1(t) and h2(t) are
controlled and measured variables. The measurements are
provided by pressure sensors. The outflow is situated at
the bottom of the second tank and it is regulated by half-
opened valve. Also, a liquid interaction take place, as the
tanks are connected through the bottoms.

Fig. 3. Amira DTS200 – Process for level control of
tanks.

Fig. 4. Configuration of two tanks connected in series.

6.2 Process Model

The model is derived based on the process introduced in
the previous subsection. In the model, it is assumed that a
liquid density is constant and the walls of tank are vertical
to the base. From material balance and from Bernoulli’s
equation in fluid dynamic, the resulting optimisation prob-
lem can be mathematically postulated as follows:

min
u
J =

∫ tf

t0

q(h2 − h2,ref )2 + ru2dt (38)

s.t.

ḣ1(t) =
u

F1
− k11
F1

√
h1 − h2 (39)

ḣ2(t) =
k11
F2

√
h1 − h2 −

k22
F2

√
h2 (40)

(41)

The state values h1(t) and h2(t) are levels [cm] in the first
tank and in the second tank, respectively; constants F1 and
F2 defines cross-sectional area of tank bases [cm2]; k11 and
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k22 are valve constants [cm2.5 s−1]; variable u represents
inlet flow [ml s−1].

The initial level values are determined at constant inlet
flow u = 25ml s−1 as h1(t) = 16 cm and h2(t) = 8 cm.
The numerical values of constants are: cross-sectional areas
F1 = 154 cm2 and F2 = 154 cm2; estimated values of valve
constants k11 = 10.68 cm2.5 s−1 and k22 = 7.5 cm2.5 s−1.
The final time is set to tf = 500 s and inlet flow u is
bounded as:

0 ≤ u ≤ 100 [ml s−1]. (42)

Desired level in the second tank is h2,ref = 25 cm, so the
additional terminal conditions read:

h2(tf ) = h2,ref (43)

ḣ1(tf ) = 0 (44)

ḣ2(tf ) = 0. (45)

Note that the integral term
∫ tf
t0
ru2dt augments the origi-

nal objective function in order to make the control problem
non-singular. Weighting variable r is set as low as possible
in order to retain the original objective. This way Hu

depends on the control variable and Hamiltonian H is
regular.

6.3 Nominal Solution

Solving the optimisation problem (38)–(45) with the se-
quential method (Edgar and Himmelblau, 1988; Guntern
et al., 1998), the piecewise constant control profile shows
the presence of one interior arc and two boundary arcs.
Further analysis of this solution indicates that optimal
control consists of a upper bound, lower bound, and an
interior constant arc. As the problem is regular, the control
action along interior arc can be explicitly determined from
the necessary conditions of optimality. Note that along
boundary arcs, the control action is determined by an
upper or a lower bound hence the control variations are
simply δu = 0. The switching times t1 and t2 between
these arcs are not explicitly known and they need to
be estimated, too. The switching times from piecewise
constant control profile give good initial guess for these
switching times. Overall, the optimal control solution is
given as:

(1) t ∈ (t0, t1), the control remains on its upper bound
u∗(t) = 100

(2) t ∈ (t1, t2), the control remains on its lower bound
u∗(t) = 0

(3) t ∈ (t2, tf ), the control is constant

The optimal control profile is obtained by computing the
switching times t1 and t2, and the constant control.

6.4 Simulation Results

In order to simulate real behaviour of the process, the
valve constants are perturbed to following values: k11 =
10.08 cm2.5 s−1 and k22 = 8.82 cm2.5 s−1. The initial condi-
tions remain unchanged. The measured outputs are states
with addition of white noise. It is also considered that full-
time measurements are available. While the NE controller
is designed using the nominal mathematical model, the
simulations are performed for measured outputs from the

perturbed model. Difference between nominal and per-
turbed model causes variations which in turn result in a
performance loss and terminal constraint violation, when
applying the open-loop control profile (see Figure 5). Run-
to-run constraint adaptation is initialised with a constraint
bias of δψ = 0 and considers a filter gain of W = 0.5.
For proposed integrated control scheme a filter gain was
set to W = 0.4. The filter parameters were chosen as a
compromise between a controller aggressiveness and an
ability to deal with measurement noise.

Figure 6 compares the evolution of the performance during
the first 15 runs. The evolution of the terminal constraint
is presented in the left plot. See that in the first run pure
constraint adaptation starts far from the desired value
compared to the neighbouring extremal approach. In the
consequent runs, the constraints remains inactive with the
pure neighbouring extremal approach. In contrast, with
pure constraint adaptation and with integrated two-time-
scale scheme, the terminal constraint is enhanced over the
runs to meet the goal. The pure constraint adaptation
approach needed 5 runs to converge. Then, in last 10 runs
approach oscillates around the desired value. Note that
this approach seems to be more sensitive to measurement
noise then the other approaches because only end-point
measurement is considered. The integrated scheme starts
in close proximity of terminal constraint. In the following
runs, this result is slowly enhanced to meet the terminal
constraint. Due to the fact that control corrections are
applied during each run as well, this approach is able
to correct the control profile with lower sensitivity to
measurement noise. These corrections affects also the end-
point measurement which is less variant over the runs.
Note that the sensitivity of NE controller to measurement
noise is relative to the chosen number of NE corrections.
Lower number expresses lower noise sensitivity but worse
corrections and vice versa. In this case study, 120 NE
corrections have been chosen.

The right plot of Figure 6 shows the evolution of the
modelled terminal constraint hence the original terminal
constraint plus constraint bias. This value varies a little
for the integrated scheme because the NE controller in the
inner loop is able to recover a large portion of optimality
loss. In contrast, constraint adaptation requires heavier
adaptation since no correction is made during the run.

The resulting control profile after adaptation within 15
runs is shown in left plot in Figure 7. The optimal control
profile still consists of the tree arcs, but the switching times
have changed compared to nominal solution displayed in
Figure 5, as a result of the constrained adaptation. The
corresponding measured levels are presented in the right
plot in Figure 7. It can be seen that the measured level in
second tank met the desired level with proposed integrated
two-time-scale control approach.

6.5 Experimental Results

The nominal solution was obtained for certain positions of
outflow valves (leakages). In order to test the performance
of the control approaches, the outflow was increased. This
change also invoked minor variation of initial conditions.
Measurements of levels were available on-line, as required.
The conversion between measured outputs (in volts) and
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Fig. 5. Left: Nominal control trajectory; Right: Response for open-loop implementation of nominal control trajectory,
solid line: nominal model, dashed line: perturbed model, and bold dotted line: desired level in the second
tank.
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Fig. 6. Control approaches in simulations. Dashed line with crosses: pure constraint adaptation, dotted line with
diamonds: pure neighbouring extremal control, solid line with circles: integrated two-time-scale scheme control,
bold dotted line: desired level. Left plot: Evolution of the measured terminal constraint; Right plot: Evolution
of the modelled terminal constraint.

states (in centimetres) was considered as another pertur-
bation. As in simulations, the difference between model
and process is causing performance loss and terminal
constraint violation. Run-to-run constraint adaptation is
initialised with a constraint bias of δψ = 0 and considers
a filter gain of W = 0.6. For proposed integrated control
scheme a filter gain was set toW = 0.5. As previously, the
filter parameters were chosen with respect to measurement
noise and controller dynamics. Sampling time was set to
2ms as the highest time instant needed to redesign NE
controller. In order to reduce the sampling time, the design
of NE controller starts an instant before second switching
time as there are no control corrections along boundary
arc.

Performance evolution over 15 runs of stand-alone ap-
proach and proposed two-time-scale approach is displayed
in Figure 8. Left plot shows the development of termi-

nal constraint. Similar results as in simulations can be
observed. In the first run, NE and proposed two-time-
scale approach start closely to the desired value. NE con-
troller is able to recover some of performance loss but
not completely. In consequent runs, two-time-scale slowly
augments terminal constraint of model to satisfy the ob-
jective. In this case, first 3 runs were needed to almost
reach the optimum. In last 9 runs, terminal constraint
holds closely to desired level value and can be considered as
active. The performance of NE does not change as control
updates are only carried within the run and not between
them as in case of two-time-scale and pure constraint
adaptation. In contrast to proposed approach, pure run-to-
run adaptation of constraints needed first 6 runs to come
close to optimum but with higher value of filter gain. In the
following runs, terminal constraint values oscillates around
desired level value. This approach is more sensitive to
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Fig. 7. Performance of proposed scheme in simulations with perturbed valve constants after 1st and 15th run of
adaptation. Left plot: Control trajectory; Right plot: Measured outputs; Dashed line: First run; Solid line:
Last run; Bold dotted line: Desired level.

measurement noise in comparison to the other approaches
as only final measurements are taken. Proposed two-time-
scale approach is able to correct the control profile with
lower sensitivity to measurement noise, due to the fact that
control corrections are applied during each run as well.
This also results in more equal end-point measurements.
In experiment, 750 NE corrections were performed. This
higher number of NE updates caused high frequency noise
in control actions. Thus, these inputs were filtered on-line
in order to deliver smoother control actions.

Terminal constraint evolution plus constraint bias is de-
picted in the right plot of Figure 8. Observe small vari-
ations of this value for proposed scheme. In-run control
corrections by NE controller provided more equal perfor-
mance. Since no correction is made during the run, pure
constraint adaptation approach clearly requires heavier
adaptation.

Left plot in Figure 9 displays the resulting control profile
after adaptation within 15 runs. The suboptimal control
profile still begins with two boundary arcs but the switch-
ing times have changed compared to nominal solution
displayed in Figure 5, as a result of the constrained adap-
tation. The unconstrained arc is no longer constant as is
corrected by NE controller. Note that large state varia-
tions may cause unproportional control correction what
results into clipped control. Right plot in Figure 9 presents
corresponding measured levels. Obviously, the measured
level in second tank meets the desired level with proposed
integrated two-time-scale control approach.

7. CONCLUSIONS

In this paper, an integrated two-times-scale control scheme
for level control of two connected tanks has been pro-
posed. Simulation and experimental results show that
this control approach improves the performance of dy-
namic real-time optimisation applied to the real process.
The combination of two approaches, namely run-to-run
adaptation and neighbouring extremal control, allows to

complement the benefits of each other while mitigating
some of their deficiencies. Standalone implementation of
these approaches indicates lower performance compared
to proposed approach. On one side, the NE approach can
improve performance loss within the run, and on the other
side, constraint adaptation handles terminal constraints.
Advantages of the integrated scheme have been demon-
strated on the case study for level control of two connected
tanks with liquid interaction. As part of future work,
an extension of the current scheme to singular control
problems is currently under investigation, as well as the
ability to handle problems with state path constraints.
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