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Abstract: By considering robust tuning of the PI controller for uncertain Integral Plus Dead
Time plant (IPDT) this paper demonstrates possibilities of the new Matlab/Simulink tool
based on the performance portrait method. For plants with parameters defined over uncertainty
intervals it enables to guarantee transient responses with specified deviations from ideal shapes
at the plant output and input and to fulfill additional optimality specification, defined e.g.
in terms of the minimal TAE values for the setpoint and disturbance steps, in terms of the
maximal integral gain, etc. In difference to the robust tuning methods of the 1st generation
considering typically controller parameters calculated from plant parameters specified by a single
entry, in this new method uncertain plant parameters are specified by two entries characterizing
their extreme values. As the ideal step responses at the plant output monotonic transients are
considered, whereas at the plant input one-pulse step responses consisting of two monotonic

intervals are required.

Keywords: Proportional control, optimal control, robust control, dead time.

1. INTRODUCTION

Tuning of the PI controller for the IPDT plant

K
F(s) = —2eTas
s (1)
Ks € <Ksmina Ksma:c> ;Td € <Tdmina Tdmax)

is frequently treated both in the process control and in
the motion control areas. In connection with appropriate
model reduction techniques it enables to approximate
broad range of processes Astrém and Higglund (2005),
Skogestad (2003). Consequently, high number of different
"optimal" tuning rules based on this model may be found
in the literature O’Dwyer (2006).

From the early beginning of PID control, for the controller
tuning both the analytical (see e.g. Oldenbourg and Sarto-
rius (1944,1951)) as well as experimental methods Ziegler
and Nichols (1942) were used.

When considering tuning rules appropriate for education
& practice, it is to agree with Skogestad (2003) that they
should be 1. well motivated, 2. preferably model-based, 3.
analytically derived, 4. simple and easy to memorize and 5.
work well on a wide range of processes. When continuing
with requirements of Skogestad (2006), controller tuning
should enable achieving trade-off between: fast speed of re-
sponse, good disturbance rejection, stability & robustness,
less input usage and less sensitivity to measurement noise.

But, on the other hand, also the experimental controller
tuning played always an important role, what may e.g.
be demonstrated by the high popularity of the early tun-
ing by Ziegler and Nichols (1942) that still gives inspira-
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tion for many new approaches based on the accumulated
knowledge and broad simulation possibilities Astrom and
Higglund (2004), Higglund and Astrém (2002). Of course,
except of the analytical design the main requirements on
such tuning remain mostly the same as above.

In this paper we are going to show that the requirements
of robust control may be combined with high require-
ments on control performance, when the proposed tun-
ing will guarantee specified performance not only for the
nominal working point, but for any loop parameters of
the uncertainty intervals in (1). Similarly as Astrom and
Higglund (2004),Hagglund and Astrém (2002), or Ziegler
and Nichols (1942) the new method is based on carry-
ing out series of simulation experiments on some sample
of representative processes under requirement of chosen
shape-related performance measures. Such an approach
can today be easily performed by using tremendous power
of computers for organizing and evaluating experiments, as
well as for processing, visualizing, storing and recalling the
achieved results for large number of control loops typical
in practice. Thereby, one can easily extend spectrum of
different qualitative & quantitative properties that will be
evaluated and stored in computer database, to be chosen
"on demand" and in different combinations by engineer
carrying out design requiring particular specifications.

The paper is structured as follows. To characterize basic
properties of the first generation of robust controller tun-
ing methods and to enable their systematic comparison
with the new proposed method, in Chapter 2 several tun-
ing methods are discussed. In Chapter 3, basic require-
ments on robust controller tuning are summarized and
in Chapter 4 performance measures for robust controller
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tuning in the time domain are introduced. In Chapter 5
the performance portrait for plant (1) is described and
then used in Chapter 6 for controller tuning based on
minimization of IAE values of setpoint step responses, or
maximization of the integral gain values subject to shape
related constraints for the plant input and output. The
achieved results are compared with those corresponding
to the first-generation robust tuning methods. Basic con-
clusions are summarized in Chapter 7.

2. FIRST GENERATION OF ROBUST
CONTROLLER TUNING METHODS

Next we will briefly introduce several robust tuning meth-
ods that may be used for the IPDT plant and are inter-
esting with respect to the paper aims.

2.1 Analytical controller design - TRDP

Based on generalization of the double real dominant closed
loop pole Oldenbourg and Sartorius (1944,1951) to the
triple real dominant pole (TRDP), whereby the PI con-
troller is extended by the setpoint weighting according to

U(s) = K [pW(s) = Y (s)] + g (W(s)=Y(s)] (2

interesting nominal tuning was analytically derived both
for regulatory as well as tracking control tasks in Viteckova
and Vitecek (2008a), Viteckova and Vitecek (2008b). The
setpoint weighting can be shown to be equivalent to using
prefilter
F, = —
o(s) = T 3)
with T; being the integral time constant. The approach is
based on solving closed loop characteristic equation for a
triple pole sy that for

A(s) = §*Tye’e® + K, Ky (T;s + 1)

A(s) = 2sTyete® + s> TyTie™*® + K, K, T; (4)

A(s) = 2Tyea® + 4sT TieTe® + s2T3T;eTe®

requires to fulfill
A(sg) = 0; A(s9) = 0; A(s) =0 (5)

Solution of the last equation in (5) yields root
s0=—(2-V2)/Ty (6)

for which from the first two equations in (5) one gets stable
tuning with parameters

K, =2(v2 - 1)eV22/(K,Ty) ~ 0.461/(K,Ty) @)
T; = (2V2 + 3)T,; ~ 5.828T,

For the root sy = —(2 + v/2)/T,; the resulting values
K.=—0.1588/(KTy);T; = 0.17157Ty with negative loop
gain do not guarantee the closed loop stability.

Zero of the closed loop transfer function
KK (T;s+1)

Foy =
Y s2eTas + KK (Tys + 1)

(8)

can be cancelled by the prefilter denominator in (3) that
removes overshooting typical for one-degree-of-freedom
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PI controllers. Simultaneously, by cancelling one of the
triple pole (6) by the prefilter numerator (3) that further
accelerates the transient responses, one gets the setpoint
weighting coefficient

_1Ylsol _2-v2

b
T; 2

~ 0.293 (9)

The corresponding maximal sensitivity and the comple-
mentary sensitivity peaks are My = 1.70; M; = 1.44.

Examples of achieved transients compared with other
tuning approaches are given in Figs. 2-3, 6-7 and 8-9. Basic
advantage of the nominal tuning is given by compactness
and elegance of its derivation. Though the method gives
fast and smooth responses both in regulatory as well
as tracking control, its extension to uncertain plants (1)
and balancing different requirements on the setpoint and
the disturbance response transient shapes at the plant
input and output make already problems - the method
does not include free tuning parameter enabling dynamics
modifications.

2.2 SIMC PI Controller

As the 2nd example illustrating the analytical controller
tuning we will mention the popular SIMC PI-rule (ab-
breviation from Simple/Skogestad Internal Model Con-
trol) for fast response with good robustness Skogestad
(2003).

Firstly, by considering direct controller synthesis Rivera
et al. (1986), Skogestad (2003) leading for a general first
order plus dead time (FOPDT) plant

qudes

Fo=———
s S+1/T1

(10)

to a simple first-order setpoint-to-output closed loop trans-
fer function with time constant 7.

_ R(s)F(s) _ R(s)K; (1)
L+ R(s)F(s)  (s+1/Ty)etas + R(s)K;
! 1 1
wy = 1 + Tcse K (12)
the PI controller

Ky (1e +Ty)s

is derived, whereby the exponential term may be elimi-
nated by using its first-order Taylor series approximation

e Tas =1 - Tys (14)

what requires to use 7. > Ty . For stable 1st order systems
it is usually chosen T; = Ty and K. = 1/(K T1(7c + T4)).
However, for integral systems, when 77 — oo, solution
(13) is actually approaching the proportional controller,
what leads to poor rejection of input (load) disturbances.
Of course, it is still possible to choose PI controller and to
look for its appropriate tuning by other means, but it is
no more the above mentioned direct controller synthesis of
the IMC control. Therefore, the first question arises if the
abbreviation SIMC is still appropriate for integral plants.
In Skogestad (2003) tuning for such systems is derived by
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analyzing conditions of the critically damped closed loop
system with the PI controller and integral delay-free plant
(T; = 0), when the double real dominant pole may be
achieved by choosing
T; = 4/(K5Kc) (15)
Finally, to consider dead time, the closed loop time con-
stant in (12) was chosen as 7. = Ty what yields
K, = 1/2K,T,);T, = 8T (16)
Such tuning that might be considered as simplification
of the above method (double real dominant pole instead
of the triple one) is not only simple, easy to remember
but for the lag dominant plants it brings a reasonable
improvement of the input-disturbance dynamics in com-
paring with the traditional IMC tuning rules and also with
other tested methods (see Figs. 2-3, 6-7 and 8-9). It yields
a reasonably fast response with moderate input usage and
good robustness margins both in regulatory as well as
tracking control. The analytical controller derivation is
no more as compact as in the above case and as it was
already mentioned above, it is no more the IMC control.
The PI controller was not analytically derived, but chosen.
Tuning of the integral part was made for delay-free system
what leads to a question, in which range of the dead-
time values it will keep the expected performance. But,
on the other hand, together with the "half-rule" enabling
to deal effectively with more complex plants it shows on
necessity to link the controller design to approximative
loop modelling and detecting its weakest points by the
possibly simplest means.

When comparing integral loops with controller (16) with
the IMC control of stable plants, it is also to note that
for the integral plant the output setpoint step responses
typically have overshooting, whereas in controlling stable
1st order plants (10) the closed loop step responses (12)
are monotonic both at the plant input and output. When
aiming to monotonic setpoint step responses at the plant
output also in controlling integral plants, it is again
possible to introduce setpoint weighting (2-3). However,
since the method does not give information about the
dominant closed loop poles, the calculation based on
cancelling one real closed loop pole requiring to choose

b=1/|s1| Ty = 0.702 (17)

does no more guarantee purely monotonic output (due
to the obviously complex remaining dominant closed loop
pole). So, a setpoint weighting guaranteeing purely mono-
tonic output can be determined just experimentally as

b= 0.592 (18)

What is again to be stressed is that the tuning is typically
done just in a nominal point. By using specifications
in the frequency domain, it is indeed shown that for
integrating processes the suggested settings (16) give the
gain margin GM = 2.96, the phase margin PM = 46.9°,
the maximal sensitivity and the complementary sensitivity
peaks My, = 1.70; My = 1.30, and the maximum allowed
time delay error with respect to stability is 1.597y, but the
controller tuning does not directly depend on the extreme
values of the plant parameters in (1). The method neither
includes free parameter enabling to balance dynamics of
the setpoint and disturbance responses.
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2.8 Non-Convex Optimization Based PI Control

As the 3rd tuning approach to be compared with the newly
developed tuning the numerical non-convex optimization
method Astrém et al. (1998) will be mentioned. Based on
the frequency-domain loop specifications by the maximum

and complementary sensitivity peaks M, = 1.40 and
M, = 1.45 it gives
b=0.66; K, = 0.282/(KTy)
K. 00418 (19)
K, = —=——- =T, = 6.746T,
% Tz KST(% i d

The optimization problem used for derivation of above
results was specified as follows: find controller parameters
that maximize the integral gain K; = K./T; subject to
the constraints that the closed-loop system is stable, the
Nyquist curve of the loop transfer function satisfies the
encirclement condition and that it is outside a circle that
has the My and M; circles in its interiors. Although it
might seem at the first glance that standard optimiza-
tion routines yield sufficient tools to solve this problem
numerically, it was shown that "the optimization problem
is nontrivial because the constraint, which is infinite di-
mensional, defines a set in parameter space which is not
conver" Astrom et al. (1998) and as a result the found
controller parameters do give TAE values (Figs. 2-3, 6-7
and 8-9) that are much larger than those corresponding
to other tested approaches. In the nominal case they do
not allow achieving monotonic output setpoint step re-
sponse even when choosing b = 0. But, they give relatively
good responses for the relatively large deviation from the
nominal case. So, they give a nice illustration of the fact
that despite apparent simplicity the dynamics of the PID
control is still tricky enough to be solved by standard,
as well as specialized optimization routines. The dynam-
ics specification in the frequency domain that is usually
sufficient in dealing with robust stability problem seems
not to be the best alternative for characterizing higher
performance requirements in terms of the deviations from
the shape related properties defined through the time
domain responses.

2.4 AMIGOs tuning for PI Controller

Obviously being aware of too conservative tuning (19), in
Higglund and Astréom (2002) new tuning rules were pub-
lished based on Approximative Mg-constrained Integral
Gain Optimization (AMIGO). These results corresponding
to the maximum and complementary sensitivity peaks
My = 1.48 and M; = 1.39 extended by the choice b=0
to achieve monotonic step responseswill be used, when

b=0; K, =0.35/(K,Ty): T; = 7T, (20)

The corresponding transient responses for setpoint and
disturbance steps are in Figs. 2-3, 6-7 and 8-9. The nominal
properties are slightly improved and by choosing b=0 the
setpoint step responses are nearly monotonic at the plant
output.

3. NEEDS FOR ROBUST CONTROLLER DESIGN

The most important feature of all above mentioned de-
sign methods is that they give robust tuning based on a
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single nominal point. The fact that real plants have just
exceptionally properties characterized by fixed completely
known point, is considered just indirectly, by choosing
controller tuning that is sufficiently conservative to be
usable also in the case of possible plant-model mismatch.
So, possible uncertainty due to finite measurement pre-
cision or due to nonlinear character of real processes is
paid by conservativeness of the tuning. All methods for
controller tuning based on single set of parameters of the
nominal plant model must be sufficiently robust against
plant model uncertainties to be usable in practice. But,
with exception of possible parameter changes allowed with
respect to the robust stability, all the up to now mentioned
methods do not directly give information specifying, how
far the model parameters may deviate from the nominal
point to keep the specified plant dynamics. They are just
working with a conservativeness degree chosen equally for
all possible applications. Some flexibility of the non-convex
optimization in Astrom et al. (1998) allowed by choice
of the maximal sensitivity M is far from the originally
proclaimed aims "...to have a design parameter to change
the properties of the closed-loop system. Ideally, the pa-
rameter should be directly related to the performance of
the system, it should not be process oriented. There should
be good default values so a user is not forced to select
some value. .. The design parameter should also have a
good physical interpretation and natural limits to simplify
its adjustment.” All above mentioned methods are working
with M, values from a relatively narrow range 1.4-1.7, but
despite to this their robustness and performance reason-
ably differ.

4. PERFORMANCE MEASURES FOR ROBUST
CONTROL

Next, we are going to look for more appropriate tuning
parameter(s) and method enabling to fulfil aims of ro-
bust control without leading to unnecessarily conservative
tuning. From the performance point of view, at the plant
output the expected dynamics is frequently specified by
the setpoint step responses yielding monotonic transients.

The ideal continuous signal at the plant input giving
after integration by the plant dynamics monotonic output
will be denoted here as the one-pulse control. It may be
characterized as a pulse having one extreme point that is
dividing the overall transient into two monotonic control
intervals.

Both such shape-related properties were, however, just
rarely in focus of contemporary control research. Mono-
tonic control together with a performance index for its
evaluation was e.g. mentioned in Astrom and Higglund
(2004), Hagglund and Astrom (2002). One of recent re-
views on PID control Keel et al. (2008) is mentioning just
output non-overshooting control, without discussing pos-
sible specifications at the plant input and output that may
be much harder. This is consequence of the development
of last decades, when methods applied were dominated
by the mathematical convenience and concentrated mostly
on traditional performance criteria like gain margin, phase
margin, maximum sensitivity, H,, norm, ISE, etc. Because
of lacking analytical tools, the controller will be robustly
tuned by using numerically derived areas of parameters
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corresponding to the above mentioned shape-related prop-
erties. The aim is to expand such nice dynamics of the
nominal case as e.g. given by the tuning (7-9) that si-
multaneously fulfillis requirements on ideal shapes both
at the plant input and output, but corresponding just to a
single point with exactly known plant parameters to plant
parameters known over uncertainty intervals Huba (2009),
Huba et al. (2009), Huba (2010).

4.1 Ideally nonovershooting, monotonic and one-pulse
responses

By its nature, definitions of the one-pulse control may
be based on definition of the monotonic output control.
This represents subset of non-overshooting control that
represents subset of stable control.

The output transients y(¢) with y(0) = 0 corresponding to
the setpoint step, w = const # 0 are classified according
to validity of

as non-overshooting control.
When fulfilling relations
0<y(t)/w<y(te)/w < LYO <ty <ty <tyim (22)

the output response may be denoted as the monotonic
control and in the case of the output fulfilling (22) and
the input fulfilling
sign(a(ty))sign(u(t,)) > 0,Vt; € (0,tm) U 93
Usign(u(te))sign(u(ty)) < 0,Vts € (tm, tsim) (23)
the dynamics may be denoted as one-pulse control. For
all that u(t,,); t, > 0 corresponds to the maximal control
signal amplitude during transient and ¢;,, represents sim-
ulation time that should be larger than maximal possible
settling time.

Since the settling time used for characterizing speed of
output transient strongly depends on the defined measure-
ment precision (given e.g. by ¢), the much less dependent
TAE (Integral of Absolute Error) defined as

[AE = / le(t)| dt (24)
0

will be used as the time-related performance index for
quantitative evaluation of responses.

4.2 Amplitude deviations from ideal shapes

In practice, but also in case of computer simulation, it has
sense to weaken the above conditions on non-overshooting
control by introducing some tolerable overshooting defined
by new small positive constant

€>0 (25)

and to find in this way controller parameters corresponding
to

y(t)/w < 1+ ¢, € (0, tyim) (26)

E.g. by choosing ¢ = 0.01, the setpoint step responses
with overshooting up to 1% of the setpoint value w will
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be tolerated and included under denotation as the non-
overshooting control. In this paper this approach will
only be used for ¢ < 0.1, because responses with larger
overshooting may also be achieved in other ways (e.g.
without using setpoint weighting) and so the design should
consider also other alternatives.

A continuous nearly monotonic signal y(t) with the initial
value yo = y(0) and with the final value yo, = y(o0) will
be denoted as €, -monotonic when it fulfills condition

[y(t) = y(y — T)] sign(yee — yo) = —€y (27)
T<t<o00,T€ (0, Trnaz)s "Trmaz >0
Thereby, in order not to prolong the time required for
testing with any positive T,4., this has to be chosen to
enable capturing sufficient part (e.g. half-period) of the
superimposed signal. Number of samples that need to be
tested Huba (2010) may be decreased, if all subsequent
local extreme points fulfill condition

[yle,i+1 - yle,i] sz.gn(yoo - yO) 2 _Ey;i = ]-7 27 33 DR (28)

The amplitude deviations from one-pulse control (23) are
based on evaluating amplitude deviations from monotonic-
ity over both monotonic intervals before and after the
dominant extreme point u(t,,); t,, > 0.

Non-overshooting specifications (not distinguishing be-
tween non-overshooting and monotonic control) exist also
in the frequency domain (see e.g. Keel et al., 2008) but
their application is extremely complicated, especially when
speaking about dead time systems.

4.8 Integral deviations from ideal shapes

Specific integral measure for deviations from monotonicity
was introduced by Astrom and Higglund (2004), Higglund
and Astrém (2002). Here, we will prefer new measures
for deviations from monotonic and one-pulse shapes that
may be easily tested numerically, by evaluating simulated
or experimentally measured transients corresponding to
the setpoint and disturbance step responses and are also
appropriate for constrained control.

To evaluate control effort required to achieve the re-
quired output behavior, Total Variance (TV) criterion was
proposed Skogestad (2003), Skogestad and Postlethwaite
(2007) defined as

v |
0

Under non-perfect control it is not easy to be evaluated
analytically. So, typically, its values are computed by
simulation after appropriate discretization with sampling
period as small as possible. According to Skogestad and
Postlethwaite (2007) in Matlab it may be simple computed
by the command sum(abs(diff (u)).

du
U (29)

dt =~ Z |’U,i+1 — ’LLZ‘
%

Very simple integral measure for evaluating deviations
from strict monotonicity defined for the plant output y(¢)
with the initial value y(0) and the final value y(oco) by
modification of the TV criterion will be denoted here as
the T'V; criterion Huba (2010)

TVo =Y |yit1 — il — ly(c0) — y(0)|

%

(30)
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TVy = 0 just for strictly monotonic response, else T’V > 0.

In controlling unstable and integral plants the number
of significant control pulses cannot decrease below the
number of unstable poles Huba (2009), Huba (2010).
To stress contribution of the superimposed oscillation in
systems with 1P dominant control it is then appropriate
to work with the T'V; criterion defined as

TV, = Z [wig1 — wi| — |2um — u(o0) — u(0))] >0 (31)

This gives zero values just for strictly 1P control signal
and may be applied also to constrained control signal.
For control signals with superimposed higher harmonics
it takes positive values.

Graphically represented in the plane of loop parameters,
together with quantitative measures, such properties will
be giving performance portrait of particular control loop.
In this way, the new approach continues in developing
trends recommended e.g. by Ackermann (2002)

5. CLOSED LOOP PERFORMANCE PORTRAIT (PP)
AND ROBUST CONTROLLER DESIGN

The closed loop PP represents information about the loop
performance corresponding to the setpoint and the dis-
turbance step responses expressed over a grid of (possibly
normalized) loop parameters including all possible working
points. By containing information about required loop
properties for different loop paramterers, the PP may be
used both for optimally choosing the nominal controller
tuning for a comletely known plant, or for the robust
controller tuning of a plant with interval parameters.

For a loop represented by a parameter vector

P ={p1,p2,...Ps,Ps+1,Ps+1} (32)

with the dimension
D=S+1 (33)
each entry of the first subset of parameters p;;i =1,...,5

is given as a signle value that has to be fixed during the
controller tuning.

There may also exist some uncertain (plant) parameters
pi € <pimin7p1'mam>; i:5+17-~-75+l (34)

that vary over some (known) intervals. Next, we define
such limits also for the first subset of parameters (e.g.
by some preliminary robust stability analysis method), so
that all parameters may be expressed in the above form.

In computation of the PP all parameters p; take just
discrete n; + 1 levels

Pij = Pimin + (pimaz - pzmzn)]/nw (35)
i=1L2...on;m; > 1Li=85+1,...,5+1
Both the nominal as well as the robust control design may
now be carried out in two ways: as determination of an
optimal controller parameter set, or as a determination
of an optimal working point of a controller expressed by
means of the plant parameters vectors. When the number
of the controller parameters exceeds number of the plant
parameters, combination of both approaches is possible.
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When e.g. working with the uncertain plant model (1), the
controller (2- 3) is specified by three parameters b, K., T;.
In addition to the plant parameters K, and T,, spec-
ification of the setpoint response (12, 13) additionally
requires determination of at least one time constant ..
It means that in total there are 6 parameters that de-
termine the resulting dynamics. If two of them, K, €
(Ksminstmaw);Td € (TdminaTdmaI) are uncertain, the
task of the control design may be formulated as:

a) to find directly the controller parameters b, K, T;, or

b) for the controller parameter defined by formulas intro-
duced ich Chapter 2 to find an appropriate location of the
operating point Ky, Ty0 and the free design parameters b.

Both has to be done in such a way that over all grid points
corresponding to chosen tuning and to all possible values
of the uncertain interval parameters the required shape-
related performance measures will be achieved. The nec-
essary amout of computation and the achieved precision
will obviously depend on the level of quantization and on
the choice of the limits introduced for the free parameters
that have to be determined.

PP required for such a design may be generated by sim-
ulation, or by real time experiments. When it is based on
normalized parameters, it may then be repeatadly used for
different tasks with different values of particular loop pa-
rameters. Although such PP generation may be connected
with numerical problems, especially those related to the
nature of grid computations, when one has to balance pre-
cision of achieved results (quantization level in considered
grid) with the total number of evaluated points and the
corresponding computation time, it gives very promising
results especially when dealing with dead time systems.

The first attempt to analyze optimal robust tuning of
the IPDT plant by the performance method was done by
Huba et al. (2009) in 2D space of normalized parameters
K = K.K,Ty and Qf = T;/T;. The setpoint weighting
b has been chosen as minimum of the optimal nominal
values calculated from the two above parameters over the
uncertainty set, what was leading to slightly conservative
tuning. Now, the setpoint weighting will be considered
as the third independent coordinate and the performance
portrait will be generated over grid of points in 3D with the
uncertainty subspace given by the coordinates vector K =
K.KTq; 7; = T;/Ty; and parameter b representing the
third coordinate. The integer variable describing particular
levels of this parameter will be displayed in the following
figures as k.

6. COMPARATIVE ANALYSIS OF PI TUNINGS
6.1 Nominal Tuning for min IAE

The simplest strategy for designing robust controller tun-
ing seems to be to find such controller parameters b, K., T;
that will guarantee for all possible plant parameters (1)
minimal mean IAE values subjected to amplitude or inte-
gral deviations on the plant input and output.

Fig. 1 shows several windows of one layer (with k = 16)
of the 3D performance portrait calculated for the setpoint
step responses over 27x27x21 points for K € (0.1,1.4);
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Fig. 1. One layer of the PP ( k = 16) calculated for the
setpoint step responses over 27x27x21 points and con-
taining the optimal nominal tuning corresponding to
min IAE. Note the similarities between the amplitude
and integral measures for the plant output and input

7; € (3.5,15.5); b € (0,1). The position of the optimal
operating point gives minimal TAE value for the tolerated
output amplitude deviation from monotonicity and input
amplitude deviation from one-pulse control €, = €, =
1073.

By comparing the amplitude and integral deviations from
ideal shapes it is possible to conclude that usually it would
be enough to work with one set of such measures, whereby,
due to their simplicity, the integral measures could be
preferred and the amplitude deviations could be estimated
as

€y <TVo(y)/2s €0 < TVi(u)/2 (36)
The identity holds just then when the analyzed transition
has exactly one additional pulse with the amplitude given
by the particular value of e.

The setpoint and disturbance responses in Fig. 2 and Fig.
3 corresponding to the found optimal parameters

K. =0.45;T, = 10.88;b = 0.75 (37)
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2. Setpoint step responses at the plant output and
input corresponding to the optimal tuning according
to Fig. 1 (red) compared with TRDP (7-9), SIMC (16)
and non-convex optimization (19).

Fig.

do not represent an absolute optimum. By broadening the
PP to larger integral time constants and by increasing
number of grid points (decreasing the quantization step),
the identified optimal solutions tend to those correspond-
ing to pure P control and T; — oo. This trivial handicap
(with respect to the disturbance response) can be avoided
by optimizing weighted sum of the setpoint and distur-
bance responses. But already without such modification,
the achieved results show that the new method enables
to optimize the setpoint responses by keeping acceptable
disturbance response.

6.2 Nominal Tuning for maz K;

Next we are going to compare the new Performance
Portrait method with the optimization based approaches.
By their numerical procedures both approaches are very
close each other. Similarly as in the PI controller tuning by
the non-convex optimization Astrém et al. (1998), or by
its later modification Higglund and Astrom (2002), also
the PP method will be used to find the maximal integral
gain, but instead of the previously considered constraints
on the maximum sensitivity, the search will now be subject
to the shape related constraints puts on the plant input
and output step responses.

Disturbance Response
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Fig. 3. Load-disturbance step responses at the plant out-
put and input corresponding to the optimal tuning
according to Fig. 1 (red) compared with TRDP (7-9),
SIMC (16) and non-convex optimization (19).

Fig. 4 shows several windows of one layer of the 3D per-
formance portrait from the above example corresponding
to the location of the optimal nominal point yielding

K.=0.65T,=442;b=0 (38)
The corresponding setpoint and disturbance responses in
Fig. 6 and Fig. 7 show that this approach does not give the
absolutely best setpoint response (this was not required),
but the achieved disturbance response is already the abso-
lutely best one. Again, the look up of the optimal tuning
was fully based on the performance portrait corresponding
just to the setpoint step response. Although the T'V; values
of the disturbance response are relatively close to the
absolute minimum, when necessary, this parameter may
be further improved by considering also the PP of the
disturbance response.

Transients in Fig. 6 and Fig. 7 show that the best nominal
setpoint step responses are achieved by the SIMC tuning
that also gives relatively good disturbance responses.

Surprisingly, the disturbance responses corresponding to
the non-convex optimization NCON Astrom et al. (1998),
or the AMIGOs tuning Hégglund and Astrom (2002) de-
rived by optimization for the optimal disturbance response
(maximal K; gain) give the worst IAE results.
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Fig. 4. The first layer (k = 1) of the PP calculated for the
setpoint step responses over 27x27x21 points for K €
(0.1,1.4); 7, € (3.5,15.5); b € (0,1) and indicating
the optimal nominal tuning corresponding to max
K; corresponding to the tolerated output amplitude
deviation from monotonicity and input amplitude
deviation from one-pulse control e, = €, = 1073. Note
the similarities and differences between the amplitude
and integral measures for the plant output and input.

6.3 Robust Tuning for maz K;

The seemingly bad results of the nominal tuning based
on the nonconvex optimization subject to sensitivity con-
straints may be explained by considering interval plant
parameters. Consider e.g. plant with the dead time uncer-
tainty

Tamin = 0.3; Tamaz = 1.0 (39)
and the corresponding robust controller tuning. Since
the uncertain parameter T, is included both in the PP
parameter K = K. KTy, as well as in 7, = T;/Ty, all
possible operating points given by the optimal controller
tuning

K.=26;T,=1;6=0 (40)
sweep in the corresponding layer of PP in Fig. 5 parabolic
curve segment. All its points need to satisfy the above
given tolerances on the deviations from the output mono-
tonicity and input one-pulse response ( €, = ¢, = 1073).
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Fig. 5. The first layer (k = 1) of the PP calculated
for the setpoint step responses over 27x27x21 points
for K € (0.1,1.4); 7, € (3.5,15.5); b € (0,1) and
displaying the amplitude and integral deviations from
monotonicity at the plant output and from the 1P
at the plant input (above) and from the output
TAE values (below); The Uncertainty Curve Segment
corresponding to T, € (0.3,1.0) and ¢, = ¢, = 1073

satisfies to the requirement K; = K, /T mazx.
For both limit values of T show Fig. 8 and Fig. 9 that
the new method gives the best disturbance responses
by simultaneously keeping the shape related performance

measures for the setpoint step responses.

All previously mentioned method were tuned around the
symmetrically chosen nominal operating point

T = (Tdmin + Tdmaw)/Q = 0.65 (41)
The TRDP method that seems to be slightly conservative
in the nominal case gives now good performance over
the whole considered uncertainty interval, just for larger
difference between extreme dead time values it would
already lead to oscillatory behavior.

SIMC method is the best one for Ty = Typmin, but for T,; =
Tamaz it already leads to oscillatory behavior what could
be at least partially compensated by non-symmetrical
choice of the nominal operating point. The PP method
could be used to find new position of the operating point
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Fig. 6. Setpoint step responses at the plant output and
input corresponding to the optimal tuning according
to Fig. 4 (red) compared with TRDP (7- 9), SIMC
(16) and non-convex optimization (19).

symmetrizing deviations corresponding to the limit dead
time values.

The NONC and AMIGOs tuning lead for extreme dead
time values to surprisingly better performance with lower
deviations from ideal schapes than in the nominal case.

7. CONCLUSIONS

New control design method based on amplitude and in-
tegral deviations of the transient responses at the plant
input and output from their ideal shapes was proposed
and illustrated by the frequently treated task of the PI
controller tuning in this paper.

The carried out comparative analysis including several
first-generation robust tuning approaches for the IPDT
uncertain plant has shown their typical features: in some
context they may give excellent properties, just to know
when, how and which controller tuning and the operating
point have to be used. The new approach showed to be
much more effective and efficient than the approaches
based on the plant characteristics in the frequency do-
main in all analyzed situations. Whereas the traditional
methods are not only typical by a preprogrammed degree
of conservativeness and they also do not give information,
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Fig. 7. Load-disturbance step responses at the plant out-
put and input corresponding to the optimal tuning
according to Fig. 2 (red) compared with TRDP (7-
9), SIMC (16) and non-convex optimization (19).

how the operating point should be chosen with respect
to uncertainty intervals of the considered uncertain pa-
rameters the new method directly gives solution optimally
fitting the specified performance measures without any
redundant conservativism for all possible operating points
specified by the uncertainty intervals, or indicates that the
specified performance may not be achieved by any tuning
of the specified controller.

The new method avoids the second step of the tradi-
tional approach, when, after deciding, how the controller
parameters should be expressed by means of the plant
parameters, for plants with parameters taking values from
an uncertainty interval it is not clear, how to choose the
operating point in order to get the results that are the
optimal for all possible values of the uncertain parameter.

In the comparative analysis it was shown that with respect
to symmetry of the deviations from ideal shapes at the
plant input and output an intuitive assignment of the
operating point of a particular parameter to the centre of
its uncertainty interval may not give satisfactory results. It
is e.g. important for the SIMC tuning that gives excellent
responses around the nominal operating point, but it is
non-symmetrically sensitive to the dead-time uncertainty,
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what consequently requires non-symmetrical choice of the
nominal operating point over the uncertainty interval.

On the other hand, the TRDP method is able to guarantee
output-monotonic and input-one-pulse transients for a
broad neighborhood around the nominal working point,
whereby by increasing deviation from the nominal point
the conservativeness of the tuning decreases.

The robust tuning based on non-convex optimization
(NONC) does not allow monotonic output step responses
even in the nominal case, but the shape of responses is
rather robust against dead-time perturbation and with
increased deviation from the nominal case the performance
improves what could explain motivation leading to this
design. Its modified version AMIGOs removes the high
overshooting of the nominal setpoint step responses and
still gives relatively robust responses in the perturbed
situations.

Analysis of the new approach to the robust PI controller
tuning based on experimental identification of parameter
areas corresponding to tolerable deviations from output-
monotonic and input-one-pulse control clearly showed that
the new method represents new generation of optimal
tuning approaches that are able to guarantee believably
chosen performance requirements for all considered loop
parameters. So it is possible to avoid stiff character of the
first-generation tuning formulas that may not only be too
conservative, but also too sensitive in some applications.

Since the new method fully relies on a computer support,
its use may be very simple and besides of the recommended
tuning a lot of additional information characterizing the
optimal solution and the overall context of the proposed
tuning may be offered. Its drawback is that the designer
is no more able to fully rely just on his "pen and paper",
but the same happens in many other situations in our life.

For practical use, the above analysis of optimal controller
tuning should yet be completed by analysis of the control
constraint effects, since the parallel integral control is well
known by the integrator windup that can fully destroy the
control dynamics.
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