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Gain-scheduled LQR-control for an
autonomous airship

I. Masár and E. Stöhr ∗

∗ FernUniversität in Hagen
Process Control Engineering Group

Universitätsstr. 27
58093 Hagen, Germany

(Tel: +49 2331 9871102; e-mail: ivan.masar@fernuni-hagen.de)

Abstract: In the past two years, an autonomous airship was developed at our department as a
flying sensor platform. Our main research areas during this period were navigation, modelling
and automatic control of the airship. In this article, we present a gain-scheduled LQR control
design for the airship. First, the mathematical model of the system and its linearization will be
introduced. After that, we split the linearized system in a lateral and a longitudinal subsystem.
With the combined gain-scheduled controlled subsystems, a high-level navigation system allows
the airship to follow an appropriate flight trajectory.

Keywords: airship, LQR control, gain scheduling.

1. INTRODUCTION

Unmanned aerial vehicles (UAV’s) became very popular
in the last years, because of the availability of cheap HW
components likes motors, sensors (digital gyroscopes, com-
pass, accelerometers, barometers, etc.), embedded micro-
controllers and power units. There exists plenty of designs,
including autonomous helicopters and quad- (or more-
) copters ([Prior et al. (2009)], [Jaimes et al. (2008)]),
but they have a few common problems - typically a very
small payload capacity, a short flight time and an intrinsic
instability. These properties reduce the number of possible
applications to short-time reconnaissance missions - very
often with low-cost and therefore low-quality cameras.

As we were confronted with the problem of designing an
UAV, which could be used as a carrying platform for a
lot of various sensor and camera systems for a couple of
hours, which should be safe for ground personal and easy
to manoeuvre for the operator, we decided to return back
to aviation roots and to design an autonomous airship.
Namely, there are some very advantageous properties of
such lighter-then-air flying system. In particularly a bigger
payload capacity; a longer flight time, because there is
no need to actuate the airship all the time; a very good
stability in the air and no strong oscillations caused by the
motors, that can influence the sensors and cameras.

The developed airship is shown in Fig. 1. The length of the
airship is 9 m and the maximal diameter of the hull is 2.5
m. The hull volume of 24 m3 is filled with helium and could
lift a payload of about 5-6 kg. The airship is controlled by
two 700W synchronous main motors with propellers, which
could be vectored, by the tail thruster and the elevator
and rudder control surfaces. The operational speed of the
airship is up to 30 km/h.

Fig. 1. An autonomous airship of the University of Hagen

2. MATHEMATICAL MODEL OF THE AIRSHIP

For the derivation of the airships mathematical model, two
coordinate systems are defined according to Fig. 2. An
earth-fixed inertial coordinate system e is used to describe
the position and orientation of the airship.

The origin of the body coordinate system b is in the air-
ships centre of volume CV . In this coordinate system, the
linear and angular velocities of the airship are described.
Moreover, it is used to specify the forces and moments
acting on the airships body. The center of gravity CG is the
point, in which the total mass of the airship is concentrated
(mean location of the gravitational forces).
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Fig. 2. Coordinate systems of the airship [Khoury (2004)]

2.1 Kinematic model

The kinematic model of the airship involves the position
(η1) and orientation (η2) vector η, described in the earth-
fixed coordinate system e:

η = eη =

(
η1
η2

)
; η1 =

(
x
y
z

)
; η2 =

(
φ
θ
ψ

)
(1)

Moreover, ν is the vector of linear (ν1) and angular (ν2)
velocities

ν = bν =

(
ν1
ν2

)
; ν1 =

(
u
v
w

)
; ν2 =

(
p
q
r

)
(2)

and τ is the vector of forces (τ1) and moments (τ2) acting
on the airship.

τ = bτ =

(
τ1
τ2

)
; τ1 =

(
X
Y
Z

)
; τ2 =

(
K
M
N

)
, (3)

whereX, Y and Z are forces acting in x-, y- and z-direction
and K, M and N are moments acting about these axes.
Both are defined in the coordinate system b.

Transformation between the coordinate systems For the
transformation of our vector quantities between the coor-
dinate systems, we use the Euler-rotation matrices about
the x-, y- and z- axis:

Rx,φ =

(
1 0 0
0 cφ sφ
0 −sφ cφ

)
(4)

Ry,θ =

(
cθ 0 −sθ
0 1 0
sθ 0 cθ

)
(5)

Rz,ψ =

(
cψ sψ 0
−sψ cψ 0

0 0 1

)
(6)

Transformation of translational velocities Using the xyz-
convention, we can define a Jacobi-matrix to transform
the translational velocities from coordinate system b to e
[Fossen (1991)], [Brockhaus (2001)]:

J1(η2) = RTz,ψR
T
y,θR

T
x,φ (7)

J1(η2) =

(
cψcθ −sψcφ + cψsθsφ sψsφ + cψcφsθ
sψcθ cψcφ + sφsθsψ −cψsφ + sθsψsφ
−sθ cθsφ cθcφ

)
(8)

The translational velocity applies to:

η̇1 = J1(η2)ν1 (9)

The matrix J1(η2) is ortogonal (J1(η2)TJ1(η2) = I).
Therefor the inverse velocity transformation can be writ-
ten as:

ν1 = J1(η2)
−1

η̇1 = J1(η2)
T
η̇1 (10)

Transformation of rotational velocities A Jacobi-matrix
J2(η2) is used to transform rotational velocities between
the coordinate systems b and e [Brockhaus (2001)].

To transform η̇2 from e into the vector ν2, described in
the airships body coordinate system b, following equation
must be solved:

ν2 =



φ̇
0
0


+Rx,φ




0

θ̇
0


+Rx,φRy,θ




0
0

ψ̇


 (11)

=

(
1 0 −sθ
0 cφ sφcθ
0 −sφ cφcθ

)
·



φ̇

θ̇

ψ̇


 (12)

ν2 = J−12 (η2) η̇2 (13)

The matrix J2(η2) is not orthogonal (J2(η2)
−1 6= J2(η2)

T
).

Solving the equation for η̇2 yields to:

η̇2 = J2(η2) ν2 =

(
1 sφtθ cφtθ
0 cφ −sφ
0 sφ/cθ cφ/cθ

)
· ν2 (14)

Kinematic equations in vector form The kinematic equa-
tions can be expressed in a more compact vector form as:

(
η̇1
η̇2

)
=

(
J1(η2) O3×3
O3×3 J2(η2)

)
·
(
ν1
ν2

)
(15)

η̇ = J(η) ν (16)

2.2 Dynamic model

The Newton’s laws of linear and angular momentum for
rigid bodys (RB) describe the airships dynamic behaviour.

MRB ν̇ + CRB(ν)ν = τb (17)

The rigid body inertia matrix MRB can be expressed as:

MRB =

(
mI3×3 −mS(rG)
mS(rG) Ib

)
(18)

One possible variant to express the rigid body Coriolis-
and centrifugal matrix CRB is:
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CRB(ν) =

(
03×3

−mS(ν1) +mS(rG)S(ν2)
(19)

−mS(ν1)−mS(ν2)S(rG)
−S(Ibν2))

)

With

• the vector cross product S(k),
• the inertia tensor Ib,
• the mass of the airship m and
• the position of the center of mass brG.

The vector τb of external forces and moments can be
written as

τb = τadd + τV + τrest + τFK + τFin + τA (20)

where the parts of τb are:

• added -mass and -Coriolis and centripedal matrix
τadd = −MAν̇r − CA(νr)νr

• damping forces of fuselage τV = −D(νr)νr
• restoring forces τrest = −g(η)
• Froude-Krylov forces τFK = MFK ν̇c
• fixed fins and control surfaces τFin = DFin(νr, δ) −
DFin(νr)

• propulsive forces τp = PS + PB + PStern

νr is the relative airspeed.

Added -mass and -Coriolis and centripedal matrix A
body accelerates a certain surrounding air mass with
movement. The body behaves thereby simplified, as if an
additional mass would be adhere to it. For a completely in
a medium submerged body with three planes of symmetry
and low velocity, the added mass- MA and the added
Coriolis and centripedal- matrix CA(νr) can therefore be
considered:

MA = diag(Xu̇, Yv̇, Zẇ,Kṗ,Mq̇, Nṙ) (21)

CA(νr) = (22)


0 0 0 0 Zẇwr −Yv̇vr
0 0 0 −Zẇwr 0 Xu̇ur
0 0 0 Yv̇vr −Xu̇ur 0
0 Zẇwr −Yv̇vr 0 Nṙrr −Mq̇qr

−Zẇwr 0 Xu̇ur −Nṙrr 0 Kṗpr
Yv̇vr −Xu̇ur 0 Mq̇qr −Kṗpr 0




For example: The force YA along the y axis due to an
acceleration v̇ in y-direction is:

YA = Yv̇ v̇ mit Yv̇ =
∂Y

∂v̇
(23)

Damping forces of fuselage The damping effects on
the airships fuselage are mainly caused by linear and
quadratic surface frictions, due to laminar and turbulent
fluid motions. For a completely submerged body, the linear
and quadratic damping forces can simplyfied be written:

D(νr) = diag(Xu, Yv, Zw,Kp,Mq, Nr)

+diag(Xu|u||ur|, Yv|v||vr|, Zw|w||wr|, (24)

Kp|p||pr|,Mq|q||qr|, Nr|r||rr|)

Restoring forces The gravitational force W = mg works
against the buoyancy force B = gρV .

fG = J−11 (η2)

(
0
0
W

)
; fB = −J−11 (η2)

(
0
0
B

)
(25)

The restoring forces can be therefore represented by:

g(η) = −
(

fG(η2) + fB(η2)
rG × fG(η2) + rB × fB(η2)

)
(26)

brB is the position of the center of buoyancy.

Froude-Krylov forces The Froude-Krylov forces results
from differences of pressure, acting on the body surface
due to the flow rate vc of the surrounding air masses. The
Froude-Krylov forces can be expressed as:

τFK = MFK ν̇c (27)

MFK can be calculated with der inertia tensor and the
mass of the displaced air. Assuming a buoyancy neutral
airship and homogeneous mass distribution, the inerta
matrix MFK could be set equal to MRB .

Fixed fins and control surfaces The airship has three
by 120 degrees displaced stabilisation fins with control
surfaces. Each fin has its own coordinate system fi, whose
xi- direction is equal to the bodies x-direction. The control
surfaces can be rotated about an angle δi around its yi-
axis. [Campa and Innocenti (1999)] The rotation matrix
bRfi transforms the fin forces from coordinate system fi
to b.

bRfi = R−1x,(π/2+2πk/3)R
−1
y,δi

(k = 0, 1, 2) (28)

δi is null for all fixed stabilisation fins. The velocity of fin i
in relation to the wind flow, denoted in coordinate system
b, can be written:

bVFi/c = (bVb/c + bwb/c × bPFi) (29)

bPFi is the position of the i-te fin. bwb/c is the angular- and
bVb/c the translational- velocity part of the relativ airspeed
νr.

bVFi/c can be transformed into the fin coordinate system
fi as follows:

fiVFi/c = fiRb
bVFi/c (30)

The wind in y-direction of fi leads to no application of
force and can therefore be neglected. The angle of attack
αfi between the wind- and the fin coordinate system is
given through:

αfi = atan2(fiVFi/c(z),
fiVFi/c(x)) (31)

The positive x- axis of the wind w coordinate system shows
toward the relative velocity between fin and wind-current.
A transformation from the wind into the fin coordinate
system can be achieved with the matrix:
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fiRw =



cαfi

0 −sαfi

0 1 0
sαfi

0 cαfi


 (32)

Damping forces of fins are given in the wind coordinate
system:

wFFi = −1

2
ρA

(
CD
CC
CL

)
fiV TFi/c

fiVFi/c (33)

CD, CC and CL are aerodynamic damping coefficients.

The forces are transformed from w into the b coordinate
system:

bFFi = bRfi
fiRw

wFFi (34)

and leads to moments via the lever arm bPFi:

bMFi/b = bPFi × bFFi (35)

τFin can be devided into forces and moments caused by
the stabilisation fins DFin(νr) and the control surfaces
−DFin(νr, δ).

τFin = −DFin(vr, δ) +DFin(νr) (36)

=
4∑

i=1

(
bFFi(vr, δ)

bMFi/b(vr, δ)

)
+

4∑

i=1

(
bFFi(vr)

bMFi/b(vr)

)

Propulsive forces The airship is actuated by two main
gondola motors with propellers, witch could be vectored
(rotated about an angle α around the bodys y-axis). The
motor forces aFS and aFB points in x-direction from
coordinate system a. The rotation matrix bRa transforms
the motor forces from coordinate system a to b.

bRa = Ry,α (37)

bFS = bRa
aFS ; bFB = bRa

aFB (38)

The main gondula motor forces and moments can be
written as:

PS =

(
bFS

brS × bFS

)
; PB =

(
bFB

brB × bFB

)
(39)

brS and brB are the positions of the main gondula pro-
pellers.

The tail motor forces and moments acting upon the airship
can be written as:

PStern =

(
FStern

rStern × FStern

)
(40)

FStern and brStern are the tail motor force and its position.

Wind current The wind current points towards the x-
axis of w. One can transform the wind current from w
into the e coordinate system, by rotating about the angle
of attack αc and the angle of sideslip βc:

eVc = Ry,αc
Rz,−βc

· wVc (41)

The transformation in the body coordinate system can be
achieved with J(η). The relative speed νr = ν − νc is the
speed between the airship (ν) and the wind velocity (νc).

2.3 The overall airchip model

The overall non-linear 6-DOF (degrees of freedom) model
of the airship has the following form:

(MRB +MA)ν̇r + CRB(ν)ν + CA(νr)νr (42)

+D(νr)νr +DFin(νr) + g(η) = τP +DFin(νr, δ)

η̇ = J(η) ν

3. DESING OF THE AIRSHIP CONTROL

A very good solution to handle all input/output variables
is to use a state-space controller. The airship is a non-
linear system. Therefore, we decided to use a nonlinear
gain-scheduling controller. A gain-scheduling controller
optimizes the linear state-space controller parameters to
various operating points of the airship. There exists many
design methods for linear state controllers. We choose an
LQR-based controller design, because of its relatively easy
implementation. However, LQR-controller designs are only
applicable for linear systems. Therefore, in a first step, the
linearization of the airship model is necessary. It is reason-
able to split the linearized model of the whole airship into
a lateral and a longitudinal subsystem. Each of them are
used to control some particularly motions. The control-
loop structures for lateral and longitudinal motions are
explained bellow. Moreover, the airship is a nonholonomic
6-DOF system. So, it is not possible to control it in every
direction with arbitrary orientation. The following control
system is at this time only designed without implementing
the tail fin control surfaces as controller inputs.

3.1 Linearisation of the airship model

Equilibrium points The nonlinear airship system can be
writtes as:

ẋ(t) = f(x(t), u(t)) (43)

An equilibrium point corresponds to a condition, at which
the dynamical system is in steady state.

0 = ẋ0 = f(x0, u0) (44)

Due to the complex aerodynamic data, the equilibrium
points cannot be found analytically. We use a numeric
optimization algorithm to find the equilibrium points
x0, u0 over the flight envelope. Therefor, a convex cost
function is minimized.

F = min = u̇0
2 + v̇0

2 + ẇ0
2 + ṗ0

2 + q̇0
2 + ṙ0

2 +

(ẋ0 − VGS)
2

+ ẏ0
2 + ż0

2 + φ̇0
2

+ θ̇0
2

+ ψ̇0
2

+ (45)

v0
2 + p0

2 + q0
2 + r0

2 + x0
2 + y0

2 + z0
2 + φ0

2 + ψ0
2

The scheduling-variable VGS specifies various speeds of the
airship in ẋ0 direction and so the flight envelope.

Linaerization With the derivations

x̃ = x− x0 ũ = u− u0 (46)

the system can be lineaized by using a multivariable Taylor
serie.
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˙̃x(t) ≈ ∂f

∂x

∣∣∣∣
x=x0;u=u0

x̃+
∂f

∂u

∣∣∣∣
x=x0;u=u0

ũ (47)

Were A = ∂f
∂x

∣∣∣
x=x0;u=u0

and B = ∂f
∂u

∣∣∣
x=x0;u=u0

are the

n× n and n×m Jacobi-matrices.

Because of the complex nonlinear data (aerodynamic
data), the linearization cannot be done analytically. The
numerical linearization can be done by perturbing each
state or input signal slightly from its equilibrium points.
The matrices A (and B) can be approximated as:

˜̇x1 − ˜̇x−1 = f(x0) + h
∂f

∂x

∣∣∣∣
x=x0

− f(x0) + h
∂f

∂x

∣∣∣∣
x=x0

(48)

A=
∂f

∂x

∣∣∣∣
x=x0

≈
˜̇x1 − ˜̇x−1

2h
(49)

The linear model of the airship can be expressed in a well-
known general state-space form:

˙̃x=Ax̃+Bũ (50)

y =Cx̃+Dũ (51)

C = I(12×12) (52)

D= 0(12×3) (53)

3.2 Lateral controller

The heading system is nonholonomic, because the yaw
angle can not be controlled without changing the airships
y position. The main purpose of the lateral system is to
control the yaw angle ψ. For this reason, the y position
is not included in the state vector: xH = v, p, r, φ, ψ. The
input variable is u = FStern. [Metelo and Campos (2003)]

The state and input matrices for the lateral sub-system
are extracted from the linearised model by using the new
state vector xH :

AH =

v p r φ ψ


a2,2 a2,4 a2,6 a2,10 a2,12
a4,2 a4,4 a4,6 a4,10 a4,12
a6,2 a6,4 a6,6 a6,10 a6,12
a10,2 a10,4 a10,6 a10,10 a10,12
a12,2 a12,4 a12,6 a12,10 a12,12




v
p
r
φ
ψ

(54)

BH =

FStern


b2,1
b4,1
b6,1
b10,1
b12,1




v
p
r
φ
ψ

(55)

The state vector deviation from the operating point is
given by:

x̃H = xH − xHd(0)
=




v − v0
p− p0
r − r0
φ− φ0

ψ − ψ0 − (ψd − ψ0)


 (56)

The controlled input variable

Fig. 3. Closed-loop lateral system

ũH = −KH x̃H (57)

stabilizes the state space equation of the lateral system:

ẋH = AH x̃H +BH ũH (58)

In order to find the optimal controller parameters, the
quadratic cost criterion should be minimized:

J =
1

2

∞∫

0

[
xT (t)Qx(t) + uT (t)Ru(t)

]
dt = min

K
(59)

Therefore, the optimal controller parameters K can be
calculated by solving the Riccati equation for the matrix
P :

PA+ATP − PBR−1BP +Q = 0 (60)

K = R−1BTP (61)

The parameters qi > 0 from the weight matrix
Q = diag(q1, q2, . . . , qn) are weighting the associated
states. The parameters ri > 0 from the weight matrix
R = diag(r1, r2, . . . , rm) are weighting the associated in-
puts.

The closed-loop lateral system with state controller is
shown in Fig. 3.

All poles of the open-loop lateral system are stable. How-
ever, one of them is on the imaginary axis. The pole
location of the open-loop lateral system is shown is Fig. 4.

The weighting matrices Q = QT ≥ 0 with n = 5 and
R = RT ≥ 0 with m = 1 elements on the main diagonal
should be selected in such a way, to ensure, that the
output variable FStern does not saturate. Moreover, the
state variable (ψ − ψd) should converges faster to zero as
the others. This request can be realised through a larger
value for q5 in the weighting matrix Q.

Resulting poles of the closed-loop heading system with
LQR-controller are shown in Fig. 5. The step response for
the yaw angle is shown in Fig. 6.

3.3 Longitudinal controller

The longitudinal (XZ) control is dedicated to control the
state variables u and z. The gondola drives with propellers
are used as input variables. Similar to the lateral system,
the longitudinal system is not independent controllable in
all DOF. The yaw angle ψ affects the controllability of
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the x−position of the airship. Therefore, the state variable
x is not included in state vector for longitudinal control.
Moreover, the pitch angle θ is at the equilibrium points
not equal to zero. Thus, it is not reasonable to control
this angle to zero. Therefore, this variable is also not
included in the resulting state vector xXZ = u,w, q, z. The
input vector includes the forces, generated by the main
propellers. The input forces F (α) are splitted for control
purpose in an x and z direction u = Fx, Fz. [Metelo and
Campos (2003)]

F = FS + FB (62)

Fx = Fcos(α) (63)

Fz = Fsin(α) (64)

The linearized longitudinal state and input matrices are:

AXZ =

u w q z

a1,1 a1,3 a1,5 a1,9
a3,1 a3,3 a3,5 a3,9
a5,1 a5,3 a5,5 a5,9
a9,1 a9,3 a9,5 a9,9




u
w
q
z

(65)

and

BXZ =

Fx Fz

b1,2 b1,3
b3,2 b3,3
b5,2 b5,3
b9,2 b9,3




u
w
q
z

(66)

The primary controlled variables u and v are coupled,
because the flight speed u can affect the altitude z. Since
the LQR-controller has only proportional feedback, there
will result a not negligible error. By introducing an I-type
feedback, this error can be eliminated. For this purpose,
new state variables are defined:

x∫ = (x∫
u
, x∫

z
) =




t∫

0

u(τ)dτ,

t∫

0

z(τ)dτ


 (67)

The new state variables can be added to the existing
longitudinal state-space variables,

x̃XZ = xXZ − xXZd(0)
=



u− u0 − (ud − u0)

w − w0

q − q0
z − z0 − (zd − z0)


 (68)

witch results in the following controlled longitudinal over-
all system:




˙̃xXZ
˙̃x∫

u

˙̃x∫
z


=




AXZ 04×2(
1 0 0 0
0 0 0 1

)
02×2






x̃XZ
x̃∫

u

x̃∫
z


 (69)

+

(
BXZ
01×2
01×2

)
ũXZ

The input signals are calculated as:
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Fig. 7. Closed-loop longitudinal system with additive I-
controller
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Fig. 8. Step response of the longitudinal system

ũXZ = −
(
K K∫

u
K∫

z

)


x̃XZ
x̃∫

u

x̃∫
z


 (70)

Fig. 7 shows the closed-loop longitudinal system.

The procedure for calculating the controller parameters
is similar to the lateral system. In this case, the state
variables u−ud, z−zd, x∫

u
and x∫

z
should be controlled

faster than the others. Therefore, the weighting coefficients
q1, q4, q5 and q6 of the matrix Q must be greater then
the values of q2 and q3, respectively. The resulting LQR-
controller is a 2× 6 matrix.

The values of integral-feedback gains can reach very large
values, if the airship has an unilateral error from the
desired flight path. Therefore, it is necessary to implement
an anti-wind-up saturation of these signals.

The step response of the longitudinal closed-loop system
for the output variable u is shown in Fig. 8.

3.4 Gain-scheduling controller

A linear controller can only guarantee stability in a short
range about the operating point, for which it was designed.
However, the airship should be controlled under all possi-
ble flight conditions. This can be realised by using a non-
linear controller.

A nonlinear gain-scheduling controller acts as a switch
between a lot of linear controllers. Each of them are
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Fig. 9. Parameters of the LQR-controller for lateral system

designed for a specific operating point. Operating points
are equilibrium points for a certain value of the gain-
scheduling variable s [Moutinho (2007)].

0 = f(x0(s), u0(s)) (71)

The gain-scheduling variable s for the airship is defined by
its speed. This speed corresponds to the x-velocity exyvrx
of the relative speed vr, transformed into XY plane of the
earth coordinate system:

exyvr =

( exyvrx
exyvry
exyvrz

)
= J1(φ, θ, 0) · vr (72)

The nonlinear airship model ẋ = f(x, u) is linearized at
all equilibrium points (Eq. 71.), given by various values
s(1), s(2), ...s(n) of the gain-scheduling variable s.

In this way, n linear systems are developed:

˙̃x=A(s)x̃+B(s)ũ (73)

ỹ =C(s)x̃ (74)

For each of the n linear systems, an LQR controllers K(s)
will be calculated:

ũ=−K(s)x̃ (75)

The controller parameters K(s) are then interpolated
between all equilibrium points. The interpolated controller
parameters K(s) are depending on the value of the gain-
scheduling variable s.

The graphs in Fig. 9. shows the calculated and interpolated
parameters of the LQR-controller for the lateral control
system.

It is easy to detect that there are some step changes in the
parameter values. These can lead to an instability of the
whole closed-loop system, if it is controlled between two
operating points with big changes in controller parameters.
As a solution we designed a checking algorithm, which
allows only to change the coefficients of controller param-
eters with limited range and so without step changes in the
scheduled controller coefficients. The step changes of the
controller coefficients are detected by using the derivation
of the controller coefficients curve. The following figure
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Fig. 10. Step response of the gain-scheduled controlled
lateral system

Fig. 10. shows the step responses of the designed lateral
gain-scheduling controller.

3.5 Navigation

The above described lateral and longitudinal control sys-
tems are not able to control the airship in all 6DOF, as it
is a nonholonomic and so a not fully controllable system.
Besides the yaw angle ψ, it must be also controlled the
altitude Ze and the speed u in Xb-direction. For flying
on an appropriate flight trajectory, the desired set values
must be proper generated for the controllers.

For this purpose we designed a navigation module, which
switches between the two operating modes of the airship -
steady state control and point-to-point flight. The point-
to-point control is used to flight to a new target point. In
this mode, the lateral control system is used for adjusting
the airship orientation towards the desired set position.
The longitudinal system controls the desired speed u and
desired Ze position of the airship. The desired speed u
is increased, if the control deviation of the orientation
decreases. If the airship is nearby the target point, the
steady state control mode is activated. In this mode, the
maximal speed of the airship is limited and decreases
with decreasing distance to the target point. This strategy
prevents the airship to do very ineffective maneuvers in the
neighbourhood of the set position. Moreover, the airship
can flight backward to the target position in this mode
[Metelo and Campos (2003)].

Combining these strategies yields to a complex motion
control for the airship. Fig. 11. shows simulation results of
a typical airship flight with take-off, movement on a linear
and circular composed trajectory with constant altitude
and landing [Moutinho (2007)].

4. CONCLUSION

In this paper we presented the design procedure for a
gain-scheduled LQR controller for an autonomous airship.
Two types of control sub-systems (lateral, longitudinal)
have been designed from the nonlinear 6DOF airship
model to fulfill different goals (yaw as well as speed
and position control). The navigation system generates
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Fig. 11. Spline trajectory with gain-scheduled LQR-
controller

appropriate inputs for the controllers of both sub-systems
and combines them to a complex control unit, witch
allows the airship to follow an adequate flight trajectory.
Simulations shows a good performance of the designed
control system, which will be tested on the real airship
in near future.
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