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Abstract: This paper proposes multiple-step active control algorithms based on MPC approach
that approximate persistent system excitation in terms of the increase of the lowest eigenvalue of
the parameter estimate information matrix. It is shown how the persistent excitation condition
is connected with a proposed concept of stability of a system with uncertain parameters. Unlike
similar methods, the proposed algorithms predict the information matrix for more than one step
of control. The problem is formulated as an MPC problem with an additional constraint on the
information matrix. This constraint makes the problem non-convex, thus only locally optimal
solutions are guaranteed.

Keywords: Adaptive systems and control; Input and excitation design; Stochastic control;
Dual control approximation; Model predictive control.

1. INTRODUCTION

Controller design is usually based on some performance
specifications that should be satisfied for a system model.
Thus the controller design is primarily based on some
model that describes the system up to a certain precision.
Various algorithms exist that take into account the model
uncertainty, based on uncertainty model both in time and
frequency domain. Usual algorithms, however, do not take
into account the possibility that the control process itself
may bring some information about the controlled system
and thus improve the model.

The simultaneous optimal control and identification prob-
lem is referred to as a dual control problem Feldbaum
(1960–61) which is known to be analytically solvable for
only very special systems as in Sternby (1976); Åström
and Helmersson (1986) as it requires solving the Bellman
equation (Bertsekas (2005)). Numerical solution faces the
curse of dimensionality problem. There exist approxima-
tions of the optimal solution based on suboptimal solu-
tion of the original problem,(Lee and Lee (2009); Lindoff
et al. (1999, 1998); Wittenmark (1995, 2002); Chen and
Loparo (1991)), or on problem reformulation (Filatov et al.
(1996)). An overview of the state-of-the-art methods is
given in Filatov and Unbehauen (2004), where an algo-
rithm with dual properties is defined as one that actively
gathers information during the control process while sat-
isfying given control performance.

In this paper we propose three algorithms based on the
idea of the persistent system excitation (Goodwin and
Sin (1984)). The persistent excitation condition requires

⋆ This is a preliminary version of the paper Multiple-step active
control with dual properties, which will be presented at the 18th
IFAC World Congress, 2011, in Milan.

that the information about the system in the sense of its
parameter information matrix is increased linearly, i.e.

P−1
t+M − P−1

t ≥ γI (1)

for all t and some given M , where P−1
k denotes the

information matrix (i.e. the inverse of the variance matrix)
after k steps of control, γ is a given real constant and I
denotes the identity matrix of corresponding order. The
inequality symbol > is used in the positive definiteness
meaning, i.e. for two matrices A and B, A > B means
that A−B is a positive definite matrix.

The proposed algorithms are based on a constrained MPC
control design that is adjusted such that the persistent
excitation condition is satisfied. This control problem is
formulated and analysed in section 3. In section 2 we
show a motivation example for such design and propose a
concept of stability of a system with uncertain parameters.
This concept is based on a requirement that the mean
value of a given quadratic criterion is finite over infinite
control horizon. It is shown on the motivation example
that the persistent excitation condition (1) is also sufficient
for stability in this sense.

The proposed algorithms predict the information matrix
over more than one step of control. This prediction is
one of the two major problems of the methods, as the
only practically computable prediction based on certainty
equivalence assumption is used. The second major problem
is the inherent non-convexity, the reason why only local
solution is guaranteed to be found when using numerical
methods for problem solution.

Section 4 contains derivations and descriptions of individ-
ual algorithms. All algorithms are designed for autoregres-
sive systems with external input (ARX), although their
formulation allows for future generalization for ARMAX
systems with known MA part (Havlena (1993); Peterka
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(1986)). Finally, section 5 shows simulations of the pro-
posed methods and we conclude in section 6.

2. PERSISTENT EXCITATION AND STABILITY

In this section we will introduce a concept of stability of
a closed loop system with fixed but unknown parameters
and show how this concept is connected with the persistent
excitation conditions.

2.1 The concept of stability

Let us consider a general ARX system. Such system has a
form

yk =

n∑

i=1

aiyk−i +

m∑

i=0

biuk−i + ek, (2)

where ui and yi are system inputs and outputs, respec-
tively and ei is a discrete-time white noise. Let us as-
sume that the system parameters ai and bi are fixed but
unknown constants. Also let us assume that at the time
k = 0 we have some estimate of the parameter values, that

we will denote âi,0 and b̂i,0. These parameter estimates
can be used for controller design and they are expected
to get more precise during the future control process. If
the estimate is unbiased, the estimate error at time k,

ãi,k = ai − âi,k and b̃i,k = bi − b̂i,k is a random vector
with zero mean and variance matrix Pk.

Because the future estimates of parameters are not avail-
able at the initial time k = 0, it is convenient to model such
situation by a stochastic process, the parameters of which
are random variables ai,k and bi,k with mean âi = âi,0 and

b̂i = b̂i,0 and variance matrix Pk. The advantage is that
properties of the estimate errors remain unchanged. It will
also be supposed for simplicity of computations that ai,k
and bi,k are independent with respect to time k.

Let us now consider a linear quadratic (LQ) controller
for this system. The controller minimizes the following
criterion

JN =

N∑

k=1

{
ru2

k + y2k
}
, (3)

minimization of which leads to a feedback control law. One
way to cope with unknown system parameters in controller
design is to use the certainty equivalence (CE) approach,
i.e. substitute these parameters with their mean value. In

the previous model, it means to use âi and b̂i instead of
ai,k and bi,k, respectively.

The question now is, whether such control will be stable. If
the real parameters are far from their mean values, the LQ
control based on CE becomes unstable. If the set of param-
eters for which the closed loop system becomes unstable
has a constant nonzero probability, then the criterion mean
E JN will go to infinity as N → ∞. This is the case,
when the parameter estimate is not updated during the
control process and its variance remains unchanged. The
only way to make the criterion mean EJN converge to a
finite value is to make the probability of the unstable set of
parameters decrease sufficiently fast to zero. Based on the
previous analysis, we can define the stability of a closed
loop system in the following way: A closed loop system is
stable, if EJ∞ = lim

N→∞
E JN < ∞.

We will now show on a simple example that if the variance
of the parameters decreases as N−1, or equivalently, if
its inverse (or information) increases linearly, than the
stability is guaranteed for a CE feedback LQ controller.
The condition of a linear information growth is also called
a condition of persistent excitation in identification theory
and guarantees that the parameter estimates converge fast
to the real values.

2.2 Derivation of stability condition

As stated before, we will now show that a linear growth
of information is sufficient to guarantee stability in the
previously defined sense. We will not show a formal proof
but rather use a simple example to demonstrate the idea.

Let us consider the following simple discrete integrator
system

yk = yk−1 + bkuk + ek, (4)
with only one unknown parameter bk, that is modeled
as a random variable in compliance with the previous
subsection. For r = 0 in (3), the CE feedback control law
is

uk = −1

b̂
yk−1, (5)

where b̂ is the parameter mean value. The control law is

defined for all nonzero b̂, which is exactly the condition for
the system to be controllable. The system output is then

yk = yk−1 −
bk

b̂
yk−1 + ek =

b̃k

b̂
yk−1 + ek. (6)

The noise ek will be further omitted for simplicity, as it
does not change the result. From (6) it follows that

yk =

∏k
i=1 b̃i

b̂k
y0, (7)

and

JN =

N∑

k=1

{
y2k
}
=

N∑

k=1

{∏k
i=1 b̃

2
i

b̂2k
y20

}
. (8)

The mean of the criterion is then

EJN = E
N∑

k=1

{
y2k
}
=

N∑

k=1

E

{∏k
i=1 b̃

2
i

b̂2k
y20

}
. (9)

The criterion will only converge to a finite value, if the
elements of the series converge to zero fast enough. But,
using the independence assumption,

E y2k = E

{∏k
i=1 b̃

2
i

b̂2k
y20

}
=

∏k
i=1 σ

2
i

b̂2k
y20 , (10)

where σ2
i is the variance of bi. Now, if the linear growth of

information is guaranteed, i.e. σ2
i =

σ2
1

i , it holds

E y2k =

(
σi

b̂

)2k
1

k!
y20 , (11)

so the series is convergent for any σ1 and any nonzero b̂.

This idea can be even generalized for varying b̂ = b̂k, if it

is guaranteed that |̂bk| > ǫ for all k and some ǫ > 0.

3. PROBLEM FORMULATION AND ANALYSIS

This paper deals primarily with ARX systems that are
usually given in a form of the following equation

yk = zTk θ + ek = xT
k θx + ukb0 + ek, (12)
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where θ = [b0, a1, b1, . . . , an, bn]
T = [b0, θ

T
x ]

T is a vector of
parameters and zk = [uk, yk−1, uk−1, . . . , yk−n, uk−n]

T =
[uk, x

T
k ]

T .

The presented algorithms, however, are derived using
state-space descriptions of a linear stochastic discrete-time
system (Aström (1970)), in a usual form

xk+1 =Axk +Buk + Eek (13)

yk =Cxk +Duk + ek,

with the usual meaning of symbols, i.e. A, B, C, D and E
are system matrices of proper dimensions, uk, yk and xk

are the system input, output and state, respectively and
ek is a gaussian white noise sequence with zero mean and
constant finite variance.

Therefore the following nonminimal state-space represen-
tation of an ARX system (12) will be used

A =




a1 b1 . . . bn−1 an bn
0 0 . . . 0 0 0
1 0 . . . 0 0 0
0 1 . . . 0 0 0
. . . . . .
0 0 . . . 1 0 0



B =




b0
1
0
0
...
0



E =




1
0
0
0
...
0




C = [ a1 b1 . . . bn−1 an bn ] D = [ b0 ] (14)

The state in this representation is xk defined above and
is directly measurable, as it is formed by previous inputs
and outputs. The symbol θ has the meaning of the current

estimate θ̂0 from section 2 and will be used for simplicity
of notation.

3.1 Problem formulation

A standard MPC problem is formulated as a minimization
problem

U∗ = argmin
U

JN = argmin
U

N∑

k=1

{
ru2

k + y2k
}
, (15)

s. t. xk+1 = Axk +Buk

yk = Cxk +Duk

|uk| ≤ umax, |yk| ≤ ymax

where N is the control horizon, r is a positive real tuning
parameter and umax, ymax are hard constraints on inputs
and outputs, respectively. To ensure persistent system
excitation, the criterion must also take into account the
improvement of information gained after some amount
of control inputs, i.e. the persistent excitation condition
(1). In the case of an ARX system (12) it takes the form
(Anderson and Moore (2005))

P−1
t+M − P−1

t =

t+M∑

k=t+1

{
zkz

T
k

}
≥ γI, (16)

where zk is the system regressor at time k defined in (12).
We will consider t = 0 for simplicity of notation, the case
of general t is straightforward.

Let us now introduce some notation. It holds that∑M
k=1 zkz

T
k = ZMZT

M , where ZM = [z1, . . . , zM ]. The

regressors are columns of the matrix ZM and can be
expressed as a linear function of the initial condition of
the system x0 = [y0, u0, y−1, u−1, . . . , y−n+1, u−n+1]

T and
the input vector U = [u1, . . . , uN ]T as

zk = Fk

[
x0

U

]
, k = 1, . . . ,M, (17)

where Fk is a matrix of appropriate dimensions. Similarly,
the rows of ZM are formed by shifted inputs and out-
puts, particularly [u1, . . . , uM ] to [u−n+1, . . . , uM−n] and
[y0, . . . , yM−1] to [y−n+1, . . . , yM−n]. Let us denote the k-
th row of ZM as wk, k = 1, . . . , 2n + 1. Also wk can be
expressed by

wT
k = Gk

[
x0

U

]
, k = 1, . . . , 2n+ 1, (18)

where Gk is a matrix of appropriate dimensions. The
vector Y = [y1, . . . , yN ] can be expressed as

Y = H

[
x0

U

]
, (19)

where H is a matrix of corresponding dimensions. Also let
us call M the excitation horizon. Putting together (15)
and (16) and using the introduced notation (17), (18) and
(19) the problem has the form

U∗ = argmin
U

{
rUTU +

[
xT
0 UT

]
HTH

[
x0

U

]}
(20)

s. t. |uk| < umax, |yk| < ymax

M∑

k=1

{
zkz

T
k

}
≥ γI

Because the suitable γ is hard to be stated apriori, it can
be seen as a tuning parameter for the algorithm. We can
see that there is a tradeoff between the criterion value
JN and the minimum eigenvalue γ. In some cases, it is
more natural to reverse the problem – define the maximum
criterion value and maximize γ within these constraints.
Let us denote the optimal criterion value of the MPC
problem (15) as J∗

N . Then the alternative formulation of
the problem is

γ∗ = argmax
U

γ, (21)

s. t.

{
rUTU +

[
xT
0 UT

]
HTH

[
x0

U

]}
≤ J∗

N +∆J

|uk| ≤ umax, |yk| ≤ ymax

M∑

k=1

{
zkz

T
k

}
≥ γI

for a given maximum criterion change ∆J .

3.2 Problem analysis

The problem (20) or its alternative (21) differ from the
original MPC (15) only in the last condition. As the MPC
problem is convex and standard algorithms exist for its
solution, the presented algorithms in fact differ only in
how they cope with the last condition (16).

Because the information matrix (16) consists of quadratic
and bilinear terms, both problems are non-convex in
control inputs, as demonstrated in Figure 1, which shows

18th International Conference on Process Control
June 14–17, 2011, Tatranská Lomnica, Slovakia Po-We-8, 099.pdf

249



the lowest eigenvalue of the information matrix of a second
order ARX system after two steps of control as a function
of the two inputs u1 and u2. This is a difference from
simple one-step approaches where the solution always lies
on the constraints (Filatov and Unbehauen (2004)) and is
a reason for using numerical methods.

The second problem caused by the extra condition (16)
is that the sum cannot be actually computed precisely,
because it contains future outputs that do not depend only
on future inputs, but also on the parameter values and
input noise. A lower bound of the mean of the variance ma-
trix could be achieved by computing E zk E zTk ≤ E(zkz

T
k )

from Jensen’s inequality. However, even computing E zk
is complicated, as the computation needs higher moments
of the parameter joint distribution. Therefore, the condi-
tional mean Eθ0 zk = E(zk|θk = θ0,∀k = 1, . . . ,M) is used
instead of the mean E zk.

Also note that because the information matrix increment
in (16) is a sum of M dyads, its rank is less or equal to M .
Therefore it is necessary thatM ≥ 2n+1 (i.e. the length of
the regressor) to be able to achieve that all its eigenvalues
are positive. On the other hand, N should be significantly
greater than M so that the control criterion can take into
account the future impact of identification procedure on
the control quality. The last observation is that as the
criterion minimization and information maximization are
in contradiction, the persistent excitation condition may
not be possible to satisfy, i.e. the problem may easily be
infeasible for some choice of ∆J and γ.

4. PROBLEM SOLUTION

In the previous section, the problem was formulated as
a non-convex problem. The non-convexity introduced by
(16) can be handled in several ways. This section presents
three different methods to solve the problem (20) and (21).

4.1 Rank 1 algorithm

The rank 1 algorithm is based on a convex relaxation of the
problem and concentrating all non-convexity into a rank
constraint. Using the notation (17), (16) is rewritten as

M∑

k=1

Fk

[
x0

U

] [
xT
0 U

T
]
FT
k > γI, (22)

or in a simplified form
M∑

k=1

FkUXFT
k > γI, (23)

using the notation[
x0

U

] [
xT
0 UT

]
=

[
x0x

T
0 x0U

T

UxT
0 UUT

]
= UX . (24)

The matrix UX consists of constant terms x0x
T
0 , terms

x0U
T and UxT

0 linear in U , and the term UUT quadratic in
U . The quadratic term makes the problem (23) unsolvable
as an LMI directly, and therefore the following reformula-
tion is used

UX2 =

[
x0x

T
0 x0U

T

UxT
0 Uq

]
(25)

s. t. rank (UX2) = 1, (26)

where Uq is now a general symmetric, positive definite ma-
trix, replacing the quadratic term UUT . All non-convexity
is now concentrated in the rank constraint (26) and drop-
ping this constraint the task can be solved as a normal
LMI problem (Boyd et al. (1994)) in more variables, known
also as Schor’s relaxation (Vandenberghe and Boyd (1996);
Lasserre (2000)).

Expressing the criterion as a Schur complement (Bernstein
(2005)) this relaxation makes it possible to solve the
original problem as a rank constrained LMI

U∗ = argmin
U

λ (27)

s. t.




λ
[
xT
0 UT

]
HT UT

H

[
x0

U

]
I 0

U 0
1

r
I


 ≥ 0

|uk| < umax, |yk| < ymax

M∑

k=1

FkUX2F
T
k > γI

rank UX2 = 1

Again, two versions corresponding to formulation (20) or
(21) are possible.

4.2 Gershgorin circle algorithm

This algorithm is based on eigenvalue approximation in
terms of Gershgorin circles (Bernstein (2005)). For a real
matrix A with entries aij define Ri =

∑
j 6=i |aij |, i.e.

the sum of absolute values of elements of the i-th row
without the diagonal element. Then each eigenvalue lies in
at least one of the Gershgorin circles defined as intervals
[aii − Ri; aii + Ri] for every i. This idea can be used
to create constraints on the elements of the information
matrix P−1

M . If the diagonal elements aii are greater than
some γ1 and the nondiagonal sum less than γ2, then the
lowest eigenvalue must be greater than γ1 − γ2.

Let us now formulate the above idea as an optimization
problem. The standard MPC part of the algorithm is
formed by the first two lines of (20) and the additional con-
straints are imposed on the elements aij of the information

matrix P−1
M = ZMZT

M . Using the fact that aij = wiw
T
j and

notation (18), it is necessary to ensure that

bij >
[
xT
0 UT

]
GT

i Gj

[
x0

U

]
,∀i, j = 1, . . . , 2n+ 1, i < j

bij >−
[
xT
0 UT

]
GT

i Gj

[
x0

U

]
,∀i, j = 1, . . . , 2n+ 1, i < j

bij = bji

γ2 >
∑

j 6=i

bij ,∀i = 1, . . . , 2n+ 1

γ1 <
[
xT
0 UT

]
GT

i Gi

[
x0

U

]
,∀i = 1, . . . , 2n+ 1 (28)

where bij are artificial variables that have the meaning

of absolute values of aij . Because the matrix P−T
M is

symmetrical, the first two constraints in are only required
for i < j.
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4.3 Orthogonal regressors algorithm

This algorithm is based on the idea, that the regres-
sors shape the information ellipsoid, that is the ellipsoid
xT (P−1

M )−1x = xTPMx = 1. The eigenvalues of P−1
M

correspond to the ellipsoid radii. Therefore similarly to
the previous algorithm, it is necessary to ensure that the
regressors’ norms |zi| > γ1 and that the regressors are ’as
much orthogonal as possible’, meaning that for all i 6= j,
zTi zj < γ2. The problem again consists of the first two
lines of (20) and the following constraints

bij >
[
xT
0 UT

]
FT
i Fj

[
x0

U

]
,∀i, j = 1, . . . ,M, i < j

bij > −
[
xT
0 UT

]
FT
i Fj

[
x0

U

]
,∀i, j = 1, . . . ,M, i < j

bij < γ2,∀i, j = 1, . . . ,M, i < j

γ1 <
[
xT
0 UT

]
FT
i Fi

[
x0

U

]
,∀i = 1, . . . ,M (29)

The structure of the problem is similar to the previous
one, the difference is in the problem dimension. While

the number of constraints is (2n+1)(2n)
2 and the dimension

of the vectors is M in the Gershgorin algorithm, in this
case it is the reverse, i.e. the dimension of regressors is

2n + 1 and the number of constraints is (M)(M−1)
2 . From

this follows that in this case, M should be equal to 2n+1,
as the number of regressors should not be higher than their
dimension.

4.4 Stability

The stability of the proposed algorithms in the usual
(Lyapunov) sense can be guaranteed for the nominal

system, i.e. the system for which ˜ai,k = 0 and ˜bj,k = 0
for all i = 1 . . . n, j = 1 . . .m and all k = 1 . . . N . This
follows from the stability of the MPC controller (Rawlings
and Muske (1993)) and from the fact that the criterion is
bounded, therefore the difference δui = ui − u∗

i is square
summable, u∗

i denoting the MPC optimal solution.

5. SIMULATIONS

Simulations of the previously proposed algorithms are
shown in this section. The following ARX system was used

yk = 1.64yk−1−0.67yk−2+0.2uk+0.22uk−1−0.12uk−2+ek,
(30)

which is obtained by discretization of a system 1/(s +
1)2 with a sampling period Ts = 0.2s and modified in
order to have b0 6= 0. The system is controlled to zero
from the initial state x0 = [10, 0, 0, 0]T , i.e. the initial
output y0 = 10. Note that the nonminimal representation
(14) is used, so the system order is 4. The control was
designed for N = 30, M = 5, r = 1 and ∆J =
0.1J∗

N . Figures 2 and 3 show the inputs and outputs
of a control process for optimal MPC controller and all
three designed controllers, respectively. Figure 4 shows
the development of the variance matrix in the sense of
its greatest eigenvalue.

The Rank 1 algorithm was used in the form of (21) and was
solved by YALMIP (Löfberg (2004)) in MATLAB, with
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m
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ig

en
va

lu
e 

of
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Fig. 1. The lowest eigenvalue of the predicted information
matrix after M = 5 steps of control as a function
of the two first inputs u1 and u2 around the optimal
MPC solution for the ARX system (30)

help of the LMIRANK solver (Orsi et al. (2006)). As the
solver only searches for feasible points, the algorithm was
run sequentially with γ varying according to the interval
bisection method to find the maximum information. Both
the Gershgorin and the regressor algorithm were solved by
the MATLAB standard function FMINCON.

6. CONCLUSIONS

This paper proposes three different algorithms for simulta-
neous identification and control, based on a standard MPC
approach with a demand on the parameter information
matrix in a form of the persistent excitation condition. The
paper also shows a motivational example which explains
the connection of the persistent excitation with a presented
concept of stability.

The proposed algorithms are derived from a general for-
mulation and in some cases it is shown that the persistent
excitation may not be satisfied precisely and only approxi-
mations are found. However, simulations show that the the
use of the proposed methods lead to better identification.

The drawback of all three methods is the inherent non-
convexity of the problem that causes convergence to local
optima only. Therefore the performance is not guaranteed
and may vary depending on the algorithms settings such
as the starting point or control and excitation horizon.
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