



# Real-Time Optimization in the Presence of Uncertainty

## Dominique Bonvin

Laboratoire d'Automatique EPFL, Lausanne

Process Control'11 Tatranska Lomnica, High Tatras, June 2011





MDCS FPA Geant4 Shielding Analysis









### Caboratoire d'Automatique



Global Optimization with Maple An Introduction with Illustrative Examples



János D. Pintér



### **Optimization of process operation**

• Static optimization *u* 

RTO

- dynamic processes at steady-state
- run-to-run operation of batch processes

- transient behavior of dynamic process

### • Dynamic optimization *u(t)*

DRTO

Applied Nonlinear Optimization in Modeling Environments











## Outline

## Context of uncertainty

- o Plant-model mismatch
- Disturbances

 $\rightarrow$  Use measurements for process improvement

## Static real-time optimization

Adaptation of model parameters – Repeated identification & optimization
 Adaptation of optimization problem – Modifier adaptation
 Adaptation of inputs – NCO tracking

## **Application examples**

Caboratoire d'Automatique

# **Control vs. Optimization**



Control task: What inputs should be applied to get the desired outputs ?

Optimization task: What inputs should be applied to optimize the objective function ?



# **Approximate Inversion by Feedback**

Use measurements to compensate uncertainty

- Approximation of the inverse introduces robustness
- Controller ensures stability and tracking performance



6

aboratoire

d'Automatique





# Run-to-Run Optimization of a Batch Plant d'Automotique



Input Parameterization  $u[0,t_f] = U(\pi)$ 



$$\min_{\mathbf{u}[0,t_f]} \Phi \coloneqq \phi \left( \mathbf{x}(t_f), \boldsymbol{\theta} \right)$$
s. t.  $\dot{\mathbf{x}} = \mathbf{F}(\mathbf{x}, \mathbf{u}, \boldsymbol{\theta}) \quad \mathbf{x}(0) = \mathbf{x}_0$ 

$$\mathbf{S}(\mathbf{x}, \mathbf{u}, \boldsymbol{\theta}) \leq \mathbf{0}$$

$$\mathbf{T} \left( \mathbf{x}(t_f), \boldsymbol{\theta} \right) \leq \mathbf{0}$$

Laboratoire



# **Static RTO Problem**

Minimize some steady-state performance (e.g. cost), while satisfying a number of operating constraints (e.g. safety)

### Plant

$$\min_{\mathbf{u}} \quad \Phi_p(\mathbf{u}) \coloneqq \phi_p(\mathbf{u}, \mathbf{y}_p)$$
  
s. t. 
$$\mathbf{G}_p(\mathbf{u}) \coloneqq \mathbf{g}_p(\mathbf{u}, \mathbf{y}_p) \le \mathbf{0}$$

Model-based Optimization

$$F(\mathbf{u}, \mathbf{y}, \boldsymbol{\theta}) = \mathbf{0}$$
  

$$\min_{\mathbf{u}} \quad \Phi(\mathbf{u}) \coloneqq \phi(\mathbf{u}, \mathbf{y})$$
  
s. t. 
$$G(\mathbf{u}) \coloneqq g(\mathbf{u}, \mathbf{y}) \le \mathbf{0}$$

$$\mathsf{NLP}$$





laboratoire

d'Automatique



- ISOPE

# **1. Adaptation of Model Parameters** Repeated Identification and Optimization



 $J_{k}^{\mathrm{id}} = \left[ \mathbf{y}_{n}(\mathbf{u}_{k}^{*}) - \mathbf{y}(\mathbf{u}_{k}^{*}, \boldsymbol{\theta}) \right]^{\mathrm{T}} \mathbf{Q} \left[ \mathbf{y}_{n}(\mathbf{u}_{k}^{*}) - \mathbf{y}(\mathbf{u}_{k}^{*}, \boldsymbol{\theta}) \right]$ 

Parameter Estimation Problem

 $\boldsymbol{\theta}_{k}^{*} \in \arg\min_{\boldsymbol{\theta}} J_{k}^{\mathrm{id}}$ 

Optimization Problem $\mathbf{u}_{k+1}^* \in \arg \min_{\mathbf{u}} \quad \phi\left(\mathbf{u}, \mathbf{y}(\mathbf{u}, \boldsymbol{\theta}_k^*)\right)$ s.t. $\mathbf{g}\left(\mathbf{u}, \mathbf{y}(\mathbf{u}, \boldsymbol{\theta}_k^*)\right) \leq \mathbf{0}$  $\mathbf{u}^L \leq \mathbf{u} \leq \mathbf{u}^U$ 

aboratoire

d'Automatique

Current Industrial Practice for tracking the changing optimum in the presence of disturbances

T.E. Marlin, A.N. Hrymak. Real-Time Operations Optimization of Continuous Processes, AIChE Symposium Series - CPC-V, **93**, 156-164, 1997

# Model Adequacy for Two-Step Approach

A process model is said to be adequate for use in an RTO scheme if it is capable of producing a fixed point for that RTO scheme at the plant optimum



#### **Model-adequacy conditions**

aboratoire

d'Automatique



J.F. Forbes, T.E. Marlin. Design Cost: A Systematic Approach to Technology Selection for Model-Based Real-Time Optimization Systems. Comp. Chem. Eng., 20(6/7), 717-734, 1996

13



# 2. Modification of Optimization Problem d'Automatique Repeated Optimization <u>using Nominal Model</u>

Modified Optimization Problem

$$\mathbf{u}_{k+1}^* \in \arg\min_{\mathbf{u}} \quad \Phi_m(\mathbf{u}) \coloneqq \Phi(\mathbf{u}) + \frac{\lambda_k^{\Phi T}}{\lambda_k^{\Phi T}} [\mathbf{u} - \mathbf{u}_k^*]$$
  
s.t. 
$$\mathbf{G}_m(\mathbf{u}) \coloneqq \mathbf{G}(\mathbf{u}) + \frac{\varepsilon_k}{\varepsilon_k} + \frac{\lambda_k^{\mathbf{G} T} [\mathbf{u} - \mathbf{u}_k^*]}{\lambda_k^{\mathbf{G} T} [\mathbf{u} - \mathbf{u}_k^*]} \le \mathbf{0}$$
$$\mathbf{u}^{\mathrm{L}} \le \mathbf{u} \le \mathbf{u}^{\mathrm{U}}$$

Affine corrections of cost and constraint functions



Force the modified problem to satisfy the optimality conditions of the **plant** 

P.D. Roberts and T.W. Williams, On an Algorithm for Combined System Optimization and Parameter Estimation, Automatica, 17(1), 199–209, 1981

# 2. Modification of Optimization Problem d'Automatique Repeated Optimization <u>using Nominal Model</u>

Modified Optimization Problem

$$\mathbf{u}_{k+1}^* \in \arg\min_{\mathbf{u}} \quad \Phi_m(\mathbf{u}) \coloneqq \Phi(\mathbf{u}) + \frac{\boldsymbol{\lambda}_k^{\Phi^{\mathrm{T}}}[\mathbf{u} - \mathbf{u}_k^*]}{\mathbf{s.t.} \quad \mathbf{G}_m(\mathbf{u}) \coloneqq \mathbf{G}(\mathbf{u}) + \frac{\boldsymbol{\varepsilon}_k}{\boldsymbol{\varepsilon}_k} + \frac{\boldsymbol{\lambda}_k^{\mathbf{G}^{\mathrm{T}}}[\mathbf{u} - \mathbf{u}_k^*]}{\mathbf{u}^{\mathrm{L}} \leq \mathbf{u} \leq \mathbf{u}^{\mathrm{U}}}$$

• KKT Elements:  
• KKT Modifiers:  

$$\mathcal{C}^{\mathrm{T}} = \left( G_{1}, \cdots, G_{n_{g}}, \frac{\partial G_{1}}{\partial \mathbf{u}}, \cdots, \frac{\partial G_{n_{g}}}{\partial \mathbf{u}}, \frac{\partial \Phi}{\partial \mathbf{u}} \right) \in \mathbb{R}^{n_{K}} \qquad n_{K} = n_{g} + n_{u}(n_{g} + 1)$$
• KKT Modifiers:  
•  $\Lambda^{\mathrm{T}} = \left( \varepsilon_{1}, \cdots, \varepsilon_{n_{g}}, \lambda^{G_{1}^{\mathrm{T}}}, \cdots, \lambda^{G_{n_{g}}^{\mathrm{T}}}, \lambda^{\Phi^{\mathrm{T}}} \right) \in \mathbb{R}^{n_{K}}$ 

Modifier Update (without filter)Modifier Update (with filter) $\Lambda_k = \mathbf{C}_p(\mathbf{u}_k^*) - \mathbf{C}(\mathbf{u}_k^*)$ Requires evaluation of<br/>KKT elements of plantModifier Update (with filter) $\Lambda_k = (\mathbf{I} - \mathbf{K}) \Lambda_{k-1} + \mathbf{K} \begin{bmatrix} \mathbf{C}_p(\mathbf{u}_k^*) - \mathbf{C}(\mathbf{u}_k^*) \end{bmatrix}$ 

W. Gao and S. Engell, Iterative Set-point Optimization of Batch Chromatography, *Comput. Chem. Eng.*, **29**, 1401–1409, 2005 A. Marchetti, B. Chachuat and D. Bonvin, Modifier-Adaptation Methodology for Real-Time Optimization, I&EC Research, **48**(13), 6022-6033 (2009) **16** 

# **Model Adequacy for Modifier Approach**

A process model is said to be adequate for use in an RTO scheme if it is capable of producing a fixed point for that RTO scheme at the plant optimum



#### Model-adequacy condition

$$rac{\partial J^{
m id}}{\partial oldsymbol{ heta}} \Big( \mathbf{y}_p(\mathbf{u}_p^*), \mathbf{y}(\mathbf{u}_p^*) \Big) = \mathbf{0},$$

$$\frac{\partial^2 J^{\mathrm{id}}}{\partial \theta^2} \left( \mathbf{y}_p(\mathbf{u}_p^*), \mathbf{y}(\mathbf{u}_p^*) \right) > 0$$

$$G_i(\mathbf{u}_p^*) = 0, \quad i \in A(\mathbf{u}_p^*)$$
$$G_i(\mathbf{u}_p^*) < 0, \quad i \notin A(\mathbf{u}_p^*)$$

$$\nabla_r \Phi(\mathbf{u}_p^*) = \mathbf{0},$$

 $\nabla_r^2 \Phi(\mathbf{u}_n^*, \overline{\Lambda}) > 0$ 

17 ·

Laboratoire

d'Automatique



Alejandro Marchetti, PhD thesis, EPFL, Modifier-Adaptation Methodology for Real-Time Optimization, 2009

18 ·





# Outline

## Context of uncertainty

- → Plant-model mismatch
- $\rightarrow$  Use of measurements for process improvement

## Static real-time optimization (process at steady-state)

Adaptation of model parameters – Repeated identification & optimization
 Adaptation of optimization problem – Modifier adaptation
 Adaptation of inputs – NCO tracking

## **Application examples**



- Objective: Maximize  $n_{\mathsf{C}}(t_{\mathrm{f}})$  (production of C)
- Constraints:

Input bounds:  $0 \le F(t) \le 0.002 \ \text{l min}^{-1}$ Terminal constraints:  $c_{\text{B}}(t_{\text{f}}) \le 0.025 \ \text{mol } \text{l}^{-1}$  (max. residual concentration)  $c_{\text{D}}(t_{\text{f}}) \le 0.15 \ \text{mol } \text{l}^{-1}$  (max. by-product concentration)



### **o Optimal Solution**

3 arcs, 2 active terminal constraints  $J^* \approx 0.5081 \text{ mol}$ 

### Approximate Solution

Parameterization:  $\mathbf{u} = (t_m, t_s, F_s)$  $J^* \approx 0.5079 \text{ mol}$ 



23

Laboratoire

# Adaptation of Modifiers $\varepsilon_{G}$



- Measurement Noise: (10% constraint backoffs)
- $\sigma_y = 5\%$

laboratoire

d'Automatique

- No Gradient Correction
- Exponential Filter for Modifiers:

$$\begin{array}{l} \varepsilon_{G,1}^{i} \\ \varepsilon_{G,2}^{i} \end{array} \end{pmatrix} = (1 - \gamma_{G}) \begin{pmatrix} \varepsilon_{G,1}^{i-1} \\ \varepsilon_{G,2}^{i-1} \end{pmatrix} \\ + \gamma_{G} \begin{pmatrix} c_{\mathsf{B}}^{\mathrm{meas}}(t_{\mathrm{f}}) - c_{\mathsf{B}}(t_{\mathrm{f}}) \\ c_{\mathsf{D}}^{\mathrm{meas}}(t_{\mathrm{f}}) - c_{\mathsf{D}}(t_{\mathrm{f}}) \end{pmatrix}_{\pi = \pi^{i-1}} \end{array}$$







- Objective: Minimize batch time by adjusting the reactor temperature
  - Temperature and heat removal constraints
  - Quality constraints at final time

Caboratoire d'Automatique

## **Industrial Practice**



#### aboratoire **Optimal Temperature Profile** d'Automatique **Numerical Solution using a Tendency Model Piecewise Constant Optimal Temperature** $\mathsf{T}_{\max}$ Current practice: isothermal Piecewise constant Numerical optimization 1.5 ✓ Piecewise-constant input Τ[] $\checkmark$ 5 decision variables (T<sub>2</sub>-T<sub>5</sub>, t<sub>f</sub>) 2 ✓ Fixed relative switching times Isothermal Active constraints 0.5 ✓ Interval 1: heat removal ✓ Interval 5: T<sub>max</sub> 0⊾ 0 0.2 0.4 0.6 0.8 Time t<sub>f</sub>



Laboratoire d'Automatique

## Industrial Results (1-ton reactor)



Industrial Batch Polymerization Process, I&EC Research, 43(23), 7238-7242, 2004

30

## Conclusions

- Use measurements for process improvement
   What is the best handle for correction?
- Repeated estimation and optimization can suffer from model-adequacy problem
- Practical observations
  - Complexity depends on the number of inputs (not system order)
     Solution is often determined by the constraints of the problem
     → easy tracking



