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Measures

Measure = function assigning a number to a set

µ : K ⊂ Rn 7→ R µ(K) =
∫
K
dµ =

∫
K
dµ(x) =

∫
K
µ(dx)

Examples:

• Lebesgue measure dµ(x) = dx, µ(K) = vol(K)

• Hermite measure dµ(x) = e−x
Txdx

• probability measure µ(K) = 1

• Dirac measure dµ(x) = δx∗, µ({x∗}) = 1



Measures as distributions or linear functionals

Measures are a particular class of distributions,
continuous linear functionals acting on test functions
(infinitely differentiable functions with compact support)

Riesz representation theorems identify measures with
continuous linear functionals acting on continuous functions
with compact support or vanishing at infinity

So a measure can indifferently act on sets or functions

Examples:
• Lebesgue measure f 7→

∫
K f(x)dx

• Hermite measure f 7→
∫
f(x)e−x

Txdx
• probability measure f 7→

∫
K f(x)dµ(x) = E[f(x)]

• Dirac measure f 7→
∫
f(x)δx∗ = f(x∗)



Some terminology

Support = smallest closed set K ⊂ Rn for which µ(Rn/K) = 0

Examples:
• Dirac measure supp(δx) = {x}
• atomic measure supp(µ) = {x1, . . . , xr}
• Hermite measure supp(µ) = Rn
• Lesbegue measure on K = [−1, 1], vol(K) = 2
• Lesbegue measure on K = {x ∈ R2 : xTx ≤ 1}, vol(K) = π

Indicator, or characteristic function of a set K

IK(x) = 1 if x ∈ K
= 0 otherwise



Classical analysis: from functions to measures

A univariate real function

f : [a, b] ⊂ R→ R

is of bounded variation whenever
n∑

k=1

|f(xk)− f(xk−1)|

is finite over all possible partitions

a = x0 < x1 < x2 · · · < xn−1 < xn = b
Camille Jordan

(1838-1922)



sinx−1 is not of bounded variation on [0,1]



x sinx−1 is not of bounded variation on [0,1]



x2 sinx−1 is of bounded variation on [0,1]



When the fundamental theorem of calculus fails

When is a function the (indefinite) integral

of an other function ?∫ b

a
f ′(x)dx = f(b)− f(a)

This fundamental identity can fail

e.g. for the jump function

f(x) = 0 if 0 ≤ x < 1
2

= 1 if 1
2 < x ≤ 1

for which∫ 1

0
f ′(x)dx = 0 < f(1)− f(0) = 1

What is f ′(x) in this case ?
Henri Lebesgue

(1875-1941)



Lebesgue decomposition

Any f(x) of bounded variation can be decomposed as

f(x) = f+(x)− f−(x)

where f+ and f− are both monotone (e.g. nondecreasing)

Any f(x) of bounded variation can be decomposed as

f(x) = fAC(x) + fSC(x) + fSD(x)

where

• fAC is an absolutely continuous function

• fSC is a singularly continuous, or singular function

• fSD is a singularly discrete, or jump function



Absolutely continuous functions

Function f(x) is absolutely continuous when it is continuous

|f(xk)− f(xk−1)| → 0 when |xk − xk−1| → 0

and in addition
n∑

k=1

|f(xk)− f(xk−1)| → 0 when
n∑

k=1

|xk − xk−1| → 0

for all possible partitions

a = x0 < x1 < x2 · · · < xn−1 < xn = b

In particular, Lipschitz functions

|f(xk)− f(xk−1)| ≤ L|xk − xk−1|
are absolutely continuous



Singularly continuous functions

Cantor’s devil staircase function is continuous and monotone

but not absolutely continuous



Singularly discrete or jump functions

Piecewise constant with discontinuities



Stieljtes integral

For f(x) of bounded variation

and v(x) continuous∫ b

a
v(x)df(x) =

lim
|xk−xk−1|→0

∑
k

v(zk)(f(xk)− f(xk−1))

over all possible partitions

a = x0 < x1 < x2 · · · < xn−1 < xn = b

with xk−1 ≤ zk ≤ xk

Thomas J Stieltjes

(1856-1894)



From functions to measures

Every continuous linear functional acting

on continuous functions on [a, b]

can be expressed as

v 7→
∫ b

a
v(x)df(x)

with f(x) a function of bounded variation,

or equivalently as

v 7→
∫ b

a
v(x)dµ(x)

with µ a measure
Frigyes Riesz

(1880-1956)



Lebesgue decomposition

Any measure µ can be decomposed as

µ = µ+ − µ−
where µ+ and µ− are both nonnegative measures

Any measure µ can be decomposed as

µ = µAC + µSC + µSD

where

• µAC is an absolutely continuous measure

• µSC is a singularly continuous, or singular measure

• µSD is a singularly discrete, or atomic measure



Moments

Multi-index notation xα =
∏n
i=1 x

αi
i with x ∈ Rn, α ∈ Nn

The α-th moment of measure µ is the real number

yα =
∫
K
xαdµ(x)

µ is a representing measure for sequence y = (yα)α∈Nn

Classical problem of moments (Hausdorff, Markov, Stieltjes):
characterise sequence y having representing measure µ

supported on a (given) set K

Conditions on yα ? Construction of µ and K, given y ?



LMI conditions

Given a sequence y, define the moment matrix Md(y) of order d

with entries indexed by multi-indices β (rows) and γ (columns)

[Md(y)]β,γ = yβ+γ, |β|+ |γ| ≤ 2d

which are linear in y

Necessary condition: if y has a representing measure µ

then Md(y) � 0 ∀d

Sufficient condition (Berg 1987): if |yα| ≤ 1 ∀α and Md(y) � 0

∀d, then y has a representing measure µ with supp(µ) ⊂ [−1,1]



LMI conditions

Given a sequence y and a polynomial p(x) =
∑
α pαx

α, define the

localising matrix Md(py) of order d with entries

[Md(py)]β,γ =
∑
α
pαyα+β+γ, |α|+ |β|+ |γ| ≤ 2d

Let K = {x ∈ Rn : pk(x) ≥ 0, ∀k} be compact basic semialgebraic

with {x : pk(x) ≥ 0} compact for some k

Necessary condition: if y has a representing measure µ with

support in K, then Md(y) � 0, Md(pky) � 0 ∀k ∀d

Sufficient condition (Putinar 1993): if Md(y) � 0, Md(pky) � 0

∀k ∀d then y has a representing measure with supp(µ) ⊂ K
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Polynomial optimisation

Consider the problem

p∗ = min p(x) =
∑
α pαx

α

s.t. x ∈ K = {x ∈ Rn : pk(x) ≥ 0, k = 1, . . . ,m}
where unknowns are entries of vector x and K is a given
basic semialgebraic set possibly nonconvex and/or nonconnected

For example K can be the union of a finite number of points,
i.e. a zero-dimensional variety

Includes polynomial matrix inequalities

K = {x : P (x) =
∑
α
xαPα � 0}

and in particular bilinear matrix inequalities (BMIs)



Primal formulation

Linearisation

p∗ = minµ
∫
K p(x)dµ(x)

= minµ
∑
α pα

∫
K x

αdµ(x)
= miny

∑
α pαyα

unknowns are moments of a probability measure supported on K

Proof (lower bound):

p(x) ≥ p∗ for all x ∈ K so
∫
K p(x)dµ(x) ≥

∫
K p
∗dµ(x) = p∗

Proof (upper bound):

choose a particular probability measure µ∗ = δx∗ where

x∗ is a global minimizer, then p∗ ≥
∫
K p(x)dµ∗(x) = p(x∗)



Hierarchy of relaxations

Use Putinar’s condition to generate hierarchy of LMI relaxations

p∗d = miny
∑
α pαyα

s.t. Md(y) � 0, Md(pky) � 0, k = 1, . . . ,m

and monotonically increasing asymptotically converging

sequence of lower bounds

p∗0 ≤ p
∗
1 ≤ · · · p

∗
∞ = p∗



Dual formulation

Maximize lower bound on epigraph

p∗ = max p
s.t. p(x)− p ≥ 0 ∀x ∈ K

involves a polynomial positivity condition which is relaxed as

p∗ = maxq p

s.t. p(x)− p = (
∑
j q

2
j0(x)) +

∑
k(

∑
j q

2
jk(x))pk(x)

with unknown polynomial sum-of-squares (SOS) multipliers

Lagrangian with polynomial multipliers

Can be formulated as a dual hierarchy of LMI problems by fixing

the degree of SOS multipliers to d = 0,2,4 . . .



S-procedure

Frequently used in robust control, e.g. to prove positive-real

lemma (absolute stability) or bounded-real lemma (H∞ control)

There exists no x 6= 0 such that pk(x) = xTAkx ≥ 0, k = 1, . . . ,m

if there exists q ≥ 0 such that
∑m
k=1 qkAk ≺ 0, an LMI

Corresponds to p(x) = 1 and constant multipliers qk(x) used as

infeasibility Farkas certificates

When does converse statement hold ?

Issue of conservatism of robust control LMIs



Exactness

Unconstrained polynomial optimisation

min p(x) s.t. x ∈ Rn, deg p(x) = 2δ

First LMI relaxation exact for n = 1 (univariate polynomials),
δ = 1 (conics), n = δ = 2 (bivariate quartics)

Already known to Hilbert (1900), but first explicit counter-example
of nonexactness given by Motzkin (1965) as a bivariate sextic
which is nonnegative but not polynomial SOS

Artin (1927) proved however that every nonnegative polynomial
is rational SOS

Used by Packard and Doyle (1993) for µ-analysis,
and then extended by Parrilo (2000)



Exactness

Constrained polynomial optimisation

p∗ = min
x
p(x) s.t. x ∈ K = {x : pk(x) ≥ 0, k = 1, . . . ,m}

with LMI relaxations

p∗d = miny
∑
α pαyα

s.t. Md(y) � 0, Md(pky) � 0, k = 1, . . . ,m

Exactness certificate p∗d = p∗ whenever

r = rankMd(y
∗) = rankMd−δ(y

∗), δ = max
k

deg pk(x)/2

moment matrix with flat extension (Curto and Fialkow 1993)

Corresponds to an r-atomic optimal measure
and we can extract minimizers x∗ from Md(y)
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Univariate polynomials

Global minimisation of univariate polynomial

minx p(x) =
∑d
α=0 pαx

α, x ∈ R

Primal moment problem

miny p0 +
∑d
α=1 pαyα

s.t. H0 +
∑d
α=1Hdyk � 0

where Hα are unit Hankel matrices

Dual SOS problem

maxX p0 − traceH0X
s.t. traceHαX = pα, α = 1, . . . , d

X � 0



Univariate polynomials

Example: quartic polynomial

p(x) = 48− 92x+ 56x2 − 13x3 + s4

Solving the moment LMI problem yields p∗ = p(5.25) = −12.89

min 48− 92y1 + 56y2 − 13y3 + y4

s.t.

 1 y1 y2

y1 y2 y3

y2 y3 y4

 � 0



Camelback function

For the six-hump camelback function

with two global optima and six local optima, the global optimum is reached
at the first LMI relaxation (d = 1) without any problem splitting



LMI hierarchy

Quadratic problem

min −2x1 + x2 − x3
s.t. x1(4x1 − 4x2 + 4x3 − 20) + x2(2x2 − 2x3 + 9)

+x3(2x3 − 13) + 24 ≥ 0
x1 + x2 + x3 ≤ 4, 3x2 + x3 ≤ 6
0 ≤ x1 ≤ 2, 0 ≤ x2, 0 ≤ x3 ≤ 3

Computational burden increases quickly with relaxation order

order d 1 2 3 4 5 6
bound p∗d -6.0000 -5.6923 -4.0685 -4.0000 -4.0000 -4.0000
size(y) 9 34 83 164 285 454

..yet fourth LMI relaxation solves globally the problem



Robust stability analysis

Linear system of order n

ẋ = A(q)x

with polytopic uncertainty

A(q) = A0 +
m∑
i=1

qiAi ∀q ∈ K ⊂ Rm

Particular “easy” cases:
• K = box and rankAi = 1: Kharitonov’s Theorem
• rankAi = 1: Edge Theorem

Otherwise no general polynomial-time algorithm
for checking robust stability of this system



Hermite stability criterion

Uncertain linear system robustly stable iff

H(q) � 0 ∀q ∈ K

Charles Hermite (1822-1901)

where H(q) is Hermite matrix (1854) of det (sIn −A(q))

Quadratic Lyapunov matrix depending polynomially in q



Assessing robust stability

Defining p(q) = detH(q) and K = {q : pk(q) ≥ 0}, solve

p? = minq∈K p(q) and check whether p? > 0

Hierarchy of LMI relaxations

p∗d = miny pTy
s.t. Md(y) � 0

Md(pky) � 0

with Md(y) truncated moment matrix and

Md(pky) truncated localizing matrices

Converging sequence p∗1 ≤ p
∗
2 ≤ · · · p

∗
∞ = p?



Interval matrix stability

Consider the interval matrix

A(q) =

 q1 0 0
0 q2 q3
0 −0.7115 q4


where

q ∈ Q = [−2.4780, −1.4471]× [−0.0518, −0.0194]
×[2.0000, 3.4347]× [−0.0026, −0.0012]

LMI relaxation of order 3 inconclusive with p∗3 = −171

LMI relaxation of order 4 yields certified global optimum
p∗4 = p∗ = 0.1505 attained at

q∗ = [−1.4471, −0.0194, 2.0000, −0.0012]

hence proving robust stability



Software for polynomial optimisation, moments and LMI

Matlab interfaces
• GloptiPoly (Henrion/Lasserre 2002)
• SOSTOOLS (Parrilo at al. 2002)
• YALMIP (Löfberg 2005)
• SparsePOP (Kojima et al. 2005)

Semidefinite programming solvers
• SeDuMi (Sturm 1999 and Terlaky 2005)
• SDPT3 (Toh et al. 1999)
• CSDP (Borchers 1999)
• SDPA (Kojima et al. 1996)
• PENSDP (Kočvara and Stingl 2004)
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Occupation measures

Dynamical system described by ODE

ẋ = f(x), x(0) = x0

with Lipschitz vector field f and (unique) solution, or flow φt
starting from initial condition x0

Occupation measure of trajectory from t = 0 to t = T

µ(X) =
∫ T

0
IX(φt)dt

where X is a subset of Rn

It is the time spent in X by the solution of the ODE



Moments of occupation measure

By definition, in any subset X ⊂ Rn,

the α-th moment of occupation measure µ is given by

yα =
∫
X x

αdµ(x)
=

∫
X

∫ T
0 xαδx(φt)dtdx

=
∫ T
0

∫
X x

αδx(φt)dxdt
=

∫ T
0 φαt dt

So if sequence y is given we can find system trajectories

by solving the corresponding problem of moments

Given dynamics f(x), how can we find sequence y ?



Test functions

Consider a continuously differentiable test function v(x)
whose time-derivative along system trajectories is given by

v̇ = ∇v · ẋ = ∇v · f

Since flow φt is absolutely continuous,
from the fundamental theorem of calculus∫ T

0 dv =
∫ T
0 ∇v · fdt

=
∫
X ∇v · fdµ

= v(xT )− v(x0)

it follows that occupation measure µ
satisfies (infinitely many) linear equations∫

X
∇v · fdµ = v(xT )− v(x0) ∀v



Variational formulation

Now assume x0 and xT are not known exactly, they are modeled

by probability measures µ0 and µT with supports X0 and XT ,

respectively

Our three measures satisfy the following constraints∫
X
∇v · fdµ =

∫
XT

vdµT −
∫
X0

vdµ0, ∀v

(compare with previous slide where µ0 = δx0, µT = δxT )

This is an infinite-dimensional linear problem in measure space

Compare with weak or variational formulations of PDE problems



Duality between measures and functions

More formally, let X be a compact topological space

Let M(X) be the Banach space of finite measures

Let C(X) be the Banach space of bounded continuous functions

Then M(X) can be identified with the dual C(X)∗, in the sense

that C(X),M(X) form a dual pair with duality bracket

< v, µ >=
∫
X
vdµ

Let L : C(X)→ C(Y ) be a linear mapping

Let L∗ : M(Y )→M(X) be its adjoint

< L(v), µ >=< v,L∗(µ) >



Duality along dynamics

Let v(x) ∈ C1(X) be continuously differentiable

Define linear mapping F : C1(X)→ C1(X) such that

∂v

∂t
=
∂v

∂x

dx

dt
= ∇v · f = −F (v)

Once again, integration along system trajectories yields

linear relation linking measures µ, µ0 and µT

−
∫
X ∇v · fdµ =

∫
X0

vdµ0 −
∫
XT

vdµT∫
X F (v)dµ =

∫
X0

vdµ0 −
∫
XT

vdµT
< F (v), µ > = < v, dµ0 > − < v, dµT >
< v, F ∗(µ) > = < v, dµ0 > − < v, dµT >

F ∗(µ) = µ0 − µT
∇ · (fµ) = µ0 − µT



Linear measure problem

Nonlinear Cauchy problem

ẋ = f(x), x(0) ∈ X0, x(T ) ∈ XT

replaced by linear problem

∇ · (fµ) = µ0 − µT

where differentiation should be understood

in the sense of distributions (Schwartz 1950)



Fluid dynamics and linear transport equation

Now suppose that f(x) describes the velocity field

of a compressible fluid with density ρ(t, x)

Time evolution of fluid density described by continuity equation

from fluid dynamics, i.e. principle of mass conservation

∂ρ

∂t
+∇ · (fρ) = 0, ρ(0, x) = ρ0(x)

Transportation of density of flow along trajectories

Liouville’s theorem and advection PDE

See e.g. Cédric Villani’s 2003 book on optimal transport



Linear transport equation

Flow density ρ(t, dx) is a measure with boundary conditions

ρ(0, dx) = µ0(dx), ρ(T, dx) = µT (dx)

and time integration

µT − µ0 =
∫ T

0
dρ(t)

=
∫ T

0

∂ρ

∂t
dt

= −
∫ T

0
∇ · (fρ)dt

= −∇ · (f
∫ T

0
ρdt)

= −∇ · (fµ)

allows to recover our LP measure problem
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Invariant measures

Define the Frobenius-Perron operator P , also called

the push-forward of measure µ along flow φt, as

Pµ(X) = µ(φ−1
t (X))

Measure µ is called invariant if

Pµ(X) = µ(X)

for all subsets X, i.e. if it is a fixed point of P

Invariant measures satisfy

∇ · (fµ) = 0

and they characterize stable, unstable or periodic trajectories



Equilibrium points

Let x∗ satisfy f(x∗) = 0. Then µ = δx∗ is such that∫
∇ · (fµ)v = −

∫
∇v · fδx∗ = −∇v(x∗) · f(x∗) = 0

so it is invariant

Periodic solutions

Let T > 0 satisfy φt+T (x) = φt(x) for all t and x

Then µ(X) = 1
T

∫ T
0 IX(φt)dt is such that∫
∇ · (fµ)v =

1

T
(v(x)− v(φT (x))) = 0

so it is invariant



Stability

Assuming f(0) = 0, Rantzer (2000) observes that the existence

of a density ρ such that

∇ · (fρ) > 0

implies that x(t)→ 0 when t→∞ for almost all x(0)

Dual to existence of a Lyapunov function v(x) such that

v > 0, ∇v · f < 0
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Optimal control and value function

Consider the optimal control problem (OCP)

with fixed initial condition and fixed terminal time

v(x0) = minu∈U g(x(T )) +
∫ T

0
h(x, u)dt

s.t. ẋ = f(x, u), x(0) = x0

Cost x 7→ v(x) is called the value function

Using calculus of variations, it can be shown that

the value function satisfies a nonlinear first order PDE..



HJB PDE

Defining the Hamiltonian

H(x, p) = min
u∈U
{h(x, u) + p · f(x, u)}

the value function solves the Hamilton-Jacobi-Bellman PDE

H(x,∇v) = 0, v(x(T )) = g(x(T ))

Under standard assumptions, the HJB PDE has a unique

viscosity solution v∗ = limε→0 vε with

H(x,∇vε) = ε∆vε, vε(x(T )) = g(x(T ))

cf. P.-L. Lions (1983)



Feedback control from solution of HJB PDE

At time t for a given state x(t) we let

u∗(x(t)) = arg min
u
{h(x, u) +∇v∗ · f(x, u)}

so that the Hamiltonian is minimized, i.e.

h(x, u∗) +∇v∗ · f(x, u∗) = H(x,∇v∗)

This is an optimal feedback control policy



Polynomial optimal control

Consider now the OCP

minu g(x(T )) +
∫ T

0
h(x, u)dt

s.t. ẋ = f(x, u)
x(0) ∈ X0, x(T ) ∈ XT
x ∈ X, u ∈ U

with f, g, h polynomials and X0, XT , X, U compact basic

semialgebraic sets (intersections of polynomial sublevel sets)



Weak formulation = LP on measures

Suppose µ0 is given, the OCP can be written as a linear
but infinite-dimensional problem on measures µ and µT

minµ,µT

∫
XT

gdµT +
∫
X
hdµ

s.t.
∫
X
∇v · f(x, u)dµ =

∫
XT

vdµT −
∫
X0

vdµ0, ∀v ∈ C

Without test functions it can be written

minµ,µT < g, µT > + < h, µ >
s.t. µT +∇ · (fµ) = µ0

or more abstractly

minν < c, ν >
s.t. < A, ν >= b, ν ∈M+(X)×M+(XT )

as a primal LP on the Banach space of nonnegative measures



Dual LP

Using duality on compact Banach spaces, we obtain

maxv < b, v >
s.t. c − < A∗, v > ∈ C+(X)× C+(XT )

a dual LP on the space of nonnegative continuous functions

that can be written explicitly as

maxv < µ0, v >=
∫
X0

vdµ0

s.t. < µ, h+∇v · f >=
∫
X

(h+∇v · f)dµ ≥ 0

< µT , g − v >=
∫
XT

(g − v)dµT ≥ 0



Conic complementarity

By conic complementarity, along optimal trajectories (x∗, u∗) and
for optimal dual function v∗ it holds

< h+∇v∗ · f, µ∗ >=< g − v∗, µ∗T >= 0

or equivalently

H(x∗,∇v∗) = h(x∗, u∗) +∇v∗ · f(x∗, u∗) = 0
v∗(x∗(T )) = g(x∗(T ))

which means that v∗ solves the HJB PDE

Solving primal problem on measures = solving OCP

Solving dual problem on functions = solving HJB PDE

How do we proceed numerically ?



Generalized problem of moments

We face linear problems involving several measures µi
respectively supported on semialgebraic sets Xi

All the data are polynomials, so we can replace measures by their
moments (e.g.

∫
Xi
hi(x)dµi =

∫
Xi

∑
α hiαx

αdµi =
∑
α hiα

∫
Xi
xαdµi)

minµ
∑
i
∫
Xi
hidµi

s.t.
∑
i
∫
Xi
aijdµi = bj

measures µi

miny
∑
i
∑
α hiαyiα

s.t.
∑
i
∑
α aijαyiα = bj

moments yi

provided we can handle the representation condition

yiα =
∫
Xi
xαdµi(x)



Moment LP as LMI

Using Putinar’s representation conditions we obtain

miny cTy
s.t. Ay = b

yα =
∫
X x

αdµ
X = {x : pk(x) ≥ 0, ∀k}

infinite-dimensional

LP problem

miny cTy
s.t. Ay = b

Md(y) � 0
Md(pky) � 0, ∀k

finite-dim. LMI

relaxation of order d

our familiar hierarchy of LMI relaxations

Compare with static polynomial optimisation: dynamics
are now taken into account by introducing several measures
whose moments are linearly constrained



Dual function LP as LMI

Dual to LMI moment problem yields polynomial supersolution of

HJB PDE with polynomial sign conditions enforced

by polynomial SOS conditions

Good approximation of value function along optimal trajectories

For example, if f(x, u) = f1(x) +f2(u) and h(x, u) = h1(x) +uTu

use first-order optimality condition

∂u(h(x, u) +∇v∗ · f(x, u)) = 2u+∇v∗ · f2 = 0

to derive state-feedback control law

u∗(x) = −
1

2
∇v∗(x) · f2(x)
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Example of linear ODE analysis

Consider the scalar linear ODE

ẋ = −x

with initial measure µ0 in X0 = {x : p0(x) = 1
4 − (x− 3

2)2 ≥ 0}
with terminal measure µT in XT = {x : pT (x) = 1

4 − x
2 ≥ 0}

with occupation measure µ in X = {x : p(x) = 4− x2 ≥ 0}

We want to find trajectories minimising the energy
∫ T
0 x2dt

Linear measure problem

min
∫ T
0 x2dµ(x)

s.t.
∫
X ∇v(x)(−x)dµ(x) =

∫
XT

vdµT −
∫
X0

vdµ0, ∀v



Example of linear ODE analysis

Setting v = xα we introduce sequences y0, yT , y representing

measures µ0, µT , µ, and we obtain the linear moment problem

min y2
s.t. −αyα = yTα − y0α, ∀α

and the corresponding LMI relaxation of order d

min y2
s.t. −αyα = yTα − y0α, ∀α, |α| ≤ 2d

Md(y0) � 0, Md(yT ) � 0, Md(y) � 0
Md(p0y0) � 0, Md(pTyT ) � 0, Md(py) � 0

Solving LMI relaxations of increasing orders d yields a sequence

of monotonically increasing lower bounds on the optimum



Example of linear ODE analysis

This problem can be solved analytically, with optimal trajectory

x(t) = e−t leaving X0 at x(0) = 1 and reaching XT at x(T ) = 1
2

for T = log 2 ≈ 0.6931

Moment matrix M(y) has entries yα =
∫ log 2
0 e−αtdt = 1−2−α

α

We get with SeDuMi 1.1R3 the following sequence of valid

significant digits on T : 0, 2, 4, 7, 10, 13 (fast convergence)

Convergence at a finite relaxation order is impossible since the

optimum is transcendental, whereas the solution of an integer

coefficient LMI is algebraic



Linear ODE analysis

More generally, for the first-order linear Cauchy problem

ẋ = Ax, x(0) = x0, x(∞) = 0

the moment LMI problem reads

AQ+ (AQ)T = Q0 � 0, Q � 0

with Q0, Q nonzero covariance matrices of µ0 (initial measure)

and µ (occupation measure) respectively

Infeasible if and only if dual Lyapunov LMI problem

ATP + PA ≺ 0, P � 0

is feasible



Example of LQR design

Consider the linear quadratic regulator design problem

minu,T
∫ T
0 (x2 + u2)dt

s.t. ẋ = u
x(0) = x0, x(T ) = xT

with given initial and terminal conditions

Measure µ0 is the Dirac δx0 and measure µT is the Dirac δxT
so that only measure µ must be found

Linear measure problem

minµ
∫ T
0 (x2 + u2)dµ(x, u)

s.t.
∫
R2∇v(x)udµ(x, u) = v(xT )− v(x0), ∀v



Example of LQR design

Moment LMI problem

min y20 + y02
s.t. y01 = 2y11 = 3y21 = · · · = −1

Md(y) � 0

The moment matrix has the following quasi-Hankel structure

Md(y) =


y00 y10 y01
y10 y20 y11
y01 y11 y02

. . .


with

yα =
∫
xα1uα2dµ(x, u)



Example of LQR design

Solving with SeDuMi 1.1R3 the LMI relaxation of order d = 1

yields

M1(y) =

 3.66 1.00 −1.00
1.00 0.50 −0.50
−1.00 −0.50 0.50

 X =

 0.00 0.00 0.00
0.00 1.00 1.00
0.00 1.00 1.00


where X is the multiplier matrix such that traceM1(y)X = 0

From entries M1(y) we can read the optimal trajectory, with

T ≈ 3.66 (exact value =∞, but objective function almost equal),∫
x = 1,

∫
u = −1,

∫
x2 = 1

2 etc



Example of LQR design

From multipliers corresponding to equality constraints

we retrieve v∗(x) = x2 as a polynomial subsolution to the HJB

PDE, which is here a standard algebraic Riccati equation

From X we notice that the sum of the second (indexed by x)

and third (indexed by u) row/column in M(y) vanishes, so that

the optimal control policy u∗(x) satisfies the equation

x+ u∗(x) = 0

We can also use the optimality condition

u∗(x) = −
1

2
∇v∗(x) = −x



LQR design

More generally, consider the LQR design problem

minu
∫∞
0 (xTRx+ uTu)dt

s.t. ẋ = Ax+Bu, x(0) = x0

Moment LMI problem restricted to covariance matrices

minQ traceRQ11 + traceQ22
s.t. AQ11 +BQ21 + (AQ11 +BQ21)T +Q0 = 0

Q =

[
Q11 QT21
Q21 Q22

]
� 0

Optimal static state-feedback u = Kx with

K = Q21Q
−1
11

Convex design LMI, cf. Bernussou, Geromel, Peres (1988)



LQR design

Dual LMI problem

max xT0Px0

s.t.

[
ATP + PA+R PB

BTP −I

]
� 0, P � 0

Complementarity conditions[
Q11 QT21
Q21 Q22

] [
ATP + PA+R PB

BTP −I

]
=

[
I
K

] [
I KT

] [
ATP + PA+R PB

BTP −I

]
= 0

Null-space of covariance matrix of occupation measure

provides optimal state-feedback



Nonlinear stabilization

Consider nonlinear polynomial system

ẋ = f(x) + g(x)u

Apply Rantzer’s density condition

∇ · ((f + gu)ρ) > 0

and choose

ρ(x) =
p1(x)

p0(x)
, u(x)ρ(x) =

p2(x)

p0(x)

with p0(x) given positive polynomial ensuring integrability
and p1(x), p2(x) polynomials to be found

Positivity relaxed to SOS

Convex design LMI, rational stabilizing feedback u(x) = p2(x)
p1(x)



Software

GloptiPoly 3 (DH, JB. Lasserre, J. Löfberg) for Matlab

models generalised problems of moments as LMI problems

POCP (C. Savorgnan) models polynomial optimal control

problems as generalised problems of moments

homepages.laas.fr/henrion/software

Can explicitly address state constraints,

impulsive controls, discontinuous trajectories..



Example

POCP translates polynomial optimal control problem
into generalised problem of moments in GloptiPoly 3 format

LMI relaxations then solved with SDP solver (e.g. SeDuMi)

minu,T
∫ T
0 x2

1 + x2
2 + u2

100
s.t. ẋ1 = x2 − x3

1 + x2
1, ẋ2 = u

x(0) ∈ [−1,1]2, x(T ) = 0

mpol x 2; mpol u

% problem definition

P = pocp(’state’, x, ’input’, u, ...

’dynamics’, [x(2)+x(1)^2-x(1)^3; u], ...

’horizon’, 0, ’iuniform’, x, [-1 1; -1 1], ...

’fdirac’, x, [0;0], ’scost’, x’*x+u^2/100);



% problem solved with test function V of degree 8

[status, J, mu, v] = solvepocp(prob, ’tf’, 8);

% gradient control law

ux = -50 * diff(v, x)*[0; 1];
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Piecewise affine optimal control

Optimal control problem

minu,T

∫ T

0
h(x, u)dt+ hT (x(T ))

s.t. ẋ = Aix+ ai +Biu when x ∈ Xi
x(0) = x0, x(T ) = xT

where state-space is partitioned

X = ∪iXi
into compact basic semialgebraic sets Xi (e.g. polytopes)

Multiple open-loop equilibrium points since ai 6= 0

We want a good approximation of the optimal control law u∗(x)



Several measures

Introduce local occupation measures µi supported in each cell Xi

Global occupation measure µ =
∑
i µi

Linear optimal cost ∫
X
hdµ+

∫
XT

hTdµT

and linear constraints on measures∫
X
∇v ·

∑
i

(Aix+ ai +Biu)dµi =
∫
XT

vdµT −
∫
X0

vdµ0, ∀v

and hence linear constraints on repective moment sequences yi



Example

Consider the nonlinear system

ẋ =
1

2
(1− x2) + u

with two equilibrium points, approximated globally
by a piecewise affine system

ẋ = −x+ 1 + u if x ≥ 0
= x+ 1 + u if x ≤ 0

and we would like to solve the optimal control problem

min
u,T

∫ T

0
(2(1− x)2 + u2)dt

with boundary conditions

x(0) = −1, x(T ) = +1



Optimal control

From necessary optimality conditions on the piecewise affine

Hamiltonian we obtain the analytic solution

u∗(x) = (1−
√

3)(x− 1) if x ≥ 0

= −x− 1 +
√

2(x− 1)2 + (x+ 1)2 if x ≤ 0

showing in passing that an optimal controller for a PWA system

is not necessarily PWA

Using LMI relaxations of orders 1,2,3, . . . ,10

we obtain the following approximations to u∗(x)
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Concluding remarks

Hierarchy of LMI relaxations for
• static polynomial optimisation
• (polynomial approximation of) optimal control of
• dynamical systems (with polynomial dynamics)

Occupation measures can handle piecewise affine models,
but also much more (piecewise polynomial models,
impulsive controls, hybrid dynamics)

Dynamical systems theory: Liouville’s theorem, advection PDEs

Discrete-time piecewise affine systems: chaotic dynamics (e.g.
tent map), invariant measures, ergodic theory, Frobenius-Perron
and Koopmans operators


