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Outline of the talk

Model based control 
• Honeywell Prague laboratory activities
• Role of APC/MPC in control system hierarchy

Development of MPC and RTO technology
• Inspired by applications
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• Inspired by applications
• Concepts, not technicalities

Embedded applications
• Diesel engine control
• Vapor-liquid cycle control and optimization

Final remarks
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Honeywell Prague Lab History
HPL Founded in 1995
• Process Control & Optimization group 

– APC/ RTO methods and applications
– First-principles model based

• Data centric group 
– Empirical models, analytics
– “Big Data”

PCO group activities in APC/RTO area
• Applications in refining/chemical industry
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• Applications in refining/chemical industry
– 1000+ running MPC applications / Profit Suite
– Typical sampling period order of minutes
– 50-100 MVs/DVs/CVs 

• Advanced Energy Solution – from 2000
– Sampling periods order of seconds
– 10+ MVs/DVs/CVs
– Integration with RTO (ELA, TLC …)

• Embedded applications – from 2010
– Sampling periods order of 10 ms, similar size
– Automotive (Diesel engine air path, after 

treatment, heat management)
– Heat pumps, Li-ion battery / power train
– Lightweight cyber security

Capabilities
• Domain knowledge (automotive, energy 

efficiency, combustion, thermodynamics)
• Advanced Multivariable Control and Real-Time 

Optimization methods and solutions
• Estimation and filtering, virtual sensing
• Embedded algorithm and engineering design 

tools
• Production code maintenance
• Compliance to automotive standards 
• Customer support
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Model based control

• Model-based Predictive Control (MPC)
– First advanced control concept widely 

accepted by industry
– Multivariable controller

• Interactions between MVs and DVs 
• Future reference and disturbance “preview”

(predictive vs. reactive control action)

– Reflects multi objective process control nature
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– Reflects multi objective process control nature
(controller design vs. control strategy design)

• Set point tracking
• Ratio control
• Constraints handling 
• Optimization

– Developed by industry, interest from 
academia came later 

• From simple I/O models to state-space
• More efficient algorithms (fast QP, IP)
• Stability analysis
• Explicit MPC concept
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APC/MPC in process control hierarchy

• Advanced process control
– Coordination of individual SISO loops

(set points to basic control)
– Ad-hoc feedback, feedforward, override 

and cascade strategies
– Difficult to develop / tune / maintain
– Today mostly implemented by MPC
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– Today mostly implemented by MPC
(systematic design methods and 
engineering support tools)

• Real Time Optimization
– Performance / operation economy based 

models
– Provides targets to MPC
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Outline of the talk

Model based control 

Development of MPC and RTO technology

Embedded applications
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Final remarks



Honeywell.com����

Extensions of MPC technology
• MPC problem formulation

• Range control
• Ratio control

• Model building
• Model management
• Closed-loop ID / Active control strategy
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• Closed-loop ID / Active control strategy
• Stochastic part of the model

• State estimation
• State-dependent I/O models
• Unknown input observer
• Disturbance prediction
• Estimation under uncertainty
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Range Control Concept

• Output prediction 

• Set point            

• Set range

Benefits
• Robustness

– Minimum effort control  (calm control)

• Impact of model uncertainty
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• Impact of model uncertainty

– Minimized output uncertainty excitation (“in average”)

• Additional degrees of freedom for optimization

– MPC criterion not affected by output changes within the 
funnel
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Ratio control
• Ratio control problem formulation

– Input/rate hard constraints

– Predefined ratio of given CVs (hard constraints on ratio)
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– Translated into criterion (soft constraints on ratio) 

– Required by many applications, still linear MPC problem

– V. Havlena and J. Findejs, Application of model predictive 
control to advanced combustion control. IFAC CEP, 2005
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• Reduced excess air (O2 in flue gas)
• Reduced A/F variation 

• Ratio control
• Air/fuel “burner nozzle flow” coordination 

• Calm control – improved coordination performance

A/F ratio 

variation of 
A/F ratio  

variation of CO 
concentration 

100

200

300

1.0 1.5 

Feasible air-fuel ratio

Efficiency

CONOx

NOx limit
Optimal

Efficiency

CO limit



Honeywell.com����

Model building & management
Engineering tools for MPC application
• Chemical / refining
• Black box ID

– Step testing + FIR/TF matrix estimation

• Seed models + closed loop ID
– Long open-loop step testing not feasible

First-principle based tools introduced
• Power gen, industrial energy
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• Grey-box ID
– Structure from first principles – robustness
– Calibration by experimental & historical data
– Trnka and Havlena: Subspace like identification incorporating 

prior information. Automatica, 2009. 

Still not scalable 
• Different dynamic response of the process for different unit 

commitment (e.g. parallel units)
• Switching between fixed models obtained by step testing

– Explosive number of combinations …
– All configurations not available for testing
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Component-based system model
• Combine component models of active components 

– Order reduced with respect to closed-loop performance

• Structure-preserving order reduction (LMI)
– Automatic just-in time update of MPC model
– Trnka et al., Structured Model Order Reduction of 

Parallel Models in Feedback, IEEE CST, 2013

Model building & management
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Plant Topology Reference Model
• Engineering tool

– Configure topology
– Set up “unit on” logic
– Stream properties (RT pricing)

• Run-time engine
– Real time responsiveness to process changes
– OPC UA support  (time triggered data → events)

• Consistency of individual layers
– Dynamic/steady state models
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Other model enhancements
Active model update
• Sustained benefits from APC/RTO

– Loss of performance / model mismatch

• Model update in closed loop (MPC running)

– Perturbation δu of baseline MPC solution u*
(multiple step solution)
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(multiple step solution)
– Information matrix maximization

– GACR project “Feasible approximation of dual control
strategies”

– Rathousky et al., MPC-based approximate dual controller
by information matrix maximization. IJACSP 2013.

Minimum eigenvalue of information matrix P-1(t+5) 
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Other model enhancements
Stochastic part of the process model

• Simplest case: H defined by noise covariance
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• Q/R knowledge critical for Kalman filter tuning
– KF performance monitoring

(sequential prediction error testing – white noise)
– Detection of performance degradation
– Bayesian update of Q/R matrices and Cramer-Rao

bound for Q/R estimates developed
– Matisko et. al, Noise covariance estimation for Kalman

filter tuning using Bayesian approach and Monte Carlo.
IJACSP, 2013

Comparison of C-R bound for Q matrix estimation
Odelson et al., A new autocovariance least–squares me thod 

for estimating noise covariances. Automatica, 2005

1 1 1( ) ( ) ( ) ( )T T T
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Non-measurable disturbances

DV models used
• KF as unknown input observer
• Typical model – random walk

– Predicted future value = current value 
(constant)

– Offset-free tracking achieved by  integral 
action in the controller

– Overcompensation

time

time

DV.pred

DV.pred
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(e.g. pulse disturbances from PRVs)

• More realistic model - separate 
current and steady state value

– Full predicted trajectory used
– Significant improvement of control 

performance in large multi header 
systems (SASOL 9 x 550 t/h boilers)

– Another DoF for controller tuning
– Calm control 

LQ / MPC 
weights  tuning

DV model 
tuning
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Kalman filter for models with uncertain parameters
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Inferred values depend strongly on model quality
• Mismatch in model dynamics results in fake 

“artifacts” during the transients
Kalman filter for uncertain systems

• Equivalent noise concept
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Outline of the talk

Honeywell Prague laboratory

Model based control 

Development of MPC and RTO technology

Embedded applications
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Embedded applications
• Diesel engine air-path control

Final remarks
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Automotive Control Design

Trends driving applications of advanced control
• Engine / aftertreatment complexity
• Tighter environmental requirements
• Demand outpacing supply

Benefits of MPC
• Multivariable interactions taken into account
• Reduced calibration requirements
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Europe U.S.

• Reduced calibration requirements
• Actuator and engine state constraints
• Robustness to model uncertainty

Advanced Control Remains Elusive
• Difficult to implement the run-time component in ECU
• Designing & calibrating advanced control still complex
• OnRamp Design Suite

– Solve both of these problems
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Software Tool for Automatic Generation of Models and Optimal Control Algorithms

OnRAMP design suite

RP System or ECU

H-ACT design toolControl Design

Model Structure

Process Control  2015, Štrbské pleso18

Optimal Multivariable 
Controller 

Measured Data

Systematic procedure for advanced control design
Complexity hidden from end user, math remains behind the scene

Need for robust ID and optimization algorithms 



Honeywell.com����

Model structure
• Simulink component library
• Engine topology translates to Simulink diagram directly
• Flow lines transmit all variables (p, T,…)

Component + experimental data
• Component model fit 
• Global level fit 

• Slack variables for interconnections and  internal component 
constraints (regularization)

• Appx. 450 equilibrium points

Engine Air Path Model
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• Appx. 450 equilibrium points
• Robust method for automated solution
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Control design and deployment 

Control tuning
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Control tuning
• 2 degrees of freedom, translated to frequency domain

• Performance (bandwidth)
• Robustness (non-parametric uncertainty models)

• Uniform performance setting across multiple operating points
• Grid of speed-fuel points

Deployment
• Unified C-code (MISRA compliant)
• Set of models for MPC
• Set of Kalman filters running in parallel
Other benefits
• Flexible change of control strategy (selection of CVs / MVs/ DVs)
• Use of measured vs. inferred variables
• Evaluation on standard drive cycles
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Impact on Production Control Development

Process Control  2015, Štrbské pleso21

Baseline:

OnRAMP:

~2 months
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Development 
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Model-based On Board Diagnostic still unresolved problem
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Outline of the talk

Honeywell Prague laboratory

Model based control 

Development of MPC and RTO technology

Embedded applications
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Embedded applications
• Thermodynamic vapor-liquid cycle optimization

Final remarks
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Heat pump trends & control objective

Trends
• Modulating components

(compressors, electronic valves, fans, pumps)
• Complex cycle design

(vapor injection, internal heat exchangers, multi-stage)
• Available HP control solutions do not follow hardware 

development to fully use its potential

Objectives
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Objectives
• Multi-variable controller achieving maximum year-

round performance (seasonal COP)
• Virtual sensor for estimation of evaporator fouling by 

frost formation
• Optimized defrosting control strategy
• Engineering design suite for rapid controller design
• Applications with pilot customers

Project funded by TA CR (Alfa program)
• Collaboration with CTU and test bed in HTS Brno
• HP with extended instrumentation



Honeywell.com����

Coordinated Dynamic Control by MPC
● Systems based on thermodynamic vapor cycles have critical constraints:

● Compressors and turbines must be supplied with superheated vapor (minimum stable superheat)
● Pumps must be supplied with sub-cooled liquid
● Safety margins go against efficiency

● Cycle components have strong dynamic interactions
● Independent (component by component) control loops have poor performance

● Multivariable predictive control
● Tight control respecting component interactions and constraints (safety margins minimization)
● Quick optimum recovery after disturbances
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Modulating 

Water Pump

Modulating Compressor with Enhanced Vapor Injection (EVI)
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Embedded Set Point Optimization
● Systems based on thermodynamic vapor cycles that have sufficient number of actuators have a

potential for optimization – requirements can be achieved by different combinations of actuators

Heat pump with 
3 Modulating 
Components

Heat pump with
4 Modulating 
Components
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Possible actuator combinations 
delivering required heat under 
given air/water temperatures 

have different overall 
efficiency (depicted by color)
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ALFA COP Improvement – A2/W35, 8.4kW, SH 15K, Twin 3 0°C

● COP improvement in the range from 5 to 15 % against industry standard for HP with 3
modulating components

● Experimental validation confirmed component-based approach

● Standard controller without RTO cannot be tuned for changing conditions
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Engineering tools for optimization/control design

Design for Heat pumps:● Engineering tools follow 
OnRAMP philosophy and 
workflow

● Application areas
● Heat pump / AC
● Waste heat recovery

(Rankine cycle)
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Design for Rankine cycle :
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Outline of the talk

Honeywell Prague laboratory

Model based control 

Development of MPC and RTO technology

Embedded applications
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Embedded applications

Final remarks
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Final remarks

20+ year experience with application and development of advanced 
control methods, under both academic and industrial research hat

Gap between theory and reality
• Successful applications of model-based control to nontrivial 

problems requires good understanding of underlying first principles
– Weak point of current curricula
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– Weak point of current curricula

• Going the whole way to customer pilot projects inspires further 
development of rigorous theory

– Matlab-based prototype covers 20-30% effort

• Industry is short/mid term focused
• Longer term problems for PhD students / governmental funding

– No formal process, personal contacts


