Pracovné zaradenie:
Doktorand
Oddelenie:
Oddelenie informatizácie a riadenia procesov (OIaRP)
Miestnosť:
NB 647
eMail:
Webová stránka:
https://www.uiam.sk/~drgona/
Telefón:
+421 259 325 349
Vedecká činnosť:
Prediktívne riadenie, Riadenie tepelnej pohody v budovách, Riadenie procesov (destilačná kolóna)
Dostupnosť:

Citácie

  • Celkový počet citácií       712

J. Drgoňa – K. Kiš – A. Tuor – D. Vrabie – M. Klaučo: Differentiable predictive control: Deep learning alternative to explicit model predictive control for unknown nonlinear systems. Journal of Process Control, zv. 116, str. 80–92, 2022.
  • Počet citácií       3
  • Cai, Panpan – Hsu, David: Closing the Planning-Learning Loop With Application to Autonomous Driving. IEEE Transactions on Robotics, č. 2, zv. 39, str. 998-1011, 2023.
  • Walter, Daniel – Vasquez-Varas, Donato – Kunisch, Karl: Learning Optimal Feedback Operators and their Sparse Polynomial Approximations. Journal of Machine Learning Research, č. 301, zv. 24, 2023.
  • Schwung, Andreas – Yuwono, Steve: Model Predictive Control with Adaptive PLC-based Policy on Low Dimensional State Representation for Industrial Applications. V 2023 31st Mediterranean Conference on Control and Automation, Med, str. 883-889, 2023.
J. Drgoňa – J. A. Bastida – I. C. Figueroa – D. Blum – K. Arendt – D. Kim – E. P. Ollé – J. Oravec – M. Wetter – D. Vrabie – L. Helsen: All you need to know about model predictive control for buildings. Annual Reviews in Control, zv. 50, str. 190–232, 2020.
  • Počet citácií       460
  • Sorensen, Ase Lekang – Walnum, Harald Taxt – Sartori, Igor – Andresen, Inger: Energy flexibility potential of domestic hot water systems in apartment buildings. V Cold Climate Hvac & Energy 2021, 2021.
  • Ke, Ji – Qin, Yude – Wang, Biao – Yang, Shundong – Wu, Hao – Yang, Hang – Zhao, Xing: Data-Driven Predictive Control of Building Energy Consumption under the IoT Architecture. Wireless Communications & Mobile Computing, č. 8849541, zv. 2020, 2020.
  • Thilker, Christian Ankerstjerne – Bergsteinsson, Hjorleifur G. – Bacher, Peder – Madsen, Henrik – Cali, Davide – Junker, Rune G.: Non-linear Model Predictive Control for Smart Heating of Buildings. V Cold Climate Hvac & Energy 2021, 2021.
  • Manfren, Massimiliano – Sibilla, Maurizio – Tronchin, Lamberto: Energy Modelling and Analytics in the Built Environment-A Review of Their Role for Energy Transitions in the Construction Sector. Energies, č. 3, zv. 14, 2021.
  • Saberi Derakhtenjani, Ali – Athienitis, Andreas K.: Model Predictive Control Strategies to Activate the Energy Flexibility for Zones with Hydronic Radiant Systems. Energies, č. 4, zv. 14, 2021.
  • Coraci, Davide – Brandi, Silvio – Piscitelli, Marco Savino – Capozzoli, Alfonso: Online Implementation of a Soft Actor-Critic Agent to Enhance Indoor Temperature Control and Energy Efficiency in Buildings. Energies, č. 4, zv. 14, 2021.
  • Date, Jennifer – Candanedo, Jose A. – Athienitis, Andreas K.: A Methodology for the Enhancement of the Energy Flexibility and Contingency Response of a Building through Predictive Control of Passive and Active Storage. Energies, č. 5, zv. 14, 2021.
  • Pritoni, Marco – Paine, Drew – Fierro, Gabriel – Mosiman, Cory – Poplawski, Michael – Saha, Avijit – Bender, Joel – Granderson, Jessica: Metadata Schemas and Ontologies for Building Energy Applications: A Critical Review and Use Case Analysis. Energies, č. 7, zv. 14, 2021.
  • Scharnhorst, Paul – Schubnel, Baptiste – Fernandez Bandera, Carlos – Salom, Jaume – Taddeo, Paolo – Boegli, Max – Gorecki, Tomasz – Stauffer, Yves – Peppas, Antonis – Politi, Chrysa: Energym: A Building Model Library for Controller Benchmarking. Applied Sciences-basel, č. 8, zv. 11, 2021.
  • Zhan, Sicheng – Chong, Adrian: Data requirements and performance evaluation of model predictive control in buildings: A modeling perspective. Renewable & Sustainable Energy Reviews, č. 110835, zv. 142, 2021.
  • Sharifi, Mohammad Reza – Akbarifard, Saeid – Qaderi, Kourosh – Madadi, Mohamad Reza: Comparative analysis of some evolutionary-based models in optimization of dam reservoirs operation. Scientific Reports, č. 1, zv. 11, 2021.
  • Elmouatamid, Abdellatif – Ouladsine, Radouane – Bakhouya, Mohamed – El Kamoun, Najib – Zine-Dine, Khalid: A Predictive Control Strategy for Energy Management in Micro-Grid Systems. Electronics, č. 14, zv. 10, 2021.
  • Santos-Herrero, J. M. – Lopez-Guede, J. M. – Flores-Abascal, I: Modeling, simulation and control tools for nZEB: A state-of-the-art review. Renewable & Sustainable Energy Reviews, č. 110851, zv. 142, 2021.
  • Abdelrahman, Mahmoud M. – Zhan, Sicheng – Miller, Clayton – Chong, Adrian: Data science for building energy efficiency: A comprehensive text-mining driven review of scientific literature. Energy and Buildings, č. 110885, zv. 242, 2021.
  • Huang, Yan-Shu – Sheriff, M. Ziyan – Bachawala, Sunidhi – Gonzalez, Marcial – Nagy, Zoltan K. – Reklaitis, V, Gintaras: Evaluation of a Combined MHE-NMPC Approach to Handle Plant-Model Mismatch in a Rotary Tablet Press. Processes, č. 9, zv. 9, 2021.
  • Knudsen, Michael Dahl – Georges, Laurent – Skeie, Kristian Stenerud – Petersen, Steffen: Experimental test of a black-box economic model predictive control for residential space heating. Applied Energy, č. 117227, zv. 298, 2021.
  • Schreiber, Thomas – Netsch, Christoph – Eschweiler, Soeren – Wang, Tianyuan – Storek, Thomas – Baranski, Marc – Muller, Dirk: Application of data-driven methods for energy system modelling demonstrated on an adaptive cooling supply system. Energy, č. 120894, zv. 230, 2021.
  • Wang, Jiaqiang – Huang, Zhenlin – Yue, Chang – Zhang, Quan – Wang, Peng: Various uncertainties self-correction method for the supervisory control of a hybrid cooling system in data centers. Journal of Building Engineering, č. 102830, zv. 42, 2021.
  • Norouzi, Armin – Heidarifar, Hamed – Shahbakhti, Mahdi – Koch, Charles Robert – Borhan, Hoseinali: Model Predictive Control of Internal Combustion Engines: A Review and Future Directions. Energies, č. 19, zv. 14, 2021.
  • Manfren, Massimiliano – Nastasi, Benedetto – Tronchin, Lamberto – Groppi, Daniele – Garcia, Davide Astiaso: Techno-economic analysis and energy modelling as a key enablers for smart energy services and technologies in buildings. Renewable & Sustainable Energy Reviews, č. 111490, zv. 150, 2021.
  • Wang, Wenyi – Zhao, Zhongfan – Zhou, Qun – Qiao, Yiyuan – Cao, Feng: Model predictive control for the operation of a transcritical CO2 air source heat pump water heater. Applied Energy, č. 117339, zv. 300, 2021.
  • Favero, Matteo – Sartori, Igor – Carlucci, Salvatore: Human thermal comfort under dynamic conditions: An experimental study. Building and Environment, č. 108144, zv. 204, 2021.
  • Isaia, Francesco – Fiorentini, Massimo – Serra, Valentina – Capozzoli, Alfonso: Enhancing energy efficiency and comfort in buildings through model predictive control for dynamic facades with electrochromic glazing. Journal of Building Engineering, č. 102535, zv. 43, 2021.
  • Chen, Qiong – Li, Nan: Model predictive control for energy-efficient optimization of radiant ceiling cooling systems. Building and Environment, č. 108272, zv. 205, 2021.
  • Liu, H. R. – Hua, L. J. – Li, B. J. – Wang, C. X. – Wang, R. Z.: Thermal resistance-capacitance network model for fast simulation on the desiccant coated devices used for effective electronic cooling. International Journal of Refrigeration, zv. 131, str. 78-86, 2021.
  • Kull, Tobias – Zeilmann, Bernd – Fischerauer, Gerhard: Modular Model Composition for Rapid Implementations of Embedded Economic Model Predictive Control in Microgrids. Applied Sciences-basel, č. 22, zv. 11, 2021.
  • Mahmood, Farhat – Govindan, Rajesh – Bermak, Amine – Yang, David – Khadra, Carol – Al-Ansari, Tareq: Energy utilization assessment of a semi-closed greenhouse using data-driven model predictive control. Journal of Cleaner Production, č. 129172, zv. 324, 2021.
  • Touzani, Samir – Prakash, Anand Krishnan – Wang, Zhe – Agarwal, Shreya – Pritoni, Marco – Kiran, Mariam – Brown, Richard – Granderson, Jessica: Controlling distributed energy resources via deep reinforcement learning for load flexibility and energy efficiency. Applied Energy, č. 117733, zv. 304, 2021.
  • Steiner, Tim – Liu, Steven: Interconnected model with distributed thermal comfort for model based shading control. Energy and Buildings, č. 111530, zv. 253, 2021.
  • Wang, Wenyi – Zhou, Qun – Pan, Chao – Cao, Feng: Energy-efficient operation of a complete Chiller-air handing unit system via model predictive control. Applied Thermal Engineering, č. B, zv. 201, 2022.
  • Vering, C. – Maier, L. – Breuer, K. – Krützfeldt, H. – Streblow, R. – Müller, D.: Evaluating heat pump system design methods towards a sustainable heat supply in residential buildings. Applied Energy, č. 118204, zv. 308, 2022.
  • Yu, M.G. – Pavlak, G.S.: Extracting interpretable building control rules from multi-objective model predictive control data sets. Energy, č. 122691, zv. 240, 2022.
  • Gooroochurn, M. – Mallet, D. – Jahmeerbacus, I. – Shamachurn, H. – Sayed Hassen, S.Z.: A Framework for AI-Based Building Controls to Adapt Passive Measures for Optimum Thermal Comfort and Energy Efficiency in Tropical Climates. Lecture Notes in Networks and Systems, zv. 359 LNNS, str. 526-539, 2022.
  • Sawant, P. – Mier, O.V. – Schmidt, M. – Pfafferott, J.: Demonstration of optimal scheduling for a building heat pump system using economic-mpc. Energies, č. 23, zv. 14, 2021.
  • Cai, H. – Heer, P.: Experimental implementation of a context-aware prosumer. V Journal of Physics: Conference Series, 2021.
  • Stoffel, P. – Berktold, M. – Gall, A. – Kümpel, A. – Müller, D.: Comparative study of neural network based and white box model predictive control for a room temperature control application. V Journal of Physics: Conference Series, 2021.
  • Eser, S. – Stoffel, P. – Kümpel, A. – Müller, D.: Evaluation of linear and nonlinear system models in hierarchical model predictive control of HVAC systems. V Journal of Physics: Conference Series, 2021.
  • Sawant, P. – Braasch, C. – Koch, M. – Bürger, A. – Kallio, S.: An energy-economic analysis of real-world hybrid building energy systems. V Journal of Physics: Conference Series, 2021.
  • Oviedo-Cepeda, J.C. – Amara, F.Z. – Athienitis, A.K.: Model Predictive Control Horizon Impact over the Flexibility of a Net Zero Energy Building. V IECON Proceedings (Industrial Electronics Conference), 2021.
  • Gommers, S. – Lazar, M.: Smart decentralized MPC for temperature control in multi-zone buildings. V 2021 29th Mediterranean Conference on Control and Automation, MED 2021, str. 415-420, 2021.
  • Ceha, T.J. – De Araujo Passos, L.A. – Baldi, S. – De Schutter, B.: Model predictive control for optimal integration of a thermal chimney and solar shaded building. V 2021 29th Mediterranean Conference on Control and Automation, MED 2021, str. 21-26, 2021.
  • Chen, B. – Donti, P.L. – Baker, K. – Zico Kolter, J. – Bergés, M.: Enforcing Policy Feasibility Constraints through Differentiable Projection for Energy Optimization. V e-Energy 2021 - Proceedings of the 2021 12th ACM International Conference on Future Energy Systems, str. 199-210, 2021.
  • Thilker, C.A. – Madsen, H. – Jørgensen, J.B.: Advanced forecasting and disturbance modelling for model predictive control of smart energy systems. Applied Energy, č. 116889, zv. 292, 2021.
  • Yang, S. – Wan, M.P. – Chen, W. – Ng, B.F. – Dubey, S.: Experiment study of machine-learning-based approximate model predictive control for energy-efficient building control. Applied Energy, č. 116648, zv. 288, 2021.
  • Taveres-Cachat, E. – Favoino, F. – Loonen, R. – Goia, F.: Ten questions concerning co-simulation for performance prediction of advanced building envelopes. Building and Environment, č. 107570, zv. 191, 2021.
  • Manfren, M. – Sibilla, M. – Tronchin, L.: Energy modelling and analytics in the built environment—A review of their role for energy transitions in the construction sector. Energies, č. 3, zv. 14, 2021.
  • Shi, Y. – Zhang, K.: Advanced model predictive control framework for autonomous intelligent mechatronic systems: A tutorial overview and perspectives. Annual Reviews in Control, 2021.
  • Yeon, S.H. – Kang, W.H. – Lee, J.H. – Song, K.W. – Chae, Y.T. – Lee, K.H.: Upper and lower threshold limit of chilled and condenser water temperature set-points during ANN based optimized control. V Proceedings of the ASME 2021 15th International Conference on Energy Sustainability, ES 2021, 2021.
  • Karakoç, E. – Çağdaş, G.: A data-driven conceptual framework for climate adaptive building shell: A hybrid control strategy. Civil Engineering and Architecture, č. 2, zv. 9, str. 427-438, 2021.
  • Joe, Jaewan – Im, Piljae – Cui, Borui – Dong, Jin: Model-based predictive control of multi-zone commercial building with a lumped building modelling approach. Energy, č. A, zv. 263, 2023.
  • de Chalendar, Jacques A. – McMahon, Caitlin – Valenzuela, Lucas Fuentes – Glynn, Peter W. – Benson, Sally M.: Unlocking demand response in commercial buildings: Empirical response of commercial buildings to daily cooling set point adjustments. Energy and Buildings, č. 112599, zv. 278, 2023.
  • Ascione, Fabrizio – Masi, Rosa Francesca De – Festa, Valentino – Mauro, Gerardo Maria – Vanoli, Giuseppe Peter: Optimizing space cooling of a nearly zero energy building via model predictive control: Energy cost vs comfort. Energy and Buildings, č. 112664, zv. 278, 2023.
  • Xu, Qinghu – Ruan, Xiang – Zhen, Xuezhi – Dai, Yuntong – Kang, Xiaofang – Hu, Jun: Research on subsystem division scheme of overlapping decentralized control strategy. Systems Science & Control Engineering, č. 1, zv. 10, str. 910-921, 2022.
  • Vallianos, Charalampos – Athienitis, Andreas – Delcroix, Benoit: Automatic generation of multi-zone RC models using smart thermostat data from homes. Energy and Buildings, č. 112571, zv. 277, 2022.
  • Becerik-Gerber, Burgin – Lucas, Gale – Aryal, Ashrant – Awada, Mohamad – Berges, Mario – Billington, Sarah L. – Boric-Lubecke, Olga – Ghahramani, Ali – Heydarian, Arsalan – Jazizadeh, Farrokh – Liu, Ruying – Zhu, Runhe – Marks, Frederick – Roll, Shawn – Seyedrezaei, Mirmahdi – Taylor, John E. – Hoelscher, Christoph – Khan, Azam – Langevin, Jared – Mauriello, Matthew Louis – Murnane, Elizabeth – Noh, Haeyoung – Pritoni, Marco – Schaumann, Davide – Zhao, Jie: Ten questions concerning human-building interaction research for improving the quality of life. Building and Environment, č. 109681, zv. 226, 2022.
  • Yang, Shiyu – Gao, H. Oliver – You, Fengqi: Model predictive control for Demand- and Market-Responsive building energy management by leveraging active latent heat storage. Applied Energy, č. 120054, zv. 327, 2022.
  • Yang, Shiyu – Gao, Oliver – You, Fengqi: Model predictive control in phase-change-material-wallboard-enhanced building energy management considering electricity price dynamics. Applied Energy, č. 120023, zv. 326, 2022.
  • Gao, Yuan – Matsunami, Yuki – Miyata, Shohei – Akashi, Yasunori: Multi-agent reinforcement learning dealing with hybrid action spaces: A case study for off-grid oriented renewable building energy system. Applied Energy, č. 120021, zv. 326, 2022.
  • Sanchez, Jerson – Jiang, Zhimin – Cai, Jie: Modelling and mitigating lifetime impact of building demand responsive control of heating, ventilation and air-conditioning systems. Journal of Building Performance Simulation, č. 6, zv. 15, str. 771-787, 2022.
  • Salas, Joaquin – Patterson, Genevieve – Vidal, Flavin de Barros: A Systematic Mapping of Artificial Intelligence Solutions for Sustainability Challenges in Latin America and the Caribbean. IEEE Latin America Transactions, č. 11, zv. 20, str. 2312-2329, 2022.
  • Song, Yulong – Cui, Ce – Yin, Xiang – Cao, Feng: Advanced development and application of transcritical CO2 refrigeration and heat pump technology-A review. Energy Reports, zv. 8, str. 7840-7869, 2022.
  • Metzmacher, Henning – Syndicus, Marc – Warthmann, Alexander – Frisch, Jerome – van Treeck, Christoph: Modular personalized climatization testing infrastructure with smartphone-based user feedback. Building Services Engineering Research & Technology, č. 1, zv. 44, str. 91-105, 2023.
  • He, Ning – Xu, Zhongxian – Shen, Chao: An error gradient and accumulation-type event-driven model predictive control with relative thresholds for perturbed nonlinear systems. Iet Control Theory and Applications, č. 18, zv. 16, str. 1873-1883, 2022.
  • Wuellhorst, Fabian – Vering, Christian – Maier, Laura – Mueller, Dirk: Integration of Back-Up Heaters in Retrofit Heat Pump Systems: Which to Choose, Where to Place, and How to Control?. Energies, č. 19, zv. 15, 2022.
  • Jia, Lizhi – Liu, Junjie – Chong, Adrian – Dai, Xilei: Deep learning and physics-based modeling for the optimization of ice-based thermal energy systems in cooling plants. Applied Energy, č. 119443, zv. 322, 2022.
  • He, Ruikai – Xiao, Tong – Qiu, Shunian – Gu, Jiefan – Wei, Minchen – Xu, Peng: A rule-based data preprocessing framework for chiller rooms inspired by the analysis of engineering big data. Energy and Buildings, č. 112372, zv. 273, 2022.
  • Tian, Guanyu – Sun, Qun Zhou – Wang, Wenyi: Real-Time Flexibility Quantification of a Building HVAC System for Peak Demand Reduction. IEEE Transactions on Power Systems, č. 5, zv. 37, str. 3862-3874, 2022.
  • Rivera, Ana K. – Sanchez, Josue – Chen Austin, Miguel: Parameter identification approach to represent building thermal dynamics reducing tuning time of control system gains: A case study in a tropical climate. Frontiers in Built Environment, č. 949426, zv. 8, 2022.
  • Sharma, Himansh – Bhattacharya, Saptarshi – Kundu, Soumya – Adetola, Veronica A.: On the impacts of occupancy sensing on advanced model predictive controls in commercial buildings. Building and Environment, č. 109372, zv. 222, 2022.
  • Liu, Haoran – Yu, Jiaqi – Wang, Ruzhu: Model predictive control of portable electronic devices under skin temperature constraints. Energy, č. 125185, zv. 260, 2022.
  • Chen, Wei-Han – You, Fengqi: Sustainable building climate control with renewable energy sources using nonlinear model predictive control. Renewable & Sustainable Energy Reviews, č. 112830, zv. 168, 2022.
  • Li, Yanfei – Sun, Jian – Fricke, Brian – Im, Piljae – Kuruganti, Teja: Grey-box Fault Models and Applications for Low Carbon Emission CO2 Refrigeration System. International Journal of Refrigeration, zv. 141, str. 76-89, 2022.
  • Runge, Jason – Zmeureanu, Radu: Deep learning forecasting for electric demand applications of cooling systems in buildings. Advanced Engineering Informatics, č. 101674, zv. 53, 2022.
  • Berouine, Anass – Ouladsine, Radouane – Bakhouya, Mohamed – Essaaidi, Mohamed: A predictive control approach for thermal energy management in buildings. Energy Reports, zv. 8, str. 9127-9141, 2022.
  • Bilgic, Deborah – Koch, Alexander – Pan, Guanru – Faulwasser, Timm: Toward data-driven predictive control of multi-energy distribution systems. Electric Power Systems Research, č. 108311, zv. 212, 2022.
  • Maddalena, Emilio T. – Mueller, Silvio A. – dos Santos, Rafael M. – Salzmann, Christophe – Jones, Colin N.: Experimental data-driven model predictive control of a hospital HVAC system during regular use. Energy and Buildings, č. 112316, zv. 271, 2022.
  • Zhan, Sicheng – Lei, Yue – Jin, Yuan – Yan, Da – Chong, Adrian: Impact of occupant related data on identification and model predictive control for buildings. Applied Energy, č. 119580, zv. 323, 2022.
  • Ospina, Ana M. – Chen, Yue – Bernstein, Andrey – Dall\\\'Anese, Emiliano: Learning-based demand response in grid-interactive buildings via Gaussian Processes. Electric Power Systems Research, č. 108406, zv. 211, 2022.
  • Mugnini, A. – Ferracuti, F. – Lorenzetti, M. – Comodi, G. – Arteconi, A.: Advanced control techniques for CHP-DH systems: A critical comparison of Model Predictive Control and Reinforcement Learning. Energy Conversion and Management-x, č. 100264, zv. 15, 2022.
  • Candanedo, Jose A. – Vallianos, Charalampos – Delcroix, Benoit – Date, Jennifer – Saberi Derakhtenjani, Ali – Morovat, Navid – John, Camille – Athienitis, Andreas K.: Control-oriented archetypes: a pathway for the systematic application of advanced controls in buildings. Journal of Building Performance Simulation, č. 4, SI, zv. 15, str. 433-444, 2022.
  • Kondaiah, V. Y. – Saravanan, B.: Short-Term Load Forecasting with a Novel Wavelet-Based Ensemble Method. Energies, č. 14, zv. 15, 2022.
  • Lee, Joon-Yong – Rahman, Aowabin – Huang, Sen – Smith, Amanda D. – Katipamula, Srinivas: On-policy learning-based deep reinforcement learning assessment for building control efficiency and stability. Science and Technology for the Built Environment, č. 9, zv. 28, str. 1150-1165, 2022.
  • Atkins, Celeste – Hun, Diana – Im, Piljae – Post, Brian – Slattery, Bob – Iffa, Emishaw – Cui, Borui – Dong, Jin – Barnes, Abigail – Vaughan, Joshua – Roschli, Alex – Salonvaara, Mikael – Shrestha, Som – Jung, Sungkyun – Chesser, Phillip – Heineman, Jesse – Wang, Peter L. – Jackson, Amiee – Lapsa, Melissa Voss: Empower Wall: Active insulation system leveraging additive manufacturing and model predictive control. Energy Conversion and Management, č. 115823, zv. 266, 2022.
  • Phillip, Stoffel – Alexander, Kuempel – Dirk, Mueller: Cloud-Based Optimal Control of Individual Borehole Heat Exchangers in a Geothermal Field. Journal of Thermal Science, č. 5, zv. 31, str. 1253-1265, 2022.
  • Maria Santos-Herrero, Jose – Manuel Lopez-Guede, Jose – Flores Abascal, Ivan – Zulueta, Ekaitz: Energy and thermal modelling of an office building to develop an artificial neural networks model. Scientific Reports, č. 1, zv. 12, 2022.
  • Mahmoud, Rana – Sharifi, Mohsen – Himpe, Eline – Laverge, Jelle: Environmental and energy performance assessment of hybrid ground source heat pump coupled with TABS emission system in the EU non-residential building typologies. Science and Technology for the Built Environment, č. 10, zv. 28, str. 1312-1328, 2022.
  • Cui, Borui – Dong, Jin – Lee, Seungjae – Im, Piljae – Salonvaara, Mikael – Hun, Diana – Shrestha, Som: Model predictive control for active insulation in building envelopes q. Energy and Buildings, č. 112108, zv. 267, 2022.
  • Hou, Juan – Li, Haoran – Nord, Natasa: Nonlinear model predictive control for the space heating system of a university building in Norway. Energy, č. 124157, zv. 253, 2022.
  • Marzullo, Thibault – Dey, Sourav – Long, Nicholas – Leiva Vilaplana, Jose – Henze, Gregor: A high-fidelity building performance simulation test bed for the development and evaluation of advanced controls. Journal of Building Performance Simulation, č. 3, zv. 15, str. 379-397, 2022.
  • Hahn, Jakob – Heiler, Sarah – Kane, Michael B. – Park, Sumee – Jensch, Werner: The Information Gap in Occupant-Centric Building Operations: Lessons Learned from Interviews with Building Operators in Germany. Frontiers in Built Environment, č. 838859, zv. 8, 2022.
  • Chaudhary, Gaurav – Johra, Hicham – Georges, Laurent – Austbo, Bjorn: Synconn\\\\_build : A python based synthetic dataset generator for testing and validating control-oriented neural networks for building dynamics prediction. Methodsx, č. 102464, zv. 11, 2023.
  • Zhang, Junfeng – Liu, Lanbin – Liu, Yameng: A subspace based method for modelling building\\\'s thermal dynamic in district heating system and parameter extrapolation verification. Building Simulation, č. 11, zv. 16, str. 2145-2158, 2023.
  • Andersen, Kamilla Heimar – Melgaard, Simon Pommerencke – Johra, Hicham – Marszal-Pomianowska, Anna – Jensen, Rasmus Lund – Heiselberg, Per Kvols: Barriers and drivers for implementation of automatic fault detection and diagnosis in buildings and HVAC systems: An outlook from industry experts. Energy and Buildings, č. 113801, zv. 303, 2024.
  • Xiao, Tianqi – You, Fengqi: Physically consistent deep learning-based day-ahead energy dispatching and thermal comfort control for grid-interactive communities. Applied Energy, č. B, zv. 353, 2024.
  • Bamdad, Keivan – Mohammadzadeh, Navid – Cholette, Michael – Perera, Srinath: Model Predictive Control for Energy Optimization of HVAC Systems Using EnergyPlus and ACO Algorithm. Buildings, č. 12, zv. 13, 2023.
  • Zhao, Zihao – Wang, Cuiling – Wang, Baolong: Adaptive model predictive control of a heat pump-assisted solar water heating system. Energy and Buildings, č. 113682, zv. 300, 2023.
  • Chaudhary, Gaurav – Johra, Hicham – Georges, Laurent – Austbo, Bjorn: Synconn\\\\_build : A python based synthetic dataset generator for testing and validating control-oriented neural networks for building dynamics prediction. Methodsx, č. 102464, zv. 11, 2023.
  • Langner, Felix – Wang, Weimin – Frahm, Moritz – Hagenmeyer, Veit: Model predictive control of distributed energy resources in residential buildings considering forecast uncertainties. Energy and Buildings, č. 113753, zv. 303, 2024.
  • Guo, Yurun – Wang, Shugang – Wang, Jihong – Zhang, Tengfei – Ma, Zhenjun – Jiang, Shuang: Key district heating technologies for building energy flexibility: A review. Renewable & Sustainable Energy Reviews, č. B, zv. 189, 2024.
  • Guo, Fangzhou – Li, Ao – Yue, Bao – Xiao, Ziwei – Xiao, Fu – Yan, Rui – Li, Anbang – Lv, Yan – Su, Bing: Improving the out-of-sample generalization ability of data-driven chiller performance models using physics-guided neural network. Applied Energy, č. A, zv. 354, 2024.
  • Ceusters, Glenn – Putratama, Muhammad Andy – Franke, Ruediger – Nowe, Ann – Messagie, Maarten: An adaptive safety layer with hard constraints for safe reinforcement learning in multi-energy management systems. Sustainable Energy Grids & Networks, č. 101202, zv. 36, 2023.
  • Wang, Mingfei – Zheng, Wengang – Zhao, Chunjiang – Chen, Yang – Chen, Chunling – Zhang, Xin: Energy-Saving Control Method for Factory Mushroom Room Air Conditioning Based on MPC. Energies, č. 22, zv. 16, 2023.
  • Klanatsky, Peter – Veynandt, Francois – Heschl, Christian: Grey-box model for model predictive control of buildings. Energy and Buildings, č. 113624, zv. 300, 2023.
  • Dey, Sourav – Marzullo, Thibault – Zhang, Xiangyu – Henze, Gregor: Reinforcement learning building control approach harnessing imitation learning. Energy and Ai, č. 100255, zv. 14, 2023.
  • Rezi, Melisa – Mudinillah, Adam – Putri, Lusiana Rahmadani – Shidqi, Muhammad Husni: Utilization Of Using Quizizz As An Online Quiz In Arabic Language Learning. Ijaz Arabi Journal of Arabic Learning, č. 3, zv. 6, str. 727-739, 2023.
  • Saloux, Etienne – Zhang, Kun – Candanedo, Jose A.: A Critical Perspective on Current Research Trends in Building Operation: Pressing Challenges and Promising Opportunities. Buildings, č. 10, zv. 13, 2023.
  • Lin, Guanjing – Casillas, Armando – Sheng, Maggie – Granderson, Jessica: Performance Evaluation of an Occupancy-Based HVAC Control System in an Office Building. Energies, č. 20, zv. 16, 2023.
  • Solinas, Francesco M. – Macii, Alberto – Patti, Edoardo – Bottaccioli, Lorenzo: An online reinforcement learning approach for HVAC control. Expert Systems with Applications, č. A, zv. 238, 2024.
  • Zhang, Xiang – Saelens, Dirk – Roels, Staf: Data-driven estimation of time-dependent solar gain coefficient in a two-zone building with synthetic occupants: Two B-splines integrated grey-box modeling approaches. Building and Environment, č. 110311, zv. 244, 2023.
  • Zhang, Junfeng – Liu, Lanbin – Liu, Yameng: A subspace based method for modelling building\\\'s thermal dynamic in district heating system and parameter extrapolation verification. Building Simulation, č. 11, zv. 16, str. 2145-2158, 2023.
  • Paiho, Satu – Wessberg, Nina – Dubovik, Maria – Lavikka, Rita – Naumer, Sami: Twin transition in the built environment - Policy mechanisms, technologies and market views from a cold climate perspective. Sustainable Cities and Society, č. 104870, zv. 98, 2023.
  • Petrucci, Andrea – Ayevide, Follivi Kloutse – Buonomano, Annamaria – Athienitis, Andreas: Development of energy aggregators for virtual communities: The energy efficiency-flexibility nexus for demand response. Renewable Energy, č. 118975, zv. 215, 2023.
  • Brown, Sarah – Beausoleil-Morrison, Ian: Long-term implementation of a model predictive controller for a hydronic floor heating and cooling system in a highly glazed house in Canada. Applied Energy, č. 121677, zv. 349, 2023.
  • Biemann, Marco – Gunkel, Philipp Andreas – Scheller, Fabian – Huang, Lizhen – Liu, Xiufeng: Data Center HVAC Control Harnessing Flexibility Potential via Real-Time Pricing Cost Optimization Using Reinforcement Learning. IEEE Internet of Things Journal, č. 15, zv. 10, str. 13876-13894, 2023.
  • Tabacek, Jaroslav – Havlena, Vladimir: Distributed state estimation and fault diagnosis using reduced sensitivity to neighbor estimates with application to building control. Journal of the Franklin Institute-engineering and Applied Mathematics, č. 12, zv. 360, str. 9216-9239, 2023.
  • Zhang, Qingang – Huang, Yunqi – Chng, Chin-Boon – Chui, Chee-Kong – Lee, Poh-Seng: Investigations on machine learning-based control-oriented modeling using historical thermal data of buildings. Building and Environment, č. 110595, zv. 243, 2023.
  • Balali, Yasaman – Chong, Adrian – Busch, Andrew – O\\\'Keefe, Steven: Energy modelling and control of building heating and cooling systems with data-driven and hybrid models-A review. Renewable & Sustainable Energy Reviews, č. 113496, zv. 183, 2023.
  • Vandenbogaerde, L. – Verbeke, S. – Audenaert, A.: Optimizing building energy consumption in office buildings: A review of building automation and control systems and factors influencing energy savings. Journal of Building Engineering, č. 107233, zv. 76, 2023.
  • Xu, Wenya – Li, Yanxue – He, Guanjie – Xu, Yang – Gao, Weijun: Performance Assessment and Comparative Analysis of Photovoltaic-Battery System Scheduling in an Existing Zero-Energy House Based on Reinforcement Learning Control. Energies, č. 13, zv. 16, 2023.
  • Hua, Yuchao – Luo, Lingai – Le Corre, Steven – Fan, Yilin: An online learning framework for self-adaptive dynamic thermal modeling of building envelopes. Applied Thermal Engineering, č. 121032, zv. 232, 2023.
  • Frahm, Moritz – Dengiz, Thomas – Zwickel, Philipp – Maass, Heiko – Matthes, Jorg – Hagenmeyer, Veit: Occupant-oriented demand response with multi-zone thermal building control. Applied Energy, č. 121454, zv. 347, 2023.
  • Yue, Bao – Su, Bing – Xiao, Fu – Li, Anbang – Li, Kehua – Li, Shen – Yan, Rui – Lian, Qiuzhuang – Li, Ao – Li, Yuanyang – Fang, Xing – Liang, Xingang: Energy-oriented control retrofit for existing HVAC system adopting data-driven MPC-Methodology, implementation and field test. Energy and Buildings, č. 113286, zv. 295, 2023.
  • Thorsteinsson, Simon – Kalaee, Alex Arash Sand – Vogler-Finck, Pierre – Staermose, Henrik Lund – Katic, Ivan – Bendtsen, Jan Dimon: Long-term experimental study of price responsive predictive control in a real occupied single-family house with heat pump✩. Applied Energy, č. 121398, zv. 347, 2023.
  • Kumar, Pratyush – Rawlings, James B.: Unconstrained feedback controller design using Q-learning from noisy data. Computers & Chemical Engineering, č. 108325, zv. 177, 2023.
  • Park, Bumsoo – Rempel, Alexandra R. – Mishra, Sandipan: Performance, robustness, and portability of imitation-assisted reinforcement learning policies for shading and natural ventilation control. Applied Energy, č. 121364, zv. 347, 2023.
  • Maturo, Anthony – Vallianos, Charalampos – Buonomano, Annamaria – Athienitis, Andreas: A novel multi-level predictive management strategy to optimize phase-change energy storage and building-integrated renewable technologies operation under dynamic tariffs. Energy Conversion and Management, č. 117220, zv. 291, 2023.
  • Yeon, Sang Hun – Yoon, Yeobeom – Kang, Won Hee – Lee, Je Hyeon – Song, Kwan Woo – Chae, Young Tae – Choi, Jong Min – Lee, Kwang Ho: Lower and upper threshold limit for artificial neural network based chilled and condenser water temperatures set-point control in a chilled water system. Energy Reports, zv. 9, str. 6349-6361, 2023.
  • Nweye, Kingsley – Sankaranarayanan, Siva – Nagy, Zoltan: MERLIN: Multi-agent offline and transfer learning for occupant-centric operation of grid-interactive communities. Applied Energy, č. 121323, zv. 346, 2023.
  • Palaic, Darko – Stajduhar, Ivan – Ljubic, Sandi – Wolf, Igor: Development, Calibration, and Validation of a Simulation Model for Indoor Temperature Prediction and HVAC System Fault Detection. Buildings, č. 6, zv. 13, 2023.
  • Wang, Haichao – Bo, Sheng – Zhu, Chuanzhi – Hua, Pengmin – Xie, Zichan – Xu, Chong – Wang, Tianyu – Li, Xiangli – Wang, Hai – Lahdelma, Risto – Granlund, Katja – Teppo, Esa: A zoned group control of indoor temperature based on MPC for a space heating building. Energy Conversion and Management, č. 117196, zv. 290, 2023.
  • Vallianos, Charalampos – Candanedo, Jose – Athienitis, Andreas: Application of a large smart thermostat dataset for model calibration and Model Predictive Control implementation in the residential sector. Energy, č. A, zv. 278, 2023.
  • Khatibi, Mahmood – Rahnama, Samira – Vogler-Finck, Pierre – Bendtsen, Jan Dimon – Afshari, Alireza: Towards designing an aggregator to activate the energy flexibility of multi-zone buildings using a hierarchical model-based scheme. Applied Energy, č. 120562, zv. 333, 2023.
  • Sepehri, Amin – Pavlak, Gregory S.: Evaluating optimal control of active insulation and HVAC systems in residential buildings. Energy and Buildings, č. 112728, zv. 281, 2023.
  • Zeng, Zhaoyun – Lu, Di – Hu, Yuqing – Augenbroe, Godfried – Chen, Jianli: A comprehensive optimization framework for the design of high-performance building systems. Journal of Building Engineering, č. 105709, zv. 65, 2023.
  • Stoffel, Phillip – Maier, Laura – Kuempel, Alexander – Schreiber, Thomas – Mueller, Dirk: Evaluation of advanced control strategies for building energy systems. Energy and Buildings, č. 112709, zv. 280, 2023.
  • Weinberg, David – Wang, Qian – Timoudas, Thomas Ohlson – Fischione, Carlo: A Review of Reinforcement Learning for Controlling Building Energy Systems From a Computer Science Perspective. Sustainable Cities and Society, č. 104351, zv. 89, 2023.
  • Babayomi, Oluleke – Zhang, Zhenbin – Dragicevic, Tomislav – Hu, Jiefeng – Rodriguez, Jose: Smart grid evolution: Predictive control of distributed energy resources-A review. International Journal of Electrical Power & Energy Systems, č. 108812, zv. 147, 2023.
  • Passos, Luigi Antonio de Araujo – Ceha, Thomas Joseph – Baldi, Simone – De Schutter, Bart: Model predictive control of a thermal chimney and dynamic solar shades for an all-glass facades building. Energy, č. 126177, zv. 264, 2023.
  • Ascione, Fabrizio – Masi, Rosa Francesca De – Festa, Valentino – Mauro, Gerardo Maria – Vanoli, Giuseppe Peter: Optimizing space cooling of a nearly zero energy building via model predictive control: Energy cost vs comfort. Energy and Buildings, č. 112664, zv. 278, 2023.
  • Zhan, Sicheng – Dong, Bing – Chong, Adrian: Improving energy flexibility and PV self-consumption for a tropical net zero energy office building. Energy and Buildings, č. 112606, zv. 278, 2023.
  • Nweye, Kingsley – Liu, Bo – Stone, Peter – Nagy, Zoltan: Real-world challenges for multi-agent reinforcement learning in grid-interactive buildings. Energy and Ai, č. 100202, zv. 10, 2022.
  • Song, Yulong – Cui, Ce – Yin, Xiang – Cao, Feng: Advanced development and application of transcritical CO2 refrigeration and heat pump technology-A review. Energy Reports, zv. 8, str. 7840-7869, 2022.
  • Savadkoohi, Marjan – Macarulla, Marcel – Casals, Miquel: Facilitating the implementation of neural network-based predictive control to optimize building heating operation. Energy, č. 125703, zv. 263, 2023.
  • Cetin, Tugberk Hakan – Zhu, Jie: Thermoeconomic assessments and optimization of a vapour compression and an ejector integrated sCO2 trigeneration systems. Sustainable Energy Technologies and Assessments, č. 102832, zv. 54, 2022.
  • Pinto, Giuseppe – Messina, Riccardo – Li, Han – Hong, Tianzhen – Piscitelli, Marco Savino – Capozzoli, Alfonso: Sharing is caring: An extensive analysis of parameter-based transfer learning for the prediction of building thermal dynamics. Energy and Buildings, č. 112530, zv. 276, 2022.
  • Peng, Yuzhen – Lei, Yue – Tekler, Zeynep Duygu – Antanuri, Nogista – Lau, Siu-Kit – Chong, Adrian: Hybrid system controls of natural ventilation and HVAC in mixed-mode buildings: A comprehensive review. Energy and Buildings, č. 112509, zv. 276, 2022.
  • Ra, Seon Jung – Shin, Han Sol – Park, Cheol Soo: Implementation of real-time model predictive heating control for a factory building using ANN-based lumped modelling approach. Journal of Building Performance Simulation, č. 2, zv. 16, str. 163-178, 2023.
  • Mork, Maximilian – Materzok, Nick – Xhonneux, Andre – Mueller, Dirk: Nonlinear Hybrid Model Predictive Control for building energy systems. Energy and Buildings, č. 112298, zv. 270, 2022.
  • Weber, Simon O. – Oei, Marius – Linder, Marc – Boehm, Michael – Leistner, Phillip – Sawodny, Oliver: Model predictive approaches for cost-efficient building climate control with seasonal energy storage. Energy and Buildings, č. 112285, zv. 270, 2022.
  • Sun, G. – Yu, Y. – Yu, Q. – Tan, X. – Wu, L. – Wang, Y.: Enhancing control and performance evaluation of composite heating systems through modal analysis and model predictive control: Design and comprehensive analysis. Applied Energy, č. 122436, zv. 357, 2024.
  • Zhao, J. – Yang, Z. – Shi, L. – Liu, D. – Li, H. – Mi, Y. – Wang, H. – Feng, M. – Hutagaol, T.J.: Photovoltaic capacity dynamic tracking model predictive control strategy of air-conditioning systems with consideration of flexible loads. Applied Energy, č. 122430, zv. 356, 2024.
  • Du, S. – Zhao, M. – Wang, X.-F. – Han, H. – Qiao, J.: Dual-mode event-triggered predictive control for nonlinear systems with bounded disturbances. International Journal of Robust and Nonlinear Control, č. 3, zv. 34, str. 1878-1897, 2024.
  • Vallianos, C. – Candanedo, J. – Athienitis, A.: Thermal modeling for control applications of 60,000 homes in North America using smart thermostat data. Energy and Buildings, č. 113811, zv. 303, 2024.
  • Soleimani, M. – Irani, F.N. – Yadegar, M. – Davoodi, M.: Multi-objective optimization of building HVAC operation: Advanced strategy using Koopman predictive control and deep learning. Building and Environment, č. 111073, zv. 248, 2024.
  • Olsson, D. – Filipsson, P. – Trüschel, A.: Weather Forecast Control for Heating of Multi-Family Buildings in Comparison with Feedback and Feedforward Control. Energies, č. 1, zv. 17, 2024.
  • Erfani, A. – Jafarinejad, T. – Roels, S. – Saelens, D.: In search of optimal building behavior models for model predictive control in the context of flexibility. Building Simulation, č. 1, zv. 17, str. 71-91, 2024.
  • Vallianos, C. – Abtahi, M. – Athienitis, A. – Delcroix, B. – Rueda, L.: Online model-based predictive control with smart thermostats: application to an experimental house in Québec. Journal of Building Performance Simulation, č. 1, zv. 17, str. 94-110, 2024.
  • Thaler, B. – Posch, S. – Wimmer, A. – Pirker, G.: Hybrid model predictive control of renewable microgrids and seasonal hydrogen storage. International Journal of Hydrogen Energy, č. 97, zv. 48, str. 38125-38142, 2023.
  • Rasku, T. – Lastusilta, T. – Hasan, A. – Ramesh, R. – Kiviluoma, J.: Economic Model-Predictive Control of Building Heating Systems Using Backbone Energy System Modelling Framework. Buildings, č. 12, zv. 13, 2023.
  • Chaudhary, G. – Johra, H. – Georges, L. – Austbø, B.: pymodconn: A python package for developing modular sequence-to-sequence control-oriented deep neural networks. SoftwareX, č. 101599, zv. 24, 2023.
  • Alkhatib, H. – Lemarchand, P. – Norton, B. – O\\\'Sullivan, D.T.J.: Comparative simulations of an electrochromic glazing and a roller blind as controlled by seven different algorithms. Results in Engineering, č. 101467, zv. 20, 2023.
  • Arcari, E. – Iannelli, A. – Carron, A. – Zeilinger, M.N.: Stochastic MPC With Robustness to Bounded Parameteric Uncertainty. IEEE Transactions on Automatic Control, č. 12, zv. 68, str. 7601-7615, 2023.
  • Mugnini, A. – Ferracuti, F. – Lorenzetti, M. – Comodi, G. – Arteconi, A.: Day-ahead optimal scheduling of smart electric storage heaters: A real quantification of uncertainty factors. Energy Reports, zv. 9, str. 2169-2184, 2023.
  • Nweye, K. – Kaspar, K. – Buscemi, G. – Pinto, G. – Li, H. – Hong, T. – Ouf, M. – Capozzoli, A. – Nagy, Z.: CityLearn v2: An OpenAI Gym environment for demand response control benchmarking in grid-interactive communities. V BuildSys 2023 - Proceedings of the10th ACM International Conference on Systems for Energy-Efficient Buildings, Cities, and Transportation, str. 274-275, 2023.
  • Gokhale, G. – Van Gompel, J. – Claessens, B. – Develder, C.: Transfer Learning in Transformer-Based Demand Forecasting For Home Energy Management System. V BuildSys 2023 - Proceedings of the10th ACM International Conference on Systems for Energy-Efficient Buildings, Cities, and Transportation, str. 458-462, 2023.
  • Almilaify, Y. – Nweye, K. – Nagy, Z.: SCALEX: SCALability EXploration of Multi-Agent Reinforcement Learning Agents in Grid-Interactive Efficient Buildings. V BuildSys 2023 - Proceedings of the10th ACM International Conference on Systems for Energy-Efficient Buildings, Cities, and Transportation, str. 261-264, 2023.
  • Gokhale, G. – Tiben, N. – Verwee, M.-S. – Lahariya, M. – Claessens, B. – Develder, C.: Real-World Implementation of Reinforcement Learning Based Energy Coordination for a Cluster of Households. V BuildSys 2023 - Proceedings of the10th ACM International Conference on Systems for Energy-Efficient Buildings, Cities, and Transportation, str. 347-351, 2023.
  • Mork, M. – Redder, F. – Xhonneux, A. – Müller, D.: Real-world implementation and evaluation of a Model Predictive Control framework in an office space. Journal of Building Engineering, č. 107619, zv. 78, 2023.
  • Zhang, J. – Liu, L. – Liu, Y.: A subspace based method for modelling building’s thermal dynamic in district heating system and parameter extrapolation verification. Building Simulation, č. 11, zv. 16, str. 2145-2158, 2023.
  • Paiho, S. – Wessberg, N. – Dubovik, M. – Lavikka, R. – Naumer, S.: Twin transition in the built environment – Policy mechanisms, technologies and market views from a cold climate perspective. Sustainable Cities and Society, č. 104870, zv. 98, 2023.
  • Lian, Y. – Shi, J. – Koch, M. – Jones, C.N.: Adaptive Robust Data-Driven Building Control via Bilevel Reformulation: An Experimental Result. IEEE Transactions on Control Systems Technology, č. 6, zv. 31, str. 2420-2436, 2023.
  • Jiang, W. – Yi, Z. – Wang, L. – Zhang, H. – Zhang, J. – Lin, F. – Yang, C.: A Stochastic Online Forecast-and-Optimize Framework for Real-Time Energy Dispatch in Virtual Power Plants under Uncertainty. V International Conference on Information and Knowledge Management, Proceedings, str. 4646-4652, 2023.
  • Lin, G. – Casillas, A. – Sheng, M. – Granderson, J.: Performance Evaluation of an Occupancy-Based HVAC Control System in an Office Building †. Energies, č. 20, zv. 16, 2023.
  • Stoffel, P. – Henkel, P. – Rätz, M. – Kümpel, A. – Müller, D.: Safe operation of online learning data driven model predictive control of building energy systems. Energy and AI, č. 100296, zv. 14, 2023.
  • Thorsteinsson, S. – Kalaee, A.A.S. – Vogler-Finck, P. – Stærmose, H.L. – Katic, I. – Bendtsen, J.D.: Long-term experimental study of price responsive predictive control in a real occupied single-family house with heat pump. Applied Energy, č. 121398, zv. 347, 2023.
  • Kumar, P. – Rawlings, J.B.: Unconstrained feedback controller design using Q-learning from noisy process data. Computers and Chemical Engineering, č. 108325, zv. 177, 2023.
  • Balali, Y. – Chong, A. – Busch, A. – O\\\'Keefe, S.: Energy modelling and control of building heating and cooling systems with data-driven and hybrid models—A review. Renewable and Sustainable Energy Reviews, č. 113496, zv. 183, 2023.
  • Nagy, Z. – Gunay, B. – Miller, C. – Hahn, J. – Ouf, M.M. – Lee, S. – Hobson, B.W. – Abuimara, T. – Bandurski, K. – André, M. – Lorenz, C.-L. – Crosby, S. – Dong, B. – Jiang, Z. – Peng, Y. – Favero, M. – Park, J.Y. – Nweye, K. – Nojedehi, P. – Stopps, H. – Sarran, L. – Brackley, C. – Bassett, K. – Govertsen, K. – Koczorek, N. – Abele, O. – Casavant, E. – Kane, M. – O\\\'Neill, Z. – Yang, T. – Day, J. – Huchuk, B. – Hellwig, R.T. – Vellei, M.: Ten questions concerning occupant-centric control and operations. Building and Environment, č. 110518, zv. 242, 2023.
  • Saini, R.S.T. – Patel, S.K. – Ganesh, H.S.: Energy-focused predictive control for particulate matter concentration and thermal comfort indoors in Delhi. Journal of Building Engineering, č. 106745, zv. 73, 2023.
  • Zhang, W. – Wu, W. – Norford, L. – Li, N. – Malkawi, A.: Model predictive control of short-term winter natural ventilation in a smart building using machine learning algorithms. Journal of Building Engineering, č. 106602, zv. 73, 2023.
  • Borja-Conde, J.A. – Witheephanich, K. – Coronel, J.F. – Limon, D.: Thermal modeling of existing buildings in high-fidelity simulators: A novel, practical methodology. Energy and Buildings, č. 113127, zv. 292, 2023.
  • Xiao, T. – You, F.: Building thermal modeling and model predictive control with physically consistent deep learning for decarbonization and energy optimization. Applied Energy, č. 121165, zv. 342, 2023.
  • Felez, R. – Castro, J. – Felez, J.: Design of a predictive control system for the smart regulation of renewable climatization systems. Renewable Energy and Power Quality Journal, zv. 21, str. 172-177, 2023.
  • Wang, D. – Zheng, W. – Wang, Z. – Wang, Y. – Pang, X. – Wang, W.: Comparison of reinforcement learning and model predictive control for building energy system optimization. Applied Thermal Engineering, č. 120430, zv. 228, 2023.
  • Guo, R. – Saelens, D.: Application of model predictive control to building design optimisation. V E3S Web of Conferences, 2023.
  • Wang, H. – Chen, Y. – Kang, J. – Ding, Z. – Zhu, H.: An XGBoost-Based predictive control strategy for HVAC systems in providing day-ahead demand response. Building and Environment, č. 110350, zv. 238, 2023.
  • Di Natale, L. – Svetozarevic, B. – Heer, P. – Jones, C.N.: Towards scalable physically consistent neural networks: An application to data-driven multi-zone thermal building models. Applied Energy, č. 121071, zv. 340, 2023.
  • Fu, Y. – Xu, S. – Zhu, Q. – O\\\'Neill, Z. – Adetola, V.: How good are learning-based control v.s. model-based control for load shifting? Investigations on a single zone building energy system. Energy, č. 127073, zv. 273, 2023.
  • Sha, L. – Jiang, Z. – Sun, H.: A control strategy of heating system based on adaptive model predictive control. Energy, č. 127192, zv. 273, 2023.
  • Zakharchenko, A. – Stepanets, O.: DIGITAL TWIN VALUE IN INTELLIGENT BUILDING DEVELOPMENT. Advanced Information Systems, č. 2, zv. 7, str. 75-86, 2023.
  • Bünning, F. – Heer, P. – Smith, R.S. – Lygeros, J.: Increasing electrical reserve provision in districts by exploiting energy flexibility of buildings with robust model predictive control. Advances in Applied Energy, č. 100130, zv. 10, 2023.
  • Wang, D. – Chen, Y. – Wang, W. – Gao, C. – Wang, Z.: Field test of Model Predictive Control in residential buildings for utility cost savings. Energy and Buildings, č. 113026, zv. 288, 2023.
  • Smith, R.S. – Behrunani, V. – Lygeros, J.: Control of Multicarrier Energy Systems from Buildings to Networks. Annual Review of Control, Robotics, and Autonomous Systems, zv. 6, str. 391-414, 2023.
  • Deng, Z. – Wang, X. – Jiang, Z. – Zhou, N. – Ge, H. – Dong, B.: Evaluation of deploying data-driven predictive controls in buildings on a large scale for greenhouse gas emission reduction. Energy, č. 126934, zv. 270, 2023.
  • Chen, X. – Cao, B. – Pouramini, S.: Energy cost and consumption reduction of an office building by Chaotic Satin Bowerbird Optimization Algorithm with model predictive control and artificial neural network: A case study. Energy, č. 126874, zv. 270, 2023.
  • Kumar, P. – Rawlings, J.B. – Wenzel, M.J. – Risbeck, M.J.: Grey-box model and neural network disturbance predictor identification for economic MPC in building energy systems. Energy and Buildings, č. 112936, zv. 286, 2023.
  • Babayomi, O. – Zhang, Z. – Dragicevic, T. – Hu, J. – Rodriguez, J.: Smart grid evolution: Predictive control of distributed energy resources—A review. International Journal of Electrical Power and Energy Systems, č. 108812, zv. 147, 2023.
  • Raza Naqvi, S.A. – Kar, K. – Mishra, S.: Autonomous pre-conditioning and improved personalization in shared workspaces through data-driven predictive control. Energy and Buildings, č. 112897, zv. 285, 2023.
  • Deng, J. – Qiang, W. – Peng, C. – Wei, Q. – Zhang, H.: Research on systematic analysis and optimization method for chillers based on model predictive control: A case study. Energy and Buildings, č. 112916, zv. 285, 2023.
  • Krishna G.S., A. – Zhang, T. – Ardakanian, O. – Taylor, M.E.: Mitigating an adoption barrier of reinforcement learning-based control strategies in buildings. Energy and Buildings, č. 112878, zv. 285, 2023.
  • Li, L. – Yang, X. – Xiang, X. – Kong, L. – Dai, J. – Zeng, Q.: Integrating Sustainable Manufacturing into Architectural Design Teaching through Architectural Design Competitions. Buildings, č. 4, zv. 13, 2023.
  • Tian, Z. – Ye, C. – Zhu, J. – Niu, J. – Lu, Y.: Accelerating Optimal Control Strategy Generation for HVAC Systems Using a Scenario Reduction Method: A Case Study. Energies, č. 7, zv. 16, 2023.
  • Yang, S. – Chen, W. – Wan, M.P.: A machine-learning-based event-triggered model predictive control for building energy management. Building and Environment, č. 110101, zv. 233, 2023.
  • Lu, X. – Fu, Y. – O\\\'Neill, Z.: Benchmarking high performance HVAC Rule-Based controls with advanced intelligent Controllers: A case study in a Multi-Zone system in Modelica. Energy and Buildings, č. 112854, zv. 284, 2023.
  • Hu, J. – Sun, S. – Lai, J. – Wang, S. – Chen, Z. – Liu, T.: CACC Simulation Platform Designed for Urban Scenes. IEEE Transactions on Intelligent Vehicles, č. 4, zv. 8, str. 2857-2874, 2023.
  • Deng, Z. – Wang, X. – Dong, B.: Quantum computing for future real-time building HVAC controls. Applied Energy, č. 120621, zv. 334, 2023.
  • Jiang, Z. – Deng, Z. – Wang, X. – Dong, B.: PANDEMIC: Occupancy driven predictive ventilation control to minimize energy consumption and infection risk. Applied Energy, č. 120676, zv. 334, 2023.
  • Hou, J. – Li, H. – Nord, N. – Huang, G.: Model predictive control for a university heat prosumer with data centre waste heat and thermal energy storage. Energy, č. 126579, zv. 267, 2023.
  • Labib, R. – Nagy, Z.: THE FUTURE OF Artificial Intelligence In Buildings. ASHRAE Journal, č. 3, zv. 65, str. 26-32, 2023.
  • Coraci, D. – Brandi, S. – Hong, T. – Capozzoli, A.: Online transfer learning strategy for enhancing the scalability and deployment of deep reinforcement learning control in smart buildings. Applied Energy, č. 120598, zv. 333, 2023.
  • Chen, Y. – Gao, J. – Yang, J. – Berardi, U. – Cui, G.: An hour-ahead predictive control strategy for maximizing natural ventilation in passive buildings based on weather forecasting. Applied Energy, č. 120613, zv. 333, 2023.
  • Saloux, E. – Zhang, K.: Data-Driven Model-Based Control Strategies to Improve the Cooling Performance of Commercial and Institutional Buildings. Buildings, č. 2, zv. 13, 2023.
  • Reinhold, J. – Baumann, H. – Meurer, T.: Constrained-Differential-Kinematics-Decomposition-Based NMPC for Online Manipulator Control with Low Computational Costs. Robotics, č. 1, zv. 12, 2023.
  • Boutchich, N. – Moufid, A. – Bennis, N.: A constrained model predictive control for the building thermal management with optimal setting design. International Journal of Electrical and Computer Engineering, č. 1, zv. 13, str. 134-143, 2023.
  • Bwambale, E. – Abagale, F.K. – Anornu, G.K.: Data-driven model predictive control for precision irrigation management. Smart Agricultural Technology, č. 100074, zv. 3, 2023.
  • Cai, W. – Sawant, S. – Reinhardt, D. – Rastegarpour, S. – Gros, S.: A Learning-Based Model Predictive Control Strategy for Home Energy Management Systems. IEEE Access, zv. 11, str. 145264-145280, 2023.
  • Morovat, N. – Athienitis, A.K. – Candanedo, J.A.: Model predictive control for demand response in all-electric school buildings. V Journal of Physics: Conference Series, 2023.
  • Chaudhary, G. – Johra, H. – Georges, L. – Austbø, B.: Predicting the performance of hybrid ventilation in buildings using a multivariate attention-based biLSTM Encoder - Decoder. V Journal of Physics: Conference Series, 2023.
  • Behrunani, V. – Zagorowska, M. – de Badyn, M.H. – Ricca, F. – Heer, P. – Lygeros, J.: Degradation-aware data-enabled predictive control of energy hubs. V Journal of Physics: Conference Series, 2023.
  • Baranski, M. – Bode, G. – Nienaber, F. – Bruhn, B. – Grant, P. – Ziegeldorf, H.: Scalable decarbonisation using automated operation optimisation. V Journal of Physics: Conference Series, 2023.
  • Kumar, P.S. – Ashok, B. – Kotb, H. – Aboras, K.M. – Hussen, S.: Modeling and Lyapunov-Based Nonlinear Control Strategies of Novel 2-D Inverted Magnetic Needle System: A Comparative Study. IEEE Access, zv. 11, str. 140406-140417, 2023.
  • Ra, S.-J. – Jo, H.-G. – Jeong, H. – Heo, T. – Park, C.-S.: Implementation of real-time model predictive control (MPC) of energy recovery ventilators for school buildings. V Building Simulation Conference Proceedings, str. 3648-3655, 2023.
  • Walnum, H.T. – Holøs, S.B. – Sartori, I.: Investigating scalable replacement of weather compensated control with MPC in buildings with legacy equipment. V Building Simulation Conference Proceedings, str. 2458-2465, 2023.
  • Nweye, K. – Kaspar, K. – Buscemi, G. – Pinto, G. – Li, H. – Hong, T. – Ouf, M. – Capozzoli, A. – Nagy, Z.: A framework for the design of representative neighborhoods for energy flexibility assessment in CityLearn. V Building Simulation Conference Proceedings, str. 1814-1821, 2023.
  • Xiao, Z. – Xiao, F.: Automatic generation of RC models using IoT data from commercial buildings. V Building Simulation Conference Proceedings, str. 3852-3856, 2023.
  • Mostafavi, S. – Song, C. – Sharma, A. – Goyal, R. – Brito, A.E.: Benchmarking Model Predictive Control Algorithms in Building Optimization Testing Framework (BOPTEST). V Building Simulation Conference Proceedings, str. 1556-1563, 2023.
  • Rasku, T. – Hasan, A.: Stochastic model-predictive control of district-scale building energy systems using SpineOpt. V Building Simulation Conference Proceedings, str. 893-900, 2023.
  • Jafarinejad, T. – Erfani, A. – Saelens, D.: Direct load control for district heating load management using least-squares support vector machine. V Building Simulation Conference Proceedings, str. 1320-1327, 2023.
  • Chen, G. – Korolija, I. – Rovas, D.: Multi-level Identification Performance for RC-based Control-oriented Model of the UK Office Archetype. V Building Simulation Conference Proceedings, str. 885-892, 2023.
  • Wang, X. – Dong, B.: Development of a Data-Driven Predictive Control Based on a Novel Physics-Informed Neural Network. V Building Simulation Conference Proceedings, str. 1418-1425, 2023.
  • Bagle, M. – Goia, F.: Combined reinforcement learning (RL) and model predictive control (MPC) for optimal building energy use. V Building Simulation Conference Proceedings, str. 2987-2994, 2023.
  • Silvestri, A. – Lydon, G.P. – Waibel, C. – Wu, D. – Schlueter, A.: Data-driven reduced order modelling using clusters of thermal dynamics. V Building Simulation Conference Proceedings, str. 1145-1152, 2023.
  • Wan, L. – Dai, X. – Welfonder, T. – Petrova, E. – Pauwels, P.: Semi-automated Thermal Envelope Model Setup for Adaptive Model Predictive Control with Event-triggered System Identification. V Building Simulation Conference Proceedings, str. 3193-3200, 2023.
  • Maier, L. – Quast, S. – Hering, D. – Müller, D.: Machine-learning-based approximation of the hierarchical model predictive control of multi-use PV-battery systems in non-residential buildings. V 36th International Conference on Efficiency, Cost, Optimization, Simulation and Environmental Impact of Energy Systems, ECOS 2023, str. 3194-3205, 2023.
  • Jansen, D. – Hering, D. – Müller, D.: BIM2SIM for hydraulic-focussed Energy Simulations - Automatic Generation of pre parametrized Simulation Models. V 36th International Conference on Efficiency, Cost, Optimization, Simulation and Environmental Impact of Energy Systems, ECOS 2023, str. 3229-3240, 2023.
  • Mork, M. – Xhonneux, A. – Müller, D.: Hierarchical Distributed Model Predictive Control for Building Energy Systems. V 36th International Conference on Efficiency, Cost, Optimization, Simulation and Environmental Impact of Energy Systems, ECOS 2023, str. 2444-2455, 2023.
  • Wackerbauer, D. – Schreiber, T. – Müller, D.: Towards rule extraction for sector-coupled energy systems based on optimization models. V 36th International Conference on Efficiency, Cost, Optimization, Simulation and Environmental Impact of Energy Systems, ECOS 2023, str. 3253-3262, 2023.
  • Stegemerten, F. – Maghnie, M. – Kümpel, A. – Müller, D.: Simulation-based performance assessment for building automation systems. V 36th International Conference on Efficiency, Cost, Optimization, Simulation and Environmental Impact of Energy Systems, ECOS 2023, str. 1240-1251, 2023.
  • Göbel, S. – Waiz, K. – Vering, C. – Müller, D.: The impact of controller settings in heat pumps: Numerical findings and experimental verification. V 36th International Conference on Efficiency, Cost, Optimization, Simulation and Environmental Impact of Energy Systems, ECOS 2023, str. 827-838, 2023.
  • Wüllhorst, F. – Reuter-Schniete, J. – Maier, L. – Hering, D. – Müller, D.: Heat pump systems with photovoltaics: Influence of the control strategy on the optimal design. V 36th International Conference on Efficiency, Cost, Optimization, Simulation and Environmental Impact of Energy Systems, ECOS 2023, str. 792-803, 2023.
  • Rentz, A. – Böhm, M. – Sawodny, O.: Multi-Stage Optimization for Long-Term Building Climate Operation with Seasonal Thermal Storage. V IEEE International Conference on Automation Science and Engineering, 2023.
  • Ji, J. – Yu, D. – Yang, D. – Shen, X. – Liu, H. – Zhao, L. – Wang, T. – Zeng, Y. – Pan, Q.: Predictive Control based on Transformer as Surrogate Model for Cooling System Optimization in Data Center. V Proceedings - 2023 International Conference on Mobile Internet, Cloud Computing and Information Security, MICCIS 2023, str. 36-42, 2023.
  • Vallianos, C. – Saeed Hosseini, S. – Athienitis, A. – Agbossou, K. – Delcroix, B. – Rao, J. – Henao, N.: Automated RC Model Generation for MPC Applications to Energy Flexibility Studies in Quebec Houses. Environmental Science and Engineering, str. 683-692, 2023.
  • Chu, M. – Fu, Y. – O\\\'Neill, Z.: Maximum-Impact Adversary Design for Network-based Control System: A Case Study on Grid-Interactive Efficient Buildings. V ASHRAE Transactions, str. 410-418, 2023.
  • Wei, M. – Jia, W. – Fu, Y. – Yang, Z. – O\\\'Neill, Z.: Energy Management and Control System for a PV-Battery System to Improve Residential Building Resiliency under Extreme Weather Conditions. V ASHRAE Transactions, str. 320-330, 2023.
  • Klinge, J. – Wekerle, D. – Voltzer, K.: MPC-Suitable Hygrothermal, Data-Based Modeling of an Aquaculture Hall for the (Energetic) Optimisation of Inner Climate. V 2023 European Control Conference, ECC 2023, 2023.
  • Gauthier-Clerc, F. – Capitaine, H.L. – Claveau, F. – Chevrel, P.: Operating data of a specific Aquatic Center as a Benchmark for dynamic model learning: search for a valid prediction model over an 8-hour horizon. V 2023 European Control Conference, ECC 2023, 2023.
  • Gao, H. – Yu, Z. – Hu, J.: A Survey on Modeling and Control Methods For Flexible Systems. V 2023 6th International Symposium on Autonomous Systems, ISAS 2023, 2023.
  • Fadnes, F.S. – Olsen, E. – Assadi, M.: Holistic management of a smart city thermal energy plant with sewage heat pumps, solar heating, and grey water recycling. Frontiers in Energy Research, č. 1078603, zv. 11, 2023.
  • Maree, J.P. – Bagle, M.: A Building Automation and Control micro-service architecture using Physics Inspired Neural Networks. V E3S Web of Conferences, 2022.
  • Thilker, C.A. – Bacher, P. – Madsen, H.: Learnings from experiments with MPC for heating of older school building. V E3S Web of Conferences, 2022.
  • Hou, J. – Li, H. – Nord, N.: Model predictive control for a data centre waste heat-based heat prosumer in Norway. V E3S Web of Conferences, 2022.
  • Bagle, M. – Delgado, B.M. – Sartori, I. – Walnum, H.T. – Lindberg, K.B.: Integrating Thermal-Electric Flexibility in Smart Buildings using Grey-Box modelling in a MILP tool. V E3S Web of Conferences, 2022.
  • Thilker, C.A. – Jørgensen, J.B. – Madsen, H.: Linear quadratic Gaussian control with advanced continuous-time disturbance models for building thermal regulation. Applied Energy, č. 120086, zv. 327, 2022.
  • Zhan, S. – Quintana, M. – Miller, C. – Chong, A.: From Model-Centric to Data-Centric: A Practical MPC Implementation Framework for Buildings. V BuildSys 2022 - Proceedings of the 2022 9th ACM International Conference on Systems for Energy-Efficient Buildings, Cities, and Transportation, str. 270-273, 2022.
  • Frahm, M. – Meisenbacher, S. – Klumpp, E. – Mikut, R. – Matthes, J. – Hagenmeyer, V.: Multi-zone grey-box thermal building identification with real occupants. V BuildSys 2022 - Proceedings of the 2022 9th ACM International Conference on Systems for Energy-Efficient Buildings, Cities, and Transportation, str. 484-487, 2022.
  • Leprince, J. – Miller, C. – Madsen, H. – Basu, K. – Van Der Vlist, R. – Zeiler, W.: Grey-Brick Buildings, an Open Data Set of Calibrated RC Models of Dutch Residential Building Heat Dynamics. V SenSys 2022 - Proceedings of the 20th ACM Conference on Embedded Networked Sensor Systems, str. 1067-1071, 2022.
  • Song, Y. – Cui, C. – Yin, X. – Cao, F.: Advanced development and application of transcritical CO2 refrigeration and heat pump technology—A review. Energy Reports, zv. 8, str. 7840-7869, 2022.
  • Cui, B. – Dong, J. – Lee, S. – Im, P. – Salonvaara, M. – Hun, D. – Shrestha, S.: Model predictive control for active insulation in building envelopes. Energy and Buildings, č. 112108, zv. 267, 2022.
  • Paschke, F. – Huang, C. – Seidel, S.: MPC Design for an Auditorium Building Using Data Driven Modeling. V IFAC-PapersOnLine, str. 103-108, 2022.
  • Leprince, J. – Madsen, H. – Miller, C. – Real, J.P. – van der Vlist, R. – Basu, K. – Zeiler, W.: Fifty shades of grey: Automated stochastic model identification of building heat dynamics. Energy and Buildings, č. 112095, zv. 266, 2022.
  • Zhang, T. – Aakash Krishna, G.S. – Afshari, M. – Musilek, P. – Taylor, M.E. – Ardakanian, O.: Diversity for transfer in learning-based control of buildings. V e-Energy 2022 - Proceedings of the 2022 13th ACM International Conference on Future Energy Systems, str. 556-564, 2022.
  • Nweye, K. – Nagy, Z. – Liu, B. – Stone, P.: Poster: Offline training of multi-Agent reinforcement agents for grid-interactive buildings control. V e-Energy 2022 - Proceedings of the 2022 13th ACM International Conference on Future Energy Systems, str. 442-443, 2022.
  • Frahm, M. – Zwickel, P. – Wachter, J. – Langner, F. – Strauch, P. – Matthes, J. – Hagenmeyer, V.: Occupant-oriented economic model predictive control for demand response in buildings. V e-Energy 2022 - Proceedings of the 2022 13th ACM International Conference on Future Energy Systems, str. 354-360, 2022.
  • Jaber, F.F. – Shary, D.K. – Alrudainy, H.: Motion control of linear induction motor using self-recurrent wavelet neural network trained by model predictive controller. International Journal of Power Electronics and Drive Systems, č. 2, zv. 13, str. 792-804, 2022.
  • Mork, M. – Xhonneux, A. – Müller, D.: Nonlinear Distributed Model Predictive Control for multi-zone building energy systems. Energy and Buildings, č. 112066, zv. 264, 2022.
  • Malik, J. – Mahdavi, A. – Azar, E. – Chandra Putra, H. – Berger, C. – Andrews, C. – Hong, T.: Ten questions concerning agent-based modeling of occupant behavior for energy and environmental performance of buildings. Building and Environment, č. 109016, zv. 217, 2022.
  • Yang, T. – Bandyopadhyay, A. – O’Neill, Z. – Wen, J. – Dong, B.: From occupants to occupants: A review of the occupant information understanding for building HVAC occupant-centric control. Building Simulation, č. 6, zv. 15, str. 913-932, 2022.
  • Vogt, M. – Buchholz, C. – Thiede, S. – Herrmann, C.: Energy efficiency of Heating, Ventilation and Air Conditioning systems in production environments through model-predictive control schemes: The case of battery production. Journal of Cleaner Production, č. 131354, zv. 350, 2022.
  • Tejedor, B. – Lucchi, E. – Bienvenido-Huertas, D. – Nardi, I.: Non-destructive techniques (NDT) for the diagnosis of heritage buildings: Traditional procedures and futures perspectives. Energy and Buildings, č. 112029, zv. 263, 2022.
  • Gokhale, G. – Claessens, B. – Develder, C.: Physics informed neural networks for control oriented thermal modeling of buildings. Applied Energy, č. 118852, zv. 314, 2022.
  • Barber, K.A. – Krarti, M.: A review of optimization based tools for design and control of building energy systems. Renewable and Sustainable Energy Reviews, č. 112359, zv. 160, 2022.
  • Dmitrewski, A. – Molina-Solana, M. – Arcucci, R.: CNTRLDA: A building energy management control system with real-time adjustments. Application to indoor temperature. Building and Environment, č. 108938, zv. 215, 2022.
  • Zhang, X. – Chen, Y. – Bernstein, A. – Chintala, R. – Graf, P. – Jin, X. – Biagioni, D.: Two-Stage Reinforcement Learning Policy Search for Grid-Interactive Building Control. IEEE Transactions on Smart Grid, č. 3, zv. 13, str. 1976-1987, 2022.
  • Jesper, M. – Pag, F. – Vajen, K. – Jordan, U.: Heat Load Profiles in Industry and the Tertiary Sector: Correlation with Electricity Consumption and Ex Post Modeling. Sustainability (Switzerland), č. 7, zv. 14, 2022.
  • Althaus, P. – Redder, F. – Ubachukwu, E. – Mork, M. – Xhonneux, A. – Müller, D.: Enhancing Building Monitoring and Control for District Energy Systems: Technology Selection and Installation within the Living Lab Energy Campus. Applied Sciences (Switzerland), č. 7, zv. 12, 2022.
  • Lee, D. – Ooka, R. – Matsuda, Y. – Ikeda, S. – Choi, W.: Experimental analysis of artificial intelligence-based model predictive control for thermal energy storage under different cooling load conditions. Sustainable Cities and Society, č. 103700, zv. 79, 2022.
  • Yu, X. – Skeie, K.S. – Knudsen, M.D. – Ren, Z. – Imsland, L. – Georges, L.: Influence of data pre-processing and sensor dynamics on grey-box models for space-heating: Analysis using field measurements. Building and Environment, č. 108832, zv. 212, 2022.
  • Lefebure, N. – Khosravi, M. – Hudobade Badyn, M. – Bünning, F. – Lygeros, J. – Jones, C. – Smith, R.S.: Distributed model predictive control of buildings and energy hubs. Energy and Buildings, č. 111806, zv. 259, 2022.
  • Bünning, F. – Huber, B. – Schalbetter, A. – Aboudonia, A. – Hudoba de Badyn, M. – Heer, P. – Smith, R.S. – Lygeros, J.: Physics-informed linear regression is competitive with two Machine Learning methods in residential building MPC. Applied Energy, č. 118491, zv. 310, 2022.
  • Yang, W. – Xu, D. – Jin, L. – Jiang, B. – Shi, P.: Robust Model Predictive Control for Linear Systems via Self-Triggered Pseudo Terminal Ingredients. IEEE Transactions on Circuits and Systems I: Regular Papers, č. 3, zv. 69, str. 1312-1322, 2022.
  • Hou, J. – Li, H. – Nord, N. – Huang, G.: Model predictive control under weather forecast uncertainty for HVAC systems in university buildings. Energy and Buildings, č. 111793, zv. 257, 2022.
  • Wahl, A. – Wellmann, C. – Krautwig, B. – Manns, P. – Chen, B. – Schernus, C. – Andert, J.: Efficiency Increase through Model Predictive Thermal Control of Electric Vehicle Powertrains. Energies, č. 4, zv. 15, 2022.
  • Zhang, Y. – Vand, B. – Baldi, S.: A Review of Mathematical Models of Building Physics and Energy Technologies for Environmentally Friendly Integrated Energy Management Systems. Buildings, č. 2, zv. 12, 2022.
  • Ceccolini, C. – Sangi, R.: Benchmarking Approaches for Assessing the Performance of Building Control Strategies: A Review. Energies, č. 4, zv. 15, 2022.
  • Pinto, G. – Wang, Z. – Roy, A. – Hong, T. – Capozzoli, A.: Transfer learning for smart buildings: A critical review of algorithms, applications, and future perspectives. Advances in Applied Energy, č. 100084, zv. 5, 2022.
  • Zhang, W. – Malkawi, A.: Simulation-based Control of Natural Ventilation with Operable Windows: Transformation from Predictive Control into Reinforcement Learning Control. V ASHRAE and IBPSA-USA Building Simulation Conference, str. 113-125, 2022.
  • Li, G. – Fu, Y. – Pertzborn, A. – O\\\'Neill, Z. – Wen, J.: Demand Flexibility Evaluation for Building Energy Systems with Active Thermal Storage Using Model Predictive Control. V ASHRAE Transactions, str. 650-658, 2022.
  • Vering, C. – Ostlender, S. – Wüllhorst, F. – Mehrfeld, P. – Müller, D.: Integrated design of refrigerant, heat pump, and system components: Process intensification applied to heat pump systems. V Building Simulation Conference Proceedings, str. 696-703, 2022.
  • Erfani, A. – Yu, X. – Kull, T.M. – Bacher, P. – Jafarinejad, T. – Roels, S. – Saelens, D.: Analysis of the impact of predictive models on the quality of the model predictive control for an experimental building. V Building Simulation Conference Proceedings, str. 302-309, 2022.
  • Liguori, A. – Markovic, R. – Frisch, J. – Wagner, A. – Causone, F. – van Treeck, C.: A gap-filling method for room temperature data based on autoencoder neural networks. V Building Simulation Conference Proceedings, str. 2427-2434, 2022.
  • Vering, C. – Borges, S. – Coakley, D. – Krützfeldt, H. – Mehrfeld, P. – Müller, D.: Digital Twin Design with On-Line Calibration for HVAC Systems in Buildings. V Building Simulation Conference Proceedings, str. 2938-2945, 2022.
  • Gehbauer, C. – Rippl, A. – Lee, E.S.: Advanced Control of Dynamic Facades and HVAC with Reinforcement Learning based on Standardized Co-simulation. V Building Simulation Conference Proceedings, str. 231-238, 2022.
  • Lee, H.S. – Heo, Y.: Effect of limited controller and sensor datasets on the performance of data-driven model predictive control for residential buildings. V Building Simulation Conference Proceedings, str. 2671-2678, 2022.
  • Storek, T. – Wüllhorst, F. – Koßler, S. – Baranski, M. – Kümpel, A. – Müller, D.: A virtual test bed for evaluating advanced building automation algorithms. V Building Simulation Conference Proceedings, str. 3188-3195, 2022.
  • Rulff, D. – Christiaanse, T.V. – Evins, R.: Where HVAC models fail - a conceptual framework for extending effective HVAC modelling into early concept design of net zero buildings. V Building Simulation Conference Proceedings, str. 2078-2085, 2022.
  • Yang, T. – Filonenko, K. – Dallaire, J. – Ljungdahl, V.B. – Jradi, M. – Kieseritzky, E. – Pawelz, F. – Veje, C.: Formulation and Implementation of a Model Predictive Control (MPC) Strategy for a PCM-driven Building Ventilation Cooling System. V Building Simulation Conference Proceedings, str. 318-325, 2022.
  • Bagle, M. – Maree, P. – Walnum, H.T. – Sartori, I.: Identifying grey-box models from archetypes of apartment block buildings. V Building Simulation Conference Proceedings, str. 1091-1098, 2022.
  • Ono, E. – Mihara, K. – Hasama, T. – Takemasa, Y. – Lasternas, B. – Chong, A.: Investigating the relationship between interpretability and performance for optimal rule-based control. V Building Simulation Conference Proceedings, str. 2562-2569, 2022.
  • Susuki, Y. – Eto, K. – Hiramatsu, N. – Ishigame, A.: Control of Oscillatory Temperature Field in a Building via Damping Assignment to Nonlinear Koopman Mode. V 2022 IEEE Conference on Control Technology and Applications, CCTA 2022, str. 796-801, 2022.
  • Chen, Y. – Liang, E. – Berardi, U. – Yang, J. – Jiang, X. – Cui, G.: A Model-Based Predictive Control Method of the Ground-Source Heat Pump System for Maintaining Thermal Comfort in Low-Energy Buildings. V 2022 IEEE 7th International Conference on Power and Renewable Energy, ICPRE 2022, str. 1080-1085, 2022.
  • Bergsteinsson, H.G. – Møller, J.K. – Thilker, C.A. – Guericke, D. – Heller, A. – Nielsen, T.S. – Madsen, H.: Data-Driven Methods for Efficient Operation of District Heating Systems. Green Energy and Technology, str. 129-163, 2022.
  • Rivera, A.K. – Sánchez, J. – Austin, M.C.: A Simplified Model Parameter Identification Methodology for Buildings Indoor Thermal Behavior Control: A Case Study in a Tropical Climate of Panama. V Proceedings of the LACCEI international Multi-conference for Engineering, Education and Technology, 2022.
  • Sen, S. – Kumar, M.: MPC Based Energy Management System for Grid-Connected Smart Buildings with EVs. V 2022 IEEE IAS Global Conference on Emerging Technologies, GlobConET 2022, str. 146-151, 2022.
  • Stoffel, P. – Loffler, C. – Eser, S. – Kumpel, A. – Muller, D.: Combining Data-driven and Physics-based Process Models for Hybrid Model Predictive Control of Building Energy Systems. V 2022 30th Mediterranean Conference on Control and Automation, MED 2022, str. 121-126, 2022.
  • Eser, S. – Stoffel, P. – Kumpel, A. – Muller, D.: Distributed model predictive control of a nonlinear building energy system using consensus ADMM. V 2022 30th Mediterranean Conference on Control and Automation, MED 2022, str. 902-907, 2022.
  • Frahm, M. – Langner, F. – Zwickel, P. – Matthes, J. – Mikut, R. – Hagenmeyer, V.: How to Derive and Implement a Minimalistic RC Model from Thermodynamics for the Control of Thermal Parameters for Assuring Thermal Comfort in Buildings. V 1st International Workshop on Open Source Modelling and Simulation of Energy Systems, OSMSES 2022 - Proceedings, 2022.
  • Falugi, P. – O’Dwyer, E. – Zagorowska, M.A. – Atam, E. – Kerrigan, E.C. – Strbac, G. – Shah, N.: MPC and Optimal Design of Residential Buildings with Seasonal Storage: A Case Study. Green Energy and Technology, str. 129-160, 2022.
  • O’Dwyer, E. – Atam, E. – Falugi, P. – Kerrigan, E.C. – Zagorowska, M.A. – Shah, N.: A Modelling Workflow for Predictive Control in Residential Buildings. Green Energy and Technology, str. 99-128, 2022.
  • Wooding, B. – Vahidinasab, V. – Kazemi, M. – Soudjani, S.: Control and Management of Active Buildings. Green Energy and Technology, str. 161-192, 2022.
  • Meimand, M. – Jazizadeh, F.: Human-in-the-Loop Model Predictive Operation for Energy Efficient HVAC Systems. V Construction Research Congress 2022: Infrastructure Sustainability and Resilience - Selected Papers from Construction Research Congress 2022, str. 178-187, 2022.
  • Notton, G. – Faggianelli, G.A. – Voyant, C. – Ouedraogo, S. – Pigelet, G. – Duchaud, J.-L.: Solar Radiation Forecasting for Smart Building Applications. Green Energy and Technology, str. 229-247, 2022.
  • Vogt, M. – Platzdasch, A. – Abraham, T. – Herrmann, C.: Model-based energy flexibility analysis of a dry room HVAC system in battery cell production. V Procedia CIRP, str. 410-415, 2022.
  • Abtahi, M. – Athienitis, A. – Delcroix, B.: Control-oriented thermal network models for predictive load management in Canadian houses with on-Site solar electricity generation: application to a research house. Journal of Building Performance Simulation, č. 4, zv. 15, str. 536-552, 2022.
  • Leprince, J. – Miller, C. – Frei, M. – Madsen, H. – Zeiler, W.: Fifty shades of black: Uncovering physical models from symbolic regressions for scalable building heat dynamics identification. V BuildSys 2021 - Proceedings of the 2021 ACM International Conference on Systems for Energy-Efficient Built Environments, str. 345-348, 2021.
  • Park, B. – Rempel, A.R. – Lai, A.K.L. – Chiaramonte, J. – Mishra, S.: Reinforcement Learning for Control of Passive Heating and Cooling in Buildings. V IFAC-PapersOnLine, str. 907-912, 2021.
  • Stoffel, P. – Kümpel, A. – Müller, D.: Optimizing Operation of Geothermal fields using Nonlinear Model Predictive Control and Moving Horizon Estimation. V ECOS 2021 - 34th International Conference on Efficency, Cost, Optimization, Simulation and Environmental Impact of Energy Systems, str. 599-610, 2021.
  • Kühn, L. – Maier, L. – Mehrfeld, P. – Müller, D.: Exploiting the Potential of Electric Vehicle Charging combined with a Stationary Battery within non-residential Buildings using hierarchical MPC. V ECOS 2021 - 34th International Conference on Efficency, Cost, Optimization, Simulation and Environmental Impact of Energy Systems, str. 1095-1106, 2021.
  • Maier, L. – Henn, S. – Mehrfeld, P. – Müller, D.: Approximate Optimal Control for Heat Pumps in Building Energy Systems. V ECOS 2021 - 34th International Conference on Efficency, Cost, Optimization, Simulation and Environmental Impact of Energy Systems, str. 332-343, 2021.
  • Maier, L. – Schreiber, T. – Kümpel, A. – Mehrfeld, P. – Müller, D.: Integration of higher Control Methods into a mode-based Control of a Building Energy System. V ECOS 2021 - 34th International Conference on Efficency, Cost, Optimization, Simulation and Environmental Impact of Energy Systems, str. 644-655, 2021.
  • Casini, M.: Construction 4.0: Advanced Technology, Tools and Materials for the Digital Transformation of the Construction Industry, 2021.
  • Solinas, F.M. – Bellagarda, A. – Macii, E. – Patti, E. – Bottaccioli, L.: An Hybrid Model-Free Reinforcement Learning Approach for HVAC Control. V 21st IEEE International Conference on Environment and Electrical Engineering and 2021 5th IEEE Industrial and Commercial Power System Europe, EEEIC / I and CPS Europe 2021 - Proceedings, 2021.
  • Maree, J.P. – Gros, S. – Walnum, H.T.: Adaptive control and identification for heating demand-response in buildings. V 2021 European Control Conference, ECC 2021, str. 1931-1936, 2021.
  • Wu, Si – Zheng, Wanfu – Wang, Zhe – Chen, Guanghao – Yang, Pu – Yue, Shang – Li, Dingqian – Wu, Yue: AlphaDataCenterCooling: A virtual testbed for evaluating operational strategies in data center cooling plants. Applied Energy, č. 125100, zv. 380, 2025.
  • Widmer, Fabio – van Dooren, Stijn – Onder, Christopher H.: Optimization of the energy-comfort trade-off of HVAC systems in electric city buses based on a steady-state model. Control Engineering Practice, č. 106158, zv. 154, 2025.
  • Smith, Andrew R. – Ghamari, Mehrdad – Velusamy, Sasireka – Sundaram, Senthilarasu: Thin-Film Technologies for Sustainable Building-Integrated Photovoltaics. Energies, č. 24, zv. 17, 2024.
  • Ajifowowe, Iyanu – Chang, Hojong – Lee, Chae Seok – Chang, Seongju: Prospects and challenges of reinforcement learning- based HVAC control. Journal of Building Engineering, č. 111080, zv. 98, 2024.
  • Oezmeteler, M. Batu – Bilgic, Deborah – Pan, Guanru – Koch, Alexander – Faulwasser, Timm: Data-driven uncertainty propagation for stochastic predictive control of multi-energy systems. European Journal of Control, č. A, zv. 80, 2024.
  • Kandelan, Shima Norouzi – Mohammed, Noushad Ahamed Chittoor – Grewal, Kuljeet Singh – Farooque, Aitazaz A. – Hu, Yulin: Geometric data in urban building energy modeling: Current practices and the case for automation. Journal of Building Engineering, č. 110836, zv. 97, 2024.
  • Knudsen, Michael Dahl – Fiorentini, Massimo – Petersen, Steffen: A heat-measurement-free strategy for Economic Model Predictive Control of hydronic radiators. Journal of Building Engineering, č. 110694, zv. 97, 2024.
  • Li, Shuhao – Li, Siqi – Wang, Zhe: Accelerating chiller sequencing using dynamic programming. Energy and Buildings, č. 115037, zv. 325, 2024.
  • Evens, Maarten – Arteconi, Alessia: Heat pump digital twin: An accurate neural network model for heat pump behaviour prediction. Applied Energy, č. A, zv. 378, 2025.
  • Ramesh, Uthraa K. – Avraamidou, Styliani – Ganesh, Hari S.: Energy and temperature management in buildings through Multi-Objective Model Predictive Control on a chip. Computers & Chemical Engineering, č. 108903, zv. 192, 2025.
  • He, Ning – Guo, Jiawen – Li, Yanxin – Quan, Yubo – Li, Ruoxia – Yang, Liu: Stochastic model predictive control for the optimal operation of office buildings. Building and Environment, č. C, zv. 267, 2025.
  • Lopez-Villamor, Inigo – Eguiarte, Olaia – Arregi, Benat – Garay-Martinez, Roberto – Garrido-Marijuan, Antonio: Time of the week AutoRegressive eXogenous (TOW-ARX) model to predict thermal consumption in a large commercial mall. Energy Conversion and Management-x, č. 100777, zv. 24, 2024.
  • Nweye, Kingsley – Kaspar, Kathryn – Buscemi, Giacomo – Fonseca, Tiago – Pinto, Giuseppe – Ghose, Dipanjan – Duddukuru, Satvik – Pratapa, Pavani – Li, Han – Mohammadi, Javad – Ferreira, Luis Lino – Hong, Tianzhen – Ouf, Mohamed – Capozzoli, Alfonso – Nagy, Zoltan: CityLearn v2: energy-flexible, resilient, occupant-centric, and carbon-aware management of grid-interactive communities. Journal of Building Performance Simulation, 2024.
  • Kaisermayer, Valentin – Muschick, Daniel – Horn, Martin – Schweiger, Gerald – Schwengler, Thomas – Moerth, Michael – Heimrath, Richard – Mach, Thomas – Herzlieb, Michael – Goelles, Markus: Predictive building energy management with user feedback in the loop. Smart Energy, č. 100164, zv. 16, 2024.
  • Langner, Felix – Kovacevic, Jovana – Zwickel, Philipp – Dengiz, Thomas – Frahm, Moritz – Waczowicz, Simon – Cakmak, Hueseyin K. – Matthes, Joerg – Hagenmeyer, Veit: Coordinated price-based control of modulating heat pumps for practical demand response and peak shaving in building clusters. Energy and Buildings, č. 114940, zv. 324, 2024.
  • Shi, Shanrui – Miyata, Shohei – Akashi, Yasunori: Event-driven model-based optimal demand-controlled ventilation for multizone VAV systems: Enhancing energy efficiency and indoor environmental quality. Applied Energy, č. D, zv. 377, 2025.
  • Saeed, Muhammad Hafeez – Kazmi, Hussain – Deconinck, Geert: Dyna-PINN: Physics-informed deep dyna-q reinforcement learning for intelligent control of building heating system in low-diversity training data regimes. Energy and Buildings, č. 114879, zv. 324, 2024.
  • Urrutia, Laura Zabala – Pascual, Jesus Febres – Iribarren, Estibaliz Perez – Garay, Raymond Sterling – Pino, Iker Gonzalez: Model predictive control with self-learning capability for automated demand response in buildings. Applied Thermal Engineering, č. A, zv. 258, 2025.
  • Belloni, E. – Bianchini, G. – Casini, M. – Faba, A. – Intravaia, M. – Laudani, A. – Lozito, G. M.: An overview on building-integrated photovoltaics: technological solutions, modeling, and control. Energy and Buildings, č. 114867, zv. 324, 2024.
  • Wuellhorst, Fabian – Reuter-Schniete, Jonas – Maier, Laura – Mueller, Dirk: Heat pump and thermal energy storage: Influences of photovoltaic, the control strategy, and price assumptions on the optimal design. Renewable Energy, č. 121409, zv. 236, 2024.
  • Ma, Aoyun – Li, Dewei – Xi, Yugeng: Event-triggered distributed model predictive control for PWA systems. International Journal of Robust and Nonlinear Control, č. 2, zv. 35, str. 435-451, 2025.
  • Fop, Davide – Yaghoubi, Ali Reza – Capozzoli, Alfonso: Validation of a Model Predictive Control Strategy on a High Fidelity Building Emulator. Energies, č. 20, zv. 17, 2024.
  • Javed, Tasmiyah – Oluwole-ojo, Oluwaloba – Howarth, Martin – Xu, Xu – Rashvand, Mahdi – Zhang, Hongwei: Application of Advanced Process Control to a Continuous Flow Ohmic Heater: A Case Study with Tomato Basil Sauce. Applied Sciences-basel, č. 19, zv. 14, 2024.
  • Savadkoohi, Marjan – Macarulla, Marcel – Tejedor, Blanca – Casals, Miquel: Analyzing the implementation of predictive control systems and application of stored data in non-residential buildings. Energy Efficiency, č. 7, zv. 17, 2024.
  • Xin, Xin – Zhang, Zhihao – Zhou, Yong – Liu, Yanfeng – Wang, Dengjia – Nan, Shuo: A comprehensive review of predictive control strategies in heating, ventilation, and air-conditioning (HVAC): Model-free VS model. Journal of Building Engineering, č. 110013, zv. 94, 2024.
  • Jiang, Fuyang – Kazmi, Hussain: What-if: A causal machine learning approach to control-oriented modelling for building thermal dynamics. Applied Energy, č. C, zv. 377, 2025.
  • Sun, Guoxin – Yu, Yongheng – Yu, Qihui – Tan, Xin – Wu, Linfeng – Qin, Ripeng – Wang, Yahui: Enhanced temperature regulation in compound heating systems: Leveraging guided policy search and model predictive control. Renewable Energy, č. 121449, zv. 236, 2024.
  • Pergantis, Elias N. – Dhillon, Parveen – Premer, Levi D. Reyes – Lee, Alex H. – Ziviani, Davide – Kircher, Kevin J.: Humidity-aware model predictive control for residential air conditioning: A field study. Building and Environment, č. 112093, zv. 266, 2024.
  • Abtahi, Matin – Athienitis, Andreas – Delcroix, Benoit: Predictive heating load management and energy flexibility analysis in residential sector using an archetype gray-box modeling approach: Application to an experimental house in Québec. Journal of Building Physics, č. 3, SI, zv. 48, str. 442-466, 2024.
  • Wang, Xiangwei – Wang, Peng – Huang, Renke – Zhu, Xiuli – Arroyo, Javier – Li, Ning: Safe deep reinforcement learning for building energy management. Applied Energy, č. A, zv. 377, 2025.
  • Hamidane, Hafsa – EL Faiz, Samira – Rkik, Iliass – El Khayat, Mohamed – Guerbaoui, Mohammed – Ed-Dahhak, Abdelali – Lachhab, Abdeslam: Constrained temperature and relative humidity predictive control: Agricultural greenhouse case of study. Information Processing in Agriculture, č. 3, zv. 11, str. 409-420, 2024.
  • Zhao, Zihao – Wang, Baolong – Li, Xianting – Shi, Wenxing: Adaptive model predictive control of a residential solar-air hybrid heat pump system. Energy Conversion and Management, č. 119026, zv. 321, 2024.
  • Ashida, Yoichiro – Obika, Masanobu: Data-Driven Design of Predictive Functional Control Based Feed -Forward Disturbance Rejection Controller. Ifac Papersonline, č. 14, zv. 58, str. 610-615, 2024.
  • Rios, Sara J. – Sanchez, G. Elio – Intriago, Andres – Falcones, Sixifo: Harnessing Field-Programmable Gate Array-Based Simulation for Enhanced Predictive Control for Voltage Regulation in a DC-DC Boost Converter. Electricity, č. 3, zv. 5, str. 622-641, 2024.
  • He, Boyu – Zhang, Ning – Fang, Chen – Su, Yun – Wang, Yi: Flexible Building Energy Management With Neural ODEs-Based Model Predictive Control. IEEE Transactions on Smart Grid, č. 5, zv. 15, str. 4690-4704, 2024.
  • Pan, Chao – Li, Yaoyu – Dong, Liujia: Offset-Free Koopman Model Predictive Control of Thermal Comfort Regulation for a Variable Refrigerant Flow-Dedicated Outdoor Air System-Combined System. Journal of Dynamic Systems Measurement and Control-transactions of the Asme, č. 5, zv. 146, 2024.
  • Chen, Xujun – Song, Danyao – Wan, Zhengzhong – Zhang, Ruihua – Wu, Zihao – Xiao, Xinqing: Light energy harvested flexible wireless sensing for disinfection sterilization in food storage. Sustainable Energy Technologies and Assessments, č. 103952, zv. 70, 2024.
  • Luo, Zhigang – Zhu, Bing – Meng, Xiangyu – Zuo, Zongyu: Event-based model predictive control with two-phase predictive detection. Journal of the Franklin Institute-engineering and Applied Mathematics, č. 16, zv. 361, 2024.
  • Taboga, Vincent – Dagdougui, Hanane: A Distributed ADMM-Based Deep Learning Approach for Thermal Control in Multi-Zone Buildings Under Demand Response Events. IEEE Transactions on Automation Science and Engineering, 2024.
  • Zinsmeister, Daniel – Ludolfinger, Ulrich – Peric, Vedran S. – Goebel, Christoph: A benchmarking framework for energy management systems with commercial hardware models. Energy and Buildings, č. 114648, zv. 321, 2024.
  • Zamani, Vahid – Abtahi, Shaghayegh – Chen, Yuxiang – Li, Yong: Parameter-input estimation of RC thermal models of buildings using unscented Kalman filter and nonlinear least square method. Indoor and Built Environment, 2024.
  • Mun, Jeeye – Cho, Seongkwon – Choi, Seohee – Park, Cheol Soo: Local vs. federated cooling control for an office space with heat pump and photovoltaic systems. Energy and Buildings, č. 114631, zv. 321, 2024.
  • Lokczewska, Wiktoria – Cholewa, Tomasz – Staszowska, Amelia – Wolszczak, Piotr – Guz, Lukasz – Bocian, Martyna – Siuta-Olcha, Alicja – Balaras, Constantinos A. – Deb, Chirag – Kosonen, Risto – Michalczyk, Krystian: On the influence of solar insolation and increase of outdoor temperature on energy savings obtained in heating system with forecast control. Energy and Buildings, č. 114650, zv. 320, 2024.
  • Langtry, Max – Wichitwechkarn, Vijja – Ward, Rebecca – Zhuang, Chaoqun – Kreitmair, Monika J. – Makasis, Nikolas – Conti, Zack Xuereb – Choudhary, Ruchi: Impact of data for forecasting on performance of model predictive control in buildings with smart energy storage. Energy and Buildings, č. 114605, zv. 320, 2024.
  • Mugnini, Alice – Evens, Maarten – Arteconi, Alessia: Model predictive controls for residential buildings with heat pumps: Experimentally validated archetypes to simplify the large-scale application. Energy and Buildings, č. 114632, zv. 320, 2024.
  • Tian, Binbin – Peng, Hui – Kang, Tiao: RBF-ARX model-based predictive control approach to an inverted pendulum with self-triggered mechanism. Chaos Solitons & Fractals, č. 115291, zv. 186, 2024.
  • Cid, Jordi Macia – Mylonas, Angelos – Pean, Thibault Q. – Pascual, Jordi – Salom, Jaume: Energy optimization algorithms for multi-residential buildings: A model predictive control application. Energy and Buildings, č. 114562, zv. 319, 2024.
  • Mohebi, Parastoo – Zheng, Wanfu – Wang, Zhe: Comparing different parameter identification techniques for optimal control of building energy systems. Energy and Buildings, č. 114563, zv. 319, 2024.
  • Yang, Xiaochen – Liu, Dingzhou – Tian, Zhe – Deng, Na – Wang, Ruizhi – Jiang, Yixuan – Tang, Rui – Zong, Yi: Comparison of different control methods on the thermally activated building system (TABS) with large energy flexibility. Applied Thermal Engineering, č. 123863, zv. 254, 2024.
  • Langner, Felix – Frahm, Moritz – Wang, Weimin – Matthes, Joerg – Hagenmeyer, Veit: Hierarchical-stochastic model predictive control for a grid-interactive multi-zone residential building with distributed energy resources. Journal of Building Engineering, č. 109401, zv. 89, 2024.
  • Bian, Yuexin – Fu, Xiaohan – Gupta, Rajesh K. – Shi, Yuanyuan: Ventilation and temperature control for energy-efficient and healthy buildings: A differentiable PDE approach. Applied Energy, č. 123477, zv. 372, 2024.
  • Zhang, Xiaoyi – Li, Yanxue – Xiao, Fu – Gao, Weijun: Energy efficiency measures towards decarbonizing Japanese residential sector: Techniques, application evidence and future perspectives. Energy and Buildings, č. 114514, zv. 319, 2024.
  • Chen, Wei-Han – You, Fengqi: Sustainable energy management and control for Decarbonization of complex multi-zone buildings with renewable solar and geothermal energies using machine learning, robust optimization, and predictive control. Applied Energy, č. 123802, zv. 372, 2024.
  • Engel, Jens – Schmitt, Thomas – Rodemann, Tobias – Adamy, Juergen: Hierarchical MPC for building energy management: Incorporating data-driven error and information. Applied Energy, č. 123780, zv. 372, 2024.
  • Tu, Yuehai – Tu, Feng – Yang, Yun – Qian, Jiaqi – Wu, Xi – Yang, Sian: Optimization of battery charging and discharging strategies in substation DC systems using the dual self-attention network-N-BEATS model. Science Progress, č. 3, zv. 107, 2024.
  • Ferrara, Maria – Bilardo, Matteo – Bogatu, Dragos-Ioan – Lee, Doyun – Khatibi, Mahmood – Rahnama, Samira – Shinoda, Jun – Sun, Ying – Sun, Yongjun – Afshari, Alireza – Haghighat, Fariborz – Kazanci, Ongun B. – Ooka, Ryozo – Fabrizio, Enrico: Review on Advanced Storage Control Applied to Optimized Operation of Energy Systems for Buildings and Districts: Insights and Perspectives. Energies, č. 14, zv. 17, 2024.
  • Wang, Huilong – Mai, Daran – Li, Qian – Ding, Zhikun: Evaluating Machine Learning Models for HVAC Demand Response: The Impact of Prediction Accuracy on Model Predictive Control Performance. Buildings, č. 7, zv. 14, 2024.
  • Chen, Zhongying – Wang, Jun – Han, Qing-Long: Hybrid Model Predictive Control of Chiller Systems via Collaborative Neurodynamic Optimization. IEEE Transactions on Industrial Informatics, č. 7, zv. 20, str. 9539-9547, 2024.
  • Erfani, Arash – Jafarinejad, Tohid – Roels, Staf – Saelens, Dirk: Impact of dataset sampling period on building thermal models used for flexibility activation. Building and Environment, č. 111775, zv. 262, 2024.
  • Liu, Mingzhe – Guo, Mingyue – Fu, Yangyang – O\\\'Neill, Zheng – Gao, Yuan: Expert-guided imitation learning for energy management: Evaluating GAIL\\\'s performance in building control applications. Applied Energy, č. 123753, zv. 372, 2024.
  • Wang, Xuezheng – Dong, Bing: Long-term experimental evaluation and comparison of advanced controls for HVAC systems. Applied Energy, č. 123706, zv. 371, 2024.
  • Heidari, Rahmat – Dioguardi, Emily – Sethuvenkatraman, Subbu – Braslavsky, Julio H.: Evaluating advanced HVAC control benefits in operational buildings using historic data - A case study. Applied Thermal Engineering, č. 123611, zv. 252, 2024.
  • Erfani, Arash – Jafarinejad, Tohid – Roels, Staf – Saelens, Dirk: Assessing the impact of the dataset\\\'s size and quality on building thermal models for energy flexibility. Energy and Buildings, č. 114404, zv. 317, 2024.
  • Hu, Zehuan – Gao, Yuan – Sun, Luning – Mae, Masayuki – Imaizumi, Taiji: Improved robust model predictive control for residential building air conditioning and photovoltaic power generation with battery energy storage system under weather forecast uncertainty. Applied Energy, č. 123652, zv. 371, 2024.
  • Morovat, Navid – Athienitis, Andreas K. – Candanedo, Jose Agustin: Design of a model predictive control methodology for integration of retrofitted air-based PV/T system in school buildings. Journal of Building Performance Simulation, 2024.
  • Wang, Cuiling – Wang, Baolong – You, Fengqi: Demand response for residential buildings using hierarchical nonlinear model predictive control for plug-and-play. Applied Energy, č. 123581, zv. 369, 2024.
  • Clauss, John – Brozovsky, Johannes – Georges, Laurent: Demonstrating the load-shifting potential of a schedule-based control in a real-life educational building. Energy and Buildings, č. 114321, zv. 316, 2024.
  • Clauss, John – Caetano, Luis – Svinndal, Asmund Bror: Impact of practical challenges on the implementation of data-driven services for building operation: Insights from a real-life case study. Energy and Buildings, č. 114310, zv. 316, 2024.
  • Luo, Zhigang – Zhu, Bing: Intermittent sampling and detection event-based model predictive control for perturbed nonlinear systems. Nonlinear Dynamics, č. 16, zv. 112, str. 14175-14189, 2024.
  • Nagarsheth, Shaival H. – Henao, Nilson – Agbossou, Kodjo – Fournier, Michael: Energy management set-up to exploit the flexibility potential of a multi-unitresidential apartment building in a cold climate region. Ifac Papersonline, č. 1, zv. 57, str. 143-148, 2024.
  • Taboga, Vincent – Gehring, Clement – Le Cam, Mathieu – Dagdougui, Hanane – Bacon, Pierre-Luc: Neural differential equations for temperature control in buildings under demand. Applied Energy, č. 123433, zv. 368, 2024.
  • Silvestri, Alberto – Coraci, Davide – Brandi, Silvio – Capozzoli, Alfonso – Borkowski, Esther – Kohler, Johannes – Wu, Duan – Zeilinger, Melanie N. – Schlueter, Arno: Real building implementation of a deep reinforcement learning controller to enhance energy efficiency and indoor temperature control. Applied Energy, č. 123447, zv. 368, 2024.
  • Hong, Seokho – Jang, Eunha – Cho, Jihyeon – Lee, Junsoo – Rhee, Jee Heon – Lee, Hyeongseok – Lee, Miyoung – Cha, Seung Hyun – Koo, Choongwan – Baik, Ok Mi – Heo, Yeonsook: A living lab to develop smart home services for the residential welfare of older adults. Technology in Society, č. 102577, zv. 77, 2024.
  • Caballero-Pena, Juan – Osma-Pinto, German – Rey, Juan M. – Nagarsheth, Shaival – Henao, Nilson – Agbossou, Kodjo: Analysis of the building occupancy estimation and prediction process: A systematic review. Energy and Buildings, č. 114230, zv. 313, 2024.
  • Biagioni, David – Zhang, Xiangyu – Adcock, Christiane – Sinner, Michael – Graf, Peter – King, Jennifer: Comparative analysis of grid-interactive building control algorithms: From model-based to learning-based approaches. Engineering Applications of Artificial Intelligence, č. E, zv. 133, 2024.
  • Pavirani, Fabio – Gokhale, Gargya – Claessens, Bert – Develder, Chris: Demand response for residential building heating: Effective Monte Carlo Tree Search control based on physics-informed neural networks. Energy and Buildings, č. 114161, zv. 311, 2024.
  • Stienecker, Malte: Impact of forecasted heat demand on day-ahead optimal scheduling and real time control of multi-energy systems. Energy, č. 131156, zv. 297, 2024.
  • Pan, Chao – Li, Yaoyu: Nonlinear model predictive control of chiller plant demand response with Koopman bilinear model and Krylov-subspace model reduction. Control Engineering Practice, č. 105936, zv. 147, 2024.
  • Morovat, Navid – Athienitis, Andreas K. – Candanedo, Jose Agustin – Nouanegue, Herve Frank: Heuristic model predictive control implementation to activate energy flexibility in a fully electric school building. Energy, č. 131126, zv. 296, 2024.
  • Shi, Shanrui – Miyata, Shohei – Akashi, Yasunori – Momota, Masashi – Sawachi, Takao – Gao, Yuan: Model-based optimal control strategy for multizone VAV air-conditioning systems for neutralizing room pressure and minimizing fan energy consumption. Building and Environment, č. 111464, zv. 256, 2024.
  • Mbuwir, Brida V. – Geysen, Davy – Kosmadakis, George – Pilou, Marika – Meramveliotakis, George – Toersche, Hermen: Optimal control of a heat pump-based energy system for space heating and hot water provision in buildings: Results from a field test. Energy and Buildings, č. 114116, zv. 310, 2024.
  • Banapour, Elham – Bagheri, Peyman – Hashemzadeh, Farzad: Output Feedback Stochastic Model Predictive Control for Linear Systems with Convex Optimization Approach. Iranian Journal of Science and Technology-transactions of Electrical Engineering, č. 3, zv. 48, str. 1199-1208, 2024.
  • Shen, Meng – Tang, Baojun – Zhang, Keai: Low carbon operation optimisation strategies for heating, ventilation and air conditioning systems in office buildings. International Journal of Production Research, č. 18, SI, zv. 62, str. 6781-6800, 2024.
  • Nguyen, Anh Tuan – Pham, Duy Hoang – Oo, Bee Lan – Santamouris, Mattheos – Ahn, Yonghan – Lim, Benson T. H.: Modelling building HVAC control strategies using a deep reinforcement learning approach. Energy and Buildings, č. 114065, zv. 310, 2024.
  • Hakansson, Henrik – Onnheim, Magnus – Gustavsson, Emil – Jirstrand, Mats: Effects on district heating networks by introducing demand side economic model predictive control. Energy and Buildings, č. 114051, zv. 309, 2024.
  • Yang, Shiyu – Gao, H. Oliver – You, Fengqi: Demand flexibility and cost-saving potentials via smart building energy management: Opportunities in residential space heating across the US. Advances in Applied Energy, č. 100171, zv. 14, 2024.
  • Luo, Jianing – Yuan, Yanping – Joybari, Mahmood Mastani – Cao, Xiaoling: Development of a prediction-based scheduling control strategy with V2B mode for PV-building-EV integrated systems. Renewable Energy, č. 120237, zv. 224, 2024.
  • Sen, Sachidananda – Kumar, Maneesh: Distributed-MPC Type Optimal EMS for Renewables and EVs Based Grid-Connected Building Integrated Microgrid. IEEE Transactions on Industry Applications, č. 2, zv. 60, str. 2390-2408, 2024.
  • Azzi, Amal – Tabaa, Mohamed – Chegari, Badr – Hachimi, Hanaa: Balancing Sustainability and Comfort: A Holistic Study of Building Control Strategies That Meet the Global Standards for Efficiency and Thermal Comfort. Sustainability, č. 5, zv. 16, 2024.
  • Hussain, Sadam – Alrumayh, Omar – Menon, Ramanunni Parakkal – Lai, Chunyan – Eicker, Ursula: Novel Incentive-Based Multi-Level Framework for Flexibility Provision in Smart Grids. IEEE Transactions on Smart Grid, č. 2, zv. 15, str. 1594-1607, 2024.
  • Chen, Zhongying – Wang, Jun – Han, Qing-Long: Receding-Horizon Chiller Operation Planning via Collaborative Neurodynamic Optimization. IEEE Transactions on Smart Grid, č. 2, zv. 15, str. 2321-2331, 2024.
  • Leherbauer, Dominik – Hehenberger, Peter: Physics-Based Modeling and Parameter Tracing for Industrial Demand-Side Management Applications: A Novel Approach. Sustainability, č. 5, zv. 16, 2024.
  • Pergantis, Elias N. – Priyadarshan – Al Theeb, Nadah – Dhillon, Parveen – Ore, Jonathan P. – Ziviani, Davide – Groll, Eckhard A. – Kircher, Kevin J.: Field demonstration of predictive heating control for an all-electric house in a cold climate. Applied Energy, č. 122820, zv. 360, 2024.
  • Soleimanijavid, Atiye – Konstantzos, Iason – Liu, Xiaoqi: Challenges and opportunities of occupant-centric building controls in real-world implementation: A critical review. Energy and Buildings, č. 113958, zv. 308, 2024.
  • Kandil, Mohamed S. – McArthur, J. J.: The benefit of noise-injection for dynamic gray-box model creation. Advanced Engineering Informatics, č. 102381, zv. 60, 2024.
  • Manfren, Massimiliano – Gonzalez-Carreon, Karla M. – James, Patrick A. B.: Interpretable Data-Driven Methods for Building Energy Modelling-A Review of Critical Connections and Gaps. Energies, č. 4, zv. 17, 2024.
  • Ham, Andy – Park, Myoung-Ju – Fowler, John: Integrated Scheduling of Jobs, Tools, Machines, and Two Different Set of Transbots. IEEE Transactions on Semiconductor Manufacturing, č. 1, zv. 37, str. 27-37, 2024.
  • Vivian, J. – Prataviera, E. – Gastaldello, N. – Zarrella, A.: A comparison between grey-box models and neural networks for indoor air temperature prediction in buildings. Journal of Building Engineering, č. 108583, zv. 84, 2024.
  • Khosravi, Mohammad – Huber, Benjamin – Decoussemaeker, Antoon – Heer, Philipp – Smith, Roy S.: Model Predictive Control in buildings with thermal and visual comfort constraints. Energy and Buildings, č. 113831, zv. 306, 2024.
  • Zhi, Yuan – Gao, Ding – Yang, Xudong: Busbar voltage-based control strategy for energy flexibility in farmhouse coupled to photovoltaic systems. Renewable Energy, č. 120015, zv. 223, 2024.
  • Chalendar, Jacques A. de – Keskar, Aditya – Johnson, Jeremiah X. – Mathieu, Johanna L.: Living laboratories can and should play a greater role to unlock flexibility in United States commercial buildings. Joule, č. 1, zv. 8, str. 13-28, 2024.
  • Stoffel, Phillip – Berktold, Max – Mueller, Dirk: Real-life data-driven model predictive control for building energy systems comparing different machine learning models. Energy and Buildings, č. 113895, zv. 305, 2024.
  • Eslami, Touraj – Jungbauer, Alois: Control strategy for biopharmaceutical production by model predictive control. Biotechnology Progress, č. 2, zv. 40, 2024.
  • Susuki, Yoshihiko – Eto, Kohei – Hiramatsu, Naoto – Ishigame, Atsushi: Control of In-Room Temperature Field via Damping Assignment to Nonlinear Koopman Mode. IEEE Transactions on Control Systems Technology, č. 5, zv. 32, str. 1569-1578, 2024.
  • Gehbauer, Christoph – Oliveira, Paulo – Tragner, Manfred – Black, Douglas R. – Baptista, Jose: Autonomous Hybrid Forecast Framework to Predict Electricity Demand. V 2024 IEEE 22nd Mediterranean Electrotechnical Conference, Melecon 2024, str. 242-247, 2024.
  • Barchi, Grazia – Dalla Maria, Enrico – Pierro, Marco – Belleri, Annamaria: Plus Energy Building Flexibility: Impact of BESS Control Strategy and PV Power Forecasting. V 2024 International Conference on Smart Energy Systems and Technologies, Sest 2024, 2024.
  • Gehbauer, Christoph – Tragner, Manfred – Baptista, Jose: Deterministic Sizing of Integrated Facade Nodes for Smart Buildings. V 2024 International Conference on Smart Energy Systems and Technologies, Sest 2024, 2024.
  • Mork, Maximilian – Ubachukwu, Eziama – Benz, Jakob – Althaus, Philipp – Xhonneux, Andre – Mueller, Dirk: ALICE2Modelica-Automated Building Model Generation for Building Control and Simulation. V 2024 Open Source Modelling and Simulation of Energy Systems, Osmses 2024, 2024.
  • Westphal, Lidia – Schroeder, Marcel – Carta, Daniele – Xhonneux, Andre – Benigni, Andrea – Mueller, Dirk: Development and Application of a FIWARE-based ICT-Platform for Multi-Energy Systems on Building and District Level. V 2024 Open Source Modelling and Simulation of Energy Systems, Osmses 2024, 2024.
  • Nibiret, Getinet Asimare – Kassie, Abrham Tadesse: Fuzzy Model Based Model Predictive Control for Biomass Boiler. International Journal of Engineering Research in Africa, zv. 71, str. 93-108, 2024.
  • Proietti, Maria Giulia – Elefante, Marco – Proietti, Luca – Longhi, Francesco – Moretti, Elisa: Towards environmental sustainability of non-residential buildings: an integrated approach to combine thermal comfort of people with energy saving strategies for heating system management. V 53rd Aicarr International Conference From Nzeb To Zeb: the Buildings of the Next Decades for a Healthy and Sustainable Future, 2024.
  • Ni, Zhongjun – Zhang, Chi – Karlsson, Magnus – Gong, Shaofang: Edge-based Parametric Digital Twins for Intelligent Building Indoor Climate Modeling. V 2024 IEEE 20th International Conference on Factory Communication Systems, Wfcs, str. 119-126, 2024.
  • Tohidi, Seyed Shahabaldin – Cali, Davide – Madsen, Henrik: Adaptive Model Predictive Controller for Building Thermal Dynamics. IEEE Control Systems Letters, zv. 8, str. 1325-1330, 2024.
  • Wang, Rui – Rayhana, Rakiba – Bai, Ling – Liu, Zheng: Efficient community building energy load forecasting through federated hypernetwork. V Nde 4.0, Predictive Maintenance, Communication, and Energy Systems: the Digital Transformation of Nde Ii, 2024.
  • Lin, Austin J. – Lei, Shunbo – Keskar, Aditya – Hiskens, Ian – Johnson, Jeremiah X. – Mathieu, Johanna L.: The Sub-Metered HVAC Implemented for Demand Response Dataset. Journal of Dynamic Systems Measurement and Control-transactions of the Asme, č. 1, zv. 146, 2024.
  • Hepf, Christian – Gottkehaskamp, Ben – Miller, Clayton – Auer, Thomas: International Comparison of Weather and Emission Predictive Building Control. Buildings, č. 1, zv. 14, 2024.
  • Wang, Mingfei – Kong, Xiangshu – Shan, Feifei – Zheng, Wengang – Ren, Pengfei – Wang, Jiaoling – Chen, Chunling – Zhang, Xin – Zhao, Chunjiang: Temperature Prediction of Mushrooms Based on a Data-Physics Hybrid Approach. Agriculture-basel, č. 1, zv. 14, 2024.
  • Zhang, Ye – Fang, Zhuangdong – Li, Changyou – Li, Chengjie: Deep-Learning-Based Model Predictive Control of an Industrial-Scale Multistate Counter-Flow Paddy Drying Process. Foods, č. 1, zv. 13, 2024.
  • Zamani, Vahid – Abtahi, Shaghayegh – Li, Yong – Chen, Yuxiang: Heating and cooling supply estimation to control buildings temperature using resistor-capacitor thermal model, unscented kalman filter, and nonlinear least square method. Building Services Engineering Research & Technology, č. 2, zv. 45, str. 135-160, 2024.
  • Maier, Laura – Brillert, Julius – Zanetti, Ettore – Mueller, Dirk: Approximating model predictive control strategies for heat pump systems applied to the building optimization testing framework (BOPTEST). Journal of Building Performance Simulation, č. 3, zv. 17, str. 338-360, 2024.
  • Liu, Sai – Du, Yuwei – Zhang, Rui – He, Huanfeng – Pan, Aiqiang – Ho, Tsz Chung – Zhu, Yihao – Li, Yang – Yip, Hin-Lap – Jen, Alex K. Y. – Tso, Chi Yan: Perovskite Smart Windows: The Light Manipulator in Energy-Efficient Buildings. Advanced Materials, č. 17, SI, zv. 36, 2024.
  • Chaudhary, Gaurav – Johra, Hicham – Georges, Laurent – Austbo, Bjorn: Synconn\\\\_build : A python based synthetic dataset generator for testing and validating control-oriented neural networks for building dynamics prediction. Methodsx, č. 102464, zv. 11, 2023.
  • Diller, Tim – Soppelsa, Anton – Nagpal, Himanshu – Fedrizzi, Roberto – Henze, Gregor: A dynamic programming based method for optimal control of a cascaded heat pump system with thermal energy storage. Optimization and Engineering, č. 1, SI, zv. 25, str. 229-251, 2024.
  • Zhang, Junfeng – Liu, Lanbin – Liu, Yameng: A subspace based method for modelling building\\\'s thermal dynamic in district heating system and parameter extrapolation verification. Building Simulation, č. 11, zv. 16, str. 2145-2158, 2023.
  • Li, Hongyi – Xu, Jun – Zhao, Qianchuan – Wang, Sixin: Economic Model Predictive Control in Buildings Based on Piecewise Linear Approximation of Predicted Mean Vote Index. IEEE Transactions on Automation Science and Engineering, č. 3, 1, zv. 21, str. 3384-3395, 2024.
  • Pfeiffer, Daniel – Hausser, Sebastian – Hudjetz, Stefan – Becker, Martin – Arteconi, Alessia: Suitability of models of different complexity for deployment in a model predictive controller of a refrigerating system with thermal energy storage. V 26th Iir International Congress of Refrigeration, Vol 2, str. 1383-1394, 2023.
  • Wang, Cuiling – Wang, Baolong – Zhao, Zihao: Demand Response Control for the Installed Inverter Air Conditioners Based on Hierarchical Model Predictive Control. V 26th Iir International Congress of Refrigeration, Vol 4, str. 301-309, 2023.
  • Balali, Yasaman – Busch, Andrew – O\\\'Keefe, Steven: Modelling and prediction of energy efficient building climate toward digital twin integration. V 2023 IEEE Pes 15th Asia-pacific Power and Energy Engineering Conference, Appeec, 2023.
  • Watts, Scott – MacGill, Iain: Stochastic Model Predictive Control for Solar Homes with Battery Energy Storage. V 2023 IEEE Pes 15th Asia-pacific Power and Energy Engineering Conference, Appeec, 2023.
  • Emami, Patrick – Sahu, Abhijeet – Graf, Peter: BuildingsBench: A Large-Scale Dataset of 900K Buildings and Benchmark for Short-Term Load Forecasting. V Advances in Neural Information Processing Systems 36 (neurips 2023), 2023.
  • Bortoff, S.A. – Schwerdtner, P. – Danielson, C. – Di Cairano, S. – Burns, D.J.: H-Infinity Loop-Shaped Model Predictive Control With HVAC Application. IEEE Transactions on Control Systems Technology, č. 5, zv. 30, str. 2188-2203, 2022.
  • Zeng, Z. – Augenbroe, G. – Chen, J.: Realization of bi-level optimization of adaptive building envelope with a finite-difference model featuring short execution time and versatility. Energy, č. 122778, zv. 243, 2022.
  • Maier, L. – Shamovich, M. – Hering, D. – Müller, D.: Automatic Model Selection and the Use of Representative Days in Approximate Model Predictive Control Applications for Heat Pump Systems. V Proceedings of ECOS 2022 - 35th International Conference on Efficiency, Cost, Optimization, Simulation and Environmental Impact of Energy Systems, str. 305-316, 2022.
  • Göbel, S. – Vering, C. – Müller, D.: Experimental Investigation of Rule-Based Control Strategies for Hybrid Heat Pump Systems Using the Smart Grid Ready Interface. V Proceedings of ECOS 2022 - 35th International Conference on Efficiency, Cost, Optimization, Simulation and Environmental Impact of Energy Systems, str. 1175-1186, 2022.
  • Stoffel, P. – Berktold, M. – Kümpel, A. – Müller, D.: An Online Learning Approach for Data-Driven Model Predictive Control in Building Energy Systems. V Proceedings of ECOS 2022 - 35th International Conference on Efficiency, Cost, Optimization, Simulation and Environmental Impact of Energy Systems, str. 621-632, 2022.
  • O\\\'Dwyer, E. – Falugi, P. – Shah, N. – Kerrigan, E.: Automating the data-driven predictive control design process for building thermal management. V Proceedings of ECOS 2022 - 35th International Conference on Efficiency, Cost, Optimization, Simulation and Environmental Impact of Energy Systems, str. 1315-1324, 2022.
  • Liu, H.R. – Hua, L.J. – Li, B.J. – Wang, C.X. – Wang, R.Z.: Thermal resistance-capacitance network model for fast simulation on the desiccant coated devices used for effective electronic cooling [Modèle de réseau de résistance-capacitance thermique pour une simulation rapide des dispositifs à revêtement déshydratant utilisés pour un refroidissement de composants électroniques efficace]. International Journal of Refrigeration, zv. 131, str. 78-86, 2021.
J. Drgoňa – D. Picard – M. Kvasnica – L. Helsen: Approximate model predictive building control via machine learning. Applied Energy, zv. 218, str. 199–216, 2018.
  • Počet citácií       112
  • Hu, R.L. – Granderson, J. – Auslander, D.M. – Agogino, A.: Design of machine learning models with domain experts for automated sensor selection for energy fault detection. Applied Energy, str. 117-128, 2019.
  • Benndorf, G.A. – Wystrcil, D. – Réhault, N.: Energy performance optimization in buildings: A review on semantic interoperability, fault detection, and predictive control. Applied Physics Reviews, č. 4, zv. 5, 2018.
  • Serale, G. – Fiorentini, M. – Capozzoli, A. – Cooper, P. – Perino, M.: Formulation of a model predictive control algorithm to enhance the performance of a latent heat solar thermal system. Energy Conversion and Management, zv. 173, str. 438-449, 2018.
  • Giaouris, D. – Papadopoulos, A.I. – Patsios, C. – Walker, S. – Ziogou, C. – Taylor, P. – Voutetakis, S. – Papadopoulou, S. – Seferlis, P.: A systems approach for management of microgrids considering multiple energy carriers, stochastic loads, forecasting and demand side response. Applied Energy, zv. 226, str. 546-559, 2018.
  • Zafeiratou, I. – Nguyen, D.V.A. – Prodan, I. – Lefèvre, L. – Piétrac, L.: Flatness-based hierarchical control of a meshed DC microgrid. IFAC-PapersOnLine, č. 20, zv. 51, str. 222-227, 2018.
  • Moriyasu, R. – Ueda, M. – Ikeda, T. – Nagaoka, M. – Jimbo, T. – Matsunaga, A. – Nakamura, T.: Real-time MPC Design Based on Machine Learning for a Diesel Engine Air Path System. IFAC-PapersOnLine, č. 31, zv. 51, str. 542-548, 2018.
  • Krishnamoorthy, D. – Thombre, M. – Skogestad, S. – Jäschke, J.: Data-driven Scenario Selection for Multistage Robust Model Predictive Control. IFAC-PapersOnLine, č. 20, zv. 51, str. 462-468, 2018.
  • Schwenkel, Lukas – Gharbi, Meriem – Trimpe, Sebastian – Ebenbauer, Christian: Online learning with stability guarantees: A memory-based real-time model predictive controller. arXiv preprint arXiv:1812.09582, 2018.
  • Krishnadas, Gautham: Data-driven modelling for demand response from large consumer energy assets. 2018.
  • Cotrufo, N. – Saloux, E. – Hardy, J. M. – Candanedo, J. A. – Platon, R.: A practical artificial intelligence-based approach for predictive control in commercial and institutional buildings. Energy and Buildings, č. UNSP 109563, zv. 206, 2020.
  • Moriyasu, Ryuta – Nojiri, Sayaka – Matsunaga, Akio – Nakamura, Toshihiro – Jimbo, Tomohiko: Diesel engine air path control based on neural approximation of nonlinear MPC. Control Engineering Practice, č. UNSP 104114, zv. 91, 2019.
  • Alsalemi, Abdullah – Ramadan, Mona – Bensaali, Faycal – Amira, Abbes – Sardianos, Christos – Varlamis, Iraklis – Dimitrakopoulos, George: Endorsing domestic energy saving behavior using micro-moment classification. Applied Energy, zv. 250, str. 1302-1311, 2019.
  • Lawrynczuk, Maciej – Oclon, Pawel: Model Predictive Control and energy optimisation in residential building with electric underfloor heating system. Energy, zv. 182, str. 1028-1044, 2019.
  • Cao, Sheng – Hou, Shengya – Yu, Lijun – Lu, He: Predictive control based on occupant behavior prediction for domestic hot water system using data mining algorithm. Energy Science & Engineering, č. 4, zv. 7, str. 1214-1232, 2019.
  • Wang, Jiangyu – Li, Shuai – Chen, Huanxin – Yuan, Yue – Huang, Yao: Data-driven model predictive control for building climate control: Three case studies on different buildings. Building and Environment, č. 106204, zv. 160, 2019.
  • Zeng, Aaron – Liu, Sheng – Yu, Yao: Comparative study of data driven methods in building electricity use prediction. Energy and Buildings, zv. 194, str. 289-300, 2019.
  • Tabares-Velasco, Paulo Cesar – Speake, Andrew – Harris, Maxwell – Newman, Alexandra – Vincent, Tyrone – Lanahan, Michael: A modeling framework for optimization-based control of a residential building thermostat for time-of-use pricing. Applied Energy, zv. 242, str. 1346-1357, 2019.
  • Bianchini, Gianni – Casini, Marco – Pepe, Daniele – Vicino, Antonio – Zanvettor, Giovanni Gino: An integrated model predictive control approach for optimal HVAC and energy storage operation in large-scale buildings. Applied Energy, zv. 240, str. 327-340, 2019.
  • Zong, Yi – Su, Wenjing – Wang, Jiawei – Rodek, Jakub Krzysztof – Jiang, Chuhao – Christensen, Morten Herget – You, Shi – Zhou, You – Mu, Shujun: Predictive Control for Smart Buildings to Provide the Demand Side Flexibility in the Multi-Carrier Energy Context: Current Status, Pros and Cons, Feasibility and Barriers. V Innovative Solutions for Energy Transitions, str. 3026-3031, 2019.
  • Jeon, Byung-Ki – Kim, Eui-Jong – Shin, Younggy – Lee, Kyoung-Ho: Learning-Based Predictive Building Energy Model Using Weather Forecasts for Optimal Control of Domestic Energy Systems. Sustainability, č. 1, zv. 11, 2019.
  • Pippia, T. – Lago, J. – Coninck, R.D. – Sijs, J. – Schutter, B.D.: Scenario-based model predictive control approach for heating systems in an office building. V IEEE International Conference on Automation Science and Engineering, str. 1243-1248, 2019.
  • Kavalionak, H. – Carlini, E.: An HVAC Regulation Architecture for Smart Building Based on Weather Forecast. Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), zv. 11113 LNCS, str. 92-103, 2019.
  • Zhou, Y. – Zheng, S. – Zhang, G.: Machine-learning based study on the on-site renewable electrical performance of an optimal hybrid PCMs integrated renewable system with high-level parameters’ uncertainties. Renewable Energy, 2019.
  • Abioye, E.A. – Abidin, M.S.Z. – Aman, M.N. – Mahmud, M.S.A. – Buyamin, S.: A model predictive controller for precision irrigation using discrete lagurre networks. Computers and Electronics in Agriculture, č. 105953, zv. 181, 2021.
  • Wani, M. – Hafiz, F. – Swain, A. – Ukil, A.: Estimating thermal parameters of a commercial building: A meta-heuristic approach. Energy and Buildings, č. 110537, zv. 231, 2021.
  • Zhao, J. – Li, J. – Shan, Y.: Research on a forecasted load-and time delay-based model predictive control (MPC) district energy system model. Energy and Buildings, č. 110631, zv. 231, 2021.
  • Ceccon, L. – Villa, D.: AI-BIM Interdisciplinary Spill-Overs: Prospected Interplay of AI and BIM Development Paradigms. Springer Tracts in Civil Engineering, str. 195-217, 2021.
  • Lucia, S. – Navarro, D. – Karg, B. – Sarnago, H. – Lucia, O.: Deep Learning-Based Model Predictive Control for Resonant Power Converters. IEEE Transactions on Industrial Informatics, č. 1, zv. 17, str. 409-420, 2021.
  • Joe, J. – Dong, J. – Munk, J. – Kuruganti, T. – Cui, B.: Virtual storage capability of residential buildings for sustainable smart city via model-based predictive control. Sustainable Cities and Society, č. 102491, zv. 64, 2021.
  • Dasgupta, A. – Bakshi, A. – Chowdhury, N. – De, R.K.: A control theoretic three timescale model for analyzing energy management in mammalian cancer cells. Computational and Structural Biotechnology Journal, zv. 19, str. 477-508, 2021.
  • Kathirgamanathan, A. – De Rosa, M. – Mangina, E. – Finn, D.P.: Data-driven predictive control for unlocking building energy flexibility: A review. Renewable and Sustainable Energy Reviews, č. 110120, zv. 135, 2021.
  • Kim, J. – Kim, K.-I.: Data-driven hybrid model and operating algorithm to shave peak demand costs of building electricity. Energy and Buildings, č. 110493, zv. 229, 2020.
  • Schwenkel, L. – Gharbi, M. – Trimpe, S. – Ebenbauer, C.: Online learning with stability guarantees: A memory-based warm starting for real-time MPC. Automatica, č. 109247, zv. 122, 2020.
  • Gholamzadehmir, M. – Del Pero, C. – Buffa, S. – Fedrizzi, R. – Aste, N.: Adaptive-predictive control strategy for HVAC systems in smart buildings – A review. Sustainable Cities and Society, č. 102480, zv. 63, 2020.
  • Seong, N.-C. – Kim, J.-H. – Choi, W.: Adjustment of multiple variables for optimal control of building energy performance via a genetic algorithm. Buildings, č. 11, zv. 10, str. 1-13, 2020.
  • Schubnel, B. – Carrillo, R.E. – Taddeo, P. – Canal Casals, L. – Salom, J. – Stauffer, Y. – Alet, P.-J.: State-space models for building control: how deep should you go?. Journal of Building Performance Simulation, č. 6, zv. 13, str. 707-719, 2020.
  • Yewale, A. – Methekar, R. – Agrawal, S.: Multiple model-based control of multi variable continuous microbial fuel cell (CMFC) using machine learning approaches. Computers and Chemical Engineering, č. 106884, zv. 140, 2020.
  • Hassanpour, H. – Corbett, B. – Mhaskar, P.: Integrating dynamic neural network models with principal component analysis for adaptive model predictive control. Chemical Engineering Research and Design, zv. 161, str. 26-37, 2020.
  • Olama, M. – Dong, J. – Sharma, I. – Xue, Y. – Kuruganti, T.: Frequency analysis of solar pv power to enable optimal building load control. Energies, č. 18, zv. 13, 2020.
  • Habibi, K. – Hoseini, S.M. – Dehshti, M. – Khanian, M. – Mosavi, A.: The impact of natural elements on environmental comfort in the iranian-islamic historical city of Isfahan. International Journal of Environmental Research and Public Health, č. 16, zv. 17, str. 1-18, 2020.
  • Ellis, M.J. – Chinde, V.: An encoder–decoder LSTM-based EMPC framework applied to a building HVAC system. Chemical Engineering Research and Design, zv. 160, str. 508-520, 2020.
  • Bäumelt, T. – Dostál, J.: Distributed agent-based building grey-box model identification. Control Engineering Practice, č. 104427, zv. 101, 2020.
  • Fathollahzadeh, M.H. – Tabares-Velasco, P.C.: Building control virtual test bed and functional mock-up interface standard: comparison in the context of campus energy modelling and control. Journal of Building Performance Simulation, č. 4, zv. 13, str. 456-471, 2020.
  • Goyal, M. – Pandey, M. – Thakur, R.: Exploratory Analysis of Machine Learning Techniques to predict Energy Efficiency in Buildings. V ICRITO 2020 - IEEE 8th International Conference on Reliability, Infocom Technologies and Optimization (Trends and Future Directions), str. 1033-1037, 2020.
  • Urata, Y. – Shiraishi, Y.: Study on multiple input multiple output type model predictive control in order to reduce mutual interference of air conditioning indoor units. Journal of Environmental Engineering (Japan), č. 771, zv. 85, str. 371-377, 2020.
  • Zhou, Y. – Zheng, S. – Zhang, G.: Machine-learning based study on the on-site renewable electrical performance of an optimal hybrid PCMs integrated renewable system with high-level parameters’ uncertainties. Renewable Energy, zv. 151, str. 403-418, 2020.
  • Krishnadas, G. – Kiprakis, A.: A machine learning pipeline for demand response capacity scheduling. Energies, č. 7, zv. 13, 2020.
  • Zhou, Y. – Zheng, S.: Machine-learning based hybrid demand-side controller for high-rise office buildings with high energy flexibilities. Applied Energy, č. 114416, zv. 262, 2020.
  • Terzi, E. – Fagiano, L. – Farina, M. – Scattolini, R.: Structured modelling from data and optimal control of the cooling system of a large business center. Journal of Building Engineering, č. 101043, zv. 28, 2020.
  • Zafeiratou, I. – Prodan, I. – Lefèvre, L. – Piétrac, L.: Meshed DC microgrid hierarchical control: A differential flatness approach. Electric Power Systems Research, č. 106133, zv. 180, 2020.
  • Dong, Z. – Huang, X. – Dong, Y. – Zhang, Z.: Multilayer perception based reinforcement learning supervisory control of energy systems with application to a nuclear steam supply system. Applied Energy, č. 114193, zv. 259, 2020.
  • Maddalena, E.T. – Lian, Y. – Jones, C.N.: Data-driven methods for building control — A review and promising future directions. Control Engineering Practice, č. 104211, zv. 95, 2020.
  • Goyal, M. – Pandey, M.: Towards Prediction of Energy Consumption of HVAC Plants Using Machine Learning. Communications in Computer and Information Science, zv. 1229 CCIS, str. 254-265, 2020.
  • Ke, J. – Qin, Y. – Wang, B. – Yang, S. – Wu, H. – Yang, H. – Zhao, X.: Data-driven predictive control of building energy consumption under the IoT architecture. Wireless Communications and Mobile Computing, č. 8849541, zv. 2020, 2020.
  • Cotrufo, N. – Saloux, E. – Hardy, J.M. – Candanedo, J.A. – Platon, R.: A practical artificial intelligence-based approach for predictive control in commercial and institutional buildings. Energy and Buildings, č. 109563, zv. 206, 2020.
  • Yang, S. – Wan, M.P. – Ng, B.F. – Dubey, S. – Henze, G.P. – Chen, W. – Baskaran, K.: Experimental study of model predictive control for an air-conditioning system with dedicated outdoor air system. Applied Energy, č. 113920, zv. 257, 2020.
  • Goyal, M. – Pandey, M.: A Systematic Analysis for Energy Performance Predictions in Residential Buildings Using Ensemble Learning. Arabian Journal for Science and Engineering, 2020.
  • Qin, Y. – Ke, J. – Wang, B. – Filaretov, G.F.: Energy optimization for regional buildings based on distributed reinforcement learning. Sustainable Cities and Society, č. 103625, zv. 78, 2022.
  • Afroz, Z. – Shafiullah, G.M. – Urmee, T. – Shoeb, M.A. – Higgins, G.: Predictive modelling and optimization of HVAC systems using neural network and particle swarm optimization algorithm. Building and Environment, č. 108681, zv. 209, 2022.
  • Hassanpour, H. – Corbett, B. – Mhaskar, P.: Artificial neural network based model predictive control: Implementing achievable set-points. AIChE Journal, č. 1, zv. 68, 2022.
  • Lee, Z.E. – Zhang, K.M.: Generalized reinforcement learning for building control using Behavioral Cloning. Applied Energy, č. 117602, zv. 304, 2021.
  • Ma, S. – Zou, Y. – Li, S.: Coordinated control for Air Handling Unit and Variable Air Volume boxes in multi-zone HVAC system. Journal of Process Control, zv. 107, str. 17-26, 2021.
  • Chakrabarty, A. – Benosman, M.: Safe learning-based observers for unknown nonlinear systems using Bayesian optimization. Automatica, č. 109860, zv. 133, 2021.
  • Wei, D. – Jiao, H.-Y. – Feng, H.-D.: Nonlinear predictive control of refrigeration system based on load forecasting [基于负荷预测的冷冻站系统非线性预测控制]. Kongzhi Lilun Yu Yingyong/Control Theory and Applications, č. 10, zv. 38, str. 1619-1630, 2021.
  • Norouzi, A. – Heidarifar, H. – Shahbakhti, M. – Koch, C.R. – Borhan, H.: Model predictive control of internal combustion engines: A review and future directions. Energies, č. 19, zv. 14, 2021.
  • Li, Y. – Tong, Z.: Model predictive control strategy using encoder-decoder recurrent neural networks for smart control of thermal environment. Journal of Building Engineering, č. 103017, zv. 42, 2021.
  • Chakrabarty, A. – Danielson, C. – Bortoff, S.A. – Laughman, C.R.: Accelerating self-optimization control of refrigerant cycles with Bayesian optimization and adaptive moment estimation. Applied Thermal Engineering, č. 117335, zv. 197, 2021.
  • Pippia, T. – Lago, J. – De Coninck, R. – De Schutter, B.: Scenario-based nonlinear model predictive control for building heating systems. Energy and Buildings, č. 111108, zv. 247, 2021.
  • Schubnel, B. – Carrillo, R.E. – Alet, P.-J. – Hutter, A.: A Hybrid Learning Method for System Identification and Optimal Control. IEEE Transactions on Neural Networks and Learning Systems, č. 9, zv. 32, str. 4096-4110, 2021.
  • Hasan, Z. – Roy, N.: Trending machine learning models in cyber-physical building environment: A survey. Wiley Interdisciplinary Reviews: Data Mining and Knowledge Discovery, č. 5, zv. 11, 2021.
  • Yao, Y. – Shekhar, D.K.: State of the art review on model predictive control (MPC) in Heating Ventilation and Air-conditioning (HVAC) field. Building and Environment, č. 107952, zv. 200, 2021.
  • Kumar, P. – Rawlings, J.B. – Wright, S.J.: Industrial, large-scale model predictive control with structured neural networks. Computers and Chemical Engineering, č. 107291, zv. 150, 2021.
  • Eini, R. – Linkous, L. – Zohrabi, N. – Abdelwahed, S.: Smart building management system: Performance specifications and design requirements. Journal of Building Engineering, č. 102222, zv. 39, 2021.
  • Gommers, S. – Lazar, M.: Smart decentralized MPC for temperature control in multi-zone buildings. V 2021 29th Mediterranean Conference on Control and Automation, MED 2021, str. 415-420, 2021.
  • Barbiero, M. – Rossi, A. – Schenato, L.: LQR Temperature Control in smart building via real-time weather forecasting. V 2021 29th Mediterranean Conference on Control and Automation, MED 2021, str. 27-32, 2021.
  • Krishnamoorthy, D. – Mesbah, A. – Paulson, J.A.: An adaptive correction scheme for offset-free asymptotic performance in deep learning-based economic MPC. V IFAC-PapersOnLine, str. 584-589, 2021.
  • Taik, S. – Kiss, B.: Demand side electric energy consumption optimization in a smart household using scheduling and model predictive temperature control. Journal of Dynamic Systems, Measurement and Control, Transactions of the ASME, č. 6, zv. 143, 2021.
  • Wang, Z. – Liu, J. – Zhang, Y. – Yuan, H. – Zhang, R. – Srinivasan, R.S.: Practical issues in implementing machine-learning models for building energy efficiency: Moving beyond obstacles. Renewable and Sustainable Energy Reviews, č. 110929, zv. 143, 2021.
  • Zhan, S. – Chong, A.: Data requirements and performance evaluation of model predictive control in buildings: A modeling perspective. Renewable and Sustainable Energy Reviews, č. 110835, zv. 142, 2021.
  • Yang, S. – Wan, M.P. – Chen, W. – Ng, B.F. – Dubey, S.: Experiment study of machine-learning-based approximate model predictive control for energy-efficient building control. Applied Energy, č. 116648, zv. 288, 2021.
  • Goyal, M. – Pandey, M.: A Systematic Analysis for Energy Performance Predictions in Residential Buildings Using Ensemble Learning. Arabian Journal for Science and Engineering, č. 4, zv. 46, str. 3155-3168, 2021.
  • Campos, J.C. – Manrique-Silupu, J. – Ipanaque, W.: Design and Simulation of NMPC based on state space model applied to refrigeration system for mango exportation. V 2021 IEEE International Conference on Automation/24th Congress of the Chilean Association of Automatic Control, ICA-ACCA 2021, 2021.
  • Qin, Y.D. – Ke, J. – Wang, B.: Exploring New Building Energy Saving Control Strategy Application under the Energy Internet of Things. V IOP Conference Series: Earth and Environmental Science, 2021.
  • Goyal, M. – Pandey, M.: Ensemble-based data modeling for the prediction of energy consumption in HVAC plants. Journal of Reliable Intelligent Environments, č. 1, zv. 7, str. 49-64, 2021.
  • Stojiljković, M.M. – Vučković, G.D. – Ignjatović, M.G.: CLASSIFICATION OF RETROFIT MEASURES FOR RESIDENTIAL BUILDINGS ACCORDING TO THE GLOBAL COST. Thermal Science, č. 4 Part A, zv. 25, str. 2677-2689, 2021.
  • Goyal, M. – Pandey, M.: Data modeling for energy forecasting using machine learning. Lecture Notes in Electrical Engineering, zv. 756 LNEE, str. 159-176, 2021.
  • P. G. Mendes, T. – Schnitman, L. – dos Reis Nogueira, I.B. – Mafalda Almeida Peixoto Ribeiro, A. – Egídio Rodrigues, A. – Miguel Loureiro, J. – Martins, M.A.F.: A new Takagi-Sugeno-Kang model-based stabilizing explicit MPC formulation: An experimental case study with implementation embedded in a PLC. Expert Systems with Applications, č. 118369, zv. 210, 2022.
  • Naug, A. – Quinones-Grueiro, M. – Biswas, G.: Deep reinforcement learning control for non-stationary building energy management. Energy and Buildings, č. 112584, zv. 277, 2022.
  • Martin Wisniewski, L. – Bec, J.-M. – Boguszewski, G. – Gamatié, A.: Hardware Solutions for Low-Power Smart Edge Computing. Journal of Low Power Electronics and Applications, č. 4, zv. 12, 2022.
  • Tsai, Y.-K. – Malak, R.J.: Design of Approximate Explicit Model Predictive Controller Using Parametric Optimization. Journal of Mechanical Design, Transactions of the ASME, č. 12, zv. 144, 2022.
  • Ma, L. – Huang, Y. – Zhang, J. – Zhao, T.: A Model Predictive Control for Heat Supply at Building Thermal Inlet Based on Data-Driven Model. Buildings, č. 11, zv. 12, 2022.
  • Krishnamoorthy, D.: A Sensitivity-Based Data Augmentation Framework for Model Predictive Control Policy Approximation. IEEE Transactions on Automatic Control, č. 11, zv. 67, str. 6090-6097, 2022.
  • Wei, D. – Ma, J. – Jiao, H. – Ran, Y.: Model predictive control for multi-zone Variable Air Volume systems based on artificial neural networks. Journal of Process Control, zv. 118, str. 185-201, 2022.
  • Norouzi, A. – Shahpouri, S. – Gordon, D. – Winkler, A. – Nuss, E. – Abel, D. – Andert, J. – Shahbakhti, M. – Koch, C.R.: Deep learning based model predictive control for compression ignition engines. Control Engineering Practice, č. 105299, zv. 127, 2022.
  • Alhajeri, M.S. – Abdullah, F. – Wu, Z. – Christofides, P.D.: Physics-informed machine learning modeling for predictive control using noisy data. Chemical Engineering Research and Design, zv. 186, str. 34-49, 2022.
  • Maddalena, E.T. – Müller, S.A. – dos Santos, R.M. – Salzmann, C. – Jones, C.N.: Experimental data-driven model predictive control of a hospital HVAC system during regular use. Energy and Buildings, č. 112316, zv. 271, 2022.
  • Wang, Y. – Li, S. – Zheng, Y.: Model predictive control with input disturbance and guaranteed Lyapunov stability for controller approximation. Science China Information Sciences, č. 9, zv. 65, 2022.
  • Alqurashi, A.: The State of the Art in Model Predictive Control Application for Demand Response. Journal of Sustainable Development of Energy, Water and Environment Systems, č. 3, zv. 10, 2022.
  • Yang, S.-B. – Li, Z. – Moreira, J.: A recurrent neural network-based approach for joint chance constrained stochastic optimal control. Journal of Process Control, zv. 116, str. 209-220, 2022.
  • Vivian, J. – Croci, L. – Zarrella, A.: Experimental tests on the performance of an economic model predictive control system in a lightweight building. Applied Thermal Engineering, č. 118693, zv. 213, 2022.
  • Gan, M. – Hou, H. – Wu, X. – Liu, B. – Yang, Y. – Xie, C.: Machine learning algorithm selection for real-time energy management of hybrid energy ship. Energy Reports, zv. 8, str. 1096-1102, 2022.
  • Farajzadeh Devin, M.G. – Hosseini Sani, S.K.: Approximate two-loop robust nonlinear model predictive control with real-time execution and closed-loop guarantee. International Journal of Robust and Nonlinear Control, č. 10, zv. 32, str. 5967-5982, 2022.
  • Bampoulas, A. – Pallonetto, F. – Mangina, E. – Finn, D.P.: An ensemble learning-based framework for assessing the energy flexibility of residential buildings with multicomponent energy systems. Applied Energy, č. 118947, zv. 315, 2022.
  • Golmohamadi, H. – Larsen, K.G. – Jensen, P.G. – Hasrat, I.R.: Integration of flexibility potentials of district heating systems into electricity markets: A review. Renewable and Sustainable Energy Reviews, č. 112200, zv. 159, 2022.
  • Tardioli, G. – Filho, R. – Bernaud, P. – Ntimos, D.: An Innovative Modelling Approach Based on Building Physics and Machine Learning for the Prediction of Indoor Thermal Comfort in an Office Building. Buildings, č. 4, zv. 12, 2022.
  • Hassanpour, H. – Corbett, B. – Mhaskar, P.: Artificial Neural Network-Based Model Predictive Control Using Correlated Data. Industrial and Engineering Chemistry Research, č. 8, zv. 61, str. 3075-3090, 2022.
  • Zhao, T. – Zheng, Y. – Gong, J. – Wu, Z.: Machine learning-based reduced-order modeling and predictive control of nonlinear processes. Chemical Engineering Research and Design, zv. 179, str. 435-451, 2022.
  • Zhang, Y. – Vand, B. – Baldi, S.: A Review of Mathematical Models of Building Physics and Energy Technologies for Environmentally Friendly Integrated Energy Management Systems. Buildings, č. 2, zv. 12, 2022.
  • Pinto, G. – Wang, Z. – Roy, A. – Hong, T. – Capozzoli, A.: Transfer learning for smart buildings: A critical review of algorithms, applications, and future perspectives. Advances in Applied Energy, č. 100084, zv. 5, 2022.
  • Napole, C. – Barambones, O. – Derbeli, M. – Calvo, I.: Design and experimental validation of a piezoelectric actuator tracking control based on fuzzy logic and neural compensation. Fuzzy Sets and Systems, 2022.
  • Ray, M. – Samal, P. – Panigrahi, C.K.: An Analysis on Energy Management of Domestic Buildings Using ANN Techniques. V 2022 3rd International Conference for Emerging Technology, INCET 2022, 2022.
  • Zhang, H. – Seal, S. – Wu, D. – Bouffard, F. – Boulet, B.: Building Energy Management With Reinforcement Learning and Model Predictive Control: A Survey. IEEE Access, zv. 10, str. 27853-27862, 2022.
J. HolazaM. Klaučo – J. Drgoňa – J. OravecM. KvasnicaM. Fikar: MPC-Based Reference Governor Control of a Continuous Stirred-Tank Reactor. Computers & Chemical Engineering, zv. 165, str. 289–299, 2018.
  • Počet citácií       23
  • Lorena Garzon-Castro, Claudia – Delgado-Aguilera, Efredy – Alexander Cortes-Romero, John – Tello, Edisson – Mazzanti, Gianfranco: Performance of an active disturbance rejection control on a simulated continuous microalgae photobioreactor. Computers & Chemical Engineering, zv. 117, str. 129-144, 2018.
  • Edwin, E.L.R. – Garcia, C.: Predictive controller applied to a pH neutralization process. V IFAC-PapersOnLine, str. 202-206, 2019.
  • Xu, Hansong – Liu, Xing – Yu, Wei – Griffith, David – Golmie, Nada: Reinforcement Learning-Based Control and Networking Co-Design for Industrial Internet of Things. IEEE Journal on Selected Areas in Communications, č. 5, zv. 38, str. 885-898, 2020.
  • Garzon-Castro, C.L. – Cardona, M. – Velazquez, R. – Del-Valle-Soto, C.: Intelligent PI controller for microalgae growth in a closed photobioreactor. V 2020 IEEE ANDESCON, ANDESCON 2020, 2020.
  • Ortiz, O.J.R. – Castelblanco, J.S.U. – Fonseca, G.L.V.: MRAC and MPC Controllers for Load Application System of the Accelerated Testing Equipment of Pavements. International Journal on Advanced Science, Engineering and Information Technology, č. 5, zv. 10, str. 1946-1953, 2020.
  • Garzón-Castro, C.L. – Delgado-Aguilera, E. – Cortés-Romero, J.A. – Tello, E. – Mazzanti, G.: Performance of an active disturbance rejection control on a simulated continuous microalgae photobioreactor. Computers and Chemical Engineering, zv. 117, str. 129-144, 2018.
  • Pappenreiter, Magdalena – Doebele, Sebastian – Striedner, Gerald – Jungbauer, Alois – Sissolak, Bernhard: Model predictive control for steady-state performance in integrated continuous bioprocesses. Bioprocess and Biosystems Engineering, č. 9, zv. 45, str. 1499-1513, 2022.
  • Muhammed, Alhelou – Yazan, Dayoub – Gavrilov, Alexander: Reference governed ADRC approach to manage the handling-comfort contradiction in a full-vehicle suspension. Transactions of the Institute of Measurement and Control, č. 14, zv. 44, str. 2693-2708, 2022.
  • Wu, Hui – Yan, Fei – Wang, Guangjun – Lv, Cai: A predictive control based on decentralized fuzzy inference for a pH neutralization process. Journal of Process Control, zv. 110, str. 76-83, 2022.
  • He, Hangfeng – Chen, Yi – Qi, Wenhai – Wang, Maoli – Chen, Xiaoming: Observer-based resilient control of positive systems with heterogeneous DoS attacks: A Markov model approach. Journal of the Franklin Institute-engineering and Applied Mathematics, č. 1, zv. 359, str. 272-293, 2022.
  • Aliskan, Ibrahim: Optimized Inverse Nonlinear Function-Based Wiener Model Predictive Control for Nonlinear Systems. Arabian Journal for Science and Engineering, č. 10, zv. 46, str. 10217-10230, 2021.
  • Paulusova, Jana – Vesely, Vojtech: OPTIMAL OFFLINE MPC DESIGN: OUTPUT FEEDBACK. International Journal of Innovative Computing Information and Control, č. 2, zv. 17, str. 461-472, 2021.
  • Pipino, Hugo A. – Cappelletti, Carlos A. – Adam, Eduardo J.: Adaptive multi-model predictive control applied to continuous stirred tank reactor. Computers & Chemical Engineering, č. 107195, zv. 145, 2021.
  • Farajzadeh-D, Mohammad-G – Sani, S. K. Hosseini: An improved two-loop model predictive control design for nonlinear robust reference tracking with practical advantages. Optimal Control Applications & Methods, č. 2, zv. 42, str. 548-565, 2021.
  • Aliskan, Ibrahim: A Novel Fuzzy PI Control Approach for Nonlinear Processes. Arabian Journal for Science and Engineering, č. 8, zv. 45, str. 6821-6834, 2020.
  • Xu, Hansong – Liu, Xing – Yu, Wei – Griffith, David – Golmie, Nada: Reinforcement Learning-Based Control and Networking Co-Design for Industrial Internet of Things. IEEE Journal on Selected Areas in Communications, č. 5, zv. 38, str. 885-898, 2020.
  • Sangregorio-Soto, Viyils – Garzon-Castro, Claudia L. – Mazzanti, Gianfranco – Figueredo, Manuel – Cortes-Romero, John A.: Proportional-Integral Controller Assisted by GPI Observer for Microalgal Continuous Culture. V 2020 Argentine Conference on Automatic Control (aadeca), 2020.
  • Balula, Samuel – Liniger, Alex – Rupenyan, Alisa – Lygeros, John: Reference design for closed loop system optimization. V 2020 European Control Conference (ECC 2020), str. 650-655, 2020.
  • Aliskan, Ibrahim: Adaptive Model Predictive Control for Wiener Nonlinear Systems. Iranian Journal of Science and Technology-transactions of Electrical Engineering, č. 1, zv. 43, str. 361-377, 2019.
  • Li, Jufeng – Tang, Zhihe – Luan, Hui – Liu, Zhongyao – Xu, Baochang – Wang, Zhongjun – He, Wei: An Improved Method of Model-Free Adaptive Predictive Control: A Case of pH Neutralization in WWTP. Processes, č. 5, zv. 11, 2023.
  • Ahmadzadeh, Hamid Reza – Aghaei, Shahram – Puig, Vicenc: A supervisory control scheme for uncertain constrained time-delay discrete-time linear systems. Journal of the Franklin Institute-engineering and Applied Mathematics, č. 13, zv. 360, str. 10337-10364, 2023.
  • Sun, Dingshan – Jamshidnejad, Anahita – De Schutter, Bart: Optimal Sub-References for Setpoint Tracking: A Multi-level MPC Approach. Ifac Papersonline, č. 2, zv. 56, str. 9411-9416, 2023.
  • Mohd, Noraini – Nandong, J. – Abd Shukor, S. R. – Ong, Wan Yi – Tan, K. W. – Sirajul Adly, S. A.: Dynamic Modelling and Process Control of Iodine-Sulfur Thermochemical Cycle for Hydrogen Production: A Bibliometric Study and Research Prospect. Archives of Computational Methods in Engineering, č. 1, zv. 31, str. 475-486, 2024.
M. Klaučo – R. Valo – J. Drgoňa: Reflux control of a laboratory distillation column via MPC-based reference governor. Acta Chimica Slovaca, č. 2, zv. 10, str. 139–143, 2017.
  • Počet citácií       1
  • Bakarac, Peter – Kvasnica, Michal: Approximate explicit robust model predictive control of a CSTR with fast reactions. Chemical Papers, č. 3, zv. 73, str. 611-618, 2019.
D. Picard – J. Drgoňa – M. Kvasnica – L. Helsen: Impact of the controller model complexity on model predictive control performance for buildings. Energy and Buildings, zv. 152, str. 739–751, 2017.
  • Počet citácií       31
  • Blum, D.H. – Arendt, K. – Rivalin, L. – Piette, M.A. – Wetter, M. – Veje, C.T.: Practical factors of envelope model setup and their effects on the performance of model predictive control for building heating, ventilating, and air conditioning systems. Applied Energy, zv. 236, str. 410-425, 2019.
  • Benndorf, G.A. – Wystrcil, D. – Réhault, N.: Energy performance optimization in buildings: A review on semantic interoperability, fault detection, and predictive control. Applied Physics Reviews, č. 4, zv. 5, 2018.
  • Chen, J. – Augenbroe, G. – Song, X.: Lighted-weighted model predictive control for hybrid ventilation operation based on clusters of neural network models. Automation in Construction, zv. 89, str. 250-265, 2018.
  • Patel, Nishith R: Economic Optimization of Large-Scale Commercial Building Heating, Ventilation, and Air Conditioning Systems. 2018.
  • Cotrufo, N. – Candanedo, J.: A novel Local Correction-based (LC-b) approach for low-order control-oriented models. V Journal of Physics: Conference Series, 2019.
  • Qu, S. – Su, S. – Li, H. – Hu, W.: Optimized control of the supply water temperature in the thermally activated building system for cold climate in China. Sustainable Cities and Society, č. 101742, zv. 51, 2019.
  • Mancini, F. – Basso, G.L. – Santoli, L.D.: Energy use in residential buildings: Impact of building automation control systems on energy performance and flexibility. Energies, č. 15, zv. 12, 2019.
  • Gomez-Romero, J. – Fernandez-Basso, C.J. – Cambronero, M.V. – Molina-Solana, M. – Campana, J.R. – Ruiz, M.D. – Martin-Bautista, M.J.: A Probabilistic Algorithm for Predictive Control with Full-Complexity Models in Non-Residential Buildings. IEEE Access, č. 8669762, zv. 7, str. 38748-38765, 2019.
  • Mork, M. – Xhonneux, A. – Müller, D.: Hierarchical Model Predictive Control for complex building energy systems. Bauphysik, č. 6, zv. 42, str. 306-314, 2020.
  • Mazar, M.M. – Rezaeizadeh, A.: Adaptive model predictive climate control of multi-unit buildings using weather forecast data. Journal of Building Engineering, č. 101449, zv. 32, 2020.
  • Valenzuela, P.E. – Ebadat, A. – Everitt, N. – Parisio, A.: Closed-loop identification for model predictive control of HVAC systems: From input design to controller synthesis. IEEE Transactions on Control Systems Technology, č. 5, zv. 28, str. 1681-1695, 2020.
  • Date, J. – Candanedo, J.A. – Athienitis, A.K. – Lavigne, K.: Development of reduced order thermal dynamic models for building load flexibility of an electrically-heated high temperature thermal storage device. Science and Technology for the Built Environment, č. 7, zv. 26, str. 956-974, 2020.
  • Chen, X. – Li, J. – Yang, A. – Zhang, Q.: Artificial Neural Network-Aided Energy Management Scheme for Unlocking Demand Response. V Proceedings of the 32nd Chinese Control and Decision Conference, CCDC 2020, str. 1901-1905, 2020.
  • Kim, D. – Bae, Y. – Yun, S. – Braun, J.E.: A methodology for generating reduced-order models for large-scale buildings using the Krylov subspace method. Journal of Building Performance Simulation, č. 4, zv. 13, str. 419-429, 2020.
  • Stoffel, P. – Berktold, M. – Gall, A. – Kümpel, A. – Müller, D.: Comparative study of neural network based and white box model predictive control for a room temperature control application. V Journal of Physics: Conference Series, 2021.
  • Wei, D. – Jiao, H.-Y. – Feng, H.-D.: Nonlinear predictive control of refrigeration system based on load forecasting [基于负荷预测的冷冻站系统非线性预测控制]. Kongzhi Lilun Yu Yingyong/Control Theory and Applications, č. 10, zv. 38, str. 1619-1630, 2021.
  • Chakrabarty, A. – Danielson, C. – Bortoff, S.A. – Laughman, C.R.: Accelerating self-optimization control of refrigerant cycles with Bayesian optimization and adaptive moment estimation. Applied Thermal Engineering, č. 117335, zv. 197, 2021.
  • Magalhaes, P.L. – Antunes, C.H.: A comparison of indoor temperature models for building demand response optimisation using MILP. V SEST 2021 - 4th International Conference on Smart Energy Systems and Technologies, 2021.
  • Zhan, S. – Chong, A.: Data requirements and performance evaluation of model predictive control in buildings: A modeling perspective. Renewable and Sustainable Energy Reviews, č. 110835, zv. 142, 2021.
  • Yang, S. – Wan, M.P. – Chen, W. – Ng, B.F. – Dubey, S.: Experiment study of machine-learning-based approximate model predictive control for energy-efficient building control. Applied Energy, č. 116648, zv. 288, 2021.
  • Yu, X. – Georges, L. – Imsland, L.: Data pre-processing and optimization techniques for stochastic and deterministic low-order grey-box models of residential buildings. Energy and Buildings, č. 110775, zv. 236, 2021.
  • Vogt, M. – Schlichter, J. – Aschersleben, F. – Abraham, T. – Wolf, L. – Herrmann, C.: Integration of cyber-physical HVAC systems in Incremental Manufacturing to improve Energy Efficiency and Air Quality. V Procedia CIRP, str. 482-487, 2021.
  • Hamp, Q. – Levihn, F.: Model predictive control for dynamic indoor conditioning in practice. Energy and Buildings, č. 112548, zv. 277, 2022.
  • Wei, D. – Ma, J. – Jiao, H. – Ran, Y.: Model predictive control for multi-zone Variable Air Volume systems based on artificial neural networks. Journal of Process Control, zv. 118, str. 185-201, 2022.
  • Zhan, S. – Lei, Y. – Jin, Y. – Yan, D. – Chong, A.: Impact of occupant related data on identification and model predictive control for buildings. Applied Energy, č. 119580, zv. 323, 2022.
  • Wang, J. – Chen, J. – Hu, Y.: A SCIENCE MAPPING APPROACH BASED REVIEW OF MODEL PREDICTIVE CONTROL FOR SMART BUILDING OPERATION MANAGEMENT. Journal of Civil Engineering and Management, č. 8, zv. 28, str. 661-679, 2022.
  • Zhang, X. – Saelens, D. – Roels, S.: Estimating dynamic solar gains from on-site measured data: An ARX modelling approach. Applied Energy, č. 119278, zv. 321, 2022.
  • Lee, H. – Heo, Y.: Simplified data-driven models for model predictive control of residential buildings. Energy and Buildings, č. 112067, zv. 265, 2022.
  • Zhang, X. – Rasmussen, C. – Saelens, D. – Roels, S.: Time-dependent solar aperture estimation of a building: Comparing grey-box and white-box approaches. Renewable and Sustainable Energy Reviews, č. 112337, zv. 161, 2022.
  • Vogt, M. – Buchholz, C. – Thiede, S. – Herrmann, C.: Energy efficiency of Heating, Ventilation and Air Conditioning systems in production environments through model-predictive control schemes: The case of battery production. Journal of Cleaner Production, č. 131354, zv. 350, 2022.
  • Zanetti, E. – Kim, D. – Blum, D. – Scoccia, R. – Aprile, M.: Performance comparison of quadratic, nonlinear, and mixed integer nonlinear MPC formulations and solvers on an air source heat pump hydronic floor heating system. Journal of Building Performance Simulation, 2022.
D. Ingole – J. Drgoňa – M. Kvasnica: Offset-Free Hybrid Model Predictive Control of Bispectral Index in Anesthesia. Editor(i): M. Fikar and M. Kvasnica, V Proceedings of the 21st International Conference on Process Control, Slovak Chemical Library, Štrbské Pleso, Slovakia, str. 422–427, 2017.
  • Počet citácií       4
  • Frick, Damian: Numerical Methods for Decision-Making in Control from Hybrid Systems to Formal Specifications. 2018.
  • Ghita, M. – Neckebroek, M. – Muresan, C. – Copot, D.: Closed-loop control of anesthesia: Survey on actual trends, challenges and perspectives. IEEE Access, č. 9257370, zv. 8, str. 206264-206279, 2020.
  • Khodaei, M.J. – Candelino, N. – Mehrvarz, A. – Jalili, N.: Physiological Closed-Loop Control (PCLC) Systems: Review of a Modern Frontier in Automation. IEEE Access, č. 8964302, zv. 8, str. 23965-24005, 2020.
  • Ntouskas, S. – Sarimveis, H.: A robust model predictive control framework for the regulation of anesthesia process with Propofol. Optimal Control Applications and Methods, č. 4, zv. 42, str. 965-986, 2021.
J. Drgoňa – Z. Takáč – M. Horňák – R. Valo – M. Kvasnica: Fuzzy Control of a Laboratory Binary Distillation Column. Editor(i): M. Fikar and M. Kvasnica, V Proceedings of the 21st International Conference on Process Control, Slovak Chemical Library, Štrbské Pleso, Slovakia, str. 120–125, 2017.
  • Počet citácií       5
  • Mirzavand, N. – Piltan, F. – Kim, J.-M.: Intelligent control of an uncertain distillation column using a multivariable filter decoupling-based PID like fuzzy controller. International Journal of Control and Automation, č. 1, zv. 11, str. 99-112, 2018.
  • Rohman, A.S. – Rusmin, P.H. – Maulidda, R. – Hidayat, E.M.I. – Machbub, C. – Mahayana, D.: Modelling of the Mini Batch Distillation Column. International Journal on Electrical Engineering and Informatic, č. 2, zv. 10, str. 350-368, 2018.
  • Maulidda, R. – Rusmin, P.H. – Rohman, A.S. – Idris Hidayat, E.M. – Mahayana, D.: Modeling and Simulation of Mini Batch Distillation Column. V Proceedings of 2017 5th International Conference on Instrumentation, Communications, Information Technology, and Biomedical Engineering, ICICI-BME 2017, str. 62-67, 2018.
  • Alawad, N. – Alseady, A.: Fuzzy controller of model reduction distillation column with minimal rules. Applied Computer Science, č. 2, zv. 16, str. 80-94, 2020.
  • Nasir, A.H.A. – Hambali, N. – Rahiman, M.H.F.: Implementation of PRBS & RGS Perturbation Input Signals on Steam Temperature: Model Estimation and PID Control. V 2023 19th IEEE International Colloquium on Signal Processing and Its Applications, CSPA 2023 - Conference Proceedings, str. 99-104, 2023.
D. Ingole – J. Drgoňa – M. KalúzM. Klaučo – M. Bakošová – M. Kvasnica: Model Predictive Control of a Combined Electrolyzer-Fuel Cell Educational Pilot Plant. Editor(i): M. Fikar and M. Kvasnica, V Proceedings of the 21st International Conference on Process Control, Slovak Chemical Library, Štrbské Pleso, Slovakia, str. 147–154, 2017.
  • Počet citácií       1
  • Koundi, Mohamed – El Fadil, Hassan – EL Idrissi, Zakaria – Lassioui, Abdellah – Intidam, Abdessamad – Bouanou, Tasnime – Nady, Soukaina – Rachid, Aziz: Investigation of Hydrogen Production System-Based PEM EL: PEM EL Modeling, DC/DC Power Converter, and Controller Design Approaches. Clean Technologies, č. 2, zv. 5, str. 531–568, 2023.
J. Drgoňa – M. Klaučo – F. Janeček – M. Kvasnica: Optimal control of a laboratory binary distillation column via regionless explicit MPC. Computers & Chemical Engineering, zv. 96, str. 139–148, 2017.
  • Počet citácií       11
  • Ramezani, M.H. – Sadati, N.: Hierarchical optimal control of a binary distillation column. Optimal Control Applications and Methods, 2018.
  • Ahmadian Behrooz, H.: Robust set-point optimization of inferential control system of crude oil distillation units. ISA Transactions, 2019.
  • Ramezani, Mohammad Hossein – Sadati, Nasser: Hierarchical optimal control of a binary distillation column. Optimal Control Applications & Methods, č. 1, zv. 40, str. 172-185, 2019.
  • Bayram, Ismail – Hapoglu, Hale – Aldemir, Adnan: Impact of Robust Error Control on Fluid Level by Wireless Network Applications. Journal of Polytechnic-politeknik Dergisi, č. 3, zv. 21, str. 685-691, 2018.
  • Behrooz, Hesam Ahmadian: Robust set-point optimization of inferential control system of crude oil distillation units. Isa Transactions, zv. 95, str. 93-109, 2019.
  • Katz, Justin – Burnak, Baris – Pistikopoulos, Efstratios N.: A space exploration algorithm for multiparametric programming via Delaunay triangulation. Optimization and Engineering, 2020.
  • Jeong, M. – Fuchs, S. – Biela, J.: When FPGAs Meet Regionless Explicit MPC: An Implementation of Long-horizon Linear MPC for Power Electronic Systems. V IECON Proceedings (Industrial Electronics Conference), str. 3085-3092, 2020.
  • Burnak, B. – Katz, J. – Pistikopoulos, E.N.: A space exploration algorithm for multiparametric programming via Delaunay triangulation. Optimization and Engineering, č. 1, zv. 22, str. 555-579, 2021.
  • Gilimalage, A.S.M. – Kimura, S.: Model predictive control-based control algorithm for a target-chaser maneuvering situation. Advanced Robotics, č. 21-22, zv. 35, str. 1265-1276, 2021.
  • Theunissen, J. – Tota, A. – Gruber, P. – Dhaens, M. – Sorniotti, A.: Preview-based techniques for vehicle suspension control: a state-of-the-art review. Annual Reviews in Control, zv. 51, str. 206-235, 2021.
  • J. Oravec – M. Bakošová – P. Valiauga: Advanced Process Control Design for a Distillation Column Using UniSim Design. Editor(i): M. Fikar and M. Kvasnica, V Proceedings of the 21st International Conference on Process Control, Slovak Chemical Library, Štrbské Pleso, Slovakia, str. 303–308, 2017.
A. Sharma – J. Drgoňa – D. Ingole – J. Holaza – R. Valo – S. Koniar – M. Kvasnica: Teaching Classical and Advanced Control of Binary Distillation Column. V Preprints of the 11th IFAC Symposium on Advances in Control Education, zv. 11, str. 348–353, 2016.
  • Počet citácií       1
  • Figueredo, M.A. – Rodriguez, S.M. – Mayorga, E.: Evaluation of dynamic model and assessing computational time of an embedded system. Case study: A distillation column. V 2020 9th International Congress of Mechatronics Engineering and Automation, CIIMA 2020 - Conference Proceedings, 2020.
J. Drgoňa – M. KlaučoM. Kvasnica: MPC-Based Reference Governors for Thermostatically Controlled Residential Buildings. V 54th IEEE Conference on Decision and Control, Osaka, Japan, zv. 54, 2015.
  • Počet citácií       6
  • Lomas, K.J. – Oliveira, S. – Warren, P. – Haines, V.J. – Chatterton, T. – Beizaee, A. – Prestwood, E. – Gething, B.: Do domestic heating controls save energy? A review of the evidence. Renewable and Sustainable Energy Reviews, zv. 93, str. 52-75, 2018.
  • Baumeister, Alexander – Schaefer, C.: Design of an Online Optimisation Tool for Smart Home Heating Control. 2018.
  • Adam, Martin – Pecorelli, Mario – others: Recommendations in Augmented Reality Applications-the Effect of Customer Reviews and Seller Recommendations on Purchase Intention and Product Selection. 2018.
  • Short, Michael – Rodriguez, Sergio – Charlesworth, Richard – Crosbie, Tracey – Dawood, Nashwan: Optimal Dispatch of Aggregated HVAC Units for Demand Response: An Industry 4.0 Approach. Energies, č. 22, zv. 12, 2019.
  • Arroyo, J. – Manna, C. – Spiessens, F. – Helsen, L.: Reinforced model predictive control (RL-MPC) for building energy management. Applied Energy, č. 118346, zv. 309, 2022.
  • Huchuk, B. – Sanner, S. – O\\\'Brien, W.: Development and evaluation of data-driven controls for residential smart thermostats. Energy and Buildings, č. 111201, zv. 249, 2021.
J. Drgoňa – M. Klaučo – R. Valo – J. Bendžala – M. Fikar: Model Identification and Predictive Control of a Laboratory Binary Distillation Column. Editor(i): M. Fikar and M. Kvasnica, V Proceedings of the 20th International Conference on Process Control, Slovak Chemical Library, Štrbské Pleso, Slovakia, 2015.
  • Počet citácií       4
  • J. Oravec – M. Bakošová – P. Artzová: Advanced process control design for a distillation column using UniSim design. V 21st International Conference on Process Control (PC), str. 303-308, 2017.
  • Orjuela Rojas, A. – Sandoval, O.L.R. – Hurtado, D.A.: PID control for distilled product and bottom concentration in a binary distillation column. International Review of Mechanical Engineering, č. 4, zv. 11, str. 242-248, 2017.
  • Castelblanco, J.S.U. – Rojas, A.O. – Hurtado, D.A.: MIMO MPC control of distillate and background concentration to binary distillation column in discrete state space. International Review of Automatic Control, č. 6, zv. 9, str. 348-354, 2016.
  • Mohammad, N.N. – Azman, A.A. – Marzaki, M.H. – Adnan, R. – Tajjudin, M. – Fazalul Rahiman, M.H. – Tajuddin, S.N.: Performance comparison and energy consumption index between MPC and FuzzyPID in small-scaled agarwood distillation pot. V 2018 9th IEEE Control and System Graduate Research Colloquium, ICSGRC 2018 - Proceeding, str. 156-161, 2019.
M. Klaučo – J. Drgoňa – M. Kvasnica – S. Di Cairano: Building Temperature Control by Simple MPC-like Feedback Laws Learned from Closed-Loop Data. V Preprints of the 19th IFAC World Congress Cape Town (South Africa) August 24 - August 29, 2014, str. 581–586, 2014.
  • Počet citácií       9
  • Thieblemont Hélène – Haghighat Fariborz – Ooka Ryozo – Moreau Alain: Predictive Control Strategies based on Weather Forecast in Buildings with Energy Storage System: A Review of the State-of-the Art. Energy and Buildings, 2017.
  • Carli, R. – Cavone, G. – Dotoli, M. – Epicoco, N. – Scarabaggio, P.: Model predictive control for thermal comfort optimization in building energy management systems. V Conference Proceedings - IEEE International Conference on Systems, Man and Cybernetics, str. 2608-2613, 2019.
  • Wang, J. – Li, S. – Chen, H. – Yuan, Y. – Huang, Y.: Data-driven model predictive control for building climate control: Three case studies on different buildings. Building and Environment, č. 106204, zv. 160, 2019.
  • Wang, X. – Liu, Y. – Xu, L. – Liu, J. – Sun, H.: A chance-constrained stochastic model predictive control for building integrated with renewable resources. Electric Power Systems Research, č. 106348, zv. 184, 2020.
  • Carli, R. – Cavone, G. – Othman, S.B. – Dotoli, M.: IoT based architecture for model predictive control of HVAC systems in smart buildings. Sensors (Switzerland), č. 3, zv. 20, 2020.
  • Lee, D.-S. – Chen, Y.-T. – Chao, S.-L.: Universal workflow of artificial intelligence for energy saving. Energy Reports, zv. 8, str. 1602-1633, 2022.
  • Ma, S. – Zou, Y. – Li, S.: Coordinated control for Air Handling Unit and Variable Air Volume boxes in multi-zone HVAC system. Journal of Process Control, zv. 107, str. 17-26, 2021.
  • Yang, S. – Wan, M.P. – Chen, W. – Ng, B.F. – Dubey, S.: Experiment study of machine-learning-based approximate model predictive control for energy-efficient building control. Applied Energy, č. 116648, zv. 288, 2021.
  • Vinnarasi, A. – Sangeetha, M.: Comfort Cognitive IoT for Efficient Monitoring and Predictive in Building Management Systems. V 2021 International Conference on Wireless Communications, Signal Processing and Networking, WiSPNET 2021, str. 345-349, 2021.
J. Drgoňa – M. KvasnicaM. KlaučoM. Fikar: Explicit Stochastic MPC Approach to Building Temperature Control. V IEEE Conference on Decision and Control, Florence, Italy, str. 6440–6445, 2013.
  • Počet citácií       19
  • Parisio, A. – Fabietti, L. – Molinari, M. – Varagnolo, D. – Johansson, K.H.: Control of HVAC systems via scenario-based explicit MPC. V Decision and Control (CDC), 2014 IEEE 53rd Annual Conference on, str. 5201-5207, 2014.
  • Lesic, V. – Vasak, M. – Martincevic, A. – Gulin, M. – Starcic, A. – Novak, H.: Computer-Assisted Management of Building Climate and Microgrid with Model Predictive Control. International Journal of Computer, Electrical, Automation, Control and Information Engineering, č. 10, zv. 9, str. 2036-2047, 2015.
  • Farina, M. – Giulioni, L. – Scattolini, R.: Stochastic linear Model Predictive Control with chance constraints – A review. Journal of Process Control, zv. 44, str. 53-67, 2016.
  • A. Mesbah: Stochastic Model Predictive Control: An Overview and Perspectives for Future Research. IEEE Control Systems, č. 6, zv. 36, str. 30-44, 2016.
  • Kontes, Georgios D. – Giannakis, Georgios I. – Horn, Philip – Steiger, Simone – Rovas, Dimitrios V.: Using Thermostats for Indoor Climate Control in Office Buildings: The Effect on Thermal Comfort. Energies, č. 9, zv. 10, 2017.
  • Vogler-Finck, P. J. C. – Wisniewski, R. – Popovski, P.: Reducing the carbon footprint of house heating through model predictive control - A simulation study in Danish conditions. Sustainable Cities and Society, zv. 42, str. 558-573, 2018.
  • Ławryńczuk, M. – Ocłoń, P.: Model Predictive Control and energy optimisation in residential building with electric underfloor heating system. Energy, str. 1028-1044, 2019.
  • Wang, R. – Bao, J.: Advanced-step Stochastic Model Predictive Control using Random Forests. V Proceedings of the IEEE Conference on Decision and Control, str. 3283-3287, 2019.
  • Qin, D. – Qin, L.: Energy Management Strategy for a Power-split Hybrid Electric Vehicle Based on Explicit Stochastic Model Predictive Control [基于显式随机模型预测控制的功率分流式混合动力车辆能量管理策略]. Huanan Ligong Daxue Xuebao/Journal of South China University of Technology (Natural Science), č. 7, zv. 47, str. 112-120, 2019.
  • Valenzuela, Patricio E. – Ebadat, Afrooz – Everitt, Niklas – Parisio, Alessandra: Closed-Loop Identification for Model Predictive Control of HVAC Systems: From Input Design to Controller Synthesis. IEEE Transactions on Control Systems Technology, č. 5, zv. 28, str. 1681-1695, 2020.
  • Kumar, Ranjeet – Wenzel, Michael J. – ElBsat, Mohammad N. – Risbeck, Michael J. – Drees, Kirk H. – Zavala, Victor M.: Stochastic model predictive control for central HVAC plants. Journal of Process Control, zv. 90, str. 1-17, 2020.
  • Lee, Zachary E. – Zhang, K. Max: Generalized reinforcement learning for building control using Behavioral Cloning. Applied Energy, č. 117602, zv. 304, 2021.
  • Ceha, T.J. – De Araujo Passos, L.A. – Baldi, S. – De Schutter, B.: Model predictive control for optimal integration of a thermal chimney and solar shaded building. V 2021 29th Mediterranean Conference on Control and Automation, MED 2021, str. 21-26, 2021.
  • Alqurashi, Amru: The State of the Art in Model Predictive Control Application for Demand Response. Journal of Sustainable Development of Energy Water and Environment Systems-jsdewes, č. 3, zv. 10, 2022.
  • Uytterhoeven, Anke – Van Rompaey, Robbe – Bruninx, Kenneth – Helsen, Lieve: Chance constrained stochastic MPC for building climate control under combined parametric and additive uncertainty. Journal of Building Performance Simulation, č. 3, zv. 15, str. 410-430, 2022.
  • Zanetti, Ettore – Kim, Donghun – Blum, David – Scoccia, Rossano – Aprile, Marcello: Performance comparison of quadratic, nonlinear, and mixed integer nonlinear MPC formulations and solvers on an air source heat pump hydronic floor heating system. Journal of Building Performance Simulation, č. 2, zv. 16, str. 144-162, 2023.
  • Saini, Radhe S. T. – Pappas, Iosif – Avraamidou, Styliani – Ganesh, Hari S.: Noncooperative Distributed Model Predictive Control: A Multiparametric Programming Approach. Industrial & Engineering Chemistry Research, č. 2, zv. 62, str. 1044-1056, 2023.
  • Saini, Radhe S. T. – Patel, Shrey K. – Ganesh, Hari S.: Energy-focused predictive control for particulate matter concentration and thermal comfort indoors in Delhi. Journal of Building Engineering, č. 106745, zv. 73, 2023.
  • Das, Hari Prasanna – Lin, Yu-Wen – Agwan, Utkarsha – Spangher, Lucas – Devonport, Alex – Yang, Yu – Drgona, Jan – Chong, Adrian – Schiavon, Stefano – Spanos, Costas J.: Machine Learning for Smart and Energy-Efficient Buildings. Environmental Data Science, č. e1, zv. 3, 2024.
M. Kvasnica – A. Szűcs – M. Fikar – J. Drgoňa: Explicit MPC of LPV Systems in the Controllable Canonical Form. V 2013 European Control Conference, str. 1035–1040, 2013.
  • Počet citácií       4
  • Oberdieck, R. – Diangelakis, N.A. – Nascu, I. – Papathanasiou, M.M. – Sun, M. – Avraamidou, S. – Pistikopoulos, E.N.: On multi-parametric programming and its applications in process systems engineering. Chemical Engineering Research and Design, zv. 116, str. 61-82, 2016.
  • Marquez-Ruiz, Alejandro – Mendez-Blanco, Carlos – Ozkan, Leyla: Constrained Control and Estimation of Homogeneous Reaction Systems Using Extent-Based Linear Parameter Varying Models. Industrial & Engineering Chemistry Research, č. 6, zv. 59, str. 2242-2251, 2020.
  • Mate, S. – Jaju, P. – Bhartiya, S. – Nataraj, P.S.V.: Semi-Explicit Model Predictive Control of Quasi Linear Parameter Varying Systems. European Journal of Control, č. 100750, 2022.
  • Celovsky, P. – Wagnerova, R.: Comparison of Canonical Forms for Model Predictive Control. V 2022 23rd International Carpathian Control Conference, ICCC 2022, str. 64-69, 2022.
J. Drgoňa – M. Kvasnica: Comparison of MPC Strategies for Building Control. Editor(i): Fikar, M., Kvasnica, M., V Proceedings of the 19th International Conference on Process Control, Slovak University of Technology in Bratislava, Štrbské Pleso, Slovakia, str. 401–406, 2013.
  • Počet citácií       18
  • Novoselnik, B. – Cesic, J. – Baotic, M. – Petrovic, I.: Nonlinear model predictive control for energy efficient housing with modern construction materials. V Sensors Applications Symposium (SAS), 2015 IEEE, str. 1-6, 2015.
  • Mantovani, G. – Ferrarini, L.: Temperature Control of a Commercial Building With Model Predictive Control Techniques. Industrial Electronics, IEEE Transactions on, č. 4, zv. 62, str. 2651-2660, 2015.
  • Jain, A. – Behl, M. – Mangharam, R.: Data Predictive Control for building energy management. V Proceedings of the American Control Conference, str. 44-49, 2017.
  • Park, June Young – Nagy, Zoltan: Comprehensive analysis of the relationship between thermal comfort and building control research-A data-driven literature review. Renewable and Sustainable Energy Reviews, 2017.
  • Jain, Achin – Behl, Madhur – Mangharam, Rahul: Data Predictive Control for building energy management. 2000.
  • Luzi, M. – Vaccarini, M. – Lemma, M.: A tuning methodology of Model Predictive Control design for energy efficient building thermal control. Journal of Building Engineering, zv. 21, str. 28-36, 2019.
  • Soudari, M. – Kaparin, V. – Srinivasan, S. – Seshadhri, S. – Kotta, Ü.: Predictive smart thermostat controller for heating, ventilation, and air-conditioning systems. Proceedings of the Estonian Academy of Sciences, č. 3, zv. 67, str. 291-299, 2018.
  • Park, J.Y. – Nagy, Z.: Comprehensive analysis of the relationship between thermal comfort and building control research - A data-driven literature review. Renewable and Sustainable Energy Reviews, zv. 82, str. 2664-2679, 2018.
  • Alexandru, Andreea B. – Pappas, George J.: Encrypted LQG using Labeled Homomorphic Encryption. V Iccps `19: Proceedings of the 2019 10th Acm/IEEE International Conference on Cyber-physical Systems, str. 129-140, 2019.
  • Ngarambe, J. – Yun, G.Y. – Santamouris, M.: The use of artificial intelligence (AI) methods in the prediction of thermal comfort in buildings: energy implications of AI-based thermal comfort controls. Energy and Buildings, č. 109807, zv. 211, 2020.
  • Hou, J. – Li, H. – Nord, N. – Huang, G.: Model predictive control under weather forecast uncertainty for HVAC systems in university buildings. Energy and Buildings, č. 111793, zv. 257, 2022.
  • Prince – Hati, A.S.: A comprehensive review of energy-efficiency of ventilation system using Artificial Intelligence. Renewable and Sustainable Energy Reviews, č. 111153, zv. 146, 2021.
  • Shi, X. – Tian, W. – Leng, Z. – Lu, H.: Global prediction model for indoor temperature based on CFD and LightGBM algorithm [基于CFD和LightGBM算法的建筑室内温度全局预测模型]. Yi Qi Yi Biao Xue Bao/Chinese Journal of Scientific Instrument, č. 1, zv. 42, str. 237-247, 2021.
  • Balbis, L.: Overview of mpc applications in smart cities. International Journal of Sensors, Wireless Communications and Control, č. 2, zv. 11, str. 197-206, 2021.
  • Mrazek, M. – Honc, D. – Riva Sanseverino, E. – Zizzo, G.: Simplified Energy Model and Multi-Objective Energy Consumption Optimization of a Residential House. Applied Sciences (Switzerland), č. 20, zv. 12, 2022.
  • Wald, D. – King, J. – Bay, C.J. – Chintala, R. – Johnson, K.: Integration of distributed controllers: Power reference tracking through charging station and building coordination. Applied Energy, č. 118753, zv. 314, 2022.
  • Wald, D. – Johnson, K. – Bay, C.J. – King, J. – Chintala, R.: Grid-Interactive Electric Vehicle and Building Coordination Using Coupled Distributed Control. V Proceedings of the American Control Conference, str. 2539-2545, 2022.
  • Zanetti, E. – Kim, D. – Blum, D. – Scoccia, R. – Aprile, M.: Performance comparison of quadratic, nonlinear, and mixed integer nonlinear MPC formulations and solvers on an air source heat pump hydronic floor heating system. Journal of Building Performance Simulation, 2022.
Facebook / Youtube

Facebook / Youtube

RSS