## Comparison of MPC Strategies for Building Control

#### J. Drgoňa and M. Kvasnica

Slovak University of Technology in Bratislava, Slovakia

June 20, 2013





Problem: Almost 40% of final energy use in the world goes towards comfort control in buildings - heating, ventilation and air conditioning (HVAC).\*

<sup>\*</sup>International Energy Agency 'Energy efficiency requirements in building codes, energy efficiency policies for new buildings' 2013 OECD/IEA.

Problem: Almost 40% of final energy use in the world goes towards comfort control in buildings - heating, ventilation and air conditioning (HVAC).\*

In European countries it is over 76% !!!\*

<sup>\*</sup>International Energy Agency 'Energy efficiency requirements in building codes, energy efficiency policies for new buildings' 2013 OECD/IEA.

Problem: Almost 40% of final energy use in the world goes towards comfort control in buildings - heating, ventilation and air conditioning (HVAC).\*

In European countries it is over 76% !!!\*

Goal: Increasement of building's energy efficiency

<sup>\*</sup>International Energy Agency 'Energy efficiency requirements in building codes, energy efficiency policies for new buildings' 2013 OECD/IEA.

Problem: Almost 40% of final energy use in the world goes towards comfort control in buildings - heating, ventilation and air conditioning (HVAC).\*

In European countries it is over 76% !!!\*

Goal: Increasement of building's energy efficiency

Solution: Building control

<sup>\*</sup>International Energy Agency 'Energy efficiency requirements in building codes, energy efficiency policies for new buildings' 2013 OECD/IEA.

#### Presentation Outline

Building Modeling and Control

2 Model Predictive Control

Case Study

#### Presentation Outline

Building Modeling and Control

- 2 Model Predictive Control
- Case Study

# Building Thermal Control Scheme



# Single Zone Building Model

#### State Variables

 $x_1$  – floor temperature

 $x_2-$  internal facade temperature

 $x_3$  – external facade temperature

x<sub>4</sub> – internal temperature



#### Disturbances

 $d_1$  – external temperature

 $d_2$  – occupancy

d<sub>3</sub> – solar radiation

# Single Zone Building Model

#### State Variables

 $x_1$  – floor temperature

 $x_2$  – internal facade temperature

 $x_3$  – external facade temperature

x<sub>4</sub> – internal temperature



#### Disturbances

 $d_1$  – external temperature

 $d_2$  – occupancy

 $d_3$  – solar radiation



## Control Objectives

- Thermal Comfort
- Minimization of Energy Consumption

## Control Objectives

- Thermal Comfort
- Minimization of Energy Consumption

# Control Objectives

- Thermal Comfort
- Minimization of Energy Consumption



#### Presentation Outline

Building Modeling and Control

2 Model Predictive Control

Case Study

#### Model Predictive Control

Objective function

$$\min_{u_0,...,u_{N-1}} \sum_{k=0}^{N-1} \ell(x_k, u_k)$$

Constraints

$$\begin{aligned} x_{k+1} &= Ax_k + Bu_k + Ed_k, \\ \underline{x} &\leq x_k \leq \overline{x}, \\ \underline{x} &\leq u_k \leq \overline{u}, \\ \underline{x} &\leq u_k \leq \overline{u}, \end{aligned}$$

#### Model Predictive Control

Objective function

$$\min_{u_0,...,u_{N-1}} \sum_{k=0}^{N-1} \ell(x_k, u_k)$$

Constraints

$$x_{k+1} = Ax_k + Bu_k + Ed_k,$$

$$\underline{x} \le x_k \le \overline{x},$$

$$\underline{u} \le u_k \le \overline{u},$$

$$x_0 = x(t)$$

# Different Formulations of the Objective Function

## Reference Tracking + Energy Minimization (Basic)

$$\ell(x_k,u_k)=q_x(Cx_k-r)^2+q_uu_k^2$$



#### Comfort Zone Tracking + Energy Minimization (CZT)

$$\ell(s_k, u_k) = q_s s_k^2 + q_u u_k^2$$
  
s.t.  $r - \epsilon - s_k \le C x_k \le r + \epsilon + s_k$ 

### Minimization of Zone Violations + Energy Minimization (Hybrid)

$$\ell(\delta_k, u_k) = q_\delta \delta_k + q_u u_k^2$$
  
s.t.  $r - \epsilon - s_k \le C x_k \le r + \epsilon + s_k$   
 $(s_k > 0) \Longrightarrow (\delta_k = 1)$ 

# Different Formulations of the Objective Function

### Reference Tracking + Energy Minimization (Basic)

$$\ell(x_k,u_k)=q_x(Cx_k-r)^2+q_uu_k^2$$



## Comfort Zone Tracking + Energy Minimization (CZT)

$$\ell(s_k, u_k) = q_s s_k^2 + q_u u_k^2$$
  
s.t.  $r - \epsilon - s_k \le C x_k \le r + \epsilon + s_k$ 



#### Minimization of Zone Violations + Energy Minimization (Hybrid)

$$\ell(\delta_k, u_k) = q_\delta \delta_k + q_u u_k^2$$
  
s.t.  $r - \epsilon - s_k \le C x_k \le r + \epsilon + s_k$   
 $(s_k > 0) \Longrightarrow (\delta_k = 1)$ 

# Different Formulations of the Objective Function

#### Reference Tracking + Energy Minimization (Basic)

$$\ell(x_k,u_k)=q_x(Cx_k-r)^2+q_uu_k^2$$



## Comfort Zone Tracking + Energy Minimization (CZT)

$$\ell(s_k, u_k) = q_s s_k^2 + q_u u_k^2$$
  
s.t.  $r - \epsilon - s_k \le C x_k \le r + \epsilon + s_k$ 



## Minimization of Zone Violations + Energy Minimization (Hybrid)

$$\ell(\delta_k, u_k) = q_\delta \delta_k + q_u u_k^2$$
  
s.t.  $r - \epsilon - s_k \le C x_k \le r + \epsilon + s_k$   
 $(s_k > 0) \Longrightarrow (\delta_k = 1)$ 



#### Presentation Outline

Building Modeling and Control

- 2 Model Predictive Control
- Case Study

## Simulation Study

# Closed Loop Simulation Parameters

• Prediction horizon:

$$N = 10$$

Sampling time:

$$T_s = 444 \, {\rm sec}$$

Simulation time:

$$T_{sim} = 31 \text{ days}$$

Initial indoor temperature:

$$x_4 = 10^{\circ} \text{C}$$

No weather predictions



## Simulation Study

# Closed Loop Simulation Parameters

Prediction horizon:

$$N = 10$$

Sampling time:

$$T_s = 444 \text{ sec}$$

Simulation time:

$$T_{sim} = 31 \text{ days}$$

• Initial indoor temperature:

$$x_4 = 10^{\circ} \text{C}$$

No weather predictions



## PI Controller





| Control strategy         | PI    |
|--------------------------|-------|
| Thermal comfort [%]      | 87.5  |
| Energy consumption [kWh] | 753.0 |
| Energy savings [%]       | -     |

# Reference Tracking (Basic)





| Control strategy         | PI    | Basic |
|--------------------------|-------|-------|
|                          | 87.5  | 89.2  |
| Energy consumption [kWh] | 753.0 | 722.7 |
| Energy savings [%]       | -     | 4.0   |

# Comfort Zone Tracking (CZT)



| Control strategy         | PI    | Basic | CZT   |
|--------------------------|-------|-------|-------|
| [, 0]                    | 87.5  | 89.2  | 84.1  |
| Energy consumption [kWh] | 753.0 | 722.7 | 684.0 |
| Energy savings [%]       | -     | 4.0   | 9.1   |

# Minimization of Comfort Zone Violations (Hybrid)



| Control strategy         | PI    | Basic | CZT   | Hybrid |
|--------------------------|-------|-------|-------|--------|
| [, •]                    |       | 89.2  | 84.1  | 88.2   |
| Energy consumption [kWh] | 753.0 | 722.7 | 684.0 | 640.1  |
| Energy savings [%]       | -     | 4.0   | 9.1   | 15.0   |









- Design and evaluation of different MPC strategies
- Best case: hybrid formulation with energy savings up to 15%
- Drawback: higher computational complexity
- No weather predictions
- Suitable for application in "intelligent" building

- Design and evaluation of different MPC strategies
- Best case: hybrid formulation with energy savings up to 15%
- Drawback: higher computational complexity
- No weather predictions
- Suitable for application in "intelligent" building

- Design and evaluation of different MPC strategies
- Best case: hybrid formulation with energy savings up to 15%
- Drawback: higher computational complexity
- No weather predictions
- Suitable for application in "intelligent" building

- Design and evaluation of different MPC strategies
- Best case: hybrid formulation with energy savings up to 15%
- Drawback: higher computational complexity
- No weather predictions
- Suitable for application in "intelligent" building

- Design and evaluation of different MPC strategies
- Best case: hybrid formulation with energy savings up to 15%
- Drawback: higher computational complexity
- No weather predictions
- Suitable for application in "intelligent" building