Model Identification and Predictive Control of a Laboratory Binary Distillation Column

Ján Drgoňa, Martin Klaučo, Richard Valo, Jakub Bendžala, and Miroslav Fikar

Slovak University of Technology in Bratislava, Slovakia

June 12, 2015

Motivation

Motivation

Distillation

Distillation

Distillation

Distillation Column - Control

Aims

 Concentration via temperature control

Distillation Column - Control

Aims

 Concentration via temperature control

Challenges

- Hardware setup
- Nonlinearities
- Disturbances
- Plant-model mismatch

Distillation Column - Control

Aims

 Concentration via temperature control

Challenges

- Hardware setup
- Nonlinearities
- Disturbances
- Plant-model mismatch

Tools

- Model identification
- Model predictive control

Distillation Column – Variables

condenser

Oversized condenser

2 PWM signal

Feed temperature control

Oversized condenser

2 PWM signal

Feed temperature control

Oversized condenser

2 PWM signal

Feed temperature control

- 2 PWM signal ✓
- 3 Feed temperature control ✓

- Step changes
- 2 Responses
- 3 Identified model

- Step changes ✓
- 2 Responses
- 3 Identified model

- Step changes ✓
- 2 Responses ✓
- 3 Identified model

- Step changes ✓
- 2 Responses ✓
- 3 Identified model

$$x_{k+1} = Ax_k + Bu_k$$
$$y_k = Cx_k$$

 7_1 [°C]

Common Assumption

Design model

is equal

Plant

Reality

Design model

Plant

Reality

Plant-model mismatch

Design model

Plant

Origins of Offset in Control

Plant-model mismatch

2 Unmeasured disturbances

Incomplete state information

Offset-free Control Tools

Disturbance modelling

Estimation of variables

3 Model predictive control

Disturbance Modelling

Design model:

$$x_{k+1} = Ax_k + Bu_k$$

$$y_k = Cx_k$$

Disturbance Modelling

Augmented design model:

$$x_{k+1} = Ax_k + Bu_k$$
$$d_{k+1} = d_k$$
$$y_k = Cx_k + d_k$$

Estimation of Variables

Augmented design model:

$$x_{k+1} = Ax_k + Bu_k$$
$$d_{k+1} = d_k$$
$$y_k = Cx_k + d_k$$

Luenberger observer:

$$\begin{bmatrix} \hat{x} \\ \hat{d} \end{bmatrix}_{k+1} = \begin{bmatrix} A & 0 \\ 0 & I \end{bmatrix} \begin{bmatrix} \hat{x} \\ \hat{d} \end{bmatrix}_{k} + \begin{bmatrix} B \\ 0 \end{bmatrix} u_{k} + L (y_{m,k} - \hat{y}_{k})$$
$$\hat{y}_{k} = \begin{bmatrix} C & I \end{bmatrix} \begin{bmatrix} \hat{x} \\ \hat{d} \end{bmatrix}_{k}$$

Model Predictive Control

Reference tracking MPC:

min
$$\sum_{k=0}^{N-1} \left((y_{k+1} - r)^2 + \lambda (\Delta u_k)^2 \right)$$
s.t.
$$x_{k+1} = Ax_k + Bu_k \quad k = 0, \dots, N-1$$

$$y_k = Cx_k + d_0 \quad k = 0, \dots, N$$

$$\Delta u_k = u_k - u_{k-1}$$

$$u_{\min} \le u_k \le u_{\max}$$

$$x_0 = \hat{x}(t)$$

$$d_0 = \hat{d}(t)$$

Offset-free Control Tools

Disturbance modelling ✓

Estimation of variables

3 Model predictive control ✓

Experimental Results

Experimental Results

Experimental Results

- ldentification of laboratory distillation column
- 2 Disturbance modelling
- 3 State and disturbance estimation
- 4 Model predictive control design
- 5 Experimental verification of control on laboratory device

- ldentification of laboratory distillation column ✓
- 2 Disturbance modelling
- 3 State and disturbance estimation
- 4 Model predictive control design
- 5 Experimental verification of control on laboratory device

- ldentification of laboratory distillation column 🗸
- 2 Disturbance modelling ✓
- 3 State and disturbance estimation
- 4 Model predictive control design
- 5 Experimental verification of control on laboratory device

- ldentification of laboratory distillation column 🗸
- 2 Disturbance modelling ✓
- 3 State and disturbance estimation ✓
- 4 Model predictive control design
- 5 Experimental verification of control on laboratory device

- ldentification of laboratory distillation column ✓
- Disturbance modelling
- 3 State and disturbance estimation ✓
- 4 Model predictive control design ✓
- 5 Experimental verification of control on laboratory device

- ldentification of laboratory distillation column 🗸
- 2 Disturbance modelling ✓
- 3 State and disturbance estimation ✓
- 4 Model predictive control design ✓
- 5 Experimental verification of control on laboratory device ✓

Backup: Distillation Column - Hardware Solution

Backup: Effect of Diturbances

