# Model Predictive Control with Applications in Building Thermal Comfort Control

#### Ing. Ján Drgoňa

#### Slovak University of Technology in Bratislava, Slovakia

#### February 27, 2015





- 2 Model Predictive Control
- Simulation Case Studies
- Aims of the Thesis

# Building Control

- 2 Model Predictive Control
- 3 Simulation Case Studies
- Aims of the Thesis

## **Building Control Motivation**

Problem: EU spends 400 billion EUR/year on energy.

Problem: EU spends 400 billion EUR/year on energy.

40% goes into thermal comfort control.\*

Problem: EU spends 400 billion EUR/year on energy.

#### 40% goes into thermal comfort control.\*

#### Goal: Reduce the energy consumption

Problem: EU spends 400 billion EUR/year on energy. 40% goes into thermal comfort control.\*

#### Goal: Reduce the energy consumption

#### Solution: MPC-based control

#### • Satisfy thermal comfort constraints

- Minimize energy consumption
- Obey technological restrictions

- Satisfy thermal comfort constraints
- Minimize energy consumption
- Obey technological restrictions

- Satisfy thermal comfort constraints
- Minimize energy consumption
- Obey technological restrictions

# **Existing Solutions**





#### 2 Model Predictive Control

- 3 Simulation Case Studies
- Aims of the Thesis

# Building Thermal Control Scheme



## Model Predictive Control

Objective function

$$\min_{u_0,...,u_{N-1}}\sum_{k=0}^{N-1}\ell(x_k,u_k)$$

Constraints

$$\begin{aligned} x_{k+1} &= Ax_k + Bu_k + Ed_0 \\ x_{\min} &\leq x_k \leq x_{\max} \\ u_{\min} &\leq u_k \leq u_{\max} \\ x_0 &= x(t) \\ d_0 &= d(t) \end{aligned}$$

# Deterministic MPC Formulations

#### Reference Tracking + Energy Minimization (Basic)

$$q(x_k, u_k) = q_x (Cx_k - r)^2 + q_u u_k^2$$

#### Comfort Zone Tracking + Energy Minimization (CZT)

$$\ell(s_k, u_k) = q_s s_k^2 + q_u u_k^2$$
  
s.t.  $r - \epsilon - s_k \le C x_k \le r + \epsilon + s_k$ 

Minimization of Zone Violations + Energy Minimization (Hybrid)

$$\ell(\delta_k, u_k) = q_\delta \delta_k + q_u u_k^2$$
  
s.t.  $r - \epsilon - s_k \le C x_k \le r + \epsilon + s_k$   
 $(s_k > 0) \Longrightarrow (\delta_k = 1)$ 

# Deterministic MPC Formulations

# Reference Tracking + Energy Minimization (Basic)

$$\mathcal{Q}(x_k, u_k) = q_x (Cx_k - r)^2 + q_u u_k^2$$

#### Comfort Zone Tracking + Energy Minimization (CZT)

$$\ell(s_k, u_k) = q_s s_k^2 + q_u u_k^2$$
  
s.t.  $r - \epsilon - s_k \le C x_k \le r + \epsilon + s_k$ 

$$\overbrace{-----}^{+\epsilon} r$$

Minimization of Zone Violations + Energy Minimization (Hybrid)

$$\ell(\delta_k, u_k) = q_\delta \delta_k + q_u u_k^2$$
  
s.t.  $r - \epsilon - s_k \le C x_k \le r + \epsilon + s_k$   
 $(s_k > 0) \Longrightarrow (\delta_k = 1)$ 

# Deterministic MPC Formulations

# Reference Tracking + Energy Minimization (Basic)

$$\mathcal{Q}(x_k, u_k) = q_x (Cx_k - r)^2 + q_u u_k^2$$

### Comfort Zone Tracking + Energy Minimization (CZT)

$$\ell(s_k, u_k) = q_s s_k^2 + q_u u_k^2$$
  
s.t.  $r - \epsilon - s_k \le C x_k \le r + \epsilon + s_k$ 

#### Minimization of Zone Violations + Energy Minimization (Hybrid)

$$\ell(\delta_k, u_k) = q_\delta \delta_k + q_u u_k^2$$
  
s.t.  $r - \epsilon - s_k \le C x_k \le r + \epsilon + s_k$   
 $(s_k > 0) \Longrightarrow (\delta_k = 1)$ 



## Weather Predictions Problem



## Stochastic Model Predictive Control

Energy minimisation objective function

$$\min_{u_0,...,u_{N-1}} \sum_{k=0}^{N-1} u_k^2$$

Normal distribution of disturbances

$$\begin{aligned} x_{k+1} &= Ax_k + Bu_k + E(d_0 + k\theta), \\ Cx_k &\geq r - \epsilon \\ Cx_k &\leq r + \epsilon \\ u_{\min} &\leq u_k \leq u_{\max} \\ \theta &\sim \mathcal{N}(0, \sigma(t)) \end{aligned}$$

## Stochastic Model Predictive Control

Energy minimisation objective function

$$\min_{u_0,...,u_{N-1}} \sum_{k=0}^{N-1} u_k^2$$

Probabilistic constraints

$$\begin{aligned} x_{k+1} &= Ax_k + Bu_k + E(d_0 + k\theta), \\ \Pr(Cx_k \geq r - \epsilon) \geq 1 - \alpha \\ \Pr(Cx_k \leq r + \epsilon) \geq 1 - \alpha \\ u_{\min} \leq u_k \leq u_{\max} \\ \theta \sim \mathcal{N}(0, \sigma(t)) \end{aligned}$$

$$g(x, u, \theta) \leq 0$$
  
 $\Pr(g(x, u, \theta) \leq 0) \geq 1 - \alpha$ 

Campi M. and Garrati S., 2008

$$g(x, u, \theta^{(i)}) \leq 0, \quad i = 1, \dots, M$$
$$\Pr(\Pr(g(x, u, \theta) \leq 0) \geq 1 - \alpha) \geq 1 - \beta$$

$$M \ge \frac{1 + (Nn_u) + \ln(1/\beta) + \sqrt{2((Nn_u) + 1)\ln(1/\beta)}}{\alpha}$$

$$egin{aligned} & egin{aligned} & egi$$

Campi M. and Garrati S., 2008

$$g(x, u, \theta^{(i)}) \le 0, \quad i = 1, \dots, M$$
  
 $\Pr(\Pr(g(x, u, \theta) \le 0) \ge 1 - \alpha) \ge 1 - \beta$ 

Alamo T., Tempo R., and Luque A., 2010

$$M \ge \frac{1 + (Nn_u) + \ln(1/\beta) + \sqrt{2((Nn_u) + 1)\ln(1/\beta)}}{\alpha}$$

$$egin{aligned} & egin{aligned} & egi$$

Campi M. and Garrati S., 2008

$$g(x, u, \theta^{(i)}) \le 0, \quad i = 1, \dots, M$$
  
 $\Pr(\Pr(g(x, u, \theta) \le 0) \ge 1 - \alpha) \ge 1 - \beta$   
Tempo R., and Lugue A., 2010

Alamo T., Tempo R., and Luque A., 2010

$$M \geq \frac{1 + (Nn_u) + \ln(1/\beta) + \sqrt{2((Nn_u) + 1)\ln(1/\beta)}}{\alpha}$$

## Number of *M* Samples



## Deterministic Realization of Probabilistic Constraints

Energy minimisation objective function

$$\min_{u_0,...,u_{N-1}} \sum_{k=0}^{N-1} u_k^2$$

Finitely many deterministic constraints

$$\begin{aligned} x_{k+1} &= Ax_k + Bu_k + E(d_0 + k\theta^{(i)}), \quad i = 1, \dots, M \\ Cx_k &\geq r - \epsilon \\ Cx_k &\leq r + \epsilon \\ u_{\min} &\leq u_k \leq u_{\max} \\ \theta &\sim \mathcal{N}(0, \sigma(t)) \end{aligned}$$

Drgoňa, J. – Kvasnica, M. – Klaučo, M. – Fikar, M.: Explicit Stochastic MPC Approach to Building Temperature Control. Conference on Decision and Control, Florence, Italy, 2013.

J. Drgoňa (STU Bratislava)

Building Control

February 27, 2015 15 / 22

## Building Control

- 2 Model Predictive Control
- Simulation Case Studies
  - Aims of the Thesis

# Single Zone Building Model

### State (Measured) Variables

- $x_1$  floor temperature
- $x_2$  internal facade temperature
- $x_3$  external facade temperature
- $x_4$  internal temperature

## Controlled Variable

 $y = x_4$ 



## **Measured Disturbances**

- $d_1$  external temperature
- $d_2-$  occupancy
- $d_3-$  solar radiation

## Manipulated Variable

u- heat flow



# Deterministic MPC Performance



# Deterministic MPC Performance





J. Drgoňa (STU Bratislava)



J. Drgoňa (STU Bratislava)





| Thermal | Consumed                                            |
|---------|-----------------------------------------------------|
| comfort | energy                                              |
| [%]     | [kWh]                                               |
| 100.0   | 125.2                                               |
| 100.0   | 146.0                                               |
| 97.2    | 125.7                                               |
|         | Thermal<br>comfort<br>[%]<br>100.0<br>100.0<br>97.2 |



| Thermal | Consumed |
|---------|----------|
| comfort | energy   |
| [%]     | [kWh]    |
| 100.0   | 125.2    |
| 100.0   | 146.0    |
| 97.2    | 125.7    |



# Publications

## A-Class

 Klaučo, M. - Drgoňa, J. - Kvasnica, M. - Di Cairano, S.: Building Temperature Control by Simple MPC-like Feedback Laws Learned from Closed-Loop Data. IFAC World Congress, 2014.

#### **IEEE** Conferences

- Drgoňa, J. Kvasnica, M.: Comparison of MPC Strategies for Building Control. Process Control, 2013.
- Drgoňa, J. Kvasnica, M. Klaučo, M. Fikar, M.: Explicit Stochastic MPC Approach to Building Temperature Control. Conference on Decision and Control, 2013.

#### In preparation

 Drgoňa, J. - Klaučo, M. - Bendžala J. - Fikar, M.: Model Identification and Predictive Control of a Laboratory Binary Distillation Column. Process Control, 2015.

J. Drgoňa (STU Bratislava)

**Building Control**
#### **O** Performance evaluation of MPC usage in building automation

## Overlaps Development of efficient MPC strategies

Experimental validation on laboratory or real devices

## **O** Performance evaluation of MPC usage in building automation

## **O Development of efficient MPC strategies**

#### Experimental validation on laboratory or real devices

## **O** Performance evaluation of MPC usage in building automation

#### **O Development of efficient MPC strategies**

#### Separation on aboratory or real devices

**Opponents Questions** 

Je uvedený rozsah (4.2) pre zachovanie linearity modelu tepelnej pohody budovy skutočne reálny? (str. 51)

$$-30^{\circ} C \leq x_i \leq 50^{\circ} C, \ i = 1, \dots, 4,$$

- Lineárny model: MATLAB toolbox Hamlab/ISE
- Nelineárne modely: Energy+, TRNSYS
- Komunikačné mosty: BCVTB, MLE+, OpenBuild
- Význam ohaničení: Explicitné MPC a ohraničenie prehľadávaného parametrického priestoru

Je uvedený rozsah (4.2) pre zachovanie linearity modelu tepelnej pohody budovy skutočne reálny? (str. 51)

$$-30^{\circ} C \leq x_i \leq 50^{\circ} C, \ i = 1, \dots, 4,$$

- Lineárny model: MATLAB toolbox Hamlab/ISE
- Nelineárne modely: Energy+, TRNSYS
- Komunikačné mosty: BCVTB, MLE+, OpenBuild
- Význam ohaničení: Explicitné MPC a ohraničenie prehľadávaného parametrického priestoru

Je uvedený rozsah (4.2) pre zachovanie linearity modelu tepelnej pohody budovy skutočne reálny? (str. 51)

$$-30^{\circ} C \leq x_i \leq 50^{\circ} C, \ i = 1, \dots, 4,$$

- Lineárny model: MATLAB toolbox Hamlab/ISE
- Nelineárne modely: Energy+, TRNSYS
- Komunikačné mosty: BCVTB, MLE+, OpenBuild
- Význam ohaničení: Explicitné MPC a ohraničenie prehľadávaného parametrického priestoru

Poruchová veličina  $\theta$  je trojrozmerným vektorom, deklarovaná hustota pravdepodobnosti (4.7) by potom mala byť združeným rozdelením pravdepodobnosti a  $\sigma$  variančnou maticou - ako by ste ju volili? (str. 54)

 $\theta \sim \mathcal{N}(0, \sigma(t))$ 

- Aplikácia: Uvažujeme stochastické modelovanie len jednej poruchovej veličiny vonkajšej teploty
- Problém: Výberová kovariančná matica je a priori neznáma
- Riešenie: Výpočet kovariančej matice z historicky nameraných dát

Poruchová veličina  $\theta$  je trojrozmerným vektorom, deklarovaná hustota pravdepodobnosti (4.7) by potom mala byť združeným rozdelením pravdepodobnosti a  $\sigma$  variančnou maticou - ako by ste ju volili? (str. 54)

 $\theta \sim \mathcal{N}(0, \sigma(t))$ 

- Aplikácia: Uvažujeme stochastické modelovanie len jednej poruchovej veličiny vonkajšej teploty
- Problém: Výberová kovariančná matica je a priori neznáma
- Riešenie: Výpočet kovariančej matice z historicky nameraných dát

Poruchová veličina  $\theta$  je trojrozmerným vektorom, deklarovaná hustota pravdepodobnosti (4.7) by potom mala byť združeným rozdelením pravdepodobnosti a  $\sigma$  variančnou maticou - ako by ste ju volili? (str. 54)

 $\theta \sim \mathcal{N}(0, \sigma(t))$ 

- Aplikácia: Uvažujeme stochastické modelovanie len jednej poruchovej veličiny vonkajšej teploty
- Problém: Výberová kovariančná matica je a priori neznáma
- Riešenie: Výpočet kovariančej matice z historicky nameraných dát

Ako sleduje (stúpajúci alebo klesajúci) trend budúceho vývoja poruchových veličín podľa (4.8) svoje doterajšie historické dáta? (str. 54)

$$d(t+kT_s)=d(t)+k\theta, \ k=1,\ldots,N,$$

• Charakter: Aditívna neurčitosť. d(t) - meranie poruchy s konštantnou predikciou na N  $\theta$  - z 1 -  $\alpha$  intervalu spoľahlivosti rozdelenia  $\mathcal{N}(0, \sigma(t))$ .

• Zjednodušenie výrazu:

$$d(t+kT_s)=d_k+\theta_k, \ k=1,\ldots,N,$$

Ako sleduje (stúpajúci alebo klesajúci) trend budúceho vývoja poruchových veličín podľa (4.8) svoje doterajšie historické dáta? (str. 54)

$$d(t+kT_s)=d(t)+k\theta, \ k=1,\ldots,N,$$

• Charakter: Aditívna neurčitosť. d(t) - meranie poruchy s konštantnou predikciou na N  $\theta$  - z 1 -  $\alpha$  intervalu spoľahlivosti rozdelenia  $\mathcal{N}(0, \sigma(t))$ .

• Zjednodušenie výrazu:

$$d(t+kT_s)=d_k+\theta_k, \ k=1,\ldots,N,$$

## Podľa akej argumentácie bola vybratá perióda vzorkovania Ts na hodnote 444 sekúnd? (str. 55)

- $T_{90} \approx 10000 s \approx 2.8 hod$
- $T_{90}/20$  ako celočíselný násobok periódy vzorkovania modelu z toolboxu ISE, kde Ts = 222s
- *Ts* = 888*s* pri stochastických návrhoch MPC

Podľa akej argumentácie bola vybratá perióda vzorkovania Ts na hodnote 444 sekúnd? (str. 55)

- $T_{90} \approx 10000s \approx 2.8$  hod
- T<sub>90</sub>/20 ako celočíselný násobok periódy vzorkovania modelu z toolboxu ISE, kde Ts = 222s
- Ts = 888s pri stochastických návrhoch MPC

Používaným štandardom riadenia tepelnej pohody v budovách je ekvitermická regulácia, teda uvažovanie doprednej väzby od vonkajšej teploty. Prečo pri PI riadení nebola táto väzba v srovnávacej simulácii uvažovaná? (str. 65)

• Návrh PI regulátora z perpektívy teórie riadenia

Používaným štandardom riadenia tepelnej pohody v budovách je ekvitermická regulácia, teda uvažovanie doprednej väzby od vonkajšej teploty. Prečo pri PI riadení nebola táto väzba v srovnávacej simulácii uvažovaná? (str. 65)

• Návrh PI regulátora z perpektívy teórie riadenia

#### Discussion - Backup Slides

# Simulation Study Deterministic MPC

| Closed Loop Simulation<br>Parameters                                          | Evolution of External<br>Temperature |
|-------------------------------------------------------------------------------|--------------------------------------|
| • Prediction horizon: $N = 10$                                                |                                      |
| • Sampling time:<br>$T_s = 444 \text{ sec}$                                   |                                      |
| • Simulation time:<br>$T_{sim} = 31 \text{ days}$                             |                                      |
| <ul> <li>Initial indoor temperature:</li> <li>x<sub>4</sub> = 10°C</li> </ul> | <sup>,≝</sup> ₅ MMM                  |
| <ul> <li>No weather predictions</li> </ul>                                    | 0 5 10 15 20 25 30<br>Time [days]    |

# Simulation Study Deterministic MPC

| Closed Loop Simulation<br>Parameters                                | Evolution of External<br>Temperature |
|---------------------------------------------------------------------|--------------------------------------|
| <ul> <li>Prediction horizon:</li> <li>N = 10</li> </ul>             |                                      |
| <ul> <li>Sampling time:</li> <li>T<sub>s</sub> = 444 sec</li> </ul> |                                      |
| • Simulation time:<br>$T_{sim} = 31 \text{ days}$                   |                                      |
| • Initial indoor temperature:<br>$x_4 = 10^{\circ}C$                | <sup>,≝</sup> ₅ MMM                  |
| <ul> <li>No weather predictions</li> </ul>                          | 0 5 10 15 20 25 30<br>Time [days]    |

# **PI** Controller



## Reference Tracking (Basic)



| Control strategy         | PI    | Basic |
|--------------------------|-------|-------|
| Thermal comfort [%]      | 87.5  | 89.2  |
| Energy consumption [kWh] | 753.0 | 722.7 |
| Energy savings [%]       | -     | 4.0   |

# Comfort Zone Tracking (CZT)



| Control strategy         | PI    | Basic | CZT   |
|--------------------------|-------|-------|-------|
| Thermal comfort [%]      | 87.5  | 89.2  | 84.1  |
| Energy consumption [kWh] | 753.0 | 722.7 | 684.0 |
| Energy savings [%]       | -     | 4.0   | 9.1   |

# Minimization of Comfort Zone Violations (Hybrid)



$$x_{k+1} = Ax_k + Bu_k + E(d_0 + k\theta)$$
  
$$Cx_k \le r + \epsilon$$

## $C(Ax_k + Bu_k + E(d_0 + k\theta^{(i)})) \leq r + \epsilon$

# $C(Ax_k + Bu_k + E(d_0 + k\theta^{(i)})) \le r + \epsilon$ $\max_i \{C(Ax_k + Bu_k + E(d_0 + k\theta^{(i)}))\} \le r + \epsilon$

$$C(Ax_{k} + Bu_{k} + E(d_{0} + k\theta^{(i)})) \leq r + \epsilon$$
$$\max_{i} \{C(Ax_{k} + Bu_{k} + E(d_{0} + k\theta^{(i)}))\} \leq r + \epsilon$$
$$C(Ax_{k} + Bu_{k} + Ed_{0}) + k\max_{i} \{CE\theta^{(i)}\} \leq r + \epsilon$$

$$C(Ax_{k} + Bu_{k} + E(d_{0} + k\theta^{(i)})) \leq r + \epsilon$$
$$\max_{i} \{C(Ax_{k} + Bu_{k} + E(d_{0} + k\theta^{(i)}))\} \leq r + \epsilon$$
$$C(Ax_{k} + Bu_{k} + Ed_{0}) + k \max_{i} \{CE\theta^{(i)}\} \leq r + \epsilon$$
$$C(Ax_{k} + Bu_{k} + Ed_{0}) + k \min_{i} \{CE\theta^{(i)}\} \geq r - \epsilon$$

$$\overline{\theta} = \arg \max_{\theta^{(i)}} \{ CE\theta^{(i)} \}$$
$$\underline{\theta} = \arg \min_{\theta^{(i)}} \{ CE\theta^{(i)} \}$$

Previous Parametric QP has:

927 parametric variables 18400 constraints Previous Parametric QP has:

927 parametric variables 18400 constraints

Resulting Parametric QP has:

14 parametric variables 60 constraints

# Explicit Stochastic MPC



Number of parameters: 14 Number of constraints: 60

Number of regions: 816 Time to compute:  $\approx 6$ min

#### At each sample time $T_s$

- Measure x(t), d(t), r(t) and obtain  $\sigma(t)$
- ② Generate *M* samples  $\theta^{(1)}, \ldots, \theta^{(M)}$
- Set  $\xi = [x(t), d(t), r(t), \underline{\theta}, \overline{\theta}]$  and identify  $\mathcal{R}_i$
- $u^*(t) = \tilde{F}_{i^*}\xi + \tilde{g}_{i^*}$

## At each sample time $T_s$



## • Measure x(t), d(t), r(t) and obtain $\sigma(t)$

- **B** Pick  $\theta$  and  $\theta$
- Set  $\xi = [x(t), d(t), r(t), \underline{\theta}, \overline{\theta}]$  and identify  $\mathcal{R}_i$
- $u^*(t) = \tilde{F}_{i*}\xi + \tilde{g}_{i*}$

At each sample time  $T_s$ 

- Measure x(t), d(t), r(t) and obtain  $\sigma(t)$
- **2** Generate *M* samples  $\theta^{(1)}, \ldots, \theta^{(M)}$
- Set  $\xi = [x(t), d(t), r(t), \underline{\theta}, \overline{\theta}]$  and identify  $\mathcal{R}_i$
- $u^*(t) = \tilde{F}_{i^*}\xi + \tilde{g}_{i^*}$
At each sample time  $T_s$ 

- Measure x(t), d(t), r(t) and obtain  $\sigma(t)$
- **2** Generate *M* samples  $\theta^{(1)}, \ldots, \theta^{(M)}$
- $\ \, {\rm Orightarrow Pick} \ \, \underline{\theta} \ \, {\rm and} \ \, \overline{\theta}$
- Set  $\xi = [x(t), d(t), r(t), \underline{\theta}, \overline{\theta}]$  and identify  $\mathcal{R}_i$   $u^*(t) = \tilde{F}_{i^*}\xi + \tilde{g}_{i^*}$

At each sample time  $T_s$ 

- Measure x(t), d(t), r(t) and obtain  $\sigma(t)$
- **2** Generate *M* samples  $\theta^{(1)}, \ldots, \theta^{(M)}$
- Pick  $\underline{\theta}$  and  $\overline{\theta}$
- Set  $\xi = [x(t), d(t), r(t), \underline{\theta}, \overline{\theta}]$  and identify  $\mathcal{R}_i$

 $u^*(t) = \tilde{F}_{i^*}\xi + \tilde{g}_{i^*}$ 

At each sample time  $T_s$ 

- Measure x(t), d(t), r(t) and obtain  $\sigma(t)$
- **2** Generate *M* samples  $\theta^{(1)}, \ldots, \theta^{(M)}$
- $\ \, {\rm Orightarrow Pick} \ \, \underline{\theta} \ \, {\rm and} \ \, \overline{\theta}$
- Set  $\xi = [x(t), d(t), r(t), \underline{\theta}, \overline{\theta}]$  and identify  $\mathcal{R}_i$
- $\bullet u^*(t) = \tilde{F}_{i^*}\xi + \tilde{g}_{i^*}$