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Minithesis

Specialization:

Process Control

Supervisor:

Assoc. Prof. Ing. Michal Kvasnica, PhD



In the first place, I would like to express gratitude to my supervisor Assoc.

Prof. Ing. Michal Kvasnica, PhD for his professional guidance, and for

patience during the last year when I was compelled to interrupt the study

due to health reasons. For the second chance to finish my PhD. study I

am very grateful to my family members, who were supporing me during

my ilness. For the recovery itself I am utterly most grateful to all ivolved

in my healing process.

Bratislava, 2015

Ján Drgoňa



Abstract

This thesis deals with class of optimal control methods, more specifically with Model Predic-

tive Control (MPC). In the beginning, necessary mathematical background of mathematical

optimization is presented, followed by taxonomy, history and general overwiev of MPC. Fur-

ther as main aim of this thesis an application of MPC strategies in building thermal comfort

control problems are studied.

In the first place we focused on buildings modeling and overview of available software tools

for this purpose. Subsequently a appropriate formulation of control criteria were studied for

ensuring maximization of thermal comfort, along with minimization of energy consumption,

which are in general counteracting criteria. These control criteria can be cast in various ways,

each having their pros and cons. Whereupon three different deterministic MPC strategies for

controlling temperatures in buildings are proposed.

Further it is shown how to synthesize explicit representations of MPC feedback laws that

maintain temperatures in a building within of a comfortable range while taking into account

random evolution of external disturbances (including outside weather and building occupancy

among others). To account for random disturbances, a formulation with assumed probabilistic

version of thermal comfort constraints is presented, as well as methodology how a finite-

sampling approach can be used to convert probabilistic bounds into deterministic constraints.

All proposed methods are in the end compared with respect to two mentioned qualitative

control criteria on simulation case studies.
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Abstrakt

Táto práca sa zaoberá metódami optimálneho riadenia, so špeciálnym zamerańım na predik-

t́ıvne riadenie s modelom. Začiatok práce je venovaný nutným základom a prehl’adom prob-

lémov matematickej optimalizácie, nasledované klasifikáciou, historickým vývojom a všeobec-

ným prehl’adom techńık predikt́ıvneho riadenia.

Hlavný ciel’ tejto práce je zameranie na preskúmanie možnost́ı aplikácie metód predik-

t́ıvneho riadenia v problémoch riadenia tepelného komfortu v budovách. Pozornost’ je v pr-

vom rade venovaná matematickému modelovaniu budov a softvérovým možnostiam pre tieto

účely. Sú skúmané vhodné formulácie daných riadiacich kritéríı, pre zabezpečenie maximalizá-

cie tepelného komfortu, súčasne s minimalizáciou spotrebovenej energie, čo sú vo všeobecnosti

protichodné kritériá. Tieto kritéria môžu byt’ matematicky formulované viacerými spôsobmi,

každý majúc svoje výhody a nevýhody. Na základe vybraných kritéríı následne navrhujeme

tri rozdielne deterministické formulácie predikt́ıvneho riadenia.

Ďalej sú prezentované techniky syntézy explicitnej reprezentácie predikt́ıvnych zákonov ri-

adenia so spätnou väzbou, navrhnuté na udržanie teplôt v komfortnej zóne, prićom berúc do

úvahy aj evolúciu náhodného vplyvu externých porúch (zahŕ ňaj úcich vonkaǰsie počasie, alebo

medzi inými aj pŕıtomnost̂ l̂ud́ı v budove ). Modelovanie náhodných porúch, je predstavené

ako formulácie s pravdepodobnostými verziami ohraničeńı špecifikujúcich komfortné teplotné

zóny. Následne je predstavená metodológia popisujúca prevedenie výpočtovo náročných pravde-

podobnostných ohraničeńı na numericky l’ahko vyhodnotitel’né deterministické ohraničenia s

použit́ım konečného počtu vzoriek.

Všetky predstavené formulácie riadenia sú ku koncu práce porovnané v simulačných

štúdiách, vzhl’adom na splnenie dvoch spomenutých kvalitat́ıvnych kritéríı.
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Notation

Mathematical Symbols

x real valued variable

δ integer valued variable

xk state variable at k-th step

uk input variable at k-th step

dk disturbance variable at k-th step

r reference variable

θ random variable

ξ vector of parameters

R
n Column vector of real values of length n

R
n×m Matrix of real values of n-rows and m-columns

Abbreviations

Functions

PWA piecewise affine function

PWQ piecewise quadratic function

Optimization

LP linear programming

QP quadratic programming

MIP mixed integer programming

MILP mixed integer linear programming

MIQP mixed integer quadratic programming

mpP multi parametric programming

mpLP multi parametric linear programming

mpQP multi parametric quadratic programming

mpMILP multi parametric mixed integer linear programming
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Systems

ODE ordinary differential equation

I/O input - output

SISO single input - single output system

SIMO single input - multiple output system

MISO multiple input - single output system

MIMO multiple input - multiple output system

LTI linear time-invariant

Controllers

PID proporcional integral derivative

LQR linear quadratic regulator

LQE linear quadratic estimator

LQG linear quadratic gaussian

MPC model predictive control

RHC receding horizon control

Model predictive control

MPHC model predictive heuristic control

MAC model algorithmic control

DMC dynamic matrix control

QDMC quadratic dynamic matrix control

IDCOM identification and command

IDCOM-M identification and command - multiple input/output

HIECON hierarchical constraint control

SMCA setpoint multivariable control architecture

SMOC shell multivariable optimizing controller

PCT predictive control technology

RMPCT robust model predictive control technology

CEMPC certainty equivalence model predictive control

Building modeling and control

HVAC heating ventilation air conditioning

BAS building automation system

ISE indoor temperature simulink engineering
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Chapter 1
Introduction

Nowadays, energy consumed for heating, cooling ventilation and air conditioning (HVAC)

in residential and commercial buildings accounts for roughly 40% of global energy use Parry

et al. (2007). In Europe, this figure is reported to be as high as 76%. Any reduction of energy

demand thus has a huge effect, which goes hand-to-hand with reduction of greenhouse gases

and overall level of pollution.

Two principal ways can be followed to lower energy consumption of HVAC systems for

buildings McQuiston et al. (2005). One option is to focus on a better physical construction,

for instance by using better insulations, or by devising an energy-friendly structure of the

building. A common downside of these approaches is that they require significant resources

and are mainly applicable only to newly-constructed buildings.

The second principal way is to improve efficacy of HVAC control systems Levermore

(2000). Various advanced control methods are nowadays available to achieve this goal, rang-

ing from use of classical PI and state-feedback controllers Canbay et al. (2004), through

methods based on artificial inteligence contepts such as fuzzy systems Hamdi and Lachiver

(1998), neural networks Kusiak and Xu (2012), machine learning Liu and Henze (2007), multi-

agent control systems Dounis and Caraiscos (2009), up to application of optimization-based

schemes Ma et al. (2009), Široký et al. (2011). Advantage of the latter class is that the

task of minimizing energy while respecting thermal comfort can be rigorously stated as an

optimization problem, leading to a best-achievable performance.

In this thesis we therefore also follow the line of devising optimization-based controllers

for control of thermal comfort in buildings. Specifically, we consider the class of Model

Predictive Control (MPC) strategies Maciejowski (2002b) which utilize a mathematical model

of the building to predict its future behavior. These predictions then allow optimization to

select best control inputs which minimize a given cost function while maintaining physical

constraints, such as limits of actuators or safety regulations. Besides control of buildings,

successful applications of MPC span from chemical and petrochemical applications, up to

autonomous driving, for more examples see e.g. Kvasnica (2009), Qin and Badgwell (2003).

The work is organized as follows:

• Chapter 2 is presenting a brief introduction to mathematical optimization, probabilty
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CHAPTER 1. INTRODUCTION 10

theory an statistics, together with rigorous definitions on sets an functions.

• Chapter 3 is devoted to more detailed introduction, history and overview of MPC tech-

niqies and their applications.

• Chapter 4 introduces a basic concepts of building modeling and control. Here, the-

oretical study and design of different model predictive control strategies for building

thermal comfort control are presented. Followed by the evaluation of their performance

on simulation case studies for single-zone building model.

• Finally in Chapter 5 the conclusions are being made.



Chapter 2
Mathematical Background

Mathematics are well and good but nature keeps dragging us around by the nose.

Albert Einstein

2.1 Terminology and Definitions on Sets and Functions

This section will provide basic terminology and definitions necessary for understanting follow-

ing section 2.2 and chapter 3. Proofs for this section can be found in references e.g. Berger

(1987), Grunbaum. (2000), Schneider and Eberly (2003), Webster (1995), Weisstein. (2014).

2.1.1 Sets

Definition 2.1.1 (ǫ-ball) Or open n-dimensional ǫ-ball ∈ R
n around a given central point

xc is a set defined as

Bǫ(xc) = {X ∈ R
n : ‖x− xc‖} (2.1)

where the radius ǫ > 0 and ‖ • ‖ stands for any vector norm.

Definition 2.1.2 (Neighborhood) The neighborhood of a set S ⊆ R
n is a set N (S) and

S ⊆ N (S) ⊆ R
n such that for each s ∈ S there exists n-dimensional ǫ-ball with Bǫ(s) ⊆ N (S).

Definition 2.1.3 (Closed Set) A set S ⊆ R
n is closed if every point x which is not a

member of S has a neighborhood disjoint from S, or shortly

∀x /∈ S∃ǫ > 0 : Bǫ(x) ∩ S = ∅ (2.2)

Definition 2.1.4 (Bounded Set) A subset S of a metric space (M,µ) is bounded if it is

contained in a ball Br(•) of finite radius r, i.e. if there ∃x ∈ M and r > 0 such that ∀s ∈ S,
we have µ(x, s) < r, or shortly S ⊆ Br(s)

Definition 2.1.5 (Compact Set) A set S is compact if it is closed and bounded.

11



CHAPTER 2. MATHEMATICAL BACKGROUND 12

Figure 2.1: Bounded set (left) contained in a ball Br(x) and unbounded set (right) uncon-

tained in its entirety inside a ball Br(x) .

Definition 2.1.6 (Null Set) Let X be a measurable space, let µ be a measure on X, and

let N be a measurable set in X. If µ is a positive measure, then N is null (zero measure) if

its measure µ(N) is zero. If µ is not a positive measure, then N is µ−null if N is |µ|−null,

where |µ| is the total variation of µ. Equivalently if every measurable subset A ⊆ N satisfies

µ(A) = 0. For signed measures, this is stronger than simply saying that µ(N) = 0. For

positive measures, this is equivalent to the definition given above.

The empty set is always a null set, it is unique set having no elements, its size or cardinality

is zero. For empty set we use common notations including ∅, and ∅. Graphical comparisson

of feasible (non-empty) and infeasible (empty) sets is shown in Fig. 2.2.

(a) Non-empty set X. (b) Empty set ∅.

Figure 2.2: Non-empty 2.2(a) and Empty 2.2(b) set, constructed by intersection of 5 hyper-

planes, represented by lines and their corresponding direction vectors.
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Definition 2.1.7 (Convex Set) A set S ⊆ R
n is convex if for any two points x1, x2 ∈ S

and parameter λ, with 0 ≤ λ ≤ 1 following must hold

λx1 + (1− λ)x2 ∈ S (2.3)

In other words the line segment connecting any pair of points x1, x2 from S must lie entirely

within S.

Definition 2.1.8 (Convex hull) A convex hull of a finite set of points V = (v1, . . . , vM ),

where vi ∈ R
n, ∀i = 1, . . . ,M , is the smallest convex set containing V defined as

conv(V) = {∑i λivi : λ ≥ 0,
∑

i λi = 1}. (2.4)

Definition 2.1.9 (Set Collection) A set S ⊆ R
n is called a set collection if it is a collection

of finite number of n-dimensional sets Si, i.e.

S = {Si}NS

i=1 (2.5)

where dim(Si) = n and Si ⊆ R
n, for i = 1, . . . , NS with NS < ∞. A set collection of

sometimes also referred to as family of sets.

Definition 2.1.10 (Set Partition) A collection of sets {Si}NS

i=1 is a partition of a set S if

S = ∪NS

i=1Si and Si ∩ Sj for all i 6= j, where i, j ∈ {1, . . . , NS}

2.1.2 Functions

Definition 2.1.11 (Affine Function) Let f : S 7→ R be real-valued function with S ∈ R
n,

than function f acting on a vector x is affine, if it is of the form

f(x) = Fx+ g (2.6)

Where multiplication of vector x by matrix F ∈ R
n represents a linear map, and addition of

vector g ∈ R represents translation. Alternatively Schneider and Eberly (2003) function f is

called affine function or affine map, if and only if for every family {(xi, λi)}i∈I of weighted

points in S, such that
∑

i∈I λi = 1 we have

f

(

∑

i∈I

λixi

)

=
∑

i∈I

λif(xi) (2.7)

In other words, f preserves center of mass.

An affine transformation or affine map (from the Latin, affinis, ”connected with”) between

two vector spaces is the compositon of two functions a linear transformation or linear map,

followed by a translation as shown in definition 2.1.11. From geometrical point of view, these

are precisely the functions that map straight lines to straight lines Gallini (2014). Due to

these properties affine functions play a vital role in mathematical optimization.
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Definition 2.1.12 (Piecewise Affine Function) Let fPWA : S 7→ R be real-valued func-

tion with S ∈ R
n than function fPWA is piecewise affine (PWA), if {Si}NS

i=1 is a set partition

of S, with total number of partitions NS and

fPWA(x) = Fix+ gi, ∀x ∈ Si (2.8)

Where Fi ∈ R
n, gi ∈ R.

Definition 2.1.13 (Piecewise Quadratic Function) Let fPWQ : S 7→ R be real-valued

function with S ∈ R
n than function fPWQ is piecewise quadratic (PWQ), if {Si}NS

i=1 is a set

partition of S, with total number of partitions NS and

fPWQ(x) = xTEix+ Fix+ gi, ∀x ∈ Si (2.9)

Where Ei ∈ R
n×n, Fi ∈ R

n, gi ∈ R.

Definition 2.1.14 (Convex Function) Let f : S 7→ R be real-valued function, where S ∈
R
n is nonempty convex set. Than the function f is convex on set S if for any two optimization

variables x1, x2 ∈ S, with parameter 0 ≤ λ ≤ 1 following is true

f(λx1 + (1− λ)x2) ≤ λf(x1) + (1− λ)f(x2), (2.10)

One special types of convex functions are called norms, which are assigning positive values

representing lenghts to all non-zero vectors. Therefore tey are very useful for representation

of distances between objects in vector spaces.

Definition 2.1.15 (Vector p-Norm) The general notion of vector p-norm for vector x ∈
R
n or shortly ‖x‖p is defined as

‖x‖p =

(

∑

i

|x|p
)1/p

(2.11)

and holds following properties

• ‖x‖p > 0,

• ‖x‖p = 0 ⇔ x = 0,

• ‖cx‖p = |c|‖x‖p, ∀c ∈ R,

• ‖x1 + x2‖p = ‖x1‖p + ‖x2‖p.

Particular types of vector p-norms can be defined as follows.

Definition 2.1.16 (Vector 1-Norm) Also called Manhattan norm. Computed as a sum of

absolute values of vector’s elements.

‖x‖1 =
n
∑

i

|xi|. (2.12)



CHAPTER 2. MATHEMATICAL BACKGROUND 15

Definition 2.1.17 (Vector 2-Norm) Also called Euclidean norm, representing shortest dis-

tance in euclidean space.

‖x‖2 =

√

√

√

√

n
∑

i

x2i (2.13)

Definition 2.1.18 (Vector ∞-Norm) Computed as maximum absolute value of vector’s

elements.

‖x‖∞ = max
1≤i≤n

|xi| (2.14)

(a) 1-Norm of unit circle. (b) 2-Norm of unit circle. (c) ∞-Norm of unit circle.

Figure 2.3: Illustrations of unit circles in different norms.

2.1.3 Polytopes

Are special types of sets, acting as the backbone of mathematical optimization, in this section

will be provided some basic definitions on polytopes.

Definition 2.1.19 (Hyperplane) Hyperplane P ∈ R
n is a set in a form

P = {x ∈ R
n : aTi x = bi}, (2.15)

Where ai ∈ R
n, bi ∈ R, ∀i = 1, . . . ,m

Definition 2.1.20 (Half-space) Half-space P ∈ R
n is a set in a form

P = {x ∈ R
n : aTi x ≤ bi}, (2.16)

Where ai ∈ R
n, bi ∈ R, ∀i = 1, . . . ,m

Definition 2.1.21 (Polyhedron) Polyhedron P ∈ R
n is the intersection of finite number

of half-spaces, and can be compactly defined as follows

P = {x ∈ R
n : Ax ≤ b}, (2.17)

where matrixes A ∈ R
m×n, b ∈ R

m are representing collection of intersecting affine half-

spaces. Polyhedron also holds properties of a convex and closed set
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Definition 2.1.22 (Polytope) Set P ∈ R
n is called a polytope if it is a bounded polyhedron.

Definition 2.1.23 (Polytope Representation) in general there are two types of polytope

representations, defined as

• V-polytope P ⊂ R
n is a convex hull of finite point set V = {v1, . . . , vM}, for vi ∈ R

n,

∀i = 1, . . . ,M , representing vertices of the polytope

P = {x : x =
∑M

i λivi, 0 ≤ λi ≤ 1,
∑M

i λi = 1}, (2.18)

• H-polytope is a bounded intersection of finite number half-spaces

P = {x ∈ R
n : Ax ≤ b}, (2.19)

where A ∈ R
m×n, b ∈ R

m.

2.2 Mathematical Optimization

Mathematical optimization is a important tool in making decisions and in analyzing physical

systems applied in wide variety of scientific fields of study, namely economics, operations

research, chemical, mechanical and finaly control engineering as a main concern of our study.

More comprehensive insight into the rich topic of mathematical optimization the reader can

find in references such as Boyd and Vandenberghe (2004), Society. (2014)

2.2.1 Taxonomy of Optimization

To provide a taxonomy of optimization is a very difficult task because of dense multiple

connections between optimization subfields. One such comprehensive perspective focused

mainly on the subfields of deterministic optimization with a single objective function can be

found online NEOS (2014).

Moreover a wide collection of available solvers organized by problem type can be also

found on NEOS Server web-pages NEOS-software (2014), NEOS-solvers (2014), together

with valuable informations about group of algorithms, listed alphabetically or by problem

type NEOS-algorithms (2014).

2.2.2 Constrained Optimization

Constrained optimization is the process of optimizing an objective function with respect to

some variables in the presence of constraints on those variables. Constrained optimization

problems can be furthered classified according to the nature of the constraints (e.g., linear,

nonlinear, convex) and the smoothness of the functions (e.g., differentiable or nondifferen-

tiable) NEOS (2014). For further reading see references Bertsekas (1996)
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Uncertainty

Continuous Discrete

Deterministic

Stochastic

programming

 Multiobjective
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optimization
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optimization
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Global

optimization
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optimization
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Bound
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Mathematical programs 
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programming
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programming

Mixed Integer

programming
Derivative free

optimization
Linear

programming
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programming
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programming
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Complementarity
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Figure 2.4: Classification of Optimization problems NEOS (2014).

Standard Optimization Problem

In mathematical optimization terminology standard optimization problem is key notion rep-

resenting the problem of finding the best soultion among group of all possible and feasible

solutions. Standard form of continuous constrained optimization problem is defined as fol-

lows Boyd and Vandenberghe (2004).

J∗ =min
x

f0(x) (2.20a)

s.t. gi(x) ≤ 0, i = 1, . . . ,m (2.20b)

s.t. hj(x) = 0, j = 1, . . . , p (2.20c)

Objective function also called cost function (2.20a), representing the first part of the

problem (2.20). It is a real valued function with its domain f0 : Rn 7→ R, which to each

optimized variable x = (x1, x2, . . . , xn)
T assigns concrete real value f0(x) and which overall

value has to be minimized during optimization. Maximization problem can be treated by

negation of the objective function.

Variables or the unknowns x are the components of the system which are being optimized

and for which we want to find corresponding values. They can represent broad range of

quantities of the optimization problem, e.g.the amount of consumed resources or the time



CHAPTER 2. MATHEMATICAL BACKGROUND 18

spent on each activity, whereas in data fitting, the variables would be the parameters of the

model.

Constraints are representing admissible set of values for optimized variables x, for which is

given optimization problem feasible. In general there are two types of constraints, inequality

constraints defined as (2.20b), and equality constraints defined as (2.20c), merged together

by notion of costraints set S. More clarified classification of constraints for practical needs

can be found in documentation for MATLAB OptimizationToolboxTM Mathworks (2014),

listed with increasing complexity and required computing power from top to bottom:

• Bound Constraints, representing lower and upper bounds on individual components:

x ≤ U and x ≥ L.

• Linear Equality and Inequality Constraints, where gi(x) and hi(x) has a linear form.

• Nonlinear Equality and Inequality Constraints, where gi(x) and hi(x) has a non-linear

form (e.g. integer constraints).

In most of the optimization problems the constraints satisfaction is mandatory, these kind

of constraints which must be hold during whole optimization procedure are also called hard

constraints. However in some optimization problems can appear constraints which are prefered

but not required to be satisfied, this kind of non-mandatory constraints are known as soft

constraints, which are specific by having some additional usually called slack variables that

are penalized in objective function.

Feasible region , also called feasible set, search space, or solution space is the set of all

possible values of the optimization variables x of an problem (2.20) that satisfy the problem’s

constraints. It can be perceived as an initial set of all candidate solutions to the problem,

before the set of candidates has been reduced by optimization procedure. A candidate solution

therefore must be unconditionally a member of feasible set of all possible solutions for a given

problem.

Definition 2.2.1 (Feasible Set) of problem (2.20) is defined as:

X = {x ∈ R
n : gi(x) ≤ 0, i = 1, . . . ,m; hj(x) = 0, j = 1, . . . , p} (2.21)

A point x is said to be feasible for problem (2.20) if it belongs to the feasible set X.

In general feasible set can be considered to be bounded if it is in a certain sense of a finite

size, or it can be considered unbounded if it containts points which values goes to infinity

at least in one direction, as shown in Fig. 2.1. The problem with unbounded feasibility sets

are that there may or may not be an optimum, with dependance on the objective function

specifications, thus an unique solution of the problem may not exist.

Difficulties apper also in case, if there are no intersection of the problems constraints,

therefore there are no points that satisfy all the constraints simultaneously, thus the feasible
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region is consideret to be the null set. Which is the case when the problem has no solution

and is said to be infeasible.

Process of finding such a point in the feasible region is called constraint satisfaction and

it is a crucial condition for finding solution of constrained optimization problems.

Solution of an optimization problem, is computed optimal value of the objective function,

usually denoted by J∗ or Jopt. As a solution if often considered also a minimizer as a vector

which achieves that value, usually denoted as x∗ or xopt, if exists.

When an objective function is not provided, the problem (2.20) is being called a feasibility

problem. This means that we are just interested in determining the problem’s feasibility, or

in other words to find a feasible point. By convention, the cost function f0(x) is set to a

constant c ∈ R, to reflect the fact that we are indifferent to the choice of a point x as long as

it is feasible.

Definition 2.2.2 (Optimal set of solutions) of problem (2.20) is defined as the set of fea-

sible points for which the objective function achieves the optimal value:

X∗ = {x ∈ R
n : f0(x) = J∗; gi(x) ≤ 0, i = 1, . . . ,m; hj(x) = 0, j = 1, . . . , p} (2.22)

A standard notation for the optimal set is via the argmin notation:

X∗ = arg minx∈X f0(x) (2.23)

A point x is said to be optimal if it belongs to the optimal set. If the problem is infeasible,

the optimal set is considered empty by convention. Thus existence of optimal points is not

necessary.

In mathematical optimization from theoretical point of view the notion of optimal solution

is crucial. However for practical reasons there was established a weaker notion of suboptimal

solution of the problem, representing points which are very close to optimum. This is because

practical algorithms are only able to compute suboptimal solutions, and never reach true

optimality.

Definition 2.2.3 (Suboptimality) more specifically the ǫ-suboptimal set is defined as

Xǫ = {x ∈ R
n : f0(x) = J∗ + ǫ; gi(x) ≤ 0, i = 1, . . . ,m; hj(x) = 0, j = 1, . . . , p} (2.24)

Where any point x in the ǫ-suboptimal set is termed ǫ-suboptimal and denoted xǫ.

Constrained Optimization Problems Classes: Based on types of constraints S and

objective function f0(x), constrained optimization covers a large number of subfields for which

specialized algorithms are available, we will name some of the most important classes.

• Bound Constrained Optimization, where the constraints are only in form of lower and

upper bounds on the variables.
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• Linear Programming, the objective function as well as all the constraints are linear

functions.

• Quadratic Programming, the objective function is quadratic and the constraints are

linear functions.

• Semidefinite Programming the objective function is linear and the feasible set is the

intersection of the cone of positive semidefinite matrices with an affine space.

• Nonlinear Programming, at least some of the constraints are nonlinear functions.

In followinf sections we will investigate differences between convex and non-convex optimiza-

tion problems and their properties.

2.2.3 Convex Optimization

The optimization problem in standard form (2.20) is called a convex optimization problem if:

• the objective function f0(x) is convex

• the constraint set S is convex;

Convex problems are very popular and prefered in comparission with non-convex problems,

due to their several advantages:

• Any local optimum is naturally also a global optimum, what guarantees that the global

minimum of objective function will also be found.

• If there can not be found any global optimum, the problem can be labeled as infeasible.

• Convex problems are in contrast with non-convex problems generaly easily solved, with

wide variety of suitable solvers.

However a practical problems often exhibits non-convex properties, hence convex problems are

not always suitable framework for solutions real-world problems, what is the main drawback

of them. But where they can be applied, they used to be extremely efficient.

In following text we will introduce two basic types of convex optimization problems with

linear constraints, namely Linear programming 2.2.3 and Quadratic programming 2.2.3.

Linear Programming

(LP) problem is a convex optimization problem, which has a linear objective function 2.25a

with continuous real variables x subject to linear constraints 2.25b, 2.25c, and can be in

general formulated as follows.

J∗ =min
x

cTx (2.25a)

s.t. Ax ≤ b (2.25b)

s.t. Aeqx = beq, (2.25c)
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where x ∈ R
n, A ∈ R

m×n, b ∈ R
m, Aeq ∈ R

p×n and beq ∈ R
p. Hence the feasible region

of such a problem is a convex polyhedron, i.e. a region in multidimensional space, whose

boundaries are formed by hyperplanes 2.1.19 and whose corners are vertices.

Solution Properties: LP can be geometrically interpreted as searching for a optimum x∗

of a linear objective function over a given polyhedral region P. This procedure can result in

several differen scenarios.

1. Feasible problem, with value of objective function −∞ < J∗ < ∞, and two possible

results:

(a) Unique optimizer x∗, representing a single point.

(b) Multiple optimizers X∗, representing a set of points x∗ ∈ R
m.

2. Infeasible problem, with value of objective function J∗ = ±∞, due to two reasons:

(a) Polyhedral region P is an empty set, and J∗ = ∞.

(b) Polyhedral region P is unbounded set in direction of minimization of the objective

function, and J∗ = −∞.

Graphical demonstrations of different optimization results of LP problem on two dimensional

space, are shown in Fig. 2.5. Where Fig. 2.5(a) represents a unique solution x∗, which lies in

vertex of the region P. And situation Fig. 2.5(b), when objective function is paralel to one

of the constraint with resulting multiple solutions X∗ of equal quality, which lies on edge of

the region P.

(a) Unique optimizer x∗, lying in the vertex of

polyhedron P .

(b) Multiple optimizers X∗, lying on the edge

of polyhedron P .

Figure 2.5: Different types of feasible solutions of LP. Where P represents constraints set,

objective function is represented by dashed blue lines with its direction vector,

and optimizers depicted as a red dot for x∗, or red line for X∗ respectively.

The strenght of LP problems lies in their relative simplicity with comparisson to other

classes of optimization problems, what allows existence of wide variety of solvers, allowing

solving LP problems efficiently even for large number of variables.
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Quadratic Programming

(QP) problem is a convex optimization problem, which has a quadratic objective func-

tion 2.26a with continuous real variables x subject to linear constraints 2.26b, 2.26c, and

can be in general formulated as follows.

J∗ =min
x

1
2x

THx+ qTx+ c (2.26a)

s.t.Ax ≤ b (2.26b)

s.t.Aeqx = beq, (2.26c)

where x ∈ R
n, H ∈ R

n×n, q ∈ R
n, c ∈ R, A ∈ R

m×n, b ∈ R
m, Aeq ∈ R

p×n and beq ∈ R
p.

The difficulty of solving the QP problem depends largely on the nature of the matrix H.

If matrix H = HT ≻ 0 is positive semidefinite on the feasible set, the resulting problem is

convex QP and can be solved in polynomial time. On the other hand if matrix H is indefinite

the resulting problem is non-convex QP, which means that the objective function may have

more than one local minimizer, and the problem is NP-hard.

Solution Properties: QP can be geometrically interpreted as searching for a optimum x∗

of a quadratic objective function over a given polyhedral region P. This procedure can result

in general in only two scenarios.

1. Feasible problem, with value of objective function −∞ < J∗ < ∞, and unique optimizer

x∗.

2. Infeasible problem, with value of objective function J∗ = ∞, caused by empty polyhe-

dron P.

In contrast with solutions of LP problems, the solution of QP problem if it is feasible, always

results in unique optimizer x∗, due to quadratic shape of objective function, as demonstrated

in Fig 2.6.

There have beed done deep research about solution and properties of QP problems, some

can be found e.g. in Abrams and Ben Israel (1969), Angelis et al. (1997), Beale and Benveniste

(1978), Best and Kale (2000).

2.2.4 Non-convex Optimization

Non-convex optimization problems are simply all problems which are not convex, i.e. either

the objective function or constraints od such problems are not convex. Because there does not

exists unique approach for optimization algorithm selection, structure of general non-convex

problem must be examined first, and consequently selection of appropriate methoda for par-

ticular problem class. For our purposes important class of constrained non-linear programing

is called Mixed Integer Programming (MIP), containting continuous and also discrete vari-

ables. More deeper view inside a class of MIP problems can be found e.g. in Nemhauser and

Wolsey. (1988), Schrijver. (1984), Wolsey. (1998)
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(a) Unique optimizer x∗, lying inside a polyhedron

P .

(b) Unique optimizer x∗, lying on the edge of poly-

hedron P .

Figure 2.6: Uniqueness of feasible solutions of QP problems. Where P represents constraints

set, objective function with its gradient depicted by blue elipses and optimizer x∗

depicted as a red dot.

Mixed Integer Linear Programming

(MILP) is an non-convex optimization problem which has a linear objective function 2.27a

with continuous real variables x and integer variables δ subject to linear constraints 2.27b,

2.27c, and can be in general formulated as follows.

J∗ =min
x,δ

cTx+ dT δ (2.27a)

s.t. Ax+ Eδ ≤ b (2.27b)

s.t. Aeqx+ Eeqδ = beq, (2.27c)

Where x ∈ R
n, δ ∈ N

q, cT ∈ R
n, dT ∈ R

q, A ∈ R
m×n, E ∈ R

m×q b ∈ R
m, Aeq ∈ R

p×n,

Eeq ∈ R
p×q, and beq ∈ R

p. The convexity of MILP problem is lost due to presence of integer

variables δ, which is the only difference in MILP’s structure copmaring the problem with the

classical LP problem.

Solution Properties: MILP can be geometrically interpreted as searching for a optimum

x∗ of a linear objective function over a given polyhedral region P, where optimal solution

can be found only if some given variables holds integer values. This can be done by solving

so called relaxed LP problems Agmon (1954) with fixed combination of integer variables

representing classical LP problem. To enhance efficiency of such relaxed problems a several

techniques are being used, one such method is called cutting plane method Avriel (2003),

Boyd and Vandenberghe (2004) based on iterative refinement of a feasible set or objective

function by means of linear inequalities, termed cuts. Cutting plane method, together with

whole MILP optimization procedure is demonstraded on Fig.2.7.
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Figure 2.7: LP relaxation and cutting plane method for solution of MILP problem. Where

P represents constraints set, objective function is represented by dashed blue

line with its direction vector, additional cutting plane reshaping constraints set

is represended by dashed green line, the only possible integer-valued solutions

are depicted as a blue dots, finally optimizers are depicted as a red dots, where

x∗LP−relax stands for solution of relaxed LP problem and x∗MIP stands for actual

optimal solution of MILP problem.

Mixed Integer Quadratic Programming

(MIQP) is an non-convex optimization problem which has a quadratic objective function 2.28a

with continuous real variables x and integer variables δ subject to linear constraints 2.28b,

2.28c, and can be in general formulated as follows.

J∗ =min
x,δ

xTH1x+ xTH2δ + δTH3δ + cTx+ dT δ (2.28a)

s.t. Ax+ Eδ ≤ b (2.28b)

s.t. Aeqx+ Eeqδ = beq, (2.28c)

Where x ∈ R
n, δ ∈ N

q, H1 ∈ R
n×n, H2 ∈ R

n×q, H3 ∈ R
q×q, cT ∈ R

n, dT ∈ R
q, A ∈ R

m×n,

E ∈ R
m×q, b ∈ R

m, Aeq ∈ R
p×n, Eeq ∈ R

p×q, and beq ∈ R
p. Similarly as with MILP and

LP problems relation it is also with the MIQP and QP problems, where only difference in

problems structure lies in presence of integer-valued variables δ.

Solution and computational aspects of MIP problems

Even though from structural point of view, the difference of MILP or MIQP problems againts

their convex counterparts as LP or QP problems are often very small and sometimes hidden

in restriction of some variables to be integer-valued. Yet their true difference is manifested

in solution of such problems and in comparisson of their computational requirements. In

straightforward fashion a to obtain a solution of MILP or MIQP problem respectively is to

enumerate all possible combinations of binary variables δ, and for each combination of fixed
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binaries as static parameters, compute optimal solution for real variables x contained in the

problem as classical LP or QP problem respectively. This approach shows us main drawback

of such problems in their exponetially growing complexity depending on number of included

binary variables δ. Therefore a several techniques for reduction of necessary combinations

of binary variables to be enumerated have been developed, namely widely used Branch and

Boud and Branch and Cut methods Belotti and Mahajan. (2013), C. S. Adjiman and Floudas.

(1996), Linderoth and Ralphs. (2005), Richards and How. (2005). Moreover a number of

tricks and hacks are beying used, e.g. for reduction of number of binary variables to decrease

a computational burden and improve performance of MIP problems in general. Commonly

used commerical solvers such as CPLEX ILOG, Inc. (2003) or Gurobi Gurobi Optimization

(2012), have become extremely efficient in solving MIP problems, for more available MIP

solvers visit NEOS-software (2014), NEOS-solvers (2014).

2.2.5 Multi Parametric Programming

Generaly a parametric programming can be classified as a subfield of operations research, which

is a discipline that deals with the application of advanced analytical methods to obtain optimal

or near-optimal solutions to complex decision-making problems INFORMS.org (2014). In

operations research there exists several approaches to parameter variations and dealing with

uncertainties in optimization problems, for all we will name three of them.

First called sensitivity analysis, which studies the change of the solution as the response

of the model to small perturbations of its parameters Saltelli and Tarantola (2008).

Second is called interval analysis where uncertainties are modeled by interval ranged input

data and analyzing the solution of such problem.

Finally a parametric programming is method for obtaining and analysis of the optimal so-

lution of an optimization problem with given a full range of parameter values, representing a

feasible initial conditions of the problem. Parametric programming systematically subdivides

the space of parameters into characteristic regions, which depict the feasibility and corre-

sponding performance as a function of uncertain parameters, and subsequently provide the

decision maker with a complete map of various outcomes F. Borrelli (2014).

Parametric problems are usually being divided into subcategories, based on number of

varied parameters in the problem:

• Parametric programming with single parameter.

• Multi parametric programming with multiple parameters.

Or based on a typ of the optimization problem:

• Multiparametric convex programming

– Multiparametric linear programming (mpLP)

– Multiparametric quadratic programming (mpQP)

• Multiparametric non-convex programming
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– Multiparametric mixed integer linear programming (mpMILP)

The main reason why we are dealing with multiparametric programming, is to characterize

and compute the state feedback solution of optimal control problems, as will be shown later

in section 4.2.3. Further in this section we will define multiparametric versions of general, LP,

QP, MILP and MIQP problems.

Standard Multiparametric Program

A standard multiparametric program (mpP) can be defined in general as

J∗(x) = min
z

J(z, x) (2.29a)

s.t. Gz ≤ w + Ex, (2.29b)

where z ∈ R
s represents vector of optimization variables, x ∈ R

n stands for vector of param-

eters (state variables), J∗(x) represents optimal value of the objective function J(z, x), and

z∗(x) is an optimizer. With G ∈ R
r×s, w ∈ R

r and E ∈ R
r×n, where r represents number of

inequalities.

Multiparametric Linear Programming

A multiparametric linear programming (mpLP) problem is defined as

J∗(x) = min
z

cT z + dTx (2.30a)

s.t. Gz ≤ w + Ex, (2.30b)

where z ∈ R
s, x ∈ R

n, c ∈ R
s, d ∈ R

n, G ∈ R
r×s, w ∈ R

r and E ∈ R
r×n.

Multiparametric Quadratic Programming

A multiparametic quadratic programming (mpQP) problem is defined as

min
z

1
2z

THz + xTQz + xTRx+ dTx (2.31a)

s.t. Gz ≤ w +Ex, , (2.31b)

where z ∈ R
s, x ∈ R

n, G ∈ R
r×s, w ∈ R

r, E ∈ R
r×n, Q ∈ R

n×s, R ∈ R
n×n, d ∈ R

n, and

H ∈ R
s×s, where matrix H = HT ≻ 0 is positive semidefinite.

Multiparametric Mixed Integer Linear Programming

A multiparametric mixed-integer linear programming (mpMILP) problem is defined as

J∗(x) = min
z,δ

bT z + cT δ + dTx (2.32a)

s.t. Gz + Sδ ≤ w + Ex, (2.32b)

where z ∈ R
s, δ ∈ N

q, x ∈ R
n, b ∈ R

s, c ∈ R
q, d ∈ R

n, G ∈ R
r×s, S ∈ R

r×q, w ∈ R
r and

E ∈ R
r×n.
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Solution Properties of mpP Problems

The main goals of parametric programming can be described as to find and analyze following.

• Feasibility set X , or domain of parameters x, as a set of parameters for which a particular

problem has optimal solution, usually in a form of polytopic partition.

• Optimal solution or optimizer z∗(x), usually in form of PWA polytopic functions defined

over polytopic partition X . It is representing a sets of parameters x, for which the

optimal solution remains the same, respectively retains the same characteristics.

• Feasibility function J(z, x)∗, as a optimal value of the objective function J(z, x) for the

feasibility set, usually in two forms as polytopic PWA functions for mpLP or polytopic

PWQ functions for mpQP problems.

Theorem 2.2.4 (Properties of mpP ) Consider a mpLP 2.30, mpQP 2.31, and mpMILP 2.32

problems then:

• The feasibility set X of parameters x is convex for mpLP and mpQP, or possibly non-

convex for mpMILP, and partitioned int o R ∈ N+ polyhedral regions

Pr = {x ∈ R
n | Hrx ≤ Kr}, r = 1, . . . , R (2.33)

where Hr ∈ R
n and Kr ∈ R

• Optimal solution z∗(x) : X 7→ R
n is a continuous PWA function

z∗(x) = Frx+ gr, if x ∈ Pr (2.34)

where Fr ∈ R
r×n, and gr ∈ R

r

• Feasibility function J(z, x)∗ : X 7→ R is for

– mpLP: continuous, convex, and piecewise affine (PWA), in form

J∗(x) = Rrx+ Cr, if x ∈ Pr (2.35)

– mpQP: continuous, convex, and piecewise quadratic (PWQ), in form

J∗(x) = xTQrx+Rrx+ Cr, if x ∈ Pr (2.36)

– mpMILP: possibly discontinuous, non-convex, and piecewise affine (PWA), in form

J∗(x) = Rrx+ Cr, if x ∈ Pr (2.37)

where Qr ∈ R
n×n, Rr ∈ R

n, and Cr ∈ R
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2.3 Probability Theory and Statistics

2.3.1 Classification and Differences

Probability Theory is a branch of mathematics dealing with probability, uncertainty and

analysis of random phenomena in general. The key objects here are random variable, stochas-

tic process and random event. These are non-deterministic mathematical abstractions which

are in contrast with standard deterministic notions of such objects.

Probability theory is essential for large data sets quantitative analysis, which can occur

in many fields of practical or theoretical fields of study, and it also lies down mathematical

foundations for Statistics, allowing modelig randomness and uncertainty of empirical data

sets.

Mathematical Statistics is a branch of mathematics dealing with analysis, collection, in-

terpretation, presentation and organization of data. Pracitical application of statistics counts

for planing, summary and analysis of inaccurate or empirical observations.

The difference between Statistics and Probability theory may not seem obvious due to

tight boundary between these field, but yet some fundamental differences there exists and are

very briefly captured in Fig. 2.8. The probability theory is used for desription of formation,

generation or evolution of stochastic data, where statistics on the other hand is used for

analysing and manipulating these random-fashinoned data for modeling and identification of

processes behavior by whose were these data generated.

Moreover by using probability theory tools and paying the cost of certain information

loss due to partial knowledge of the states we are also able to estimate the behavior of large

complex systems based on behavior of stochastic variables. Ability to comprehend and deal

with large and complex systems goes far beyond the limit of classical deterministic approaches

for description of dynamical systems, which is reason for large usage of statistical methods in

practice.

Process
(data generation)

Data
(observed, empiric) 

Mathematical Statistics

Probability Theory

Figure 2.8: Relation between probability theory and mathematical statistics.

Statistical methods can be basicly divided into two groups, Exploratory and Confirma-

tory Gelman (2004), Hoaglin and Tukey (1983), Tukey (1977).

• Confirmatory data analysis or inferential statistics, which draws conclusions from

data or where the hypothesis is formulated and subsequently confirmed or disproofed
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by confirmatory data analysis techniques (e.g. regression analysis, confidence intervals,

etc.). Confirmatory analysis uses the traditional statistical tools of inference, signifi-

cance, and confidence. It is comparable to a court trial, it is the process of evaluating

evidence.

• Exploratory data analysis also called descriptive statistics, on the other hand de-

scribes data, i.e. summarises the data and their typical properties, or uses data sets and

generating hypotheses by its techniques (e.g. cluster analysis, factor analysis, principal

component analysis, etc.). If a model fits to the data, exploratory analysis finds pat-

terns that represent deviations from the model, it isolates patterns and features of the

data and reveals them forcefully for analysis. Exploratory data analysis is sometimes

compared to detective work, it is the process of gathering evidence.

2.3.2 Terminology and Definitions

Probability is value representing certainty respectively uncertainty of particular event. It

is computed as cardinality of true or occuring events m = |E| , divided by number of all

possible events n = |Ω|, where Ω is also called a sample space. Subsets of set Ω are called

random events F and are set of outcomes to which a probability is assigned.

This intuitive definition of probability is called classical or Laplace definition. Basic sim-

plest example of random event is flip of coin or dice roll. Than the probability of particular

result of coin flip is 50% because flipping a coin leads to sample space composed of only

two possible outcomes that are equally likely. Similarly probability of dice roll result is one

occuring event to six possible events of sample space.

More formalized way to define probability is by using Kolomogorov’s axiomatic formula-

tion, where sets are interpreted as events and probability itself as a measure on a class of sets.

Definition 2.3.1 (Axiomatic Probability) Kolomogorov proposed three axioms Kolmogorov

(1933).

1. Non-negativity of an event probability represented by real number:

Pr(E) ∈ R, Pr(E) ≥ 0, ∀E ∈ F (2.38)

2. Unit Measure says that probability of certain elementary event is equal to 1, there are

no elementary events outside the sample space.

Pr(Ω) = 1. (2.39)

3. σ-additivity Probability of union of disjoint (mutually exclusive) events E is equal to

the countable sequence of their particular probabilities.

Pr(∪∞
i=1Ei) =

∞
∑

i=1

Pr(Ei). (2.40)
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In particular, Pr(E) is always finite, in contrast with more general measure theory. Note

that, if you cannot precisely define the whole sample space, then the probability of any subset

cannot be defined either.

These assumptions can be summarised by notion of measure space, also called Probability

space or probability triple (Ω,F ,Pr) what is structured set that models a real-world process

consisting of randomly occuring states, and it is constructed by three parts:

• Sample Space Ω, as set of all possible outcomes, with aggregated probability Pr(Ω) = 1.

• Set of events or event space F , where each event is a set containing zero or more

outcomes.

• Probability measure Pr of event E, what is a real valued function assigning probabili-

ties to the events, defined on set of events in probability space, that satisfies measure

properties such as countable additivity 2.40, and has a form:

Pr(E) =
m

n
=

|E|
|Ω| (2.41)

A measure on a set in mathematical analysis is a systematic way to assign a number to

each suitable subset of that set, intuitively interpreted as its size. The difference between

a probability measure and general notion of measure is that a probability measure must

assign value 1 to the entire probability space.

Randomness is a broad concept in common language, philosophy and scienc, usually ud-

erstood as a lack of pattern or predictability in events. In a sequence of some particular data

types it suggests a non-order or non-coherence , such that there is no comprehensible pattern

or combination. Even though a random events are unpredictable as individualities, the cardi-

nalities of different outcomes over a large number of events are usually predictable. Therefore

randomness here implies a measure of uncertainty of events, and refers to situations where

the certainty of the outcome is at issue.

In mathematics there are several formal definitions of randomness. In statistics, a random

variable also called stochastic variable is an assignment of a numerical value to each possible

outcome of an event space, used for identification and the calculation of probabilities of the

events. The axiomatic measure-theoretic definition, where continuous random variables are

defined in terms of sets of numbers, along with functions that map such sets to probabilities

can be found in Fristedt (1996), Kallenberg (1986; 2001), Papoulis (2001). Here comes the

notion of random element, what is a generalization of the concept of random variable to more

complex spaces than the simple real line, defined as follows.

Definition 2.3.2 (Random Element) Let (Ω,F ,Pr) be a probability space and (E, E) a

measurable space. Than (E, E)-valued random variable or random element X : Ω → E is a

(F , E)-measurable function from the set of possible outcomes Ω to some set E. The latter

means that, for every subset B ∈ E, its preimage X−1(B) ∈ F where X−1(B) = {ω : X(ω) ∈
B}. This definition enables us to measure any subset B ∈ E in the target space by looking at

its preimage, which by assumption is measurable.
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When E is a topological space, then the usual choice for the σ-algebra E is the Borel

σ-algebra B(E), which is the σ-algebra generated by the collection of all open sets in E. In

that case the (E, E)-valued random variable is called the E-valued random variable. Further,

when space E is the real line R, then such real-valued random variable is called just the

random variable.

Definition 2.3.3 (Random Varlable) For real observation space, real-valued random vari-

able is the function X : Ω → R if it is measurable, what means that for each set B ∈ R holds:

{ω : ω ∈ Ω,X(ω) ∈ B} ∈ F (2.42)

Equivalently X is random variable if and only if for each real number r holds:

{ω : ω ∈ Ω,X(ω) ≤ r} ∈ F ∀r ∈ R (2.43)

Amultivariate random variable or random vector is a list of mathematical variables each of

whose value is unknown or has random properties, either because there is inprecise knowledge

of its value or because the value has not yet occurred. Normally elements of a random

vector are real valued numbers. Random vectors are often used as the underlying realizations

of various types of related random variables, e.g. a random matrix, random tree, random

sequence, random process, etc.

Definition 2.3.4 (Random Vector) is a column vector X = (X1, ...,Xn)
T with scalar-

valued random variables as its components on the probability space (Ω,F ,Pr).

A random process also called a stochastic process is a collection of random variables de-

scribing a process whose outcomes do not follow a deterministic rule, but representing the

evolution of random values over time, described by probability distributions. Behavior of

stochastic process is characterized by some indeterminacy: even if the initial conditions are

known, there are several (often infinitely many) directions in which the process may evolve.

What is in contrast with deterministic proces which can only evolve in one way, thus stochastic

process is usually understood as the probabilistic counterpart to a deterministic process Pa-

poulis (2001).

Definition 2.3.5 (Stochastic Process) Assume to have a probability space (Ω,F ,Pr) and

a measurable space (S,Σ) , an S-valued stochastic process is a collection of S-valued random

variables on sample space Ω, indexed by a totally ordered set T represeting time. Than a

stochastic process X is a collection {Xt : t ∈ T} where each Xt is an S-valued random

variable from (Ω,F ,Pr). The space S is called the state space of the process.

In case that T = Z or T = N+{0}, we are speaking about stochastic process in discrete time.

For continuous stochastic process holds that T is an interval in R.

Common examples of processes modeled by stochastic framework include stock market,

exchange rate fluctuations, weather phenomena evolutions, signals such as speech, audio and

video, medical data such as a patient’s EKG, EEG, blood pressure or temperature, and

random movement such as Brownian motion.
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Stochastic Simulation is a simulation that operates with random variables that can

change with certain probability. Stochastic here also means that values of particular pa-

rameters are variable or random. During stochastic simulation a projection of stochastic

model is created based on set of random values of model’s parameters. Outputs are recorded

and the process is repeated with a new set of random values. Whole procedure is repeated

until a reasonable amount of data is gathered (with respect to particular case). In the end,

the distribution of the outputs shows the most probable estimates as well as boundaries of

expectations Dlouhy (2005).

We can roughly classify stochastic simulation approaches into following types:

• Discrete-event simulation representing discrete event simulation.

• Continuous simulation representing continuous event simulation.

• Hybrid simulation stands for combined simulation of discrete and continuous events.

• Monte Carlo simulation commonly used estimation procedure, based on averaging in-

dependently taken samples from the distribution Dlouhy (2005).

• Random number generators as devices capable of producing a sequence of numbers

which can not be ”easily” identified with deterministic properties Knuth (1998).

Frameworks for handling models of stochastic processes are stochastic calculus of variations

allowing the computation of derivatives of random variables, and stochastic calculus which

allows consistent theory of integration to be defined for integrals of stochastic processes with

respect to stochastic processes.

Probability distribution is a probability measure, which assigns a probability to each

measurable subset of sample space Ω of a random experiment or some statistical data-set.

There are several types of probability distribution each specific for particular data-sets:

• Categorical distribution for data-sets with non-numerical sample space.

• Probability mass function, when sample space is encoded by discrete random variables.

• Probability density function, when sample space is encoded by continuous random vari-

ables.

It can be either univariate (probability fo single random variable) or multivariate (proba-

bility of random vector). Outcomes of more complex systems, involving stochastic processes

defined in continuous time, may demand the use of more general probability measures. In

practice there are many commonly used and known distributions e.g. normal, log-normal,

pareto, etc..

Normal distribution or gaussian distribution is one of most important and commonly

used type of univariate continuous probability distribution, it is also subclass of eliptical

distributions. The domain of the function lies between any two real limits or real numbers,

as the curve approaches zero on either side. In reality there are not many variables driven by
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normal distributions, however they are still extremely important in statistics due to central

limit theorem, which says that under certain contitions normal distributions well approximates

huge set of other probabilisty distributions classes (continuous or discrete) Casella G. (2001),

Lyon (2014).

Definition 2.3.6 (Normal Distribution)

f(x, µ, σ) =
1

σ
√
2π

e−
(x−µ)2

2σ2 (2.44)

The parameter µ represents the mean and also its median and mode. The parameter σ stands

for standard deviation, its variance is therefore σ2. Thus when a random variable X is

distributed normally with mean µ and variance σ2, we write X ∼ N (µ, σ2).

Definition 2.3.7 (Standard Normal Distribution)

f(x) =
1√
2π

e−
x2

2 (2.45)

Also called the unit normal distribution is usually denoted by N (0, 1), if µ = 0 and σ = 1,

and a random variable with that distribution is a standard normal deviate.

An important property of gaussian distribution is that the values less than one standard

deviation σ from the mean represent approximately 68.2% of the area under the curve, while

two σ from the mean take about 95.4%, and three σ account for about 99.7% of the area, as

captured in Fig. 2.9(a), moreover Fig. 2.9(b) demonstrates normal distribution approximation

of randomly generated discrete data set.
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Chapter 3
Model Predictive Control

Predictive control is a discovery, not an invention, ...

IFAC Congress Munich, 1987

Model predictive control (MPC) belongs to a class of computer control algorithms, more

specifically optimal control methods which are using mathematical model of the process to

predict the future response of process on a sequence of control variable manipulations. Once

the predictions are made, the control algorithm with usage of optimization techniques com-

putes appropriate control actions to provide desired output behavior of the process in optimal

fashion.

Colloquially we can describe this method as a ”look ahead” strategy, when the controller

is able to foresee a future behavior of the process with usage of given knowledge about that

particular process and consequently evaluate the optimal control strategy to achieve the best

possible outcome, which are satysfying long term goals and criteria. This strategy stands in

contrast with classical control theory techniques e.g. PID controllers, which are able to achieve

only short term goals set in actual time, resulting in more costly and ofthen unsatisfactory

long term performance. This phenomenon can be described as ”winning the battle but losing

the war” Bradley Anderson (2014).

3.1 Classification of MPC in Control Theory

3.1.1 Control Theory Overwiev

Control theory can be in general described as a study of systems behavior and control, with

practical emphasis on principles, design and construction of control systems. As the main

objective of control theory is to affect the behavior of controlled system called plant, to achieve

desired outputs properties, called reference while meeting given restrictions and real world

limitations, in control theory terminology called constraints. To achieve this goal a controller

must be designed with following capabilities executed in subsequent steps:

1. monitoring of the plants output

34
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2. output-reference comparisson, or control error evaluation

3. evaluation of appropriate conrol actions

The above mentioned steps with evaluation of conrol actions based on control error are de-

scribing general notion of closed-loop, also called feedback controller. By measuring the

difference between a actual and desired output values, feedback controller can provide a cor-

rective action by applying this difference also called control error as feedback to the input

of the system. The second paradigm in control theory is called open-loop controller, or a

non-feedback controller, which computes its conrol actions as inputs into a system by using

only the current state measurements and model of the system. More general definitions of

feedback and conrol can be found in Astrom and Murray (2012) and are stated as follows.

Feedback is defined as the interaction of two (or more) dynamical systems that are con-

nected together such that each system influences the other and their dynamics are thus

strongly coupled. We say that a system is closed loop if the systems are interconnected

in a cycle and open loop when there is no interconnection.

Control is defined as the use of algorithms and feedback in engineered systems. The basic

feedback loop of measurement, computation and actuation is the central concept in control.

The key issues in designing control logic are ensuring that the dynamics of the closed loop

system are stable (bounded disturbances give bounded errors) and that they have the desired

behavior (good disturbance rejection, fast responsiveness to changes in operating point, etc).

3.1.2 Classical vs Modern Control Theory

From historical point of view a control theory can be divided into two subfields, older methods

are called classical, and younger are called modern control theory methods. The principal

differences of these subfields lies in approach to dynamical systems representation and ma-

niplation. Before going deeper let’s shortly recall and sumarize basic characteristics and

properties of dynamical systems captured in Fig. 3.2, which are necessary for understanting

the differences between classical and modern control theory methods.

 Dynamical Systems

Time 
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Number of Inputs 

and Outputs
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SISO
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Figure 3.1: Characteristics and properties classification of Dynamical Systems.
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Classical Control Methods

General characteristic of classical control methods, is usage of techniques for changing the do-

mains of dynamical systems described by ordinary differential equations (ODE) to avoid the

complexities of time-domain ODE solutions. The mentioned techniques are integral trans-

forms, changing time-domain ODE’s into a regular algebraic polynomial in the transform

domain, allowing easy manipulation. Namely the most used transforms here are the Fourier

transform with frequency domain representation, more general Laplace transform with com-

plex frequency domain representation also called s-domain, and its discrete-time equivalent

called Z transform. The transformed polynomials are further formed into so called transfer

function, which is nothing less than matematical representation of input-output (I/O) system

model, representing relation between an input signal and the output signal of the system.

Main drawback of classical methods are, that they can be used only for control of single-input

single-output (SISO) sysyems, with requirement on model of the sysyem to be linear time-

invariant (LTI). Classical control methods are not able to incorporate constraints naturraly

arising from industrial control problems, and has optimization lacking overall performance.

Most common example of classical control methods is proporcional integral derivative (PID)

controler, which accounts for more than 90% of the control and automation applications today,

mainly thanks to its simple implementation with relative efficiency. Even though, that clas-

sical control methods are widely used in practice, and are still popular among old-fashioned

control engineers, they are providing satisfactory results only in control of simple processes,

but unsatisfactory results in control of more complex systems, which are forming majority of

todays industrial control problems.

Modern Control Methods

Instead of changing domains to avoid the complexities of ODE solutions, modern control is

using methods for conversion of high-order differential equations into a system of first-order

time domain equations called state equations, which are easy to handle using well known linear

algebra techniques. This model representation od dynamial systems is being called state-space

repsesentation, where the inputs, outputs, and internal states of the system are described by

vectors called input u, output y and state x variables respectively. Main advantage of state-

space representation is perservation of the time domain character, where the response of a

dynamical system is a function of various inputs, previous system states, and time, shortly

y = f(x, u, t). Moreover a straightforward representation and handling of multiple-input

multiple-output MIMO systems is allowed using state-space model representations.

The overall comparisson of basic characteristics and properties of above metioned methods

can be sumarised in compact table form Tab. 3.1, with highlighted differences.

Moreover the structured classification of control theory methods is captured in Fig. 3.2.

Note that structure presented here is not rigid, but contains a rich overlaps between particular

control methods forming a dense network, where each node represents a method with specific

properties and characteristic approaches to control problems. Further we will not investigate

the comprehensive structure and describe all methods mentioned in Fig. 3.2 as it is not
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Control Theory Methods Classical Modern

Domain Frequency, S-domain Time

Model repsesentation Transfer function State-space

Continuity Continuous Continuous, Discrete, Hybrid

Linearity Linear Linear, Non-Linear

Time variance Time-invariant (TI) Time-variant (TV)

Dimensions SISO MIMO

Determinism Deterministic Deterministic, Stochastic

Optimization NO YES

Constraints NO YES

Implementation Cheap, Easy Expensive, Complex

Table 3.1: Basic characteristics and properties comparation of classical and modern control

theory methods. Where, the red color indicates the drawback, while green color

stands for advantage of the methods.
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Figure 3.2: Classical vs modern control theory methods taxonomy. Where the full lines rep-

resents direct structural relations, dotted lines are depicting supporting mathe-

matical theories, and dashed lines are outlining the evolution of separate control

theory methods merging together creating a new control theory paradigms.
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covered by topic of this thesis. In the following sections we will rather focus on a group of

particular control methods called optimal control and more specificly on Model Predictive

Control, which undergo rapid development in last few decades mainly due to rise of modern

computer technology capacities.

3.1.3 Optimal Control

Optimal control is solving a problem of finding such control law for given system, that certain

optimality criteria are being fulfilled. Optimal control problem can be formulated as general

optimization problem defined in Section 2.2.2, consist of cost function mapping system states

and control actions, states and inputs constraints, and system dynamics usually represented as

a collection of differential equations with initial condition. Solution to optimal control problem

can be than perceived as evaluation of such control actions paths, which are minimizing

given objective function. More about optimal control theory methods can be foung e.g.

in Kemin Zhou (1997; 1995), Mi-Ching Tsai (2014), Skogestad S (2007).

Based on different formulations of objective function, constraints or systmes model type,

the optimal control theory medhods are branching into the following most significant repre-

sentatives:

• Linear quadratic regulator - LQR

This method asuumes controlled system to be in linear time-invariant form with quadratic

objective function and missig constraints. Solution is being obtained by two Riccati

equations, in form of optimal linear state feedback controller in form u = −Kx.

• Linear quadratic estimator - LQE

In control theory literature also refered as Kalman optimal state estimator, or shortly

Kalman filter to honor the main contributing author of the concept. Kalman filter

is processing measurements from the system, affected by disturbances during given

time period and produces estimations of unmeasured and unknown system variables.

The estimation of parameters is based on optimal statistical evaluation of number of

measurements, which is more preciese than parameters estimation methods based on

single measurement.

• Linear quadratic gaussian regulator - LQG

Is an extension of traditional LQR controller on linear systems with uncertainties in form

of white gaussian noise. Structure of LQG controller is simply combination of LQR with

LQE, design of both components can be done separately thanks to separation princi-

ple. The solution is again linear state feedback controller similarly as for LQR. Main

disadvantage of both methods, LQR and LQG are poor robust properties of resulting

controllers. These drawbacks were acting as motivation combination of optimal and

robust control theory methods, leading to development of H2 and H∞ methods.

• H2 a H∞ control
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These control methods can be equivalently formulated as an optimization problem,

with only difference in usage of mathematical norms defining objective funtion. For H2

controller desing purposed a euclidean 2-Norm 2.1.17 is being used, in contrast with

∞-Norm 2.1.18 used in H∞ controller design. Finding a solution for H2 controller isan

easy problem in principle, due to uniqueness of solution given by two Riccati equations.

Where in contrast finding a solution for H∞ controller is very difficult problem to solve

theoretically and also numerically, with usual usage of suboptimal solution with given

sufficient tolerance.

• Advanced control theory methods

In industrial applications under this label most commonly are mentioned model predic-

tive control (MPC) strategies, as nowdays very popular control theory methods. Thanks

to their applicability on broad range of systems, natural constraints consideration, to-

gether with their predictive capabilities, resulting in very efficient performances in most

of the applications compared with concurent control strategies.

The following sections are mentioned to provide the reader a deeper intoduction into

the topic of MPC, followed by chapter with application of MPC strategies on building

control problems as main interest of this thesis.

3.2 History and Evolution of MPC

This section will be devoted to brief history and evolution of Model Predictive Control, from

early academia based concepts of optimal control theory, giving the birth to very first in-

dustrial based control applications using MPC technology. More comprehensive historical

survey of industrial MPC can be found in article Qin and Badgwell (2003), from where the

inspiration for this whole section was taken. Moreover the simplified evolution of industrial

MPC algorithms is captured of Fig. 3.3, forming a structural backbone for this section.

Early Optimal Control Theory

Development of modern control concepts using optimization techniques can be traced in the

early 1960’s beginning with the work of Kalman Kalman (1960a;b). With first attempts

for optimal control of linear systems, resulting in development of linear quadratic regulator

(LQR), which was designed to minimize an unconstrained quadratic objective function over

system states and inputs. This concept was further extended to linear quadratic gaussian

regulator (LQG), simply by adding state estimation with linear quadratic estimator (LQE),

commonly called Kalman filter to honor the author. Main asset of LQR and LQG controllers

are powerful stabilizing properties thanks to the infinite horizon. However the early practical

issues handling applications were huge in quantity, the quality and impact on the industrial

process control technology was strongly limited because of missing incorporation of the follow-

ing listed properties in its formulation, as well as from cultural and educational reasons Garcia

et al. (1989), Richalet and Papon (1976).
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Figure 3.3: Simplified evolutionary tree of the most significant industrial MPC algorithms.

• constraints

• real systems nonlinearities

• model uncertainty (robustness)

• unique performance criteria

Even though it is conceived as a firt and necessary step for developlent of following revolution-

ary concepts in advanced process control applications. The imediate impact of LQG control

was in fields with accurate fundamental models, e.g. on aerospace industry. In G.C. Goodwin

(2001) it was estimated there may be thousands of real-world LQG applications with roughly

400 patents per year based on Kalman filter.

First Generation MPC

To handle a drawbacks of LQG approach to process control issues, a new methodology was

developed in industrial enviroment with more general model based control with solution of

the dynamic optimization problem on-line at each control execution over a time interval

called prediction horizon. The main contribution of this approach is incorporation of process

input and output constraints directly in the problem formulation so that future constraint

violations are anticipated and prevented. Moreover allowing usage of explicit multivariable

mathematical models of processes. In addition an increasing flexibility was acquired by new

process identification technology developed to allow quick estimation of empirical dynamic

models, significantly reducing the cost of model development. This new control paradigm for

industrial process modeling and control is what we now refer to as MPC technology Qin and

Badgwell (2003).

In the beginning there was, however a wide gapbetween MPC theory and practice, with

essential contributions from industrial engineers with their applications in process industry.
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First of them was developed in the late 1970s by Richalet et al. (1978), Richalet and Papon

(1976) refered as Model Predictive Heuristic Control (MPHC), later called Model Algorithmic

Control (MAC), with software solution referred to as IDCOM, an acronym for Identification

and Command. In todays context the MPHC control algorithm would be refered as linear

MPC controller. Main features of IDCOM control algorithm are:

• impulse response model

• imput and output constraints

• quadratic objective function

• finite prediction horizon

• reference trajectory

• optimal imputs computed by heuristic iterative algorithm, interpreted as the dual of

identification

Another independent MPC technology was developed by engineers at Shell Oil in the

early 1970s, with an initial industrial application in 1973. Subsequently Cluter and Ramaker

presented unconstrained multivariable control algorithm named Dynamic Matrix Control in

the 1979 Cutler and Ramaker (1979; 1980). And Prett and Gillette, algorithm was modified to

handle nonlinearities and time variant constraints Prett and Gillette (1980). Predicted future

output changes are represented as a linear combination of future input moves in compact

matrix form called Dynamic Matrix. Main features of the DMC control algorithm are:

• linear step response model

• quadratic objective function

• finite prediction horizon

• output behavior specified by trying to follow the setpoint as closely as possible

• optimal imputs computed as the solution to a least squares problem

Initial IDCOM and DMC algorithms were algorithmic as well as heuristic, taking advatage

of rapid development of digital computers technology. However the first MPC were not

automatically stabilizing, stability was estabilished by good heuristics and well performed

tuning by experienced control engineer. Moreover they were able to provide a small degree

of robustness to model error. IDCOM and DMC are classified as first generation MPC, and

in contrast with LQR they had an enormous impact on industrial process control and layed

the foundation the industrial MPC paradigm.
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Second Generation MPC

Even though the first generation MPC algorithms provided excellent control performance of

unconstrained multivariable processes, handling the process constraints was still problematic

task with unsatisfactory results. The solution to this porblem came again from Shell Oil

engineers at early 1980s, proposing the original DMC algorithm as a quadratic program (QP)

in which input and output constraints appear explicitly. Namely Cutler et. al., came with

first description of QDMC Cutler and Haydel (1983), and Garcia and Morshedi with more

comprehensive description few years later C.E. Garcia (1986). Main features of the QDMC

control algorithm are:

• linear step response model

• input and output constraints collected in a matrix of linear inequalities

• quadratic objective function

• finite prediction horizon

• output behavior specified by trying to follow the setpoint as closely as possible

• optimal imputs computed as the solution to a quadratic program

Strenght of this approach was also the fact that the resulting QP optimization problem was

convex and hence easily solved by standard commercial optimization algorithms. Thanks to

this qualities QDMC algorithms refered as second generation of MPC proved to be profitable

in an on-line optimization environment. As a main drawback of the QDMC approach was

lack of clear way approach to handle an infeasible solution and missing recovery mode.

Third Generation MPC

From this point a popularity and usage of MPC technology rise strongly in numbers, creating

new complex problems and revealing application challenges, pointing out most important as

follows.

• solving infeasibility issues

• fault tolerance control

• control requirements formulation and scaling problems

To solve infeasibility issues a new approach to constraints handling was proposed, by

incorporating soft constraints which violations were penalized in objective function, and by

distinguishing between high and low priority constraints. Main objective of fault tolerance as

a important practical issue, was making best from control even during failure, with relaxation

control specifications during this kind of situations. Third problem was difficult translation

of control specifications into a consistent set of relative weights in a single objective function

for larger problems. Where these scaling problems that lead to an bad-conditioned solution,
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comented in D.M. Prett (1988) as follows. The combination of multiple objectives into one

objective (function) does not allow the designer to reflect the true performance requirements.

These issues were motivations for engineers of industrial comapies as Adersa, Setpoint,

Inc., and Shell which were among first implementing MPC algorithms. IDCOM-M controller

was a commercial trademark of Setpoint, Inc. (where M stands for multiple input/output),

and was first described in a paper by Grosdidier,Froisy, and Hammann Grosdidier and Ham-

mann (1988), and few years later by Froisy and Matsko Froisy and Matsko (1990) implemented

to a Shell fundamental control problem. Main features of the IDCOM-M control algorithm

are:

• linear impulse response model

• controllability supervisor to screen out bad-conditioned plant subsets

• multi-objective quadratic function formulation, one for inputs and one for outputs

• control of coincidence points chosen from reference trajectory, as a subset of future

outputs trajectories

• single move for each input

• hard or soft constraints with priority ranking

Adresa company owned nearly identical version to IDCOM-M called hierarchical con-

straint control (HIECON). IDCOM-M was combined with Setpoints identification, simula-

tion, configuration, and control products into a single integrated system called SMCA, for

Setpoint Multivariable Control Architecture.

The Shell research engineers was not far behind and in the late 1980s developed SMOC, or

Shell Multivariable Optimizing Controller, refered as a bridge between state-space and MPC

algorithms Marquis and Broustail (1998). Their approach was to combine constraint handling

features of MPC, with the richer framework for feedback by state-space methods, so that full

range of linear dynamics can be represented. Main features of the SMOC control algorithm,

which are now considered essential to a modern MPC formulation are listed as follows:

• state-space model

• explicit disturbance model describing the effect of unmeasured disturbances

• Kalman filter for estimation of plant states and disturbances from output measurements

• distinction between controlled variables in objective and feedback variables for estima-

tion

• QP formulation of control problem with constraints incorporation

SMOC algorithm can be than perceived as solving the LQR problem with input and output

constraints, but lacking the strong stabilizing properties due to finite horizon. Not long after

in the 1990s a stabilizing, infinite-horizon formulation of the constrained LQR algorithm came
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to embrace the MPC theoretical background J.B. Rawlings (1993), P.O.M. Scokaert (1998).

Other algorithms not described but yet belonging in this section of third MPC generation

was PCT algorithm sold by Profimatics, and Honeywells RMPC algorithm.

Fourth Generation MPC

The mid and late 1990s bring significant changes in the industrial MPC landscape, mainly due

to increased competition driven companies acquisitions and technologies merges. In 1995 a ro-

bust model predictive control technology RMPCT was created by merging Honeywells RMPC

algorithm with Profimatics PCT controller under the label of Honeywell Hi-Spec Solutions.

Second big acquisition become reality in 1996, when Aspen Technology Inc. purchased both

Setpoint, Inc. and DMC Corporation, followed by by acquisition of Treiber Controls in 1998.

What was resulting in subsequent merging of SMCA and DMC technologies to current Aspen

Technologys DMC-plus. A simplified overwiew of MPC technology evolution is sumarised

structurally in Fig. 3.3 as refered in the beginning of this section.

RMPCT and DMC-plus as a flagships of fourth generation of MPC technology, are be-

ing sold today with integrated high standards features of all above mentioned technologies,

enhanced with following improvements.

• windows based graphical user interface

• multiple optimization levels for control objectives with different priorities

• improved identification technology based on prediction error method

• additional flexibility in the steady-state target optimization, including QP and economic

objectives.

• robustness properties with direct consideration of model uncertainty

All this has been a cause to a large increase in the number and variety of practical application

areas including chemicals, food processing, automotive, or aerospace applications. Mainly

thanks to MPCs significant performance improvements, increasing safety, decreasing energy

consumption or enviromental burden of plants production.

3.3 MPC Overwiev and Features

As written in the beginning of this chapter, MPC is control strategy that uses optimization to

calculate optimal control inputs, with usage of mathematical model of the system and current

state measurements for predicting a evolution of the system behavior, and keeping these

future predictions in account during optimization. The optimization problem as proposed in

chapter 2.2.2 is composed of two parts, objective function and constraints. In MPC framework

the cost or also called objective function evaluates fitness of a particular predicted profile of

state, output and inputs with respect to qualitative criteria. Task of the optimization is

then to compute the optimal profile of predicted control actions for which the cost function
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is minimized. The set of admissible decisions to choose from is then represented by the

constraints of the optimization problem.

MPC is based on iterative character of optimization process executed over finite time

interval also called prediction horizon, which can be simplistically percieved as measure of

how far into the future the MPC algorithm can see. At current time the plant states are being

measured and a cost minimizing control strategy is computed, via a numerical algorithms over

given prediction horizon.

Basic building elements forming characteristic structure of standard MPC are sumarised

and listed as follows.

• Model of the system

• State measurements

• Constraints

• Objective

• Prediction horizon

• Sampling time

Note here, that multiple possibilities for each building element of MPC exist, each with specific

properites which are suitable or necessary for particular control application problem.

3.3.1 Receding Horizon Control

Standardly MPC algorithm are being implemented in the closed-loop fashion using the prin-

ciple of receding horizon control (RHC), where the prediction horizon keeps being shifted

forward, implementing only the first step of the computed control strategy and discarding

the rest. The closed-loop MPC procedure can be sumarised in the following general RHC

policy algorithm. Moreover a characteristic behavior of discrete closed-loop MPC strategy

is captured in Fig 4.1. Alternatively an open-loop MPC can be designed by ignoring RHC

control policy and simply implementing not only the first control input but the whole control

strategy computed over given prediction horizon, paying the cost of lost feedback properties

of control system.

Remark 3.3.1 Notice here, that this is one of the many algorithm possibilities for general

MPC algorithm definition.
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Algorithm 1: Closed-loop MPC control algorithm (RHC).

1. Obtaining a model of the process by the control engineers.

2. At time t, measurements of previous process inputs and outputs are applied to the

process model, to compute predictions of future process outputs over a prediction

horizon N .

3. The optimal sequence of control inputs {u∗(t), . . . , u∗(t+NTs)} is computed by

solving the optimization problem.

4. Only the first element of the control signals sequence, i.e., u∗(t) is selected and applied

to the plant, to achieve feedback behavior of MPC controller.

5. The control signal is implemented over a pre-defined time interval, called sampling

time Ts.

6. Time advances to the next interval, and the procedure is repeated from step 2, with

new measurements at time t+ Ts, using values of x(t+ Ts).

Past Future

Prediction horizon

Sample

LEGEND

Reference trajectory

Predicted output

Measured output

Implemented inputs

Predicted inputs

Current input

tk tk+1 tk+2 tk+3 . . . tN−1

Figure 3.4: Characteristic behavior of receding horizon control policy.
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3.3.2 Standard MPC Formulation

Standard MPC optimization problem can be formulated in a general way as follows:

min
u0,...,uN−1

N−1
∑

k=0

ℓ(xk, uk) (3.1a)

s.t. xk+1 = f(xk, uk, dk), (3.1b)

xk ∈ X , (3.1c)

uk ∈ U , (3.1d)

x0 = x(t), (3.1e)

where xk ∈ R
n, uk ∈ R

m and dk ∈ R
q denote, respectively, values of states, inputs and

disturbances predicted at the k-th step of the prediction horizon N . The predictions are

obtained from the prediction model f(x, u, d), that can be arbitrary (e.g. linear or nonlinear).

Predicted states and inputs are subject to constraints sets in (3.1d) and (3.1c). The term

ℓ(xk, uk) in (3.1a) is called a stage cost and its purpose is to assign a cost to a particular choice

of xk and uk. For a particular initial condition x(t) in (3.1e), the optimization (3.1) yields

the sequence u∗0, . . . , u
∗
N−1 of control inputs that are optimal with respect to the cost (3.1a).

Computational complexity of obtaining such a sequence depends on the type of the prediction

model employed in (3.1b) and on the choice of the cost function (3.1).

More specifically a general MPC problem (3.1), can be given in a form

min
u0,...,uN−1

N−1
∑

k=0

(‖Qxxk+1‖p + ‖Quuk‖p) (3.2a)

s.t. xk+1 = Axk +Buk + Edk, (3.2b)

Hxxk ≤ Kx, (3.2c)

Huuk ≤ Ku, (3.2d)

x0 = x(t). (3.2e)

Where cost function (3.2a) is represented by arbitrary p-Norm 2.1.15, over prediction horizon

N ∈ N with weight matrixes Qx ∈ R
n×n and Qu ∈ R

m×m, with contitions Qx to be positive

semidefinite and Qu to be positive definite, or compactly Qx � 0, Qu ≻ 0. Moreover the

prediction model holds form of discrete-time linear time-invariant system in a state-space

representation 3.2b with incorporated disturbances dk. With the model matrixes A ∈ R
n×n,

B ∈ R
n×m and E ∈ R

n×q, linear constraints matrixes Hx ∈ R
nx×n, Kx ∈ R

nx, Hu ∈ R
nu×m

and Ku ∈ R
nu , where nx, nu stands for number of state and input inequalities. Recalling that

n, m and q denotes the dimension of state, input and disturbances, respectively.

Remark 3.3.2 Notice that, MPC oprimization problem 3.2 with cost function (3.2a) in form

of 2-Norm 2.1.17 is resulting in convex QP problem 2.26. Additionally if the model of the

system contains state variables, which can only acquire integer or binary values, than the

system exhbits hybrid dynamics behavior and the resulting optimization problem becomes non-

convex MIQP problem 2.28.
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3.3.3 Further Reading on MPC

There are several publications comprehensively covering theoretical and practical issues of

MPC techniques. Overwiev MPC tutorial written mainly with focus on control engineers can

be found in Rawlings (2000). Allgower (1999) is providing more comprehensive overview of

nonlinear MPC and moving horizon estimation. Review of theoretical results on the closed-

loop behavior of MPC algorithms found in Mayne (2000). Other important surveys of MPC

technoloy are e.g. Garcia et al. (1989), Lee (1996), Mayne (1997), Morari (1991), Muske and

Rawlings (1993), Rawlings (1994), Ricker (1991). For books dealing with MPC one can see

e.g. Bordons (2004), Kouvaritakis (2001), Maciejowski (2002a), Mayne (2000), Zheng (2000).



Chapter 4
Building Control

Life is chaotic, dangerous, and surprising. Buildings should reflect that.

Frank Gehry

4.1 Building Modeling

4.1.1 Basic concepts

Mathematical models of physical plants play a vital roles in many areas, including control

synthesis, verification and simulation. They represent a mathematical abstraction that should

on one hand be sufficiently precise to accurately capture dynamical behavior of the plant and,

on the other hand, sufficiently simple as to render control synthesis easy.

In the literature devoted to control of buildings, various types of models were suggested.

Nonlinear models provide great accuracy, but lead to difficult control synthesis. Therefore

linear models are often considered. Due to their simple structure, subsequent control synthesis

and verification is rather straightforward. As a downside, linear models only accurately

represent the physical plant in close neighborhood of a particular linearization point. As an

extension, one can also consider so-called linear hybrid systems, which are composed of a set

of local linear models (each representing operation of the plant around one distinct operating

point), accompanied with switching rules that select a particular local model. The upside

is increased accuracy of description. However, control synthesis for such systems is difficult,

since switching of local models need to be encoded as a set of logic rules.

There are several aspects which distinguish modeling (and control of) buildings less com-

plex that control of generic plants. Foremost, buildings can be conceived as a complex, but

inherently stable systems with slow dynamics. This simplifies control synthesis to some extent.

E.g., one does not need to explicitly account for closed-loop stability, and slow dynamics al-

lows to apply control methods that are based on computational-heavy optimization. However,

buildings are often affected by disturbances, which need to be considered by the controller.

Some of these disturbances can be measured, some can only be estimated. These include,

among others, weather conditions (external conditions, cloudiness, humidity, etc.) as well as

49
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occupancy of the building. Quality of the overall building model then depends on how well

we are able to estimate, or predict future evolution of these disturbances.

4.1.2 Tools

A wide range of software modeling tools for buildings is nowadays available. These include,

but are not limited to, TRNSYS Beckman et al. (1994), Energy Plus Crawley et al. (2001),

ESP-r A. Yahiaoui (2003). They usually consider very complex building models based on

nonlinear energy and mass balances. Although such models are very accurate, they are not

directly suitable for control synthesis due to high complexity. To deal this issue the middleware

softwares such as BCVTB Wetter and Haves (2008), MLE+ Bernal et al. (2012) and Open-

Build Laboratory (2013) were designed for making communication bridges between Matlab

and Energy Plus. More comprehensive overwiev of HVAC system modeling and simulation

tools can be found in Trcka and Hensen (2010), Zhou et al. (2013), moreover a directories

listing all available software tools for modeling, analysis, optimization and simulation for

buildings can be found online in Energy (2014), EUROSIS (2014), Truong Xuan Nghiem

(2011).

In this work, we have used the ISE (Indoor temperature Simulink Engineering) tool van

Schijndel (2005), which is based on linear building models. In general, ISE is a free, MATLAB-

based modeling tool for simulating the indoor temperature of a building that consists of

a single zone. It uses a linear model of the zone and provides a user-friendly graphical

interface to Simulink. Contrary to the complex modeling tools mentioned above, models

provided by ISE are directly suitable for control synthesis. An another advantage is that ISE

is standalone, i.e., it does not rely on any other external software packages. ISE being based

on MATLAB/Simulink allows to easily verify performance of various control strategies just

by wrapping any MATLAB-based control algorithm as a Simulink S-function.

4.1.3 Particular building model

In this work we consider a linear model of a one-zone building, obtained from ISE. The model

has 4 state variables, denoted as x1 to x4 in the sequel. Here, x1 is the floor temperature,

x2 represents the internal facade temperature, x3 is the external facade temperature, and

x4 stands for the internal room temperature. All temperatures are expressed in ◦C. The

model considers a single control input u, which represents that amount of heat injected to the

zone, expressed in watts. Moreover, the model also features 3 disturbance variables d1, . . . , d3.

Here, d1 is the external temperature (in ◦C), d2 is the heat generated inside in the zone due

to occupancy (in W), and d3 is the solar radiation which heats the exterior of the building

(in W).

The model can be compactly represented by a linear state-space model in the continuous-

time domain

ẋ = Ax+Bu+ Ed (4.1)

where x = [x1, . . . , x4]
T is the state vector, ẋ is the state derivative, d = [d1, . . . , d3]

T is the

vector of disturbances, and and A ∈ R
4×4, B ∈ R

4, E ∈ R
4×3 are the state-update matrices.
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Following values of A, B, E in (4.1) were extracted from ISE:

A = 10−3 ·











−0.020 0 0 0.020

0 −0.020 0.001 0.020

0 0.001 −0.056 0

1.234 2.987 0 −4.548











B = 10−3 ·











0

0

0

0.003











, E = 10−3 ·











0 0 0

0 0 0

0.055 0 0

0.327 0.003 0.001











.

The model is valid provided that all temperatures (i.e., states x1, . . . , x4) are kept within

− 30◦ C ≤ xi ≤ 50◦ C, i = 1, . . . , 4, (4.2)

and for the following range of the heating/cooling inputs injected to the zone:

− 500W ≤ u ≤ 10000W. (4.3)

Here, positive values of u represent heating, while a negative u stands for cooling.

Instead of considering an analytic model for prediction of disturbances, the ISE tool uses

historical data for external temperatures (d1) and solar radiations (d3), captured over the

period of 30 days. For the heat generated by occupancy, the ISE model considers d2 = 500W

during office hours, and d2 = 0W otherwise.

4.2 HVAC Model Predictive Control

This section is devoted to application of MPC techniques on building control problems. One of

the first attempts for implementation and analysis of MPC on real building with experimental

results is described in Široký et al. (2011). Standard MPC approach with weather predictions

was introduced in Oldewurtel et al. (2012), or stochastic MPC formulation in Drgoňa et al.

(2013), Ma et al. (2012b), Oldewurtel et al. (2010a). A method for reducing peak electricity

demand in building climate control can be found in Oldewurtel et al. (2010b). Predictive

control together with building parameter identification was described in Bălan et al. (2011).

A distributed model-based predictive control was designed in Ma et al. (2011). Simple MPC-

like feedback laws obtained by machine learning tools from closed-loop data was introduced

in Klaučo et al. (2014). Explicit MPC approach based on PMV index control, combining

several factors affecting the persons thermal comfort, can be found in Klaučo and Kvasnica

(2014).

In this Section we propose different formulations of MPC that maximize the thermal

comfort while minimizing consumed energy. This is achieved:

• first by elaborating control objectives that include maximization of thermal comfort and

minimization of energy consumption, as shown in Section 4.2.1.
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• secondly by employing a suitable prediction model from Section 4.1.3, based on which

accurate predictions can be obtained.

These predictions then allow optimization to select best control inputs that minimize

consumed energy while respecting thermal comfort criteria. In real-life situations, however,

buildings are subject to external disturbances, such as exterior temperature, solar radiation,

or heat generated by occupancy Oldewurtel et al. (2012). Moreover, these disturbances often

evolve in a random fashion, therefore conventional MPC approaches are not directly applicable

to real building control, since they are based on deterministic models and constraints Široký

et al. (2011). Even though deterministic MPC formulations can be still used in simulation

case studies as a valuable source of information, necessary for designing of efficient MPC

controllers. Therefore in Section 4.2.2 a three different deterministic formulations of MPC

are being proposed, obtained results are reviewed from paper Drgoňa and Kvasnica (2013)

Possible ways around to deal with real-world disturbances would be to consider worst-case

MPC which utilizes (often conservative) bounds on possible changes of the disturbances or

employing certainty equivalence MPC (CEMPC) Messina et al. (2005). Even though such

strategies are able to satisfy constraints for arbitrary disturbance, the price to be paid is

increased consumption of energy required for heating and cooling. Moreover based on in-

ternational standards for building control (e.g. ISO 7730), zone control is being used for

satysfying the thermal comfort within given range of reliability. This brings us to face the

probabilistic constraints, which can not be modeled by standard deterministic procedures,

but on the other hand thanks to the knowledge of the probability distributions of the past

disturbances, they can be easily modeled by stochastic approaches. Therefore much attention

is devoted to stochastic MPC which incorporate random disturbances into probabilistic con-

straints. However, most of stochastic MPC approaches for building control reported in the

literature lead to complex optimization problems Ma et al. (2011; 2012a), Oldewurtel et al.

(2010a). The downside being that complexity of such an optimization is often prohibitive for

implementation on cheap process hardware, such as on Programmable Logic Controllers. The

procedure for obtaining such low complexity stochastic MPC implementation will be shown

in Section 4.2.3, obtained results are reviewed from paper Drgoňa et al. (2013).

4.2.1 Control Objectives and Assumptions

Building Automation System (BAS) is a control system which governs buildings such that

certain comfort criteria are achieved. These include internal room temperatures, air quality,

lighting etc. In addition. Instead of tracking particular reference values, BAS typically

consider comfort ranges, also called zones. The task is then to manipulate the building inputs

such that qualitative criteria are kept within these zones while simultaneously minimizing

cost of injected energy flows.

The classical control approaches (e.g. PID) are to performing an actions based only on

current timestamps, representing buildings behavior in present time, without ability to predict

or estimate their future evolution. On the other hand MPC framework allows us to perform

the minimization while taking prediction of disturbances (which include outside weather,
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Figure 4.1: Building control scheme, consisting of a building affected by disturbances due

to weather. Control inputs are selected by optimization which is initialized by

current measurements. Control commands are then passed to actuators which

deliver required amount of heating/cooling energy to the building.

building occupancy, solar radiation, etc.) into account. A typical setup of a HVAC control

system that includes an MPC algorithm is shown in Fig. 4.1.

Maintaining of Thermal Comfort

First control objective is to maintain temperatures inside the building within a comfortable

range. Two variations of this criterion are considered. In the first formulation we are in-

terested in manipulating the injected energy flow u in (4.1) such that the internal room

temperature (represented by state x4) stays as close as possible to its setpoint r. The second

formulation relaxes the first condition in the sense that we are only interested in keeping the

inner temperature in a particular range, what is equivalent to satisfaction of the following

constraint:

r − ǫ ≤ x4 ≤ r + ǫ, (4.4)

Here, ǫ > 0 denotes a fixed width of the comfort zone.

Minimization of Energy Consumption

The second very important criterion is to manipulate inputs to the building as to minimize

the energy consumption. This objective can be translated to minimizing some function of the

control inputs. Typically, minimization of u2 is employed, since the square directly represents

energy of a particular flow. Other types of minimization functions can be considered as well,

for instance the absolute value of u.
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It should be pointed out that the two aforementioned qualitative criteria are counter-

acting against each other. To drive the internal temperature towards the comfort zone, the

first objective forces the heating/cooling capacities to become active. On the other hand,

zero heating/cooling is preferred by the second objective. Therefore so-called weighting pa-

rameters need to be assigned to each objective as to indicate its preference. Needless to

say, achieving comfort with minimal energy must be done while satisfying all constraints of

physical equipment.

Probabilistic Disturbances Modeling

The nontrivial part of designing a suitable control strategy stems from presence of disturbance

variables d in (4.1). We assume that at each time instant t we have knowledge of building’s

state vector x(t), as well as current values of disturbances d(t). Then depending on what

type of knowledge we have about future disturbances, we can aim at synthesizing one of the

following three control strategies.

1. If we have a reasonably accurate model to predict weather and occupancy conditions,

then the values d(t + kTs) are known for k = 0, . . . , N , where N is the length of the

prediction window. Then we call the control strategy

u∗(t) = µ(x(t), d(t), . . . , d(t+N)) (4.5)

the best-case scenario.

2. If we can bound future disturbances by ‖d(t + kTs)− d(t+ (k + 1)Ts)‖ ≤ θmax for any

0 ≤ k ≤ N , then the control strategy

u∗(t) = µ(x(t), d(t), θmax) (4.6)

is referred to as the worst-case scenario.

3. If Future disturbance are unknown, but we know that future disturbances follow some

probability distribution of rate of change of disturbances. To achieve a tractable for-

mulation of the control problem, we therefore assume that we know the probability

distribution

θ ∼ N (0, σ(t)) (4.7)

such that the future disturbances at discrete time steps t+Ts, . . . , t+NTs are given by

d(t+ kTs) = d(t) + kθ, k = 1, . . . , N, (4.8)

where N denotes the prediction window over which the distribution in (4.7) is deemed

reasonably accurate. Then the control strategy

u∗(t) = µ(x(t), d(t), σ) (4.9)

is called the stochastic scenario.



CHAPTER 4. BUILDING CONTROL 55

Remark 4.2.1 Please note, that the disturbances either increase or decrease linearly, what

means that the confidence interval of the uncertainty is growing bigger for a longer predictions.

But thanks to the knowledge of the probability distribution θ for every k-th step of the predic-

tion, we can model this behavior by simple summation of predicted disturbances as shown in

formula (4.8), where range of the confidence interval for predicted disturbance in k-th step is

directly dependent on range confidence interval in previous sampling step k-1.

It should be pointed out that the first scenario is not realistic, as weather and/or occupancy

varies randomly. Due to the same reason, the worst-case scenario often requires employing

conservative bounds θmax, which leads to deterioration of control performance. While the

third stochastic case is the most natural from the practical point of view, introduction of

probabilistic functions requires a modification of the thermal comfort criterion. As a drawback

of hard constraint (4.4) here, is that it can lead to infeasibility of the control problem if a

large disturbance hits the building. Because the control authority is limited by (4.3), and due

to the random nature of disturbances, the hard thermal comfort constraint (4.4) needs to be

relaxed in a probabilistic sense as follows:

Pr(x4 ≥ r − ǫ) ≥ 1− α, (4.10a)

Pr(x4 ≤ r + ǫ) ≥ 1− α, (4.10b)

where 1 − α the denotes probability with which the constraints in (4.4) have to be satisfied

for some α ∈ [0, 1].

Our further goal in Section 4.2.3 will be to synthesize the state-feedback control policy

u(t) = µ(x(t), d(t), σ(t)) that maps measurements onto optimal control inputs such that

maintains thermal comfort over the prediction window N , and minimizes the total energy.

4.2.2 Deterministic MPC Formulations

Throughout this section we assume that the prediction model f(·, ·, ·) in (3.1b) is a linear

discrete-time model of the form

x(t+ Ts) = Ãx(t) + B̃u(t) + Ẽd(t), (4.11)

where Ã, B̃, Ẽ are obtained by discretizing the continuous-time model (4.1) with the sam-

pling period equal to Ts = 444 seconds. Predicted states x(t) and inputs u(t) are subject to

lower/upper limits in (3.1d) and (3.1c) with x = [−30, −30, −30, −30]T , x = [50, 50, 50, 50]T ,

u = −500, and u = 10000, cf. (4.2) and (4.3). Moreover, we assume that at each time step

t we know d(t), but have no information about future disturbances d(t+ 1), . . . , d(t +NTs).

As a consequence we assume that dk = d(t) for all k = 0, . . . , N − 1 in (3.1b).

Setpoint Temperature Tracking with Energy Minimization

First we consider the first case of Section 4.2.1, with thermal comfort objective. Here, we

want to formulate the MPC optimization problem (3.1) such that:

1. the inside temperature (i.e., x4) is kept as close as possible to its setpoint r;
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2. the cost of heating and cooling is minimized.

The first requirement can be reflected by minimizing the difference between predicted

values of x4 from the setpoint r. The second objective then translates to minimizing u2k.

Hence the cost to be minimized in (3.1a) becomes

ℓ(xk, uk) = qx(Cxk − r)2 + quu
2
k, (4.12)

where C = [ 0 0 0 1 ] and qr > 0, qu > 0 are weighting parameters. If qu/qr > 1, then minimiza-

tion of energy consumption is preferred over achieving good tracking. Otherwise the priority

is put towards minimizing the tracking error.

By using (4.12) in (3.1) and with (4.11) employed in (3.1b), the optimization in (3.1) be-

comes a strictly convex quadratic optimization problems with u0, . . . , uN−1 being the decision

variables. Using off-the-shelf solvers (e.g. by CPLEX ILOG (2007) or GUROBI Gurobi Opti-

mization (2012)), such problems can be solved efficiently even for large values of the prediction

horizon.

However, the choice of stage cost as in (4.12) can potentially lead to a non-zero steady-

state tracking error. This downside is eliminated by minimizing the increments of u instead

of their absolute values. Introduce ∆uk = uk−uk−1 and let uk for k = −1 denote the optimal

control action computed at the previous sampling instant, i.e., u−1 = u∗(t− 1). Then

ℓ(xk, uk) = qx(Cxk − r)2 + qu∆u2k, (4.13)

leads to an offset-free tracking of the reference r, see e.g. Kvasnica (2009). Since the stage

cost (4.13) is quadratic in the decision variables xk and ∆uk, problem (3.1) remains a quadratic

program. However, the price to be paid for offset-free tracking is that we loose control over

absolute values of the control signals. Hence the MPC problem can, potentially, produce

control actions that are large (leading to a large energy consumption), as long as these inputs

do not vary by too much in consecutive steps. Thus for above mentioned reasons in Sec-

tion 4.3, the formulation with minimization of absolute value of energy 4.12 was considered

as a reasonable trade-off between energy consumption and thermal comfort.

Comfort Zone Temperature Tracking

Now we consider the second case of Section 4.2.1 with thermal comfort objective, where

instead of driving the indoor temperature x4 towards the setpoint r, it suffices to keep it

within the comfort zone

r − ǫ ≤ x4 ≤ r + ǫ (4.14)

some positive value of ǫ. Here, ǫ is the width of the zone and represents limits of human

perception of temperature differences. Doing so allows to reduce energy consumption, since

the indoor temperature is not required to reach the reference, which is in the middle of the

comfort zone.

To account for the zone tracking scenario, we propose to proceed as follows. Introduce

new variables sk ∈ R and add the following constraints to (3.1) for k = 0, . . . , N − 1:

r − ǫ− sk ≤ Cxk ≤ r + ǫ+ sk, (4.15)
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together with constraints sk ≥ 0, k = 0, . . . , N − 1, and with C = [ 0 0 0 1 ]. Moreover, let the

stage cost be

ℓ(sk, uk) = qss
2
k + quu

2
k. (4.16)

Then it is easy to observe that for any xk satisfying (4.14), we have that sk = 0 satis-

fies (4.15). Only if xk is outside of the zone, a non-zero value of sk needs to be employed to

satisfy (4.15). In simple terms, constraint (4.15) is a soft version of (4.14) where sk are the

softening variables. Moreover, since the square s2k is penalized in (4.16) via (3.1a), we get that

the MPC optimization problem assigns sk = 0 whenever the temperature is kept within the

zone in (4.14), and sk > 0 otherwise. Hence the optimization (3.1) with stage cost as in (4.16)

will select control actions that keep the indoor temperature as close as possible to the comfort

zone. Moreover the resulting optimization remains convex quadratic programming problem.

The stage cost in (4.16) can be furthermore modified as to minimize increments of the

control action, i.e.,

ℓ(sk, uk) = qss
2
k + qu∆u2k, (4.17)

where ∆uk is defined as in Section 4.2.2. In either case, the optimization problem (3.1) is a

quadratic program with decision variables xk, uk, and sk for k = 0, . . . , N − 1.

Comfort Zone Temperature Tracking via Binary Indicators

The advantage of the comfort zone tracking approach presented in Section 4.2.2 is its simple

implementation via quadratic optimization. The downside, however, is that the optimization

prefers many small violations of the comfort zone over smaller number of larger violations.

The reason being that any non-zero value of sk coincides with violation of the zone in (4.14).

But minimizing s2k in (4.16) only minimizes magnitudes of such violations. Therefore in

this section we show how to formulate the stage cost which minimizes the true number of

violations, instead of their respective magnitudes.

The central idea of this approach is to devise new binary indicator variables δk ∈ {0, 1}
for which

(sk > 0) =⇒ (δk = 1). (4.18)

This implication means that δk = 1 whenever the temperature violates the thermal comfort

zone in (4.14) at time instant t + k. Minimization of the number of instances at which the

zone is violated can then be achieved by using the following stage cost:

ℓ(δk, uk) = qδδk + quu
2
k. (4.19)

Note that the stage cost is always non-negative due to the binary nature of δk. The second

term of (4.19) can alternatively be replaced by qu∆u2k when minimization of the increments

of the control variable is desired.

Constraint (4.18) can be included into the MPC optimization problem (3.1) by applying

the so-called big-M technique Williams (1993). First we rewrite (4.18) as

(sk ≥ γ) =⇒ (δk = 1). (4.20)
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for some small positive value of γ (typically chosen as the machine precision) to convert the

strict inequality in (4.18) to a non-strict one (4.20). Now let M > 0 be a sufficiently large

constant such that M ≥ max sk. Then (4.20) is equivalent to

sk − γ ≤ Mδk. (4.21)

To see the equivalence, notice that for any sk > γ (which implies that sk − γ is positive

and hence sk > 0) the optimization needs to choose δk = 1 in (4.21) for the constraint to

hold since M is assumed to be positive. For any sk ≤ γ (e.g. for sk = 0 since sk ≥ 0 is

assumed, cf. (4.15)), both δk = 0 as well as δk = 1 are feasible in (4.21). However, since δk
are minimized in (4.19), δk = 0 will be chosen by the optimization in such a case.

Therefore by including constraints (4.21) into the MPC optimization problem (3.1), and by

using the stage cost (4.19), we can minimize the true number of violations of the comfort zone.

The price to be paid is the increased complexity of the optimization problem. Specifically, (3.1)

has to consider additional binary optimization variables δk. Such a problem can be solved as

a mixed-integer problem (MIP). Its complexity is much higher compared to convex quadratic

optimization problems and is, in the worst case, exponential in the number of binary decision

variables. Nevertheless, modern solvers can solve MIP problems of moderate complexity in

reasonable time, as will be demonstrated in Section 4.3.

4.2.3 Stochastic MPC Formulations

The aim of this Sectionis at acquire a simple implementation of stochastic MPC. This is

achieved by pre-computing, off-line, the optimal solution to a given optimal control problem

for all initial conditions of interest using parametric programming Bemporad et al. (2002),

Borrelli (2003). This gives rise to an explicit representation of the MPC feedback law as a

Piecewise Affine (PWA) function that maps initial conditions onto optimal control inputs.

The upside is that the on-line implementation of such controllers reduces to a mere function

evaluation. This task can be performed efficiently even on cheap hardware. However, para-

metric programming is only applicable to stochastic MPC problems of small size Grancharova

et al. (2008).

In our setup, however, the dimensions are large. In particular, the space of initial param-

eters is 14-dimensional, hence general-purpose explicit stochastic MPC approaches cannot

be readily applied. Therefore we show how to formulate the stochastic control problem such

that it can be subsequently solved, and such that the solution is not of prohibitive complexity.

First, by exploiting the results of Campi and Garatti (2008) we show how to replace stochas-

tic probability constraints by a finite number of deterministic constraints. Subsequently,

exploiting a particular dynamics of the building, we show that the number of deterministic

constraints can be reduced substantially as to render parametric programming useful. At the

end we arrive at an explicit representation of stochastic MPC that achieves a given probability

of thermal comfort while simultaneously minimizing consumption of heating/cooling energy

sources. Performance of the proposed stochastic scheme is then compared versus a best-case

scenario (which employs fictitious perfect knowledge of future disturbance), and against a

worst-case setup that employs conservative bounds on future evolution of disturbances.
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Comfort Zone Temperature Tracking

An MPC optimization problem for maintaining high probability of achieving thermal comfort

while minimizing energy consumption can be stated as follows:

min
u0,...,uN

N
∑

k=0

u2k (4.22a)

s.t. xk+1 = Axk +Buk + E(d0 + kθ), (4.22b)

Pr(Cxk ≥ r − ǫ) ≥ 1− α, (4.22c)

Pr(Cxk ≤ r + ǫ) ≥ 1− α, (4.22d)

− 700 ≤ uk ≤ 1400, (4.22e)

θ ∼ N (0, σ(t)). (4.22f)

Here, xk, uk and dk denote, respectively, values of states, inputs and disturbances predicted

at the k-th step of the prediction horizon N , initialized by current measurements of the states

x0 = x(t), current disturbances d0 = d(t) and desired center of the thermal comfort zone

r = r(t). The predictions are obtained using a discretized version of the LTI model (4.1)

with C = [ 0 0 0 1 ]. Future disturbances predicted in (4.22b) employ the random variable θ,

that follows the probability distribution (4.22f) where σ(t) is assumed to be available to the

optimization. The term d0 + kθ in (4.22b) originates directly from (4.8).

Due to the probabilistic constraints (4.22c)-(4.22d), problem (4.22) is hard to solve, in

general. In this thesis we propose to tackle the probabilistic constraint by employing a finite

number of realizations of the random variable θ, as captured by the following two lemmas.

Lemma 4.2.2 (Campi and Garatti (2008)) Let g(u, θ) : RN × R
nd → R be a function

that is convex in u for any θ, and let θ be a random variable as in (4.7). Assume a probabilistic

constraint

Pr(g(u, θ) ≤ 0) ≥ 1− α (4.23)

for some α ∈ [0, 1]. Let θ(1), . . . , θ(M) be M samples of the random variable independently

extracted from (4.7). Then the probabilistic constraint in (4.23) is satisfied with confidence

1− β, i.e., Pr(Pr(g(u, θ) ≤ 0) ≥ 1− α) ≥ 1− β, if

g(u, θ(i)) ≤ 0, i = 1, . . . ,M, (4.24)

holds for a sufficiently large M . �

Lemma 4.2.3 (Alamo et al. (2010)) The number of samples M required in Lemma 4.2.2

is bounded from below by

M ≥ 1 +N + ln(1/β) +
√

2(N + 1) ln (1/β)

α
. (4.25)

�
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By employing Lemma 4.2.2 we can thus replace the probabilistic constraints in (4.22c)-

(4.22d) by a finite number M of deterministic constraints, each obtained for one of the

realizations θ(i) of the random variable. To see this, notice that for (4.22c) we can set

g(·, θ) := r − ǫ − Cxk, where xk embeds θ via (4.22b). Clearly, g(·, ·) is a single-valued

linear function (hence convex) for each k, therefore Lemma 4.2.2 is applicable. Similar rea-

soning holds for (4.22d). In addition, Lemma 4.2.3 quantifies the lower bound on the number

of such realizations, which grows only moderately with the confidence measure β.

Consider the i-th realization of the random variable, i.e., θ(i), and denote by

y
(i)
k = C



Akx0 +

k−1
∑

j=0

Ak−j−1
(

Buj + E
(

d0 + (j + 1)θ(i)
))



 (4.26)

the indoor temperature (represented by the 4-th element of the state vector), predicted at

the k-th step of the prediction horizon using the disturbance θ(i). Note that (4.26) follows

directly by solving for yk = Cxk from (4.22b). Then the MPC optimization problem (4.22)

can be cast as

min
u0,...,uN

N
∑

k=0

u2k (4.27a)

s.t. y
(i)
k ≥ r − ǫ, i = 1, . . . ,M, (4.27b)

y
(i)
k ≤ r + ǫ, i = 1, . . . ,M, (4.27c)

− 700 ≤ uk ≤ 1400, (4.27d)

where y
(i)
k is given per (4.26). Note that (4.26) serves as a substitution in (4.27b)-(4.27c)

and is not considered as an equality constraint. By Lemma 4.2.2, a feasible solution to (4.27)

implies that the probabilistic constraints in the original formulation (4.22) will be satisfied

with a high confidence 1− β. The initial conditions for problem (4.27) are the current state

measurements x0 = x(t), current value of the disturbance vector d0 = d(t), and the M

samples θ(1), . . . , θ(M) extracted from the probability distribution (4.7) for a current value of

the standard deviation σ(t). Most importantly, the optimization (4.27) is a quadratic program

in decision variables u0, . . . , uN since the objective function is quadratic and we have finitely

many linear constraints.

Therefore a control policy that provides satisfaction of thermal comfort constraints in (4.10),

respects limits of the control authority in (4.3), and minimizes the energy consumption, can

be achieved as follows:

1. At time t, measure x(t), d(t), r(t) and obtain σ(t).

2. Generate M samples θ(1), . . . , θ(M) from (4.7).

3. Formulate the QP (4.27) and solve it to obtain u∗0, . . . , u
∗
N .

4. Apply u(t) = u∗0 to the system and repeat from the beginning at time t+ Ts.
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Remark 4.2.4 To prevent infeasibility of (4.27) during transient (for instance when the zone

middle point r is changed), it is worth to soften the hard constraints in (4.27b)-(4.27c). This

can be done by introducing new variables sk, k = 0, . . . , N , and by replacing (4.27b)-(4.27c)

by

y
(i)
k ≥ r − ǫ− sk, i = 1, . . . ,M, (4.28a)

y
(i)
k ≤ r + ǫ+ sk, i = 1, . . . ,M. (4.28b)

Then the term
∑N

k=0 qss
2
k must be added to (4.27a) to penalize violation of constraints, together

with extra constraints sk ≥ 0, k = 0, . . . , N . The value of the penalization coefficient qs
should be selected high as to discourage MPC from violating the constraints unless absolutely

necessary. �

Explicit Stochastic MPC

The objective here is to employ parametric programming to pre-calculate the optimal control

inputs in (4.27) for all admissible values of initial conditions. Hence we aim at constructing,

off-line, the explicit representation of the optimizer as a function of the vector of initial

conditions. Then, once we need to identify the optimal control action on-line for particular

measurements, we can replace optimization by a mere function evaluation. This significantly

reduces computational requirements of implementation of MPC.

Theorem 4.2.5 (Bemporad et al. (2002)) Let

min{UTHU + ξTFU | GU ≤ W + Sξ} (4.29)

be a convex quadratic program with initial conditions ξ ∈ R
nx and decision variables U ∈ R

N .

Then the optimizer U∗ of (4.29) is a piecewise affine (PWA) function of ξ:

U∗(ξ) =















F1ξ + g1 if ξ ∈ R1,
...

FRξ + gR if ξ ∈ RR,

(4.30)

where Fi ∈ R
N×nx, gi ∈ R

N , and Ri ⊆ R
nx are polyhedral regions. �

To see the relation between Theorem 4.2.5 and the QP (4.27), notice that U = [u0, . . . , uN ]

and ξ = [x(t), d(t), r(t), θ(1), . . . , θ(M)]. Moreover, the matrices H, F , G, W , S of (4.29) can

be obtained by straightforward algebraic manipulations, see e.g. Borrelli (2003). Parameters

of the PWA function U∗(ξ) in (4.30), i.e., gains Fi, gi and polyhedra Ri, can be obtained by

a parametric programming solver implemented in the freely-available MPT toolbox Kvasnica

et al. (2004).

Remark 4.2.6 For a closed-loop implementation of MPC, only the first element of U∗, i.e.,

u∗0, needs to be applied to the plant at each time instant. Therefore the explicit receding-horizon

feedback law is given by

u∗(t) = [ 1 0 ··· 0 ]U∗(ξ) = F̃iξ + g̃i, if ξ ∈ Ri, (4.31)
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where F̃i, g̃i are obtained from Fi, gi by retaining only the first row of a corresponding matrix.

�

Even though the explicit representation of the MPC feedback law in (4.31) provides a sim-

ple and fast implementation of MPC on embedded hardware, it suffers from the so-called curse

of dimensionality. Simply speaking the number of polyhedral regions Ri grows exponentially

with the number of constraints in (4.29). Therefore, from a practical point of view, explicit

MPC solutions as in (4.30) can only be obtained for reasonably simple QP problem (4.29).

Note that our QP has 2N(M +1) constraints, N decision variables (u0, . . . , uN ), and 8+3M

parameters (4 initial states x(t), 3 initial disturbances d(t), 1 center of the thermal comfort

zone r(t) and M samples θ(i), each of which is a 3× 1 vector). Since M ≫ N in practice due

to (4.25), the main driving factor of complexity is thus M , the number of realizations of the

random variable θ employed in (4.27).

To give the reader a flavor of complexity, consider α = 0.05 (which corresponds to a 95%

probability of satisfying the thermal comfort criterion), N = 10, and β = 1·10−7 (which means

a 99.9999999% confidence in Lemma 4.2.2). The graphical representations of dependancies of

number of samples M to the parameter α and three different settings of the parameter β are

shown in Fig 4.2, with highlighted above mentioned setup. Then we have M = 919 by (4.25),

hence the QP in (4.27) has 18400 constraints and 927 parametric variables. Solving such

a QP parametrically according to Theorem 4.2.5 would lead to an explicit solution defined

over billions of regions, which is not practical and defeats the purpose of cheap and fast

implementation of MPC on embedded hardware.
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Figure 4.2: Dependance of number of M samples θ(i) on parameter α, for three different

settings of parameter β. Where point depicted as black square representsM = 919

samples for α = 0.05, N = 10, and β = 1 · 10−7.
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Fortunately, most of the constraints are redundant and can hence be discarded, allowing

a tractable solution. To see this, consider the constraint in (4.27c), rewritten as

C(Axk +Buk + E(d0 + kθ(i))) ≤ r + ǫ. (4.32)

Since the constraint is linear in all variables, it holds if and only

max
i

{C(Axk +Buk + E(d0 + kθ(i)))} ≤ r + ǫ, (4.33)

which is furthermore equivalent to

C(Axk +Buk + Ed0) + kmax
i

{CEθ(i)} ≤ r + ǫ. (4.34)

Similarly, we have that (4.27b) holds if and only if

C(Axk +Buk + Ed0) + kmin
i
{CEθ(i)} ≥ r − ǫ. (4.35)

Let

θ = arg maxθ(i){CEθ(i)}, θ = arg minθ(i){CEθ(i)}. (4.36)

Please note that θ and θ are computed over finite set of θ(i), therefore no optimization is

required to determine it’s values. Then for any sample θ(i) with θ ≺ θ(i) ≺ θ the constraints

in (4.27b)-(4.27c) are redundant. We conclude that, instead of considering M samples θ(i)

in (4.27), one can equivalently state the problem using only the extremal realizations θ, θ,

hence M = 2. Using the same figures as above, this leads to a QP with only 60 constraints

and 14 parameters in ξ, for which the explicit representation of the optimizer in (4.29) can

be obtained rather easily.

Remark 4.2.7 Note that the values θ and θ are considered as free parameters in (4.27).

Since the samples θ(i) vary in each instance of the QP, it is not possible to prune redundant

constraints a-priori. �

Implementation of stochastic explicit MPC thus requires two steps. The first one is per-

formed completely off-line. Here, the QP (4.27) is formulated using symbolic initial conditions

x0, d0, r, θ and θ, all concatenated into the vector ξ. Then the QP is solved parametrically

for all values of ξ of interest and the explicit representation of the MPC feedback in (4.31) is

obtained by the MPT toolbox. Finally, parameters of the feedback, i.e., the gains F̃i, g̃i, and

polyhedra Ri are stored in the memory of the implementation hardware.

The on-line implementation of such an explicit feedback is then performed as follows:

1. At time t, measure x(t), d(t), r(t) and obtain σ(t).

2. Generate M samples θ(1), . . . , θ(M) from (4.7).

3. From the generated samples pick θ and θ by (4.36).

4. Set ξ = [x(t), d(t), r(t), θ, θ] and identify index of the polyhedron for which ξ ∈ Ri.

Denote the index of the “active” region by i∗.
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5. Compute u∗(t) = F̃i∗ξ + g̃i∗ , apply it to the system and repeat from the beginning at

time t+ Ts.

Remark 4.2.8 Identification of θ and θ in (4.36) does not require any optimization, as the

minima/maxima are taken element-wise from a finite set. �

There are various ways how to identify index of the active region in Step 4. The most

trivial way is to traverse through the polyhedra sequentially, stopping once ξ ∈ Ri is satisfied.

Runtime complexity of such an approach is O(R), where R is the total number of polyhedra.

More advanced approaches, such as binary search trees Tøndel et al. (2003), can improve the

runtime to O(log2 R) by pre-computing a search structure. The amount of memory required

to store the PWA function (4.31) in the memory is linear in R.

4.3 Simulation Study

4.3.1 Deterministic MPC Performance

Purpose of this section is validate performance of various MPC formulations proposed in

Section 4.2.2 and to compare them to a benchmark PI controller of the form

u(t) = Ke(t) +
1

Ti

∫

e(t)dt, (4.37)

where e(t) = x4(t) − r(t) is the tracking error. Each controller was then validated by per-

forming a closed-loop simulation over 2.6784 · 106 seconds (which corresponds to 30 days),

employing the continuous-time linear building model (4.1). Historical data provided by the

ISE tool were used as values of the disturbances. Visualization of the trend of d1(t), the exter-

nal temperature, is shown in Fig. 4.3. The MPC controllers were implemented as a Simulink

s-function where the optimization problems (3.1) were formulated in YALMIP Löfberg (2004)

and solved by GUROBI Gurobi Optimization (2012). Prediction horizon was set to N = 10

multiples of the sampling period Ts = 444 seconds. At each time instant t, the MPC con-

trollers were provided only the value of disturbances available at that time, i.e., the prediction

did not explicitly account for future values of disturbances. Initial indoor temperature was

set to 10◦C in each simulation. For each controller we have subsequently recorded closed-loop

profiles of state and input variables. Performance of each controller is then judged based on

three criteria:

C1: overall consumption of heating/cooling energy, expressed in kilowatt hours;

C2: thermal comfort, expressed as percentage of sampling instants at which the indoor

temperature is kept in the comfort zone (4.14);

C3: computational power required to compute control inputs, represented by the average

time needed to solve the optimization in (3.1).



CHAPTER 4. BUILDING CONTROL 65

0 0.5 1 1.5 2 2.5
0

5

10

15

20

 

 

external temperature

Time [106 s]

T
em

p
er
a
tu
re

[◦
C
]

Figure 4.3: Historical trend of the external temperature over 30 days.

Standard PI control

The first investigated setup was represented by a PI controller (4.37). Closed-loop profiles

recorded for this controller are shown in Fig. 4.4, where Fig. 4.4(a) shows capabilities of

the controller to track a particular profile of the setpoint. It is worth pointing out that

large peaks in indoor temperature around times 1.3 · 106 and 2.5 · 106 seconds are due to

large variation of the external temperature, cf. Fig. 4.3. Control inputs generated by (4.37),

i.e., the input energy flows, are reported in Fig. 4.4(b). Here we remark that in order to

achieve satisfaction of input constraints in (4.3), the output of the PI controller was manually

saturated. Performance of this control strategy, as evaluated by the three criteria mentioned

above, is captured in the first line of Table 4.1.
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(b) Energy input.

Figure 4.4: Performance of the PI controller (4.37).
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Setpoint temperature MPC

Next we have evaluated the reference tracking formulation with minimization of input energy,

as proposed in Section 4.2.2. Here, the stage cost (4.12) was employed in (3.1). Performance of

the scheme is shown in Fig. 4.5. Evaluating the closed-loop profiles showed that this particular

MPC controlled saved 4% of energy compared to the classical PI control. Moreover, the

achieved thermal comfort was 89.2%, an increase by 1.5% compared to the PI case. This

shows that MPC formulation achieves better reference tracking.

0 0.5 1 1.5 2 2.5
14

15

16

17

18

19

20

21

22

 

 

upper comfort crit.
lower comfort crit.
internal temperature
reference

Time [106 s]

In
d
o
o
r
te
m
p
er
a
tu
re

[◦
C
]

(a) Indoor temperature.

0 0.5 1 1.5 2 2.5
−1000

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

Time [106 s]

C
o
n
tr
o
l
in
p
u
t
[W

]

(b) Heating/cooling.

Figure 4.5: Performance of the setpoint temperature MPC controller from Section 4.2.2.

Comfort zone temperature MPC

Performance of the MPC procedure from Section 4.2.2 is reported in Fig. 4.6. Here, instead of

tracking the reference signal, the controller was only interested in keeping the indoor temper-

ature within the comfort zone, whose width was set to ǫ = 0.5◦C. In accordance to intuition,

such a zone-tracking approach allowed to further reduce amount of heating/cooling energy

injected into the system. Specifically, a 9.1% reduction of energy versus the PI benchmark

was achieved, up from a 4.0% energy reduction achieved by the previous MPC formulation,

cf. the third line of Table 4.1. However, compared to the strategy of Section 4.2.2, this

MPC controller leads to a lower thermal comfort (84.1% compared to 89.2% achieved with

the strategy of Section 4.2.2). This is a consequence of the controller operating closer to the

boundaries of the thermal comfort zone. Hence, when a disturbance hits the building (and

because forecasts of the disturbances are not accounted for in (3.1)), there is a higher chance

that the indoor temperature will be forced out of the zone. The formulation in Section 4.2.2,

on the other hand, operates closer to the middle of the zone. Therefore the thermal comfort

is less likely to be influenced by unmodeled disturbances.
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(b) Heating/cooling.

Figure 4.6: Performance of the comfort zone MPC controller from Section 4.2.2.

Minimization of Comfort Zone Violations MPC

Finally we have evaluated the MPC approach of Section 4.2.2 which uses binary variables

to model violations of the comfort zone. As can be shown from the closed-loop profiles

in Fig. 4.7, such an approach leads to a significant reduction of energy consumption while

providing good comfort to inhabitants of the building. Specifically, compared to the PI

benchmark, the procedure of Section 4.2.2 allowed to save 15% of energy, while improving

the thermal comfort criterion from 87.5% to 88.2%. Concrete figures are reported in final

line of Table 4.1. Worth noting is a notable improvement compared to the results of comfort

zone temperature MPC fro Section 4.2.2.
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Figure 4.7: Performance of the MPC controller minimizing the comfort zone violations defined

in Section 4.2.2.
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Performance Comparisson and Computational Costs

To evaluate the computational criterion C3, for each deterministic MPC strategy we have mea-

sured the average time needed to obtain the optimal control inputs by solving the optimiza-

tion problem (3.1) with stage cost and additional constraints as elaborated in Sections 4.2.2

to 4.2.2. Obtained results are summed up in Table 4.2. Confirming the conclusions of Sec-

tion 4.2.2, the two MPC strategies of Sections 4.2.2 and 4.2.2, which can be formulated as

quadratic optimization problems, can be solved very efficiently in a fraction of a second per

one optimization. The approach of Section 4.2.2, on the other hand, requires solving mixed-

integer problems. However, with the prediction horizon set to N = 10, even such a task can

be accomplished at minor computational expenses. Note that in each case the runtime per

sampling instant is well below the sampling period Ts = 444 seconds.

Table 4.1: Qualitative comparison of various control strategies.

Energy Energy Thermal

Control strategy consumption savings comfort

[kWh] [%] [%]

PI controller 753.0 - 87.5

Setpoint MPC 4.2.2 722.7 4.0 89.2

Comfort zone MPC 4.2.2 684.0 9.1 84.1

Zone violations MPC 4.2.2 640.1 15.0 88.2

Table 4.2: Runtime of the optimization (3.1).

Control strategy Average time per sample

Setpoint MPC 4.2.2 0.0117 seconds

Comfort zone MPC 4.2.2 0.0094 seconds

Zone violations MPC 4.2.2 0.0119 seconds

4.3.2 Explicit Stochastic MPC Performance

Comfort Zone Temperature Control

To validate performance of the stochastic explicit MPC strategy derived per Section 4.2.3, we

have assumed a simulation scenario that covered 9 days of historical data. Historical evolution

of disturbances (outdoor temperature, heat generated by occupancy, and solar heat) is shown

in Fig. 4.9.

The explicit representation of the stochastic MPC feedback strategy (4.31) was obtained

by formulating (4.27) in YALMIP Löfberg (2004) and solving the QP parametrically by the
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Figure 4.8: Comparison of all four investigated control approaches with respect to achievable

thermal comfort (x-axis) and energy consumption (y-axis). Each point represents

aggregated performance of one controller.
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Figure 4.9: Historical trends of disturbances over 9 days. From top to bottom: external

temperature d1, solar radiation d3, and heat generated by occupancy d2.

MPT toolbox. The feedback law covers following ranges of initial conditions:

−10 ◦C ≤ xi(t) ≤ 35 ◦C, i = 1, . . . , 4,

15 ◦C ≤ r(t) ≤ 25 ◦C,

0 ◦C ≤ d1(t) ≤ 24 ◦C,

0W ≤ d2(t) ≤ 500W,

0W ≤ d3(t) ≤ 1200W.
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Width of the thermal comfort zone was set constantly to ǫ = 0.5 ◦C. With the prediction

horizon N = 10, sampling time Ts = 890 seconds, α = 0.05, and β = 1·10−7, the explicit MPC

feedback (4.31) was obtained as a PWA function that consisted of 816 polyhedra in the 14-

dimensional space of initial conditions. Please note that the sampling time was determined

analytically based on known time constant of the building model by formula Ts = T/15.

Simulated closed-loop profiles of the indoor temperature and consumed heating/cooling energy

are shown in Fig. 4.12. As can be seen, the stochastic controller allows for seldom violations

of the thermal comfort zone while maintaining hard limits of the control authority. Overall,

the stochastic controller maintains the indoor temperature within the comfort zone for 97.2%

of samples.

Best and Worst Case Performance Comparisson

Performance of the explicit stochastic MPC scheme was then compared to two alternatives.

One is represented by a best-case MPC controller, which assumes perfect knowledge of future

disturbances over a given prediction horizon. The other alternative is a worst-case scenario

which employs conservative bounds on the rate of change of future disturbances. Hence

it guarantees satisfaction of constraints in robust fashion, while only minimizing the energy

consumption with respect to the worst possible disturbance. Simulated profiles under the best-

case and worst-case policies are shown in Fig. 4.10 and Fig. 4.11, respectively. Both controllers

always managed to keep the indoor temperature within the thermal comfort zone. Moreover,

the best-case scenario provides least energy consumption. The worst-case approach, on the

other hand, maintains the temperature further away from the boundary of the comfort zone,

which leads to an increased consumption of heating/cooling energy. This is a consequence of

using conservative bounds on the rate of change of disturbances in the future. Aggregated

results are reported in Table 4.3 and captured in compact grapicall form in Fig. 4.13. It should

be pointed out that the best-case scenario, although it performs best, is only of fictitious

nature since in practice future disturbances are not know precisely. The stochastic scenario,

on the other hand, can be easily employed in practice. Moreover, it provides performance

comparable to the best-case approach.

Table 4.3: Comparison of various strategies.

Thermal Consumed

comfort energy

Stochastic MPC 97.2% 125.7 kWh

Best-case MPC 100.0% 125.2 kWh

Worst-case MPC 100.0% 146.0 kWh
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Figure 4.10: Performance of the best-case MPC controller with complete knowledge of future

disturbances.
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Figure 4.11: Performance of the worst-case MPC controller which assumes conservative

bounds on future disturbances.
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Figure 4.12: Performance of the stochastic MPC controller.
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Chapter 5
Conclusions and Aim of the Thesis

Conclusion

Main aim of this thesis was investigation of different mathematical formulations of model

predictive control (MPC), and their applications in building automation system (BAS), in

particular heating, ventilation and air conditioning (HVAC) control.

For this purpose a supporting mathematical background was sumarised in standalone

Chapter 2, presenting basic definitions on sets and functions 2.1, necessary for introduction of

mathematical optimization 2.2, followed by brief overwiew of Probability and Statistics 2.3.

Chapter 3 is ment to be an introduction for MPC techniques, with its classification in

control theory framework 3.1, brief historical evolution 3.2 in industrial enviroment, and

basic features and standard formulations introduced in Section 3.3.

Building contol concepts are being subject of study in Chapter 4. Section 4.1 deals with

building modeling as a necessary component for synthesis of MPC formulations. And finally

particular MPC formulations for HVAC control problems are proposed in Section 4.2. Ob-

tained results are supported by simulation case studies on building thermal comfort control

problems presented in Section 4.3. All simulations were carried out on linear time-invariant

(LTI) model of one-zone building from Section 4.1.3. For all MPC formulations proposed in

this thesis a uniform control objectives are considered, and in Section 4.2.1 has been shown

how to translate these criteria of comfort and low energy consumption into a corresponding

mathematical form.

Three different formulations of an deterministic MPC optimization problem were investi-

gated in Section 4.2.2. All proposed MPC strategies were then evaluated on simulations and

compared to a classical approach based on a PI controller. Performance of control strategies

investigated in Section 4.2.2 is compared graphically in Fig. 4.8 with respect to energy con-

sumption and achievable level of comfort. As can be seen, all proposed MPC formulations

clearly perform better than the PI alternative with respect to energy consumption. The least

energy-efficient among them was the formulation from Section 4.2.2. Such a result is to be

expected, since in Section 4.2.2 we try to follow the temperature setpoint as closely as pos-

sible, ignoring existence of the comfort zone. MPC from Section 4.2.2, on the other hand,

73
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only tries to keep the temperatures within the zone, which clearly allows to save energy. The

most efficient formulation, however, was the approach based on zone tracking with binary

indicators proposed, proposed in Section 4.2.2.

Further in Section 4.2.3 we have shown how to formulate the stochastic MPC optimiza-

tion problem, and in addition how to derive an explicit representation of it. The control

criteria for stochastic MPC have been kept the same as in in Section 4.2.2 for deterministic

MPC formulations. The explicit stochastic approach was compared with conservative worst-

case, and idealistic best-case scenarios. The comparisson of investigated control strategies is

sumarised in Section 4.3.2, with compact graphicall form given in Fig. 4.13. We can conclude

that proposed explicit stochastic MPC controller was able to maintain almost similar energy

consumption demands, with lost nor even 3% of thermal comfort in comparrison with unre-

alistic best-case MPC controller with given full knowledge of future disturbances over whole

prediction horizon.

Aim of the Thesis

Future goals of disertation thesis from general point of view are deeper study of new digital age

major topics, their structure, chaining, differences and interconnections in wider context. The

outgoing result should be the examination of practical methods and technologies in industrial

and practical applications, with backgrounding tehoretical knowledge, and their development

historical context. The interested topcis are listed as follows:

• Methodology of science

• Mathematics

• Cybernetics

• Informatics

• Systems theory

• Control theory

• Automation and control engineering

• Chemical engineering

• Civil engineering

• Artifical inteligence

• Intelligent buildings

• Internet of things

• Technology
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• Industrial applications

• Futurology and globalization

Academic goals with emphasis on practical applications can be formulated more specificly

and sumarised as follows:

• Comprehensive research in field of building automation, and relevance evaluation of

integration of the MPC strategies in modern intelligent buildings.

• Development of efficient MPC strategies, tier algorithmic formulations, analysis and

simulation studies on various building control problems.

• Experimental validation of developed algorithms on laboratory devices, or real world

buildings with integrated BAS.
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J. Drgoňa, M. Kvasnica, M. Klaučo, and M. Fikar. Explicit stochastic mpc approach to

building temperature control. In IEEE Conference on Decision and Control, pages 6440–

6445, Florence, Italy, 2013. 51, 52

US Energy. Building energy software tools directory, 2014. URL

http://apps1.eere.energy.gov/buildings/tools_directory/. 50

EUROSIS. Directory of simulation software and tools, 2014. URL

http://www.eurosis.org/cms/?q=node/1318. 50

M. Morari F. Borrelli, A. Bemporad. Predictive Control for linear and hybrid systems. 2014.

25

Lawrence Fristedt, Bert; Gray. A modern approach to probability theory,. Boston: Birkhäuser.
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M. Klaučo and M. Kvasnica. Explicit mpc approach to pmv-based thermal comfort control. In

53rd IEEE Conference on Decision and Control, volume 53, pages 4856–4861, Los Angeles,

California, USA, December 15-17, 2014 2014. 51
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