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Kapitola 1
Uvod

Prediktivne riadenie (z angl. Model Predictive Control - MPC) patri medzi hlavné piliere
nielen vedeckého badania, ale aj priamej implementacie riadiacich stratégii v priemyselnych
prevadzkach. Predkladand habilita¢na praca si dava za ciel priblizif niektoré z pokrocilych
aspektov v prediktivnom riadeni a jeho aplikacii. Tato praca predstavi najméa pokrocilé
koncepty v zostavovani problému optimélneho riadenia vo forme MPC. Taktiez sa v tejto
praci budeme zaoberat spdsobom vypoctu optimélneho akéného zasahu s cielom urychlit
tento proces.

7 historického hladiska boli prediktivne reguldtory pouzivané prave na riadenie
a koordinéciu jednoduchych, resp. nizko trovinovych riadiacich sluéiek. Hlavnou tlohou
koordinatora je volba optimélnych ziadanych veli¢in pre nizko-tiroviiové reguldtory a nie
priamy vypocet akénych zasahov. Prvy stavebny kamen v tomto pristupe k riadeniu
bol publikovany v roku 1979 [CR79], pod ndzvom “Dynamic Matrix Control”, ¢o sa
povazuje za predchodcu klasického prediktivneho riadenia. Samozrejme, v poslednych
troch dekadach boli vyrieSenie mnohé teoretické [MRRS00, May14] ako aj implemen-
tacné [QB03, WGBMO03] problémy spojené s nasadenim optimdlnych regulatorov, ¢ize
bolo mozné nasadit MPC aj priamo na riadenie komplexnych procesov, bez nutnosti riesit
nizko-troviiové riadenie. Avsak koncept viac tiroviiového riadenia je v priemyselnej praxi
velmi ziadany, ¢o demonstruju aj nedavno publikované teoretické ¢i aplikacné vedecké
prace [LGKG22, LLR"19, HVHDG19]. Okrem toho, Ze vyskum v oblasti nadradenych
reguldtorov je aktualny v ramci vedeckej aj priemyselnej praxe, najdolezitejsim argu-
ment sa jeho dalsi rozvoj je schopnost vyrazného zvysenia kvality riadenia bez nutnosti
revitalizacie aktualnych riadiacich sluciek.

Zostavit prediktivny reguldtor, ktorého cielom je riadif konkrétny systém patri medzi
tie “jednoduchsie” vedecké tlohy. Problémom v tejto casti je najmé pochopit fyzikalne
principy dynamiky riadeného systému a samozrejme konkretizovat ciele riadenia. Medzi
narocnejsie ulohy patri aspekt rieSenia tychto optimaliza¢nych problémov. Prave kombi-
nacia zostavenia prediktivnych regulatorov ako nadradenych regulidtorov mé za nasledok,
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ze vzniknuté optimaliza¢né problémy st velkorozmerné, ¢o do poc¢tu optimalizacnych
premennych ako aj poc¢tu ohraniceni. Prave z tohto pohladu sa v praci budeme zaoberat
aj moznostami zrychlenia ziskania optimélneho riesenia. Tato habilitacna praca si nekla-
die za ciel fundamentélne predostrief nové koncepty riesenia optimaliza¢nych tdloh, ale
nacrtne moznosti efektivneho vyuzitia inych metéd na ista triedu problémov.

MPC problémy moézeme riesit dvoma spdsobmi, implicitne, resp., “online”, ¢ize
zostaveny optimalizaény problém numericky vyriesime pre aktualnu hodnotu pociatoénej
podmienky, alebo explicitne, ¢ize “offline”, kde je zdkon riadenia skonstruovany ako
sustava linedrnych rovnic. Oba pristupy maji svoje vyhody aj nevyhody, pricom oba
pristupy boli aktivne vyuzivané pri rieSeni problémov optiméalneho riadenia v predkladanej
praci. Medzi hlavné vyzvy pri implementacii prediktivneho riadenia je vSak cCas, za aky
vieme hodnotu optimalneho akéného zasahu ziskat. Na strane implicitného rieSenia si
ukézeme, ako mézeme urychlif vypocet pomocou vhodnej inicializacie optimalizacného
problému [KKK19]. V tejto praci ukdzeme, ako je mozné vyuzit metédy strojového ucenia
na urcenie pociatoéného bodu pri numerickom rieseni optimalizacie. Vzhladom na to, ze
ide o aktivnu oblast vyskumu, v habilitacnej praci predstavime aj nové vysledky, ktorych
cielom je prepojit vyhody prediktivneho riadenia s metédami strojového ucenia, pomocou
ktorych vieme ziskat zakony riadenia v explicitnom tvare [LKFM20, LK18].

V neposlednom rade spomenme aj moznosti rieSenia MPC pomocou parametrickej
optimalizacie, teda skonstruovania zakona riadenia v tvare explicitne danej funkcie. Ne-
zabudnime pripomenit, ze fundamentalny odkaz v rovine explicitného prediktivneho
riadenia zanechali vedecké prace [BMDP02, BBMO02]. Vyuzitie explicitného pristupu ku
konstrukcii zakonov riadenia bolo vyuzité aj prave pri zostaveni nadradenych predik-
tivnych regulatorov. Prave v kombinécii s poziadavkou velmi rychleho vyhodnotenia
optimalneho akéného zdsahu sme MPC v tvare supervizora navrhovali pri riadeni koordi-
nécie nizko-tiroviiového riadenia pH v zmiesavaci kvapalin [HKD ™ 18]. KedZe ale zlozitost
explicitného MPC rastie dramaticky s rozmermi riadeného systému, tak v tomto pripade
sme zvolili pristup tzv. bez-regiénového MPC [DJKK16, TSG'20, DKJK17], ktorého
pamétové poziadavky st rddovo nizsie v porovnani s tradi¢nym pristupom ku konstrukeii
explicitného prediktivneho regulatora.

1.1 Prinosy prace

1.1.1 Syntéza pokrocilych prediktivnych regulatorov

Celkovy prinos k formulacii problémov spojenych s nadradenym riadenim bol sumarizovany
v monografii [KK19b]. V tejto monografii si sumarizované tri zakladné pristupy k ndvrhu
nadradenych regulatorov:

1. riadenie sluciek s PID regulatormi,
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2. riadenie sluciek s relé (on/off) riadenim,
3. riadenie sluciek s nizko-tiroviiovym MPC.

Vyssie uvedena monografia rozsiruje zakladné koncepty formuldcie MPC problémov,
ktoré vznikli z prilozenych vedeckych prac [HKD'18, KK17, KKK17], ako aj ostatnej
prace autora [HKK17, DKK15, KKK15].

Pri navrhu prediktivneho riadenia ako supervizora sme sa sustredili na tri hlavné
casti

1. formulacia agregovanej ucelovej funkcie, ktord zohladni ciele riadenia nielen z po-
hladu nadradeného regulatora, ale aj kvalitativne parametre nizsej riadiacej vrstvy,

2. rozsirenie modelu o ohranicenia charakterizujice vnutorné riadiace obvody,

3. efektivitu riesenie optimalizacného problému, najme vzhladom na nadradené riade-
nie vnutornych sluciek s MPC regulatormi.

Aj ked je téma nadradenych reguldtorov rozoberana v mnohych vedeckych pracach, ako
napriklad v [GNN18, GK02], prezentovany pristup k syntéze nadradenych prediktivnych
regulatorov sa lisi v dvoch klticovych oblastiach:

1. prezentuje systematicky pristup k syntéze regulatora vzhladom na dynamiku vnu-
tornej vrstvy a vSetky technologické ohranicenia,

2. autorom navrhované MPC sa nesprava ako filter ziadanej veli¢iny, ale je to auto-
némny regulator, ktory moze fungovat aj ako “bias corrector” v pripade, Ze nastane
konstantnd porucha na riadenom procese.

Druhym systematickym prinosom v pripade syntéze pokrocilych MPC regulatorov je
novy pristup k aspektu priebeznej (online) laditelnosti explicitnych reguldtorov. Je zname,
ze pri konstrukcii explicitného MPC regulatora musime zafixovat struktiru, teda model
riadeného systému, predik¢ény horizont a vahové matice ucelovej funkcii. Ukdzeme, akym
sposobom moézeme naformulovat tilohu prediktivneho riadenia s variabilnymi vahovymi
maticami, s tym, Ze vieme zostrojit explicitny reguldtor, ktory bude spliiat podmienky
garancii stability a rekurzivnej riesitelnosti [OK22].

1.1.2 Metddy strojového ucenia v prediktivnom riadeni

Hlavnym prinosom autora v oblasti zrychlenia vypoctovych c¢asov MPC stratégii je
vyuzitie metdd strojového ucenia na zefektivnenie inicializacie metédy aktivnych mnozin
(z angl. Active Set Method - ASM). Vo vedeckej praci [KKK19] rozoberdme spdsob
skonstruovania prediktora pomocou metéd strojového ucenia, ktory na zédklade stavového
merania odhadne, ktoré ohranic¢enia by mali byt aktivne, a indexmi tychto ohraniceni
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inicializujeme metodu aktivnych mnozin. Vzhladom na skoro-optiméalnu inicializdciu ASM,
sa vypocet optimalneho akéného zasahu zredukuje na

)

1. bud na numerické riesenie kvadratického problému Newtonov metédou, ak “trafime’

optiméalnu inicializdciu aktivnych ohraniceni,

2. alebo na vyraznu redukciu nutnosti vykonat vic¢sie mnozstvo iteracii, kedze vicsina
aktivnych ohraniceni bude odhadnuta dopredu.

Najvacsiu vyhodou tohto pristupu je garancia, ze problém optimalneho riadenia bude
vzdy vyrieseny optimalne, pretoze numerickd metédu aktivnych mnozim nepreskocime,
len ju inicializujeme.

Okrem vyssie spomenutého prieniku strojového ucenia do prediktivneho riadenia,
predostrieme novy koncept konstrukcie explicitnych reguldtorov vo forme neurénovych
sieti. Aj ked vysledky v tejto oblasti nepatria medzi kIu¢ové piliere tejto préace, patria
medzi aktudlne témy, ktoré autor préace riesi [KK19a, LKFM20, LKKM19].



Kapitola 2

Syntéza pokrocilych prediktivnych
regulatorov

2.1 Zakladny koncept prediktivnych regulatorov

Formulécia pokrocilych prediktivnych regulatorov vychadza zo zékladnych formulécii
stavovej regulécie, alebo riadenia na ziadant hodnotu. Zédkladnym stavebnym kamenom
matematickej formulacie je minimalizacia kvadratickej tcelovej funkcie, vzhladom na
predikciu spravania sa linedrneho modelu riadeného systému, pricom uvazujeme dodato¢né
ohranicenia v tvare nerovnosti pre ako tak pre stavové premenné, tak aj pre manipulované

veli¢iny. Zéapis takého optimaliza¢ného problému vyzera nasledovne

N-1
InUin zhONTN + kE:O (2L QN + ulQuug) (2.1a)
v.an. Zpe1 = Az + Buy, ke Név_l, (2.1b)
up €U, ke Ny (2.1c)
T, € X, ke Ny (2.1d)
TN € AN, (2.1e)
xo = x(t), (2.1f)

kde veli¢ina N prestavuje predikény horizont, matice Qn € R™* ™ (Qn € R™*"x
a Qu € R™X™ reprezentuji vdhové parametre. Dalej uvazujeme dynamicky diskrétny
matematicky model riadeného systému (2.1b), pricom plati, ze A € R™*" B € R™u>X"x
a zaroven, ze riadeny systém je riaditelny. Kazdé z ohraniceni je (2.1b)-(2.1d) je repro-
dukované pre kazdy moment predikcie, teda k = {0,1,..., N — 1} resp. k € Név_l. Pre
kazdu veli¢inu stavového modelu uvazujeme polyhedralne ohranicenia symbolizované
mnozinami U, X', pricom findlny stav je obmedzeny termindlnou mnozinou Xy a penalizo-
vany terminalnou penalizaciou Q. Zaciatoénou podmienkou na rieSenie optimaliza¢ného
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problému je stavové meranie reprezentované veli¢inou x(¢) v rovnici (2.1f). Vysledkom
riesenia optimalizacného problému je sekvencia predikovanych optimalnych akénych
zdsahov zdruzena vo vektore

.
U=luf, .., ul,] (2.2)

Problém zostaveny v rovnici (2.1) prestavuje MPC regulator pre stavovi reguldciu
a jeho implementdcia v rezime posuvného horizontu (z angl. receding horizon policy)
stabilizuje riadeny systém a garantuje rekurzivnu riesitelnost [MRRS00]. Pre mnohé
aplikacie je vsak tato formuldcia nevyhodnd, pretoze neuvazuje vystupnd rovnicu, ako aj
neriadi systém na ziadani hodnotu. Preto v uplynulom obdobi vznikli mnohé variacie
formuldcie z rovnice (2.1), ktoré st rozsirené o penalizaciu regulacnej odchylky namiesto
stavov, resp. rozsirené o integra¢ni ¢innost, alebo rozsirené o modelovanie porich [PRO3].
Samozrejme moézeme hovorit aj o formach nelinedArneho MPC riadenia, kedy predikénym
modelom je forma diskretizovanej diferencialnej rovnice, ktora vernejsie opisuje spravanie
sa riadeného systému. Tu vSak nardzame na ocividné problémy s riesenim takychto foriem
nelinearnych optimalizac¢nych problémov.

Problém v rovniciach (2.1a)-(2.1f) patri do triedy kvadratickych optimaliza¢nych
problémov, ktoré vieme riesit numericky pomocou mnohych metéd, ako st

o metddy aktivnych mnozin (Active Set Method - ASM) [WN10, FBD0S],
o metddy vniutornych bodov (Interior Point Methods) [NWO06],
o rozne formy gradientovych metéd [RIM12, KF11, PB14],

alebo parametricky s cielom ziskat explicitni formu zakona riadenia [BMDP02, GBN11].
Ak budeme predpokladat linedrnu dynamiku v dynamickom modeli, ako aj polyhedralne
ohraniCenia na premenné, tak potom aj rozsirené formulicie MPC vedi v kone¢nom
désledku na formuldciu kvadratického programovania (alebo linedrneho, ak budeme
uvazovat jedno alebo nekone¢no normy v ucelovej funkcif). Z tohto dévodu sa budeme aj
v kapitole 3 venovat prave tejto triede problémov.

Tato sekcia zadefinovala zakladny matematicky priestor pre formuléciu pokrocilych
MPC stratégii, a nasledujiica podkapitola blizsie priblizi koncept nadradenych regulatorov.

2.2 Syntéza nadradenych MPC stratégii

Zo zakladnej MPC formulacie (2.1) ako aj roznych rozsireni budeme vychadzat pri
syntéze pokrocilych foriem MPC reguldatora. V prvom priblizeni si predstavme vSeobecnu
formulaciu prediktivneho regulatora, ktorého tlohou je koordinovat nizko drovnové
regulatory (z angl. MPC-based Reference Governor - MPC-RG). Vysledky z tejto sekcie
je mozné ndjst v pracach autora [KK19b, HKD 18, KK17].
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r N | Y
—»| Optimization | _
w supervisory/outer layer
primary/inner layer
\ 4
Primary Controller L » Plant >
A

Obr. 2.1: Zakladna schéma prediktivneho regulatora v polohe nadradeného riadiaceho
¢lena.

Pre lepsie pochopenie zvolenej notacie premennych sa pozrime na schému na Obr. 2.1,
kde mézeme vidiet celkové zapojenie koordinatora v tvare MPC regulatora spolu s nizsou
darovnou riadenia. V tejto schéme vystupuje premenna r ako uzivatelsky zadefinovana
ziadand hodnota, w ako optimalizovand ziadand hodnota pre nizko-troviiovy regulator,
premennd u ako akény zasah a premennd y ako merany vystup.

Uvazujme formulaciu:

N-1

min N () + ];) (T, Yo, Uty W) (2.3a)
v, xpe = f(og, ug), ke Ny (2.3Db)
ug = h(zg, wy), ke Ny (2.3c)

Yk = 9(xp, u), ke Ny, (2.3d)

up €U, ke Ny (2.3¢)

T € X, ke Ny (2.3f)

Yk €V, keNy, (2.3g)

wy, €W, ke Ny (2.3h)

xo = x(1), (2.31)

kde optimalizovanou premennou je W = [wg, ce w}vilr, ¢o reprezentuje ziadanu

veli¢inu pre nizsiu troven riadenia. Rovnice (2.3b) a (2.3d) reprezentuju dynamiku
riadeného systému, pricom rovnica (2.3c) je zdkon riadenia vyjadrujici spravanie nizko-
uroviiového riadenia. Oproti Standardnej formulacii MPC (2.1) uvazujeme ohranicenia
v tvare nerovnosti aj pre vystupné veli¢iny (2.3g), ako aj pre ohranicenie optimalizovane;
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, 2 . y
—» MPC-RG = Estimator |«
w supervisory/outer layer
primary/inner layer
v
Primary Controllers L » Plant >
A

Obr. 2.2: Schéma regula¢ného obvodu s pozorovatelom stavov.

ziadanej hodnoty (2.3h).

Pociato¢ni podmienku uvddzame len pre stavy, ale v beznej praxi sa do vyrazu (2.3i)
zakomponuju aj aktudlne hodnoty referencie 1 alebo aktudlne hodnoty porich v pripade
pouzitia pristupu modelovania porich. Vzhladom na tento fakt uvddzame aj schému
zapojenia MPC-RG stratégie aj spolu s pozorovatelom stavov a porich, kedze malokedy
sa stane, ze meranie stavov systému je priamo dostupné. Schéme na Obr. 2.2 zobrazuje
prave pristup k takémuto zapojenie. Aj ked v schéme MPC-RG vystupuje celd vnitornd
slucka ako riadeny systém, v tomto pripade si je dolezité uvedomit, ze pozorovatel stavov
ma za ulohu rekonstruovat len hodnotu stavov riadeného procesu a popripade hodnotu
nemeratelnych poruch.

2.2.1 Formulacia MPC pre koordinaciu nizkotirovnovych PID sluciek
Uvazujme, ze celkovy model PID regulatorov v stavovom opise sa da napisat ako

Ty (6 + Ts) = Arizri(t) + Braei(t), i€ Ny, (2.4a)
uz(t) = Cr,im(t) + Dm-ei(t), 1€ Nll), (2.4b)

kde p definuje celkovy pocet PID regulatorov, e;(t) predstavuje regulacnt odchylku
pre i-tu regulacnui slucku a x,; reprezentuje vektor internych stavov i-teho PID regula-
tora. Jednoduchymi skladanim ¢iastkovych matic z rovnice (2.4) dostaneme agregovany
matematicky model nizko-tiroviiového PID riadenia

xp(t + Ty) = Arae(t) + Bre(t), (2.5a)
u(t) = Cra(t) + Dre(t). (2.5b)
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Pre potreby odvodenia kompletného modelu pre uzavrety regulacny obvod pre vni-
tornt vrstvu riadenia (vid Obr. 2.2) si definujeme pomocny stavovy vektor T ako

T = [mr] . (2.6)
x
Potom vieme napisat model systému “reguldtor-proces” v otvorenej slucke pomocou
nasledovne
T(t + 1) = AorZ(t) + Bovre(t), (2.7a)
u(t) = CoruZ(t) + Dorue(t), (2.7b)
y(t) = CoryZ(t) + Dot ye(t), (2.7¢)
kde,
(A, 0
AoL = 2.
L= 1 Be A} ’ (2.8a)
| B
BoL = " 2.8b
oL E Dr] ; (2.8b)
Coru = |Gy 0] ; (2.8¢)
DOL,u = Dr7 (28(].)
CoLy = | DC; C] ; (2.8e)
Doty = DD,. (2.8f)

Pri¢om, ak uvazujeme standardni zdpornu spatni vazbu, kde regulacnéd odchylka e(t)

je dana ako

e(t) = w(t) —y(b), (2.9)
tak potom plati

y(t) = (I + Dovy) " CoryZ(t) + (I + DoLy) ™" Doryw(t). (2.10)

Ak skombinujeme rovnice (2.9) a (2.10) spolu s (2.7) tak dostaneme findlny model
uzavretého regula¢ného obvodu

f(t + TS) = ACL‘%(t) + BCLw(t), (2.11&)

u(t) = CopLu®(t) + Depuw(t), (2.11b)
y(t) = CCL’yf(t) + DCL,yw(t)- (2.11C)
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FEED WATER VALVE CONTROL VALVE

X

[: : POWER

A

Obr. 2.3: Schéma vyroby elektrickej energie pomocou parnej turbiny [AB00, KK19b).

Pricom jednotlivé matice v (2.11) st vyjadrené pomocou

Act, = Aor, — Bor, (I + Dory) ™ Cor.y, (2.12a)
Ber, = Bow — Bor (I + Dovy) ™' DoLy, (2.12b)
Ccru = Coru — Dot (I + Dory) ™" Coru, (2.12¢)
Dcr,u = Doru — Doru (I + DOL,y)_1 Dor, u, (2.12d)
CoLy = (I+ DoLy) ™" CoLy, (2.12e)
Dy = (I+ Dovy) ™" DoLy- (2.12f)

Kedze mame zostrojeny model pre nizko-tiroviiovy regulator ako aj pre riadeny proces,
tak mozeme zostavit matematicki formulaciu pre MPC-RG stratégiu. Rovnice (2.11a)
az (2.11c) zodpovedaji predikénému modelu v optimaliza¢nom probléme (2.3b) az (2.3d).
Kedze riadenie pomocou PID regulatorov je spojité, ako aj predpokladany model riadeného
procesu je stavovy opis, tak potom celkova formulacia MPC-RG optimaliza¢ného problému
sa v kone¢nom désledku zredukuje na tilohu kvadratického programovania.

Hlavné vysledky v ramci navrhu MPC-RG stratégie pre koordinaciu PID regulatorov
zobrazujeme na Obr. 2.4. Toto porovnanie vzislo zo simula¢ného scenara pri riadeni
vyroby elektrickej energie pomocou parnej turbiny [ABOO, AE72], ktorej schematické
zobrazenie predstavujeme na Obr. 2.3. V tomto porovnani sa pozerdme na tri scenare
riadenia. Prvy scenar uvazuje, ze systém riadime len pomocou skladby PID regulédtorov.
V druhom scenari pouzijeme vyluéne prediktivny reguldtor na riadenie parnej turbiny
a v trefom scenari implementujeme MPC-RG stratégiu na zaklade odvodeného modelu
v rovnice (2.11). Vysledky st blizsie vysvetlené a odvodené v [KK17].

7 porovnania je zrejmé, ze ak nasadime MPC supervizora, tak na trovni vstupov
vieme usetrit skoro 30% zdrojov, pricom na drovni dosiahnutia referencnej hladiny zvysime

kvalitativny parameter o skoro 50%. Pre porovnanie uvddzame aj vyuzitie priameho
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Obr. 2.4: Moznosti zvysenia kvality riadenia nasadenim MPC koordinatora, pricom
vSetky hodnoty st znormalizované vzhladom na kvalitativne vyhodnotenie
riadenia pomocou skladby PID regulatorov.

riadenia pomocou MPC, ktoré z pochopitelnych dévodov vyrazne vyhrava v kvalitativnych
aspektoch nad PID riadenim resp. aj nad MPC-RG stratégiou.

2.2.2 Formulacia MPC pre koordinaciu nizkotrovinového optimalneho
riadenia

Ako sme uz naznacili v avodnej kapitole, vyuzitie MPC sa postupom c¢asu dostalo
aj na nizsiu uroven, t.j. prediktivne reguldtory sa stali priamymi riadiacimi ¢lenmi
procesov. Avsak aj v tychto pripadoch, sa Castokrit stane, Ze je potrebné ich vykon
koordinovat. Najma z toho dévodu, zZe nizkodrovnové regulatory maju za hlavny ciel
riadit a stabilizovat dany proces, a ich tlohou nie je komunikovat alebo uvazovat situaciu
v inej Casti technologickej prevadzky. Tito tilohu spliia prave koordina¢ny prediktivny
regulator, ktory cez modifikiciu ziadanej veli¢iny pre nizsie tirovne riadenia zabezpeci
zvysenie kvalitativnych parametrov. Vysledky z tejto sekcie je mozné najst v pracach
autora [KK19b, HKK17].

Schematické zapojenie MPC-RG stratégie pre koordindciu viacerych nizkotroviiovych
MPC regulatorov znazornujeme na Obr. 2.5. Zaroven formélne definujeme pocet vnu-
tornych MPC ¢lenov pomocou premennej M a predpokladdme, ze kazdy z riedenych
procesov sa da opisat pozorovatelnym a riaditelnym linearnym stavovym opisom.

Pre potreby odvodenia celkovej matematickej formulacie pre MPC-RG stratégiu
v tomto pripade, uvazujme, ze Standardni formuldciu MPC z rovnice (2.1) zapiSeme
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Obr. 2.5: Schéma zapojenia viactiroviiového prediktivneho riadenia pre koordinaciu
nizkotroviiového MPC riadenia.

nasledovne

U;(t) = MPC;(0:(t)), (2.13)
kde vektorom 6;(t) rozumieme vsetky vstupné parametre pre ity MPC reguldtor, teda
napriklad

0 = [o(t)" w(®)T, (2.14)

kde w(t) predstavuje ziadani hodnotu, ktori nastavi nadradeny MPC regulator. Zaroven
plati, ze U(t) je optimélne rieSenie vnitorného MPC problému pozdlz celého predikéného
horizontu. Potom, celkova zjednodusena formuldcia nadradeného MPC koordinatora bude
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Obr. 2.6: Technologicky proces s dvoma reaktormi a odparovacom [SVR™10].

vyzerat nasledovne

N M

min > i (i yigs wig) | (2.15a)

Wi, ovUr,

j=01i=1
v, Uf(8;,5) = MPCi(6;), ieNM jenNy, (2.15b)
upy = OUS(0:5), i €N, jenNy, (2.15¢)
Tije1 = Awij + Bul;, i€NY j€ Ny, (2.15d)
yij = Ciwij + Dty i€ NM j e NY, (2.15¢)
i, €X,jeNY, (2.15¢f)
a5 elU,jeNy, (2.15g)
j;eV.jeNy. (2.15h)

Formulécia v rovnici (2.15) uvazuje M kvadratickych ti¢elovych funkecii reprezentujicich
partikularne prispevky do celkového optimalizovaného kritéria jednotlivymi MPC regula-
tormi a N reprezentuje predikény horizont nadradeného MPC riadenia. Ucelové funkcia
teda moze vyzerat nasledovne:

O (Tigs Yigs wig) = | Qyi (i — ig) 2 + 1 Qw.j (wij — wij—1) |2 (2.16)

Rovnice (2.15b) a (2.15¢) st modelmi zékona riadenia, pricom ta druhd z nich reprezen-
tuje extrakciu prvého akéného zdsahu zo sekvencie U (teda zabezpecuje implementéciu
metddy posuvného horizontu). Rovnice (2.15d) a (2.15e) s=u rovnicami modelov riade-
nych systémov a mnoziny X, U, ) predstavuju technologické ohranic¢enia na jednotlivé
veliciny v riadenych systémoch.
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Vzhladom na fakt, Ze rovnica reguldtora v (2.15b) predstavuje optimalizaény problém
sam o sebe, tak celkova formuldcia, tak ako je zostavend v (2.15) predstavuje viacidroviiovy
optimalizacny problém, ktory nie je trividlne riesif. Vysledky prezentované v monogra-
fii [KK19b] prezentuju dva hlavné pristupy, ako sa vysporiadat s rieSenim takéhoto
optimalizacného problému. Zaroven je v tejto publikdcii preberand aj pripadova studia
s riadenim dvoch reaktorov s odparovacom, kde tri individualne MPC regulatory za-
bezpecuji riadenie jednotlivych reaktorov a odparovaca (schéma na Obr. 2.6), ktoré
nasledne koordinujeme pomocou nadradenej MPC stratégie. Spominané dva navrhy
riesenia dvojaroviiového optimalizacného problému sa opieraji v prvom rade o explicitné
MPC a v druhom rade o reformuldciu vnatorného problému pomocou Karush-Kuhn-
Tuckerovych (KKT) podmienok.

V prvom pripade sa spoliehame na to, ze pre vnitorné MPC sa da skonstruovat
explicitné riesenie a takto dostaneme analyticky tvar zdkona riadenia v rovnici (2.15b).
Aby sme vedeli povedat, ktory regién je v explicitnom rieSeni aktivny, teda, aké je
hodnota akéného zasahu v rovnici (2.15¢), priradime kazdému regiénu bindrnu premenni,
ktorej hodnota nadobudne 1 v pripade, ze akény zasah spadéa do tohto regionu. Vysledny
optimaliza¢ny problém ma nésledne charakter zmiesaného celociselného programovania
(z angl. mixed-integer programming), ktory vieme riesit konvenénymi numerickymi
néastrojmi, ako je napriklad GUROBI'. Aj ked na prvy pohlad takito verzia premeny
dvojurovinového optimaliza¢ného problému vyzerd naddejne, treba si uvedomit, ze mnozstvo
regionov ktoré vznika pri riadeni procesov typu chemického reaktora sii prinajmensom
tisice. Takato struktira optimalizacného problému z neho robi prakticky neriesitelny
problém.

Druhy pristup k reformulécii dvojarovnovych problémov mé vo vysledku tiez cha-
rakter zmieSaného celoc¢iselného programovania, avsak s podstatne mensim poc¢tom
binarnych premennych. Vnitorny optimaliza¢ny problém je totiz mozné priamo pomocou
Karush-Kuhn-Tuckerovych podmienok prepisat, ¢im ziskame ststavu rovnic, ktoré cha-
rakterizuja optimum daného vnutorného MPC problému. Ako prvé prepiseme kvadraticky
optimaliza¢ny problém do Standardnej formy kvadratického programovania:

1
H(l]i,n iUzTHiUi + QZTFZ‘UZ‘ + aZTUZ- (2.17&)

Lwww.gurobi.com
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pre ktory potom mozeme rozpisat sériu KKT podmienok

HU*+ FT0 +a +GT\* =0, (2.18a)
GU* -V — Ef <0, (2.18b)

A* >0, (2.18¢c)

A(GEl* — vl — Ellgy =0, Vs e Npe, (2.184)

Pre jednoduchost matematického zdpisu sme prestali uvazovat spodny index 4, ktory
reprezentuje o ktory vnutorny MPC reguldtor ide. Rovnice v bloku (2.18) st v poradi:
podmienky stacionarity, primarna zlucitelnost, dualna zlucitelnost a podmienky doplnko-
vej volnosti. Premennd \* je vektorom optimalnych hodnét Lagrangeovych nasobicov,
pricom index ng znazornuje celkovy pocet ohraniceni v tvare nerovnosti. Ak by sme rov-
nicu (2.18d) ponechali v nezmenenom tvare a dosadili ju za model regulatora v MPC-RG
formulécii, v koneénom désledku by sme dostali istd formu kvadratického ohranicenia,
pretoze nielen vektor U; je optimalizovanou premennou, ale rovnako aj A;. Preto sme
pristipili k zapisu ohranicenie doplnkovej volnosti pomocou nasledujticeho vztahu

[GElu* — vl — Ellg < 0] = [\f =0, (2.19)

ktory sa d& pomocou big-M met6dy a pravidiel logickych operécii [Wil93] preformulovat
na

1. [f(2) < 0] = [0 =1] ak a iba ak f(z) > Znn0,
2. [0 =1] = [f(2) =0] ak a iba ak Znin(1 — ) < f(2) < Zmax(1 —9),
3. [0=1] = [f(2) <0] ak a iba ak f(z) < Znax(1 —9),

Takto vieme ziskat zmiesany celo¢iselny optimalizaény pod-problém v tvare

HU*+F0+a +G™A* =0, (2.20a)
GU* -V — Ff <0, (2.20b)

A* >0, (2.20¢c)

GU* =V — Ef > Znind, (2.20d)

AN > Ziin(Lng — 9), (2.20e)

N < Zmax(1ng — 0), (2.20f)

ktory reprezentuje KK'T podmienky vnitorného MPC problému. Nésledne mdzeme tito
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sustavu rovnic dosadit do MPC-RG stratégie (2.3) ¢im dostaneme

N-1 M
Ai,j,égﬁi'l,j»wi,j Jz:;) ;EMJ (risjs i i) (2.21a)
v, HUS 4 F10; 54 a; + G\ ; = 0, (2.21b)
GiUf; — Vi — Eif;; <0, (2.21c)
Aij >0, (2.21d)
GiU; — Vi — Eif; j > Zwmindij, (2.21e)
Aijj < Zmax(Ing = i), (2.21f)
ui; = ®UL;, (2.21g)
T g1 = Aiwij + B, (2.21h)
Yij = Cimij + Diuj;, (2.21i)
zj € X, (2.21j)
uj €U, (2.21k)
g€y, (2.211)
dij € {0,137 (2.21m)

Aj ked struktara vysledného optimalizacného problému mé charakter zmiesaného
celociselného programovania, tak tento typ problémov vieme riesit numericky v rozumnom
¢ase pomocou nastrojov ako GUROBI alebo CPLEX. Oproti prvému zmienenému pristupu
na riesenie dvojuroviiového optimalizacného problému pomocou explicitného riesenia
usetrime v tomto druhom pristupe velmi velké mnozstvo bindrnych premennych, pretoze
ich potrebujeme len tolko, kolko méme ohraniceni v tvare nerovnosti. A tych je spravidla
radovo menej, ako pocet regiénov v parametrickom rieseni.

Tabulka 2.1: Numerické vyjadrenie dosiahnutia kvalitativneho zlepsenia.

Riadiaca schéma JISE A Jisg (%]
Centralizovany pristup 7.2-10% 0.0
Decentralizovany pristup 8.1-10% 11.8
Zapojenie s MPC koordinatorom | 7.3 - 104 1.2

Vyhody a kvalitativne porovnanie vyuzitia nadradenej MPC stratégie pre koordina-
ciu viacerych nizkouroviovych MPC regulatorov demonstrujeme na pripadovej stadii
z [KK19b], ktord porovnéva riadenie dvoch sériovo zapojenych reaktorov s odparovacom,
tak ako je zobrazené na schéme na Obr. 2.6. KedZe zdrojova knizna autorska praca nie je
distribuovand v rdmci tejto habilita¢nej prace z rozsahovych dévodov, reprodukujeme
konkrétne vysledky v tejto praci. Zobrazujeme tri série ¢asovych priebehov:
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Obr. 2.7: Casova zavislost riadenych veliéin.

o na Obr. 2.7: riadenie vysky hladin reakénych zmesi v reaktoroch Hi o a koncentraciu
produktu zp 3 extrahovaného z odparovaca,

e na Obr. 2.8: priebehy akénych veli¢in, ktorymi st prietoky v rdmci jednotlivych
Casti procesu,

e na Obr. 2.9: optimélnu zZiadani hodnotu pre nizkotdroviiové MPC regulatory nasta-
vené pomocou MPC koordinatora.

Pripadova studia porovnava tri scendre riadiacej stratégie:

1. stratégia oznacena v grafoch ako MPCy predstavuje priame riadenia jednotlivych
¢asti procesu separatnymi nekoordinovanymi MPC regulatormi,
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Obr. 2.8: Casova zavislost riadiacich veli¢in.

2. oznacenie MPC, predpokladd, Ze by sme cely systém riadili pomocou jedného MPC
regulatora,

3. a vysledky oznacené MPC, prezentuju ako sa bude spravat cely systém pod dohla-
dom MPC koordinatora.

Je potrebné poznamenaft, ze MPC, je povazovand za idealnu a v praxi nerealistick,
pretoze mélokedy sa naozaj stane, zZe iba jeden reguldtor je zaradeny do riadenia vécsieho
celku procesov. Z numerického pohladu sme kvalitu riadenia vyhodnotili pomocou

T

Jise = D (rk — yk)TQ(rk — yk), (2.22)
k=1

pricom vahova matica @ je zvolend tak, aby prispevok kazdého ¢lena v ramci vektora
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Obr. 2.9: Modulovani referencia v pripade pouzitia MPC koordinatora.

(rt — yx) bol rddovo rovnaky. Konkrétne numerické vysledky prezentujeme v tabulke 2.1,
kde moézeme vidiet, ze z kvalitativneho hladiska pouzitie MPC koordinatora dosahuje
skoro rovnaké vysledky ako idealizovany priamy scenar MPCyg.

2.3 Syntéza za-behu laditelného MPC

Zakladnou motivaciou riesit problém priebezne laditelného reguldtora vznikla prave
z riesSenia problematiky nadradenych MPC regulatorov. Vieme, ze pokial uvazujeme navrh
MPC regulatora, tak pozadujeme aby bola fixnd jeho struktira, teda model riadeného
systému ako aj dizka predikéného horizontu a hodnota vahovych matic. V pripade, ze sa
zmeni ¢o i len jedna z vyssie vymenovanych stcasti, je potrebné cely optimaliza¢nych
problém zostavit odznova. Najmé v priemyselnych aplikacia sa stretavame so situaciou,
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ked priamo operatorom je dovolené menif parametre napriklad PID regulatorov v urcitych
rozsahoch. Na strane MPC riadenia sa v tomto kontext jedna o priebezné zmeny hodnét
vahovych matic v icelovej funkcii. Prave tento aspekt navrhu MPC regulatorov je
nacrtnuty v tejto sekcii, pricom konkrétne technické riesenie spolu s matematickym
dokazom prikladame v tejto habilitacnej praci a su publikované v Casopiseckej praci
autora [OK22], ktord ¢erpa aj z [KK18].

Zmena parametrov na strane MPC riadenia je problematicka z niekolkych dévodov.
Ako prvé musime pripomentat moznu stratu rekurzivnej riesitelnosti, alebo schopnost
stabilizovat systém, ak sa bez hlbsieho zamyslenia pocas riadenia zmeni vaihovd matica na
stavy. Dalsim problematickym momentom je zmena predikéného modelu, ktora priamo
vplyva na struktiru optimaliza¢ného problému spolu s dlzkou predikéného horizontu.
Aj ked pri online rieSenie tejto tlohy si mézeme dovolit robit niektoré zmeny v MPC
optimaliza¢nom probléme bez nejakych velkych negativ, naopak v pripade explicitného
rieSenia to nie je vobec mozné. Akéakolvek zmena Struktiry optimaliza¢ného problému ve-
die na okamzitil nutnost znova skonstruovat zakon riadenia v explicitnom tvare. Vysledky
prezentované najme v praci [OK22] ukazuji, ze sme schopni navrhnit také explicitné
rieSenie, v ktorom mdzeme pocas riadenia menit hodnotu jeden z vadhovej matic bez
nutnosti jeho rekonstrukcie pri jej zmene.

Obr. 2.10: Urcenie akéného zasahu medzi dvoma hrani¢nymi explicitnymi reguldtormi.

V tejto praci nacrtneme moznost zostrojenia dvoch hrani¢nych explicitnych regulatorov
pre hrani¢né hodnoty vahovych matic. Kedze ziskame dva zakony riadenia v explicitnom
tvare, tak pre konkrétnu hodnotu meraného parametra (zac¢iatoénej podmienky), vieme
ziskat dve hrani¢né hodnoty akénych zdsahov. Nasledne medzi tymito dvoma hrani¢nymi
hodnotami akéného zasahu budeme interpolovat podla zmeny vdhovej matice. Ak by sa
jednalo o jednorozmerny systém, vypocet takéhoto interpolovaného akéného zasahu je
znazorneny na Obr. 2.10.

Pre potreby odvodenia za-behu laditelného explicitného MPC s garanciami stability
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a rekurzivnej riesitelnosti, uvedieme zakladni formulaciu hrani¢nych regulatorov, a to

N-1
v ulmi%N ) zNPLey + Z (2L Qray + ul Ry ug) (2.23a)
TN k=0
s.t.: Thy1 = Axy, + Buy, (2.23b)
u €U, (2.23¢)
z € X, (2.23d)
en €T, (2.23¢)
xo = 0(t), (2.23f)
k=0,1,...,N—1, (2.23g)
a
N-1
» UImiriN ) zh Pazn + Z ([ Qury + ul Ryug) (2.24a)
BN k=0
st (2.23b),(2.23¢), (2.23d), (2.235), (2.23g), (2.24b)
o € Th. (2.24¢)

Operétor resp. uzivatel ma za ciel menit hodnotu vahovych matic, ¢ize v skutocnosti
by chcel vyriesit problém v tvare

N-1

uo,ufl..iﬁN,l zPry + ,;) (:BLka + uZRuk> (2.25a)
st (2.23b),(2.23¢), (2.23d), (2.235), (2.23g), (2.25b)
ey eT, (2.25¢)

kde plati, ze hodnoty vybranych vahovych matic musia spliiat nasledovné podmienky

R = (p—1)RL+pRy, 0<p<1, (2.26a)

Q = (p—DQrL+¢Qu, 0<o<L1 (2.26D)

Ak budeme predpokladat, Ze sa bude menit iba jedna z vahovych matic, tak potom
hodnota interpolovaného akéného zasahu je urcena ako

u = (p—1)ur+ pum, 0<p<l1, (2.27)

kde hodnoty uy,, uyg st optimélne akéné zasahy pre konkrétnu pociatocni podmienku
ziskané pomocou hrani¢nych regulatorov. Garancie stability a rekurzivnej riesitelnosti,
zabezpec¢ime pomocou vhodného nastavenia terminélnej penalizacie a volby ohraniceni na
koncovy stav. Dokaz tohto tvrdenia je uvedeny v prilozenej publikacii [OK22]. Simula¢ny
scenar, ktorym dokazujeme vlastnosti za-behu laditelného MPC regulatora, je zaloZeny
na modeli dvojitého-integratora, ktory excitujeme zmenou zaciatocénej podmienky. Pocas
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troch skokovych zmien, ktoré si zobrazené na Obr. 2.11, menime postupne hodnotu
parametra p = 0.25,0.50,0.75, pricom rozsah vihovej matice penalizujicej akéné zasahy
je Ry, = 0.5, Ry = 10.0. Z uvedenej simulacie ako aj z vysledkov v prilozenej publiké-
cii [OK22] vidno, ze riesenie pomocou interpolovaného zakona riadenia z rovnice (2.27) je
velmi blizke skutotnému optimalnemu rieSeniu. Zaroven sme tymto pristupom odburali
nutnost konstruovat explicitny regulator v pripade potreby zmeny vahovych matic.
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Obr. 2.11: Riadenie za-behu laditelnym explicitnym reguldtorom @ je znazornené cerve-

nou c¢iarkovanou krivkou. Modra a seda farba znézornuju riadenie pomocou
hrani¢nych regulatorov wuy,, resp. uy, pricom optimalna hodnota akéného
zadsahu vzhladom na aktualnu hodnotu vahovych matic uept je zndzornena

oranzovoul.



Kapitola 3

Metbédy strojového ucenia
v prediktivnom riadeni

3.1 Inicializacia met6dy aktivnych mnozin pomocou stro-
jového ucenia

Drviva vacsina optimalizacnych problémov v riadeni procesov, najme teda tych, ktoré
maju charakter prediktivneho riadenia v tvare kvadratického optimaliza¢ného problému,
sa riesi pomocou metédy aktivnych mnozin (z angl. active set method - ASM). Jej
vyhodou je, ze aj pri komplexnejsich problémoch vyzaduje relativne maly pocet iteracii
na nédjdenie optimélneho riesenia [Fle13]. Uvazujme, Ze uvazovany problém optimélneho
riadenia v tvare MPC je dany ako

mLi[n 1/2UTHU + 0TFU (3.1a)

s.t. GU < Ef + w, (3.1b)

pricom, ide o vyjadrenie MPC problému podobne ako sme definovali v predoslej kapitole,
konkrétne (2.17).

Zékladnym principom tejto metddy je hladanie velkosti smeru (vektora) A podla

ktorého klesd hodnota tcelovej funkcie. V kazdej iteracii tejto metddy sa riesi kvadraticky
problém s ohraniceniami v tvare rovnosti, ktory pre problém optimélneho riadenia vyzera

nasledovne
1

ngn B (U+A)THU+A)+0F(U+A) (3.2a)

st. GA(U+A) = EA0 +wy, (3.2b)

pri¢om, ohranicenia v tvare rovnosti si vybrané na zaklade aktualnej mnoziny aktivnych

24
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ohraniceni A. Tento problém sa d& jednoducho riesit pomocou KKT podmienok

-

pricom ak niektory z Langrangeovych nasobicov A nadobudni zaporné hodnoty, tak

g 6yl

. G (3.3)

—HU - F79
O )

je nutné upravit mnozinu A. Pre tplnost uvddzame plnohodnotny algoritmus metody

aktivnych mnozin

Algorithm 1 Metdéda aktivnych mnozin

Uréi pociatoéni Ag a zlucitelné rieSenie Uy
Nastav A + Ay, U < Uy
while nie je dosiahnuté konvergencia do
Vyries (3.3) a ziskaj A, A
if ||A|| =0 then

if A > 0 then
return U* = U
else
A A\ {i*} vzhladom na i* = arg I}éﬁl Ai
end if
else

Ej@ +w; — GjU
GjA

Uréi B; vzhladom na §; =

Nastav a = min{1, 5;}
Nastav U <+ U + aA
if a <1 then
A<+ AU {j*} kde j* = arg min f3;
end if !
end if
end while

pre j € A, G;A >0

Zékladnym faktorom pri pocte iteracii, ktoré je potrebné vykonat na ndjdenie optima,
je samozrejme inicializacia optimaliza¢nej metody. Drviva vacsina aplikacii tejto metddy
uvazuje tzv. studeny start, ¢ize ASM metddu inicializuje prazdnou mnozinou aktivnych
ohranicCeni a zaroven pociatocny zlucitelny bod uvazuje ako nulovy vektor.

Kedze pri aplikécii prediktivnych regulatorov riesime optimalizaciu periodicky, kazdu
periédu vzorkovania, je vhodné prehodnotit inicializéciu itera¢nej metédy. Ak by sme totiz
vhodne zvolili Ag, dokonca ak by ju zvolili optimalne vzhladom na hodnotu pociatoéni
podmienky, tak sa vypocet optimalneho akéného zasahu U* zredukuje na jednu iteraciu.
Ur¢it ale dopredu zoznam aktivnych ohraniceni by znamenalo mat k dispozicii explicitné
rieSenie daného problému, ¢o je vSak nepraktické pre problémy vacsich rozmerov.
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V priloZzenej ¢asopiseckej publikdcii [KKK19] je ukdzané, ako ziskat dobry odhad Ay
vzhladom na hodnotu pociatocnej podmienky. Tento odhad ziskame, tak, ze vyuzijeme
metddy strojového ucenia, ktoré nam natrénuju tzv. prediktor, teda funkciu, ktorej
vstupom bude hodnota pociatoénej podmienky 6 resp. xg v (3.1) a vystupom bude
odhad inicializacie Ag. KedZe v koneénom doésledku nenahrddzame ASM pri rieSeni
prediktivneho riadenia, mame vSetky kvalitativne garancie, ktoré prediktivne riadenia
poskytuje. Hlavnym benefitom, tak ako uvidzame v publikicii, je ze sme tymto spésobom
schopni zredukovat pocet iteracii nutnych na vypocet optimalneho akéného zdsahu
v desiatkach percent, v niektorych pripadoch az 20-nasobne.

Celkovy mechanizmus na ziskanie a pouzitie takychto prediktorov inicializa¢nych
parametrov ASM metddy je rozdelené na dve ¢asti. Prva z nich, pripravnd resp. “offline”
faza pozostava:

1. Vygenerovat mnozinu bodov pociato¢nych podmienok 6.
2. Urcit zoznamy aktivnych ohraniceni pre jednotlivé body pociatocnych podmienok.

3. Natrénovat mapovaciu funkciu k, ktorej vstupom je poc¢iatoénd podmienka a vy-
stupom zoznam aktivnych ohraniceni.

Implementac¢nd faza resp. “online” faza sumarizuje vyuzitie v uzavretom regulacnom
obvode:

1. Ziskanie stavového merania z riadeného procesu.

2. Vyhodnotenie prediktora x.

3. Inicializacia ASM metédy vysledkom z k.

4. Urcenie optimalneho akéného zasahu a jeho implementacia v riadenom systéme.

Takyto spdsob urychlenia vypoctu optimalneho akéného zasahu nam tym padom
umoznuju implementaciu numerickych metéd aj na mikroprocesorovych platforméach,
ktoré nedisponuju velkym vykonom. Kedze vyrazne znizime pocet iteracii, suplujeme
znizeny vypoctovy vykon, ¢ize stidle moézeme optimalnym spésobom riadit systémy
vyzadujice nizku periédu vzorkovania.

3.2 Aproximacia MPC pomocou neurénovych sieti

Medzi popularne vedecké smery momentélne patri skoro akykolvek prienik metéd strojo-
vého ucenia do inych sfér vedy, riadenie procesov, resp. syntézu regulatorov nevynimajuc.
V tomto ohlade predstavime niekolko prvotnych vysledkov, ktoré ukazuji, ze strojové
ucenie, konkrétne neurénové siete si schopné kompletne nahradit prediktivny regulator.
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Zakladné predpoklady tohto vedeckého smeru vychiddzaji z nemoznosti skonstruovat
explicitné riadenie pre systémy s velkym parametrickym priestorom, resp. dlhym predikc-
nym horizontom. Predkladand habilitacnéd praca si dava za ciel ukazat, ze sme schopni
zostavit explicitnii formu MPC aj pre systémy s velkym poctom stavov a optimalizova-
nych premennych. Nebudeme vSak riesit problém parametrickej optimalizicie, ale zdkon
riadenia “nauc¢ime”.

u(8) eMPC

R1 R2 R3 R4 R5 6'

Obr. 3.1: Aproximécia explicitného riesenia pomocou neurénovej siete.

Prave neurénové siete, su schopné v principe aproximovat akikolvek funkciu, ¢ize aj
nekonvexny zakon riadenia [LK18]. Vyhodou vyuzitia neurénovych sieti je najma to, ze
nam odpada nutnost uchovat si informacie o regionoch, ¢im drasticky znizime paméatovia
naro¢nost explicitného riesenia (vid Obr. 3.1). Ulohou je teda navrhnit také met6dy pri
ziskavani parametrov neurénovej siete, aby sme ziskali ¢o najvervnejsiu reprezentaciu
explicitného riesenia.

Neuroénova siet pozostava zo vstupnej vrstvy, skrytych vrstiev a z vystupnej vrstvy,
ako je zndzornené na Obr. 3.2. Kazda z vrstiev obsahuje niekolko neurénov, pricom kazdy
z nich je reprezentovany aktivacnou funkciou, napriklad sigmoidou

2
1+ e

ola, z) = -1, (3.4)

alebo po castiach linedrnou funkciou (z angl. rectified linear unit - ReLU)
ReLU(a, z) = max(0,a -z +b), (3.5)

kde z znaci vstupny vektor a parameter « je vektor vah, ktoré je potrebné natrénovat.
Postup ziskania aproximacie ma podobne ako v pripade predoslej sekcie, dve fazy.
V prvej faze je potrebné pripravit vstupy na trénovanie neurdénovej siete a natrénovat
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Obr. 3.2: Ilustracia neurénovej siete, kde je zelenou vyznacend vstupna vrstva neurénov,
¢ervenou s oznacena skryté vrstvy a modra znazornuje vystupnu vrstvu.

neurénovu siet. Druhd faza predpoklada implementéciu v spatnovizbovom riadeni, kde
vyhody explicitne daného zédkona riadenia odbturaji akékolvek potrebu riesit optimalizaciu.
Prva faza pozostéva

1. Zostrojenie prediktivneho regulatora.

2. Vygenerovat mnozinu bodov pocdiato¢nych podmienok 6 a k nim prislichajicich
akénych zasahov ug.

3. Zvolit parametre neurénovej siete, t.j. pocet vrstiev, pocet neurénov na vrstvich
a typy aktivac¢nych funkecii.

4. Natrénovat vahové parametre jednotlivych aktivaénych funkcii, ¢im ziskame zdkon
riadenia fan(6).

Implementacnd faza resp. “online” faza opéf sumarizuje vyuzitie v uzavretom regula¢nom
obvode:

1. Ziskanie stavového merania z riadeného procesu 6.
2. Vyhodnotenie explicitného zdkona riadenia unn = fnn(6).
3. Implementacia aproximovaného akéného zasahu.

Vlastnosti takého riadenia budeme demonstrovat na tilohe sledovania ziadanej hodnoty
pre systém dvojitého integratora. V prvom kroku zostrojime regulator podla predpisu
v rovnici (2.1). Nésledne si pripravime ndhodne distribuovanych 5000 bodov v stavovom
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priestore modelu dvojitého integratora. Pre kazdy z bodov v ramci tychto pociatocnych
podmienok ziskame hodnotu akéného zasahu. Takto zostrojend mnozina stavov a opti-
méalnych akénych zasahov vstupi do trénovacej fazy. Neurénova siet pozostavala z troch
skrytych vrstiev, pricom kazda z nich mala 10 neurénov a aktivacné funkcie boli zvolené
v tvare ReLU.

Kvalitu riadenia pomocou aproximovaného zakona riadenia zobrazujeme na Obr. 3.3.
7 porovnania je zrejmé, ze regulator v tvare neurénovej siete je schopny s velmi velkou
presnostou riadit systém tak, ako pévodné MPC. Najviacsou nevyhodou je pochopitelne
garancia splnenia ohraniceni a garancia stability. V tabulke 3.1 zobrazujeme tri numericky
vyhodnotené kvalitativne parametre. Integrélne kritérium ISE z rovnice (2.22), pocet
porusen{ ohrani¢en{ V/(-) a maximéalna velkost poruSenia ohranicenia v absolitnej hodnote

Vi (+).

Tabulka 3.1: Qualitative evaluation of control performance.

‘ JISE ‘ porusenie ohraniceni
N(z2) Vim(z2) N(Au) Vim(Au)
MPC | 574 0 0 0 0
NN 580 19 0.140 29 0.036

Kedze ide o novy vyskumny smer, tak tieto otdzky eSte neboli dostatocne vy-
rieSené. Pri uvazovani vsetkych aspektov implementacie akéhokolvek riadenia na la-
boratérny proces alebo aj priamo v technologickej prevadzke, teoretické garancie sa
mnohokrit druhoradé, a extenzivna simula¢na pripadova Studia postacuje ako do-
kaz [KK19a, LKFM20, LKKM19].
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(c¢) Piebeh akénych zdsahov.

Obr. 3.3: Riadenie pomocou aproximovaného zakona riadenia pomocou neurénovych

sieti. Modra krivka reprezentuje optimélne priebehy, pricom cervend znaci
aproximované riadenie.



Kapitola 4

Zaver a diskusia

Predlozena praca sa sustreduje na nové aspekty vyuzitia prediktivneho riadenia. Nosnym
pilierom tejto habilitacnej prace je dlhodoba prica autora v oblasti ndvrhu nadradenych
reguldtorov zalozenych na baze MPC. V tejto partikularnej oblasti sme ukézali ako
navrhnit nadradené reguldtory pre rézne typy vnuatornych riadiacich sluciek. Okrem
oc¢ividnej vyhody tohto pristupu k riadeniu, ktorda umoznuje zvysit kvalitativne parametre
riadenia uz existujicich riadiacich systémov, tak ide o systematizovany pristup k syntéze
tohto typu regulatorov, ktory zahina vsetky tri klic¢ové vlastnosti dobrého reguldtora:

1. penalizacia optimaliza¢ného kritéria,
2. predikcia spravania sa na zaklade modelu systému,
3. integracia technologickych ohranic¢eni priamo do navrhu nadradenych regulatorov.

Okrem vyssie spomenutého vyuzitia MPC regulatorov, sa predlozend praca venuje
aj navrhu explicitnych MPC regulatorov, ktorym je mozné “za jazdy” zmenif hodnotu
vahovych matic. RieSenie tohto problému vyrazne posunulo vpred moznosti nasadenia
explicitnych regulatorov do praxe, pretoze dramaticky znizuje nutnost rekonstrukcie
explicitného riesenia v pripade zmeny vahovych matic.

Posledné cast tejto habilitacnej prace je venovand novému vyskumnému smeru autora,
ktory ma za ciel hlbsie prepojit moznosti strojového ucenia s praktickymi aspektami
prediktivneho riadenia.
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This paper deals with the design and real-time implementation of an Model Predictive Control (MPC)-based
reference governor on an industrial-like microcontroller. The task of the governor is to provide optimal
setpoints for an inner Proportional-Summation-Difference (PSD) controller. The MPC-based governor is
synthesized off-line as a Piecewise Affine (PWA) function that maps measurements onto optimal references. To
achieve a fast and memory-efficient implementation, the PWA function is encoded as a binary search tree. This

allows the reference governor to run on a sub-millisecond scale even on a very simple hardware. The proposed
concept is experimentally verified on a laboratory device involving a magnetic levitation system. Here, the PSD
controller is responsible for controlling the vertical position of the ball in the magnetic field. By using the
reference governor, control performance can be significantly improved and input/output constraints enforced in

a systematic manner.

1. Introduction

The vast majority of industrial automation relies on the use of
simple closed-loop control approaches such as the PID control
(Astrom & Higglund, 2006). These controllers are very popular due
to their simplicity and ability to provide analytically determinable
quality of closed-loop behavior. One of the main drawbacks, however,
is their inability to explicitly cope with constraints on inputs and
outputs. When constraint satisfaction is of imminent importance, MPC
(Maciejowski, 2002) is usually employed. MPC is a control strategy
which is based on determining optimal control actions by solving an
optimal control problem at each sampling instant. Despite it being able
to cope with constraints in a systematic manner, the computational
load due to repetitive optimization only makes it suitable for systems
with slow dynamics. This limitation can be abolished, to a certain
extent, by shifting the optimization off-line by using the concept of
explicit MPC (Bemporad, Morari, Dua, & Pistikopoulos, 2002). Here,
parametric optimization is used to pre-calculate the optimal feedback
law in the form of a look-up table. This allows the concept of MPC to be
applied to fast systems as well.

However, the transition from PID controllers to MPC strategies is
often not smooth, especially if significant effort was already invested
towards tuning of the PID controller(s). Simply put, it is often preferred
to keep existing PID controllers in place, and use MPC-like optimiza-
tion on top of them to improve performance and plant safety. This

* Corresponding author.

strategy, known as the Reference Governor (RG), is well known in the
literature, see, e.g., Bemporad (1998), Borrelli, Falcone, Pekar, and
Stewart (2009), and Gilbert and Kolmanovsky (1999). The task of the
governor is to shape the user-specified desired reference in such a way
that input/output constraints are enforced and closed-loop perfor-
mance is improved. The main drawback of existing solutions lies in
their underlying computational complexity. Since the shaping is
performed by solving an optimization problem at each sampling
instant, significant processing power is typically required. This is an
even bigger issue if nonlinear MPC is considered. In such a case, a
requirement on constraints satisfaction is often omitted or reduced
(e.g. only input constraints are considered), in order to push the
complexity to a realizable scale (Béchle, Hentzelt, & Graichen, 2013).

In this work, it will be shown how to design and implement a
reference governor on a simple and cheap microprocessor in real time.
A magnetic levitation system is considered for demonstrating control
performance. Such systems have a broad use in industrial applications
where they serve to suspend materials in a magnetic field. For instance,
it is already used in maglev trains (Lee, Kim, & Lee, 2006), high-speed
motors using magnetic bearings (Schuhmann, Hofmann, & Werner,
2012), but also in some unusual applications such as 3D cell culturing
(Haisler et al., 2013) or harvesting of kinetic energy from human
movements (Berdy, Valentino, & Peroulis, 2015).

Various control strategies for control of magnetic levitation are
available in the literature. In Gliick, Kemmetmiiller, Tump, and Kugi
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(2011), a cascaded controller for self-sensing magnetic levitation along
with the position estimation based on least squares identification,
implemented on Altera Stratix II Field Programmable Gate Array
(FPGA), is proposed. A wholly different approach to magnetic levitation
control is provided in Bichle et al. (2013), where a computationally
low-demand nonlinear MPC is demonstrated on dSPACE platform. A
robust tracking control of magnetic levitation process with input
constraints is proposed in Zhang, Xian, and Ma (2015). Here the
authors use the MATLAB-equipped PC to control the system. An
interesting approach of magnetic levitation control design is provided
in Folea, Muresan, Keyser, and Ionescu (2016), where a fraction order
controller implemented in embedded microcontroller is used to
increase the closed-loop performance and robustness. Very popular
approach to the application of control algorithms for magnetic
processes is the use of FPGAs (Lin, Lin, & Chen, 2011; Lin, Liu, &
Li, 2014).

In this paper, a parametric solution to the RG problem will be
derived, and it will be used to optimally control the closed-loop system
with magnetic levitation. This is achieved by solving the optimization
problem using parametric optimization (Bemporad et al., 2002; Gaas
& Saaty, 1955), which yields the analytical solution in a form of a look-
up table. Then computation of the optimally shaped references reduces
to a simple table lookup, which can be performed very quickly even on
a simple implementation hardware. To demonstrate this advantage of
explicit MPC-based RG a real control experiment with low-cost
microcontroller unit (MCU) SAM3X (based on Cortex-M3) has been
performed. This MCU provides memory and performance character-
istics in orders of magnitude lower compared to processors that are
usually used for implementation of online MPC.

Previous work of Kaliiz, Klauco, and Kvasnica (2015) has shown a
design of an MPC RG for the system of magnetic levitation, based on
the input/output model. The controller was implemented on very
limiting hardware, namely the Atmel ATMega328p 8bit microcontrol-
ler with only 2 kB of dynamic memory. This limited the MPC formula-
tion in terms of closed-loop model complexity, prediction horizon, and
constraints that could be defined only for a position of the levitating
object. Specifically, only output constraints were handled in the
previous work and the constraints on the control action generated by
the PID controller were not enforced. This was a consequence of using
an input—output prediction model.

In this work, the prior art is improved in several key respects. First,
a state-space model of the closed-loop system is considered. This allows
not only to explicitly account for all types of constraints (e.g.,
constraints on the control inputs as well as on controlled outputs),
but also to improve the control performance. Although tailored to the
specific application of magnetic levitation, this paper proposes a unified
mathematical/software framework for the design and implementation
of MPC-based reference governors. This framework is applicable to any
closed-loop systems that can be represented by a linear state-space
model. Moreover, to reduce the on-line implementation effort, the
concept of binary search trees (Tondel, Johansen, & Bemporad, 2003)
is used allowing for efficiently encoding the parametric representation
of the reference governor.

The proposed parametric reference governor setup is applied to a
fast and unstable laboratory device of magnetic levitation. Despite the
fact that the MCU provides only modest computational resources and a
small amount of memory storage (96 kB), it can accommodate the
parametric reference governor and execute it under hard real-time
bounds. Experimental results are presented that confirm the efficiency
of the proposed solution. The experiment is implemented on small-
scale laboratory magnetic levitation device that provides modest
parameters and limited dimensions. The used control hardware
(Atmel SAM3X) is even more limiting and proves the memory and
computational efficiency of proposed control scheme. The comparison
of presented solution similar to the above-mentioned works by other
authors is provided in Section 4.7.
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Fig. 1. Magnetic levitation system.
2. Mathematical model of magnetic levitation

The mathematical model of magnetic levitation is derived from the
standard physical understanding of magnetic suspension of an object.
The spatial arrangement of the system is shown in Fig. 1. The
arrangement consists of three main parts. These are a metal cylinder
with a winding that makes an electromagnetic coil at the top, inductive
proximity sensor at the base, and ferromagnetic ball in the space
between them. The arrangement considers the displacement of the ball
only in the vertical axis (denoted as p).

The dynamics of the ball movement is derived from a standard force

. a2 . .
equation F, = F, — F,, where Fa=mde§ is the acceleration force,

I

2
magnetic field acting on the ball. Since the practical implementation
relies on inputs and outputs to be in voltage units, the input voltage
applied to the coil, i.e., U, can be expressed as U, = I.R.. Similarly, the
output voltage taken from the position sensor, i.e., U, can be expressed
as a linear function of position Uy = app + by,. Using these two
substitutions and introducing a conjured coil amplifier constant

F, = myg is the gravitational force, and F, = K,,5 is the force of

K, = %, the model can be written as

my dzUps Ugupzs

s =mg K —

aps dt U2 — 2By Ups + b2, 1))

This model, however, is nonlinear in U, and U,. Therefore a lineariza-
tion around the equilibrium U; and Uy where F, = 0 was considered.
Applying first-order Taylor expansion to (1) yields a linear dynamics of
the form

2.

i =ky + ku,

(2
where y = Uy — Uy, and u = U, — U; are the deviations of output and
input voltages from the selected equilibrium point, respectively. The
output deviation of the system y is in the unit of volts and it linearly
represents the actual physical distance p. The constants k; and k, are
given by

3 77s2
ap U

mb(UpSs - bps)3 ’

3778
Aps Uc

k = 2K, L S—
' * * mb(U;s - bps)2

b= -

3)

which, using the values from Table 1, amounts to k = 2250, k = 9538.
The system in (2) is subsequently converted into the state-space form

X(@) = [](31 (l)]x(t) + [l?z]u(t),

y(@® =[1 0lx(),

and discretized using a sampling time 7;. The PID controller used in

(42)

(4b)
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Table 1
Parameters of the magnetic levitation plant.

Variable Unit Value

my kg 8.4107%

g ms? 9.81

aps Vm™ ~1.1132:103
bps v 11.107

Us v 2.29

U v 1.40

Ka kgm?s72V! 1.1899-107°

this work is in the form of

13.07s% + 1358s + 4.367-10*

CGro(s) = 2+ 5714s

)

3. Synthesis of optimization-based reference governors

In this section, a formulation of the MPC-based reference governor
will be shown. First, the state-space model of the closed-loop system is
derived, followed by formulation of the reference governor as an MPC
controller. The MPC problem is subsequently solved parametrically as
to obtain the explicit analytical representation of the reference gover-
nor.

3.1. Closed-loop modeling

The control setup considered in this paper is depicted in Fig. 2 and
it consists of the inner-loop PSD controller and the outer-loop
reference governor that optimizes the setpoints w(s) for the PSD
controller. The reference governor, presented in the next section,
employs a state-space representation of the inner feedback loop that
can be compactly represented by the extended state-space model of the
form

Rt +T) =AW + Bw(), (6a)
u(t) = CuR(t) + Dyw(0), (6b)
y(@) = GF@) + Dyw (), (60)
where the extended state vector ¥

F=[x £ (7)

consists of the states x of the controlled plant in (4), as well as of the
states x, of the inner-loop PSD controller. At this point, a discrete-time
version of the controller in (5) is considered which, after conversion to
the state-space form, can be represented by

X (t + ) = Arxe (1) + Bre (1),
lr

Reference

(8a)

Governor

u

A 4

Plant

closed loop system

Fig. 2. Scheme of the reference governor setup.
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u(t) = Cex, (t) + Dye(t). (8b)

Here, e () = w(r) — y(¢) represents the control error. Then the matrices
of an extended state-space model in (6) can be derived using
straightforward algebraic manipulation that is discussed in detail in
Klauco (2016).

3.2. Synthesis of a reference governor
The MPC-based reference governor that optimizes the setpoints w

of the inner feedback loop in (6) is formulated as a constrained finite
time-optimal control problem of the form

Flwe =713y, + 1y —we Iléyw]

(9a)

St Xy =A%+ Bw., VkeN) (9b)
up = Cof + Dywy, VkeNy!, (9¢)
ye=C% + Dywe,  VhkeN)!, (9d)
Umin < U < Umax, VkeN, (9¢)
in Ve < Yoo VikeNy! (9

— N—1
Wk = WN—1» VkeNy 92)

where X, u, y, represent the k-th step predictions of the inner loop's
states, control inputs of the inner controller, and plant outputs,
respectively. Next, (9a) is a quadratic cost function with prediction
horizon N. The cost function (9a) penalizes weighted squared 2-norms
of respective quantities with || z |3, = z"Mz, M>0. The first term of the
cost function minimizes the tracking error and forces the plants output,
in this case the output voltage, to track a user defined reference r. The
second and the third term penalize fluctuations of the optimized
setpoints w and the control actions of the primary PSD controller,
respectively. The fourth term accounts for the difference between
reference r and shaped setpoint w and finally the fifth term penalizes
the deviations between predicted output and shaped setpoint for the
inner controller. The tuning factors Qy, Oy, Ou, Qwr and Q,, are positive
definite matrices of suitable dimensions. The PSD controller output u
and the plants output y are linked via constraints (9¢) and (9d) with the
optimized setpoint w. The constraints in (9¢) ensure that the chosen
setpoint profile W = [wy,...,wy_,J satisfies physical limits on the
control inputs u supplied by the PSD controller. Finally, (9g) represents
a move blocking constraint which employs the control horizon N, < N
and is used to decrease the number of degrees of freedom and thus
makes the problem simpler to solve.

The optimization problem in (9) is initialized by the vector of
parameters

0=[xa x@ wit-T)" u¢t-T)T r@y]", (10)

where x,(r) are the states of the inner PSD controller at time t and x (r)
are the states of the plant. Moreover, w(r — T;) is the value of the
optimized reference at the previous sampling instant, required in (9a)
at k =0 when w.; = w(t — T;). Similarly, u(t — T;) is the control input
generated by the PSD controller at the previous sampling instant that is
used as u_; in (9a). Finally, r(7) is the user-defined reference. Because
of (4), the plant's states x(¢) consist of the ball's position y(7) and its
speed. Since only the position can be directly measured, the ball's
position is estimated by 2=2¢=%)

With the initial conditioils as in (10), the optimal modulated
references wy',...,wy_; can be obtained by solving (9) as a quadratic
program (QP). To allow for a fast and efficient implementation of the
solution on an embedded hardware, it is furthermore proposed to
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obtain an explicit solution to the optimization problem (9).

3.3. Parametric solution to (9)

It is well known (see, e.g., Bemporad et al., 2002) that the MPC
optimization problem in (9) can be re-cast as a convex parametric
quadratic program (pQP) whose analytic solution takes the form of a
continuous piecewise affine (PWA) function

@b+, ifOER
w* () = :

a0+ p, if0eR, 1D

Here, R, = {0 1 Z;0 < z;} fori = 1,...,L are polyhedral critical regions, L
denotes the total number of regions and a;, g, are the coefficients of the
i-th locally optimal feedback law. The critical regions, as well as the
local affine feedback laws, are constructed by applying parametric
programming solvers (Bemporad et al., 2002; Gupta et al., 2011;
Pistikopoulos et al., 2002), which are available e.g. in the MPT Toolbox
(Herceg, Kvasnica, Jones, & Morari, 2013) or in the POP toolbox
(Pistikopoulos et al., 2015). It is important to note that the explicit
optimizer W* () as in (11) is constructed off-line.

Once the control law W (9) in a form of a PWA function is known,
the calculation of the actual set point w* (¢) for the PSD controller then
reduces to a mere evaluation of the PWA function in (11). Note that the
value of the optimally shaped setpoint profile wg, ...,w5_, obtained via
evaluating (11) is the same as a numerical solution to the QP (9) for a
given value of initial condition 0, see Bemporad et al. (2002) for a
proof.

The most efficient way of evaluating the function W*(0) for a
particular value of the vector of parameters 6 is to organize the critical
regions R; into a binary search tree (Tondel et al., 2003), which is
schematically depicted in Fig. 3. In each node of the binary search tree,
the critical regions R; are split by a suitable separating hyperplane into
two parts of roughly identical cardinality. Selection of the most suitable
separating hyperplane is based on the so-called hyperplane arrange-
ment (Geyer, Torrisi, & Morari, 2008) of critical regions. The
arrangement determines on which side of each candidate hyperplane
each critical region is contained. The candidates are selected as the
unique hyperplanes that determine each critical region R; and there-
fore up to O(L?) operations are required to construct the hyperplane
arrangement. With the arrangement in hand, the best separating
hyperplane in each node is selected as the one that minimizes the
maximal number of regions on each side of the hyperplane.

An algorithm that computes the hyperplane arrangement and
constructs the binary search tree is available in the MPT toolbox.
Once constructed, the binary tree allows to evaluate the function W* (0)
in time that is logarithmic in the number of critical regions.

.73
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Fig. 3. Regions organized into a binary search tree. Red dashed lines denote the
separating hyperplanes. (For interpretation of the references to color in this figure
caption, the reader is referred to the web version of this paper.)
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3.4. Feedback implementation

The feedback implementation of the parametric form of the
reference governor is based on obtaining the optimally shaped refer-
ences wy, ...,wy_; by evaluating the PWA function W*(6). At each time
t, one first forms the vector of parameters 6 per (10). Subsequently, the
PWA function (11) is evaluated for the given value of 6 by traversing
the associated binary search tree. In the spirit of receding horizon
implementation (Mayne, Rawlings, Rao, & Scokaert, 2000), only the
first element of W*, i.e., w{, is implemented as the reference for the
inner PSD controller. The whole procedure is then repeated from the
beginning at the subsequent time instant ad infinitum.

4. Implementation
4.1. Laboratory magnetic levitation plant

The actual physical system of magnetic levitation used in this work
is the CE152 laboratory model, shown in Fig. 4. The plant consists of
an electromagnetic coil energized by a power amplifier, a linear
position sensor and a ferromagnetic ball. The intensity of magnetic
field is a manipulated variable and can be directly influenced by voltage
electric signal in the range of 0—5 V. A measured variable is the reading
of the proximity position sensor in the same 0—5 V range.

This system exhibits several properties that result in interesting
control design challenges. One of them is the fast dynamics of the
system. The time constant of the open loop is approximately 20 ms,
which indicates that reasonable sampling rate should be chosen not
less than 0.5 kHz to get high-quality measurements. In order to
demonstrate the time efficiency of explicit MPC, an even higher
sampling rate of 1 kHz has been chosen in this work. Other challenging
properties of the system are the natural instability and nonlinearity.
The instability comes from the spatial arrangement of laboratory
model, where the levitating object is pulled upwards to the magnetic
coil against the force of the gravity. This is the exact opposite of
naturally stable magnetic repulsion arrangement used, e.g., by the
maglev train. Moreover, the system also exhibits a strong nonlinear
behavior. As it is obvious from the force balance equation, the force
applied on ball F, is a sum of gravitational force F, and force of the
magnetic field F,. While F; can be considered constant with always
present effect, the F, is a quadratic function of manipulated variable
(input voltage U,) and is present only when nonzero voltage is applied.
This results into asymmetric nonlinearity, depending on the direction
of ball position control.

4.2. Microcontroller

Electronic controller used in this work is an embedded MCU Atmel
SAM3XS8E. This MCU is based on the 32-bit ARM Cortex-M3 proces-
sor, supported by 84 MHz clock, 512 kB of flash memory, and 96 kB of
SRAM in two banks (32 kB and 64 kB). As stated by Atmel, a SAM3X
series is designed for the applications in the industrial embedded
market, home and building automation, small grids, industrial auto-
mation and networking. This is one of the reasons why this MCU was
used in this work as a physical controller. The second reason is the
modest computational and memory capabilities of the device.
Specifically, they allow to stand out for the low implementation
complexity of the explicit form of the solution, as given per (11).

4.3. Experiment setup

The magnetic levitation system CE152 directly provides a connector
with raw analog electrical signals for control and data acquisition. Both,
the signals for control of coil amplifier and position sensor, are voltage
signals in the range of 0—5 V. One of the implementation issues was the
interconnection of a physical system with the MCU that operates on
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Fig. 4. Laboratory model of magnetic levitation CE152.

3.3 V. This problem was solved by using a signal level conversion. For
connection of position sensor signal to the MCU, an integrated 12bit
Analog-to-Digital Converter (ADC) of SAM3X was used. To scale the
signal to a lower range, a voltage divider was used. The control signal
(coil voltage) is issued by an external serial 12bit Digital-to-Analog
Converter (DAC). This DAC is controlled via a Serial Peripheral
Interface (SPI). All source and control lines for DAC have been scaled
through the logic level converter from 3.3 V to 5 V. This physical setup
provides satisfactory precision and performance parameters for the
desired application.

4.4. Software implementation of the RG-MPC controller

The reference governor in a form of an MPC problem (9) was
constructed using YALMIP (Lofberg, 2004). The prediction horizon N
set to 9 samples and the control horizon N, = 2 was used. Because of
physical constraints of the plant, the control action u was limited by
Umin = 079V, upya = 4.79 V, along with constraints on the ball's posi-
tion y,,;,,=1.00 V, y,...=2.00 V. The voltage constraints on ball's position
directly translate to the physical limits of p € [8.18, 9.08] mm, cf.
Section 2. The weighting factors in (9a) were chosen as Q, = 1072,
Oy = 10_39 Ou=104=0.1, Qyw =0.1

State space matrices of the closed loop system were discretized with
sampling time 7; = 1 ms, resulting in

0.6749 —0.0355 —0.0008 - 0.0000
i= 0.0008 1.0000 — 0.0000 - 0.0000
— 8.8304 49.0588 0.9727 0.0010 [
| — 16470.9632 97772.4837 — 51.6329 0.9751 (12a)
[ 0.0008
7 — | 00000
0.0296 [
 56.2470 (12b)
C, = [-2418.9076 11 781.9582 — 7.8599 0.0000], (12¢)
D, = 7.8599, (12d)
Cy = [-5.1447 25.0588 1.0000 0.0000], (12€)
Dy =0. (129

Next, the PWA representation of the parametric RG optimizer W* (0) as
in (11) was obtained by solving (9) parametrically using the MPT
toolbox (Herceg et al., 2013). The parametric solution was obtained in
15s on a 2.9 GHz Core i7 CPU with 12 GB RAM. The explicit PWA
representation of the optimizer W*(¢) in (11) consisted of L =21
critical regions in a 7 dimensional parametric space, cf. (10). The MPT
toolbox was subsequently used to synthesize the corresponding binary
search tree to speed up the evaluation of the PWA function in (11). The
total memory footprint of the binary tree was 1392 bytes. This number
includes both the separating hyperplanes and the parameters of local
affine feedback laws q;, f; associated to each critical region. The
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construction of the tree took 5 s.
4.5. Closed-loop implementation

The control algorithms are executed in real time. This is ensured by
a timer-based program interrupt that fires every 1 ms. This represents
the main sampling period 7;. Precise timing of control is carried out by
32bit Timer/Counter (TC) operating in compare mode. The TC
interrupt invokes the Interrupt Service Routine (ISR) that has higher
priority than the main program, and is served immediately. During the
period of T, following tasks have to be performed inside the ISR: (i)
acquisition of the current ball's position y(7); (ii) construction of the
vector of parameters 0 via (10); (iii) evaluation of W*(¢) from (11) by
traversal of the associated binary search tree; (iv) extraction of
w* (¢) = wy" from W*; (v) computation of the PSD control action u(z)
based on the optimal reference w* (r); and (vi) application of u(¢) to the
system. This loop is then repeated at each sampling instant 7;. The
overall control algorithm, which includes the implementation of the
PSD controller via (8), the binary search tree, and all necessary
auxiliary operations (memory allocations, matrix/vector multiplica-
tions, etc.) was written in the C language and subsequently compiled
using the ARM GCC compiler. The size of the resulting binary code was
36 152 bytes. Worth noting is that only a tiny fraction of this code
pertains to the implementation of the PSD controller and the traversal
of the binary search tree. Majority of the code covers auxiliary
operations elaborated above. To run the control algorithm, 5180 bytes
of dynamic memory were required.

4.6. Data acquisition

The evaluation of experimental results (Section 5) requires a precise
measurement of manipulated variable U,, controlled variable Uy, and
also the actual value of shaped and user-defined reference. To measure
actual physical values of input and output voltages, these signals have
been probed and acquired by a digital oscilloscope. For this purpose a
100 MHz 4-channel oscilloscope was used. The shaped and user-
defined references are calculated/defined in the internal algorithm of
MCU, and therefore they have been pulled out to the signal interface as
electric signals. For the evaluation of the reference change timing, the
user-defined reference was hooked to the digital output pin, because it
switches only between two different values. This value was used only
for the time synchronization of acquired signals. The shaped reference
value computed by RG was hooked up to one of the internal 12bit DACs
pulled out as a separate analog voltage signal. Both reference signals
were then measured along with the input and output signals by an
oscilloscope, using the high memory depth settings, to acquire precise
measurements.

4.7. Comparison

To highlight the main benefits and drawbacks of the proposed
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Bichle et al. (2013) Folea et al. (2016)

Lin et al. (2014) This paper

Control scheme Nonlinear online MPC Fractional order contr. FLCMAC Explicit MPC

Constraints handling Input None None Input, output, states

Controller dSPACE MicroAutoBox I 800 MHz NI cRIO-9014 Embed. Contr. 400 MHz Altera Stratix IT FPGA Atmel SAM3X Cortex-M3 84 MHz
Controller price [€] Thousands Thousands Hundreds Tens

Computation time 900 ps N/A (<2 ms) N/A (<100 ps) 266 ps

Sampling frequency 700 Hz 500 Hz 10 kHz 1kHz

control scheme, a brief comparison to works by Bichle et al. (2013),
Folea et al. (2016), and Lin et al. (2014) is provided in Table 2. The
main difference lies in the cost of the hardware platforms that were
used to implement respective control algorithms. In all referenced
works, expensive hardware (dSPACE, embedded controllers, FPGA)
was used. Despite the cost and the associated computational power of
the alternative approaches, the techniques of this paper outperform, in
terms of achievable sampling frequencies, all but one approach. The
only exception is Lin et al. (2014) where an FPGA was used.
Nevertheless, the Altera Stratix II FPGA is still an order of magnitude
more expensive than the Atmel microcontroller used in this paper.
More importantly, the competing approaches provide either none or
only limited, systematic handling of constraints.

Worth noting is that individual references assume differently sized
coils and thus allow for different levitation heights. In this paper, only a
small coil is used that provides the levitation height of 0.9 mm, with the
maximum height (determined by physical dimensions of the system) of
5mm. These numbers are smaller than levitation heights in other
works (30 mm/70 mm in Bichle et al., 2013, 5 mm/9 mm in Folea
etal., 2016, and 10 mm in Lin et al., 2014). However, there is no direct
relation between the physical dimensions of the controlled system to
the type of employed control algorithm and/or the implementation
hardware. The procedures of this paper can be directly applied to
control larger coils as well.

5. Experiments and results

Experimental results demonstrating benefits of the MPC-based
reference governor are presented in this section. Two experimental
scenarios are considered. In both experiments, the sampling time was
chosen as 7, = 1 ms. Moreover, the reference was periodically switched
between +0.2V (+0.18 mm) around the chosen equilibrium point
Ups= 14V (p* =87 mm).

The first experiment concerns controlling the vertical position of
the ball solely by the PSD controller (8), which is the discretized version
of the PID controller stated in (5). In this experiment, constraints on
the control input were enforced by artificially saturating the control
actions. Naturally, the PSD controller provides no a priori guarantee of
satisfying the output constraints. The experimental results are shown
in Fig. 5. As expected, the control inputs of the PSD controller shown in
Fig. 5(b) obey the limits on the control action due to the saturation.
However, the output constraints are violated, as can be seen in
Fig. 5(a). Moreover, the control profile exhibits significant under-
and overshoots during setpoint changes.

To improve the performance, in the second experiment the MPC-
based reference governor was inserted into the loop. The experimental
data are visualized in Fig. 6. First and foremost, the reference governor
shapes the reference in such a way that constraints on the controlled
output (i.e., on the ball's position) are rigorously enforced, cf. Fig. 6(a).
This is a consequence of accounting for the constraints directly in the
optimization problem, cf. (9f). Moreover, the under- and overshoots
are considerably reduced. This shows the potential of MPC-based
reference governors to significantly improve the control performance.
The improvement is due to the optimal modulation of the user-defined
reference as shown in Fig. 6(b). As can be observed, just small
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Fig. 5. Control by the PSD controller only. The top figure shows the user-defined
reference r (1) in green and the ball's position y(7) in blue. The bottom figure shows the
control action u(r) of the PSD controller, along with saturation input constraints in
dashed-black. (For interpretation of the references to color in this figure caption, the
reader is referred to the web version of this paper.)

modifications of the reference are required to significantly improve
performance. Finally, as can be observed from Fig. 6(c), the reference
governor shapes the reference in such a way that the inner PSD
controller provides satisfaction of input constraints since they are
explicitly embedded in (9e). The evaluation of the RG feedback law
(11), encoded as a binary search tree, took 254 ps on average. The best-
case evaluation time was 243 ps while the worst case was 266 ps. These
fluctuations are caused by the binary search tree not being perfectly
balanced, which is an inherent property of the geometric structure of
the parametric solution. As a consequence, different numbers of steps
are required to evaluate the tree for different values of the parameter 6
in (10).

6. Conclusions

This paper has shown that the performance of a closed-loop system
can be significantly improved by optimally modulating the setpoint
supplied to the inner controller. The setpoint was optimally shaped
using an MPC-based strategy. The MPC-based reference governor is
based on a state space representation of the closed-loop model, which
allows to account for constraints on the control input generated by the
inner controller, as well as on the controlled outputs. To allow for a
real-time implementation of the proposed strategy, the MPC-based
reference governor problem can be solved off-line using parametric
programming. This results in a feedback strategy in the form of a PWA
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Fig. 6. Control under the reference governor. The top figure shows the measured
position of the ball y(¢) (blue line), while the reference r (¢) is depicted by green. Dashed
lines denote output constraints. The middle figure represents the optimally shaped
setpoint w(¢) (magenta) and the user-defined reference r(r) (green). The bottom figure
shows the manipulated variable u(¢) and its constraints in dashed-black. (For interpreta-
tion of the references to color in this figure caption, the reader is referred to the web
version of this paper.)

function. Furthermore, to decrease the on-line computation effort
associated with evaluation of such a function, the PWA function can
be trans-coded into a binary search tree. By doing so, the reference
governor features a low memory footprint of roughly 5 kB. Moreover,
since the optimal references are precalculated in the form of a PWA
function, the on-line implementation effort is modest as well.
Specifically, it never exceeded 266 ps even on a very simple micro-
processor.
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An optimization-based scheme is proposed to improve safety and economical performance of a boiler-
turbine system controlled by a set of interconnected PI controllers. The scheme, referred to as a reference
governor, optimizes the references fed to the PI controllers in such a way that constraint satisfaction is
enforced and tracking performance is improved. The proposed solution allows the plant operator to keep
the existing PI control architecture and improve its performance by using an additional layer of control.
The reference governor is based on optimizing the predicted future evolution of the closed-loop system,
which consists of the plant and the inner PI controllers. Disturbance modeling is used to reject influence
of the model-plant mismatch and to improve tracking performance. A case study is offered to demon-
strate viability of the proposed approach with respect to energy savings and plant safety.
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1. Introduction

The concept of optimization-based controllers has attracted the
interest of process industries since early 1980s [1]. Such algorithms
proved to be very effective in reducing the operating costs as well
as increasing the safety of the entire plant operation [2]. Such a
level of economic and safe operation is difficult to achieve using
traditional control loops, which typically involve PI/PID controllers
[3]. Therefore optimization-based control strategies, such as those
based on Model Predictive Control (MPC) [4], are preferred in many
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E-mail address: martin.klauco@stuba.sk (M. Klauco).

http://dx.doi.org/10.1016/j.applthermaleng.2016.09.041
1359-4311/© 2016 Elsevier Ltd. All rights reserved.

areas, such as in petrochemical industries. Predictive control
together with optimization plays important role also in power
industries, where such approaches are wused to increase
power generation by tens of per cents [5]. Power generation and
power optimization closely relates to smart energy systems and
control. In such setups control of individual components may
become challenging [6], hence methods like machine learning or
big-data approaches are considered [7,8].

MPC offers several crucial advantages over conventional control
loops based on PI/PID controllers. First, MPC provides a safe oper-
ation of the plant by construction since it explicitly accounts for
constraints in the decision-making process. PI/PID approaches, on
the other hand, have difficulties in handling of constraints. Their
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influence is traditionally compensated by devising additional con-
trol logic represented by anti-windup schemes, or by detuning of
the controllers. Both solutions, however, degrade the performance
of the feedback loop. MPC strategies, on the other hand, improve
the economical performance of the plant by optimizing a suitable
performance criterion. Finally, MPC controllers have the natural
ability to handle multivariable systems without the need to use
decoupling schemes.

Despite the advantages reported above, some industries are still
reluctant to replace their existing controllers by MPC-based control
policies due to a mixture of factors. One of them is the desire to
keep existing PI/PID controllers in place since they are easy to
understand for process engineers and because a significant amount
of effort was invested towards their design and tuning. In this
paper we therefore show how to apply optimization-based control
on top of existing PI/PID loops using the concept of reference gover-
nors [9-11]. Such governors act as a supervisory layer and modify
the reference fed to the inner PI/PID controllers in such a way that
even the simple inner controllers enforce constraint satisfaction.
Moreover, by optimizing the reference signals, the overall perfor-
mance of the plant is improved [12,13]. In fact, the concept of ref-
erence governors is not new. It can be traced back to early
implementation of MPC algorithms, which were applied in exactly
his manner [14,1]. The difference here, however, is that early
implementation of MPC-based reference governors relied mostly
on heuristic solutions to the control problems, which leads to sub-
optimal performance. In this work, following more recent concepts
of [15-17], we formulate and solve the reference governor problem
as an optimal control problem. This, combined with using off-the-
shelve optimization solvers, yields better performance and
improves process safety. The latter is due to the process constraints
being explicitly accounted for in the optimization problem.

In this paper we show how to design a reference governor for a
well-known boiler-turbine system, introduced in [18]. It repre-
sents a system where fossil fuel is burned to generate steam in a
drum boiler. The steam is subsequently fed into the turbine. The
system features three controlled outputs and three manipulated
variables, which have to be operated subject to constraints on their
respective amplitudes and their slew rates. Various strategies have
been proposed in the literature to control such a plant, ranging
from the application of fuzzy MPC [19,20], through data-driven
approaches [21], dynamic matrix control [22], up to the application
of hybrid MPC techniques [23,24]. Although all aforementioned
approaches can substantially improve safety and profitability of
the plant operation, they also assume that the existing control
architecture (represented by the inner PI/PID controllers) is com-
pletely replaced by the new setup. As mentioned above, this is
not always desired by plant operators.

In this paper we assume that the individual manipulated vari-
ables are controlled by a set of PI loops which, however, do not
explicitly take constraints and performance objectives into
account. Therefore, an optimization-based reference governor
setup is proposed to improve upon these two factors. We show
that the inner PI control loops can be modeled as a discrete-time
linear time-invariant system. Then, we design a suitable state
observer to estimate values of the states which cannot be directly
measured, as well as to estimate unmeasured disturbances. Using
the model and the estimates we then formulate the optimization
problem which predicts the future evolution of the inner closed-
loop system and optimizes references provided to the inner PI con-
trollers. Offset-free tracking of output references is furthermore
improved by using the concept of disturbance modeling [25]. By
means of a case study we illustrate that the proposed concept
has two main advantages. First, it allows to keep existing control
infrastructure. Second, and more importantly, it enforces a safe

and economic operation of the plant. The case study reported in
this paper quantifies the improvement in safety and profitability
and also compares it to the scenario where the plant is directly
controlled by an MPC controller which bypasses existing PI-
based control infrastructure.

2. Plant description and control objectives

We consider the well-known fossil-fueled boiler-turbine bench-
mark, presented in [18]. The system consists of a boiler where
water is heated by burning fossil fuel and converted into steam.
The steam is subsequently fed into a turbine which generates elec-
tricity. The system is controlled by three manipulated variables:
the fuel valve, the feed-water valve, and the steam valve. The con-
trol variables are represented by the liquid level in the boiler, the
steam pressure, and the generated power. A schematic representa-
tion of the plant is shown in Fig. 1.

The three manipulated variables of the boiler-turbine system
are individually controlled by a set of three interconnected PI con-
trollers as suggested by [26]. Their primary purpose is to stabilize
the plant. However, they may exhibit a poor tracking performance
due to presence of constraints. Specifically, the amplitude of each
control action is constrained in the (normalized) interval [0,1].
Additionally, slew rate constraints have to be considered to guar-
antee a physically safe operation of the plant. Although anti-
windup logic can be included into the feedback law to mitigate
the influence of min/max constraints on the amplitude, dealing
with slew rate constraints requires extensive controller tuning,
which is a tedious procedure without any rigorous guarantees of
being successful.

In this paper we propose to enforce constraint satisfaction and
to improve tracking performance by devising a suitable reference
governor. Its purpose is to shape the references provided to indi-
vidual PI controllers such that even these simple controllers
achieve constraints satisfaction and desirable performance. The
schematic representation of the proposed strategy is shown in
Fig. 2. Specifically, the reference governor replaces the user-
specified reference r by a shaped reference signal w in such a
way that the control actions u generated by the inner PI controllers
respect constraints. Moreover, the reference governor improves
tracking performance by taking into account predictions of the
future evolution of the inner closed-loop system such that the
measured plant’s output y,, converges to the user-specified refer-
ence r without a steady-state offset.

The objective of this paper is to first demonstrate the design of a
suitable reference governor. We show that it can be designed as an
MPC-like optimization problem solution of which are the optimally
shaped references w that enforce constraint satisfaction and opti-
mize tracking performance. Subsequently, in the second part of
the paper, the performance of the proposed strategy is compared
to a pure Pl-based control strategy as well as to full-fledged MPC
setup by means of a case study.

3. Plant modeling and constraints

The mathematical model of the boiler-turbine plant was pro-
posed in [18] as a set of three nonlinear differential equations of
the form

% = —0.0018u,p% + 0.9u; — 0.15us, (1a)
ddit” = (0.073u, — 0.016)pt — 0.1Py, (1b)
dp 1

d—€=§(141u3—(1.1u2—0.19)p). (10)
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Fig. 1. The boiler-turbine plant, picture reproduced from [18].
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Fig. 2. Reference governor setup.

Here, p is the drum pressure in kg cm~2, Py denotes the nominal
power generated by the turbine in MW, and p is the density of
the liquid in the boiler in kg m—3. These three variables represent
the three states of the system. Moreover, the model features three
control inputs: u; is the fuel flow valve, u, represents the steam
valve, and u3 denotes the feed-water valve. The liquid level h in
the boiler, represented in m, is given as a nonlinear function of
states and inputs in the form

h=634x10>p+4.71 x10°p+0.253u; +0.512u,
—0.014us. (2)

Only h,p, and Py can be directly measured. The density p is an
internal state which can only be estimated if it is required by the
control strategy.

The three control inputs are subject to min/max bounds on their
amplitude with 0 < u; < 1,i =1,...,3, where 0 represents the fully
closed position and 1 stands for the fully open position. In addition,
slew rate constraints must be respected as well. They are given by

dlh

G| < 000757, (3a)
_2s'< % <0025, (3b)
% <0055 (30)

More details about this particular nonlinear model as well as
operation of the boiler-turbine unit itself can be found in [26].

The reference governor design presented in this paper is based
on a linearization of the nonlinear dynamics in (1), followed by
conversion of the continuous-time model into the discrete-time
domain. Specifically, let

x=[p Pv p]'—x, (4a)
u=[u U us|"—u (4b)
y=[p Pv h]'-y, (4c)

denote, respectively, the vector of states, control actions, and mea-
sured outputs, expressed as deviations from respective linearization
points x;, u;, and y,. Then the linear time-invariant (LTI) approxima-
tion of the system in (1) in the discrete-time domain is given by

X(t +Ts) = Ax(t) + Bu(t), (5a)
y(t) = Cx(t) + Du(t), (5b)

where T; is the sampling time. In this paper we assume T, = 2 s.
The linearization point was selected as

x =[107.97 66.62 428.00], (6a)
u =[0.34 069 0.44], (6b)
y,=[107.97 6662 3.13], (6¢)

and corresponds to the steady state where the turbine generates
66.62 MW of power with drum pressure of 107.97 kg cm~2, and lig-
uid density 428.00 kg m 3.

Then, using the first-order Taylor approximation of the nonlin-
earities in (1) and by applying the forward Euler discretization, we
arrive at the following matrices of the LTI model in (5):

(09950 0 O

A= 01255 08187 0], (7a)
|-00134 0 1
[ 1.7955 -0.6963 -0.2993

B=| 01168 256134 -0.0195 |, (7b)
|-0.0120 -27733 3.3200
1 0 0

c=| o 1 o | (70)
00063 0 0.0047
[0 0 0

D=| o0 0 o . (7d)
102530 0.5120 —0.0140

Worth noting is that the D matrix is non-zero, which is a conse-
quence of direct feedthrough of control inputs in the output Eq. (2).
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Fig. 3. Interconnected PI controllers as proposed by [26].
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4. Modeling of the closed-loop system

We assume that the boiler-turbine system is controlled by three
interconnected PI controllers as shown in Fig. 3. Their coefficients,
as reported by [26], are as follows:

~ 11.1195 + 0.003

R S : (8a)
R, — 0.004s + 0.009 7 (8b)
Ry — 1.163s:+ 0.019. (80)

Furthermore, local gains kiz = 0.0292, ki3 = 0.1344,

k21 = 004687k23 = 00875, k31 =0.0842 and k32 =0.0699 are
introduced to improve the control performance.

To deal with constraints [26], have proposed to include addi-
tional rate limiters and anti-windup logic into the feedback loop.
In this paper this additional logic is not required since constraints
satisfaction and performance criteria will be enforced by the refer-
ence governor. Its design will be based on an LTI representation of
the closed-loop system shown in Fig. 2. To obtain the LTI form of
the closed-loop system, we first derive the LTI representation of
the inner PI-based control strategy shown in Fig. 3:

Xe(t+Ts) = Axe(€) + Bre(t), (9a)
u(t) = Cexe (t) + Dye(t). (9b)

Here, x; are the states of the three PI controllers, e(t) = w(t) — y(t) is
the vector of tracking errors (which are the inputs to the con-
trollers), and u(t) is the vector of control actions devised by the con-
trollers as their respective outputs.

By using basic rules of algebra of transfer functions, and by
applying discretization with T, = 2 s we obtain the following rep-
resentation of the matrices of the model in (9):

100

A=1]0 1 0], (10a)
0 0 1
2 0 0

B.=|0 2 0, (10b)
0 0 2
[0.0033 0 0

G=| 0 00093 0 |, (10¢)
| 0 0 00186
[11.1185 0.0468 0.0842

D= | 00292 0.0040 0.0699 (10d)
| 0.1344 00875 1.1631

Note that the D; is a full matrix, which is a consequence of using
local gains k; in the setup of Fig. 3.

Finally, the aggregated model of the inner closed-loop system in
Fig. 2, which consists of the PI controllers and the plant, can be
derived as follows. Consider the aggregated state vector

%= m (11)

X

which consists of the states of the PI controllers, i.e., x;, and the
states of the system in (5), denoted by x.
The closed-loop dynamics is then captured by

X(t+Ts) = AaX(t) + Baw(t), (12a)
u(t) = CeLuX(t) + DeLaw(t), (12b)
Y(t) = CeLyX(t) + Deryw(t). (12c)

The inputs to this aggregated system are represented by w, the
vector of reference to the PI controllers. The model features two
output equations with (12b) representing the control actions gen-
erated by the inner PI controllers, and (12c) denoting the plant’s
outputs.

In order to obtain the system matrices in (12), first let us formu-
late an open loop state space model, where the input to the system
is control error e(t) and the outputs are control inputs to the plant
u(t) and plants’ output y(t). The open loop state space model is

X(t+Ts) = AoX(t) + Bore(t), (13a)
u(t) = CoLuX(t) + Dorue(t), (13b)
y(t) = CoLyX(t) + Dorye(t) (13¢)
where
A 0
Aoy = [ ol A}, (14a)
B
Bo = BL;T 7 (14b)
CoLu =[G 0], (14c)
DOL.u = Dr~ (14d)
CoLy = [DC: C], (14e)
Dovy = DD:. (14f)

Second, combining the output Eq. (13c) and the expression of
tracking error

e(t) = w(t) — y(t), (15)
we arrive at

y(t) = (I + Dory) ' CoLyX(t) + (I + Dory) ' Doryw(t). (16)

After inserting (15) and (16) into (13) we obtain

Ac = Ao — Bor(I + Doy) ' Cory, (17a)
Be, = Bor — Bou(I + Dovy) ' Covy. (17b)
Ceru = Coru — DoLu(I + DOL.y)qCOL,Us (17¢)
Dcru = Doy — Dovu(I + DOL.y)q CoLu; (17d)
Cery = CoLy(I +Dovy) ™, (17e)
Dery = Dovy(I + Dory) . (17f)

This state-space model of the closed-loop system will be used in the
subsequent section to design an optimization-based reference
governor.

5. Synthesis of an optimization-based reference governor

In this section the model of the closed-loop system in (12) with
the matrices in (17) will be used to devise a reference governor
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strategy which shapes the references w(t) in such a way that the
control commands of the inner PI controllers, i.e., u(t) via (12b) sat-
isfy all design constraints. Moreover, the plant’s outputs y(t) will
be forced to converge to the user-specified reference r(t) without
an offset.

Since the governor will employ the state-space model, first we
describe the design of a state estimator in Section 5.1. The estima-
tor serves two purposes. First, it will estimate unmeasured compo-
nents of the extended state vector (11), i.e., the density of the liquid
in the drum p, and the states of the PI controllers x,. Moreover, the
estimator will also estimate unmeasured disturbances which will
serve to reject the plant-model mismatch and thus allow for an
offset-free tracking even when the plant operates away from the
selected operating point, represented by (6). Then, in Section 5.2
we show how the reference governor problem is set up and solved.

5.1. State estimation and disturbance modeling

To reject the plant-model mismatch and to estimate states of
the closed-loop system (12) we use the disturbance modeling
approach of [25]. The theoretical principle of the disturbance mod-
eling lies in estimating one unmeasured disturbance d;(t) for each
plant output signal y;(t) which needs to track a user-defined refer-
ence signal r;(t). Then a time-varying Kalman filter is employed to
estimate the state variables of (12), as well as the vector of unmea-
sured disturbances d(t). In our case, d € R® since we want to con-
trol three outputs of the plant (the drum pressure, the nominal
power, and the liquid level in the drum).

Consider the extended state-space model of the closed-loop
system in (12), described by

X1 = AaXi + Bawy, (18a)
Uy = CoLuXi + DeLuWi, (18b)
Vi = CayXk + Derywy + Fdy, (18c)
i1 = di, (18d)

where the unmeasured disturbances d enter into (18c) via a user-
specified matrix F. Moreover, the disturbances are assumed to have
constant dynamics, cf. (18d), see [27]. The subindex k denotes the
predictions of the corresponding variable in the estimation prob-
lem. Define the estimated extended state vector as

}} (19)

fe= |4

where X is the estimate of the state vector of the closed loop system
in (12) (cf. (11)), and d is the estimate of the unmeasured
disturbances.

The time-varying Kalman filter procedure consists of two
phases. The first phase is the prediction phase which is followed
by the update phase. In both phases the index k|k represents cur-
rent estimate of the individual variables. The prediction phase con-
sist of two equations, namely

Xekk-1 = AeXek-1jk-1 + BeWg,
Pii-1 = AePro1k 1AL + Qe

(20a)
(20b)

where X1 is the predicted state estimate based on the previous
time instant, and Py_; is the predicted value of the covariance
matrix. The matrices A, Be, Ce, De are given by

Ao O BcL

a0 ae ] -
CCL.u O} {DCLU :|

Ce = , De.= , 21b
|:CCL.y Fl Dery | (21b)

In theory, the matrix Q. used in (20) should be chosen with the
respect to the stochastic properties of the state noise signal. How-
ever, in this work we only consider deterministic simulations,
therefore this matrix is chosen as a tuning parameter of the
time-varying Kalman Filter.

Remark 1. In our setup, all states of the closed-loop system along
with the disturbances are estimated, cf. (19). Note that X in (19)
includes also the internal states of the inner PI controllers x; via
(11). If complexity of the time-varying Kalman is of concern, these
known states can be removed from the estimator and replaced by
actual measurements. However, as pointed out by several authors
(see, e.g., [27-30]), estimation of all states (including the known
ones) can significantly mitigate the steady-state offset and
improve the control performance.

The consecutive step in the estimation algorithm is the update
phase, represented by

€k = Ymgk — V1) — (CeXep—1 + Dewy), (22a)
Sk = CePip1CI +Re, (22b)
Ly = Py 1 CIS, 1, (22¢)
Xekk = Xe k-1 + Li€r, (22d)
Py = (I = LiCe)Pi-1- (22e)

Here, the estimation error €, is calculated based on the plant mea-
surements y,,, per (22a). Since the estimator runs in deviation vari-
ables, the linearisation point y, must be substracted from the
measurement. The time-varying estimator gain L; is then calculated
by (22b) and (22c). This gain is subsequently used to obtain the cur-
rent estimate of the state variables X,y via (22d). At the end of the
update phase, the covariance matrix P is updated. The tuning matrix
R. should be chosen with respect to the stochastic properties of the
output signals.
The estimates of X and d can then be extracted from X. by

X = MiXerp di = MXek, (23)
where
My =[l,, 0], Ma=[0 I]. (24)

Here, ny is the number of states of the closed-loop system in (12), ng
is the number of disturbances, and I is the identity matrix of corre-
sponding dimension.

5.2. Reference governor design

In this section we show how to design a reference governor
which enforces that the inner closed-loop system satisfies con-
straints and enforces sufficient control performance. The design
is based on the principle of model predictive control where the
predicted future evolution of the system is optimized as to achieve
desired control objectives.

The prediction problem over a finite prediction horizon N is
given by

N-1

L min ;Hyk = 11I3, + AW, + l1Au3, (25a)
s.t. }k+1 = Ac]_xk + Baiwy, (25b)
Uy = CCL,uik + DCL.uWk7 (25C)

Y= Cc]__ygk + DCLka + Fdo, (25(1)

Ymin < Yk < Ymaxo (25e)

Unin < Uk < Umax, (25f)

Almin < Al < Allmax. (25g)
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The problem employs predictions of the states X, inputs 1, and
outputs y, of the closed-loop system in (12), embedded via (25b)-
(25d)fork =0,...,N — 1. Moreover, the output Eq. (25d) uses a the
disturbance d, which is constant over the whole prediction
horizon.

The cost function in (25a) penalizes weighted squared 2-norms

of respective quantities with |z||%, = z'Mz. The first term of the cost
function minimizes the tracking error and forces the plant’s out-
puts (the pressure, the power, and the liquid level) to track
user-specified vector of references r. The second term penalizes
fluctuations of the optimized references w with Aw, = w, — wy_4,
while the third terms minimizes the fluctuations of the control
actions of the inner PI controllers with Au, = uy — u;_1. The cost
function employs symmetric positive-definite tuning matrices
Qy.Q., and Q, of suitable dimensions.

Future shaped references over the whole prediction horizon, i.e.,
W, ..., Wn_1, are optimized by (25) such that they enforce that the
inner PI controllers’ actions u;, respect constraints on their ampli-
tudes and slew rates via (25f) and (25g), respectively. Constraints
on the plant’s outputs are also enforced via (25e). The optimization
problem (25) is a quadratic program (QP) in decision variables
Wo,...,Wy_1 since the objective function (25a) is quadratic and
all constraints in (25b)—(25g) are linear in the decision variables.
The problem is initialized by:

o Xo = x(t) as the measurement (or estimate) of the states of the
closed-loop system in (12) at the current time instant t;

do = d(t) as the current estimate of unmeasured disturbances;
r=r(t) as the user-specified references for the controller
outputs;

w_; = w(t — Ts) as the value of the shaped reference at the pre-
vious sampling instant;

u_; = u(t — Ts) as the value of the control actions of the inner PI
controllers at the previous sampling instant.

Therefore the vector of initial conditions for (25) is
0=[X(®)" d©)T r(®)" wt-Ty)" u(t-Ty)"]". (26)

By solving (25) as a QP for a given vector of initial conditions 6
we obtain the open-loop sequence of optimal shaped references
wy,...,wy_; that enforce constraint satisfaction and provide that
the controlled outputs track user-specified references.

5.3. Implementation

Notice that the optimization-based scheme for obtaining opti-
mally shaped references w for the inner PI controllers is formulated
using a finite prediction horizon N. Its recursive implementation in
the closed-loop manner is performed using the principles of reced-
ing horizon control (RHC) [31]. Here, the optimization problem
(25) is solved at each sampling instant for the initial conditions
available at time step t, which yields the optimal open-loop
sequence W§,...,wy_;. Subsequently, only the first element of
such a sequence, i.e., wj is extracted and implemented to the plant
for the duration of the sampling instant, given by Ts. The whole
procedure is then repeated at any subsequent sampling instant
using the measurements or estimates available at that time.

Formally, the RHC implementation of the proposed reference
governor executes following steps at each sampling instant t:

1. Measure the current system output y, (t), which consists of the
drum pressure, generated power, and the liquid level in the drum.
2. Estimate the current state X.(t) using the Kalman filter. Set

X(t) = Myke and d(t) = Mg, cf. (23).

3. Solve (25) for Xo=x(t),do=d(t),r =r(t),w_; =w(t—T),
u_y =u(t —Ts) and obtain the optimal open-loop sequence of
shaped references wg, ..., wy_;.

4. Set w*(t) = w§ and apply it as a shaped reference to the inner PI
controllers.

Such a recursive solution to (25) with the states and distur-
bances estimated using the Kalman filter will enforce satisfaction
of constraints in (25f), (25g) and will steer system outputs towards
prescribed references. Since a new instance of the QP is solved at
each sampling instant, the reference signal r(t) can be time-
varying.

6. Case study

In this section we demonstrate the performance and viability of
the proposed reference governor setup in a simulation study
involving the nonlinear model of the boiler-turbine system in (1).
Three cases are considered. In the first case the boiler is controlled
solely by the interconnected PI controllers as shown in Fig. 3. In the
second case the references for the inner PI controllers are shaped in
an optimal fashion using the reference governor described in
Section 5. We refer to this scenario as the RG-MPC setup. Finally,
the last case considers that the plant is directly controlled by an
MPC regulator, bypassing the inner PI loops. This scenario will be
referred to as Direct-MPC and is shown in Fig. 4. The Direct-MPC
case assumes that the optimal control actions for the boiler-
turbine system are devised by solving the following MPC problem
at each sampling instant:

N-1
W e Tl A, (27a)
s.t. X1 = Axy + Buy, (27b)
Vi = Cxx + Duy + Fdy, (27¢)
Yinin < Yk < Vimaxs (27d)
Umin < Uk < Umax, (27e)
Aumin < Aty < Aoy (27f)

Problem (27) is similar to (25), but we directly optimize the control
inputs u of (5) instead of the shaped reference w. Moreover, the pre-
dictions are based on the model of the nominal system in (5). The
MPC problem (27) can be implemented in a receding horizon fash-
ion similarly as was described in Section 5.3. Its initial conditions,
i.e., Xo and d,, are obtained by estimation after a suitable modifica-
tion of the Kalman filtering approach by only considering the esti-
mation of the states of the nominal system in (5) with the
unmeasured disturbances included into the output equation.

In all three scenarios, the sampling time was set to Ts = 2 s and
problems (25) and (27) were formulated for the prediction horizon

r . w | Boiler-Turbine Ym
— Direct-MPC > >
System
Fe N Kalman P
Filter

Fig. 4. Direct-MPC setup.
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N = 30. The following tuning of penalty matrices used in (25a) was
used:

Q, = diag([10' 10*10"), Q,, = I.3 x 107*, Q,

=1I5,3 x 1072, (28)

The associated Kalman filter was tuned with
Py =Ig.9,Qc = Ioxo x 107%, and Re = Ig. x 1072

In case of the direct MPC setup, represented by (27), we have
used W, = diag([10* 107" 10°]) and W, = I3,; x 10~°. The covari-
ance matrix in time-varying Kalman filter was a unity matrix.
Moreover,

Q. = diag([10' 10 10' 107" 10" 1071))

and R. = diag([10' 10" 107°]) were used in the estimator.

Both optimization-based strategies were required to enforce
following constraints:

Unin = [000]" —up, Umax =[111]" —uy, (29)

along with constraints on the slew rate of control inputs:

Alpin = [-0.014 —4 —0.1]"s71,
Al = [0.0140.040.1)7 s71.

(30a)
(30b)

The first simulation scenario involves a step change in the
requested generated power. Specifically, a +5 MW step change w.
r.t. to the steady state P = 66.62 MW is performed at time 50 s.
The objective is to keep the other two controlled outputs, i.e., the
pressure p and the liquid level in the drum h at their

ref

PI - - = Direct-MPC —— RG-MPC
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(a) Drum pressure
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ref
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(c) Liquid level in boiler

Fig. 5. Measurements profiles. The green color depicts the reference signal. The pink color show the performance of set of PI controllers, the red lines depicts the performance
using RG-MPC strategy, and the blue dashed is used for Direct-MPC setup. (For interpretation of the references to colour in this figure legend, the reader is referred to the web

version of this article.)
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steady-state values. In all simulations the respective QP optimiza-
tion problems were formulated using YALMIP [32] and solved
using the Gurobi [33] solver.

Closed-loop simulation profiles of the controlled outputs of
the boiler-turbine system under the three scenarios are shown
in Fig. 5. As can be observed, the power output signal exhibits
noticeable oscillations when the system is controlled purely by
the PI controllers. On the other hand, once their respective
references are shaped via the reference governor, a much
smoother tracking of the power reference is achieved. Worth
noting is that by employing the disturbance modeling princi-
ple, perfect tracking of the references is achieved despite the
controlled system (represented by the nonlinear plant in (1))
being different from the prediction model (represented by
the LTI system (5)).

The corresponding profiles of the shaped references, generated
by solving the QP (25) at each sampling instant, are shown in Fig. 6.

Moreover, the performance of the proposed reference governor
setup is almost identical to that one of the direct MPC. A similar
conclusion can be drawn from the profiles of the liquid level in
the boiler. The control actions of all three control strategies are
shown in Fig. 7. As can be seen, the PI controllers are less aggres-
sive such that they avoid hitting the constraints. The RG-MPC
and Direct-MPC strategies, on the other hand, are explicitly aware
of the constraints.

To quantify the performance of the three discussed control
strategies, we have evaluated two criteria. The first one, repre-
sented by

Nsim

1
Ey=5—> (0], (31)
sim

quantifies the amount of energy consumed by the individual control
strategy. Here, Ny, is the number of simulation steps, u(k) denotes

ref w1
T T T
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(a) Shaped reference for the drum pressure
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(c) Shaped reference for the liquid level in boiler

Fig. 6. Shaped references. The green color depicts the reference signal. The blue color show the shaped reference. (For interpretation of the references to colour in this figure

legend, the reader is referred to the web version of this article.)
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Fig. 7. Control actions profiles.

the control action at the k-th simulation step, and
lu(k)|l, = Zj{lluj(kﬂ is the 1-norm of u(k). Similarly,

E — 1
TRy — r(k)l,

(32)

quantifies the tracking performance.

Values of these performance criteria for each of the three con-
sidered control strategies are compared graphically in Fig. 8. Note
that the values are normalized such that the PI strategy has E, = 1
and E, = 1.

As expected, the pure PI-based strategy exhibits the worst per-
formance both with respect to energy consumption as well as in
terms of tracking performance. This is a consequence of the
conservative tuning of such PI controllers with the objective to
avoid hitting constraints. The best performance is achieved by
the Direct-MPC setup, since it bypasses the internal dynamics of
the PI controllers. The proposed reference governor-based scheme
allows the PI controller to stay as a part of the closed-loop system,
but significantly improves their performance by a suitable choice
of the shaped references. Specifically, compared to the pure PI

strategy, RG-MPC reduces the energy consumption by 27% and
improves the tracking performance by 48%.

To demonstrate the effect of tuning parameters used in (27a),
besides the baseline setup of (28) we have also considered two dif-
ferent selection of the weighting matrices:

Qy =diag([10°107'10%), Q=I5 x 10, Q, =153 x 10°,  (33a)
Q, =diag([5x 10" 107" 10'"]), Qy =I3,3 x 107, Q, =I3,3 x 107, (33b)

The first tuning in (33a) puts a higher emphasis on tracking of
references since the Q, matrix is ten times as large as in (28).
Moreover, Q,, and Q, were decreased by a factor of 10. The second
choice in (33b) allows the shaped reference to follow the user-
supplied reference less tightly by further decreasing Q,,. As a con-
sequence, the RG-MPC has more “freedom” in the choice of the
shaped reference. In all cases, prediction horizon N = 30 was used
as was the case in the baseline scenario.

The aggregated quality criteria (31) and (32) evaluated for these
re-tuned RG-MPC strategies are depicted visually in Fig. 8.
Moreover, concrete values of the quality criteria are reported in
Table 1. Besides the aggregated quality criteria E, and E, computed



53

1446 M. Klauco, M. Kvasnica/Applied Thermal Engineering 110 (2017) 1437-1447

T
2.2 |~ . Pl i
B Direct-MPC
| B RC-MPC with (28)
X RG-MPC with (33a)
A RG-MPC with (33b)
1.8 |- —

(

1.4 —

1.2 |- —

Tracking performance (higher is better)
>
T
|

1 | =
l l l l l l l l
0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Energy consumption (lower is better)
Fig. 8. Control strategies comparison.
Table 1

Quality criteria for various control strategies. Lower values of E, and higher values of
E, are better. The values are normalized with respect to the PI strategy.

Strategy Ey Ey Eyp Ey py Eyn

PI 1.0000 1.0000 1.0000 1.0000 1.0000
Direct-MPC 0.3874 2.0741 7.5113 2.0341 5.7237
RG-MPC with (28) 0.7284 1.4897 0.7565 1.9189 0.1605
RG-MPC with (33a) 0.7173 1.5415 0.7652 2.0095 0.1601
RG-MPC with (33b) 0.8689 1.3494 0.7868 1.8572 0.1205

per (31) and (32), respectively, the table also reports tracking per-
formance of the three controlled outputs. Specifically, E, , related
to the quality with which the drum pressure reference is tracked.
Similarly, Ey p, is the quality of the tracking for the nominal power
and E,, relates to the quality of tracking of the liquid level
reference.

Two main conclusions can be drawn from the results in Table 1.
First, the best overall performance is achieved by using the tuning
in (33a) which, however, is only marginally better than the base-
line tuning of (28). The third alternative per (33b) is slightly worse
with respect to output tracking and significantly worse w.r.t.
energy consumption. The second conclusion is that all RG-MPC
tunings provide a very good tracking quality of the nominal power
Py, even compared to the Direct-MPC setup, cf. the penultimate
column of Table 1. Specifically, with the tuning in (33a), the
tracking quality criterion E,p, is only by 1.2% worse compared to
Direct-MPC. Even with the tuning in (33b), which yields the worst
tracking of the power reference, the deterioration of performance
is only by 8.7%. On the other hand, by using only the PI controllers,
the power tracking performance drops by 50.8% compared to
Direct-MPC. Since the nominal power is considered the most
important quality in practice, this demonstrates that RG-MPC can
indeed significantly improve control quality even when inner PI
controllers are included in the loop and can even achieve compara-
ble results to Direct-MPC setups.

7. Conclusions

In this paper we have shown how to improve safety and perfor-
mance of conventional control strategies by a suitable modification

of their references. This was achieved by predicting the future evo-
lution of the closed-loop system composed of the controlled plant
and a set of interconnected PI controllers. By optimizing over the
future predictions we have obtained shaped references which,
when fed back to the inner controllers, lead to constraints satisfac-
tion and improved tracking performance. The shaped references
were computed by solving a convex quadratic programming prob-
lem at each sampling instant. The unmeasured states, as well as
disturbances capturing the plant-model mismatch, were estimated
using a time-varying Kalman filter. The case study has demon-
strated that process safety and performance can indeed be signifi-
cantly improved. The results of the proposed reference governor
setup were also compared to a scenario where the inner controllers
are bypassed and the plant is directly controlled by a model predic-
tive control strategy.

By applying optimization on top of existing PI controllers, refer-
ence governors can be viewed at as “trojan horses” for application
of MPC-based strategies to plants where complete revamp of the
control architecture is not desired. This reduces the cost of imple-
mentation and, most importantly, allows human operators to stay
comfortable with existing control architecture.

We see two main areas in which the RG-MPC concept can be
further improved. The first one includes incorporation of a more
detailed prediction model, preferably a nonlinear one. This, on
the one hand, would result in further increase of control quality.
On the other hand, however, computational obstacles associated
with solving nonlinear optimization problems would need to be
addressed. The second direction is to assume more complex inner
controllers. For instance, one can assume that the coefficients of
the PI controllers change based on a look-up table. This would
result in a switching in the controller tuning. Such a behavior
can be efficiently tackled in the context of hybrid systems [34] at
the expense of arriving at a more complex optimization problem.
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ABSTRACT

Optimal control of a CSTR represents a challenging task. The proposed paper discusses two issues. The
first one addresses control of pH in a chemical vessel, where the reaction between sodium hydroxide
and acetic acid occurs. The objective here is to improve control performance of a well tuned PI controller.
It will be shown that this can be achieved by introducing a reference governor scheme. The second
problem, elaborated in this paper, is the implementation of the reference governor paradigm. Concretely,
we aim to design a fast and cheap MPC-based feedback controller. To achieve these goals, we exploit
the region-less explicit technique, which efficiently reduces memory footprint issues of standard explicit
MPC schemes. Such MPC-based reference governor was employed to control pH in the chemical vessel. Its
control performance is compared with conventional PI controller. Finally, comparison of implementation
requirements of region-less and region-based explicit techniques is investigated.

© 2017 Elsevier Ltd. All rights reserved.

1. Introduction

Maintaining a specific value of pH plays in a wide range of
biotechnical and chemical processes. One of the most studied fields
is waste water treatment, where the emphasis is on discharging a
neutral water into rivers. It has been reported that value of pH has a
great impact on the water purification quality (Qian et al., 2014) as
bad pH conditions may result in a production of bacteria dangerous
to human health. Other important applications can be found, e.g.,
in coagulation processes (Qin et al., 2006), metal absorption from
water (Mandal et al., 2015), microalgae production (Pawlowski
et al,, 2014), pulp and paper production (Krogell et al., 2015), or
medical research and medicine preparation (Georgiev et al., 2013).

With increasing pressure on product quality, process efficiency
and environmental protection, well performing pH control is highly
desired. This is, however, changeling task mainly due to a strong
non-linear relation between pH and concentration of acid/base
(King, 2010). To deal with this issue, more complex models were
designed to obtain better control performance (Hermansson and
Syafiie, 2015). Moreover, numerous advanced control strategies
were developed to control the pH processes. Particularly, fuzzy con-

* Corresponding author.
E-mail addresses: juraj.holaza@stuba.sk (J. Holaza), martin.klauco@stuba.sk
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michal.kvasnica@stuba.sk (M. Kvasnica), miroslav.fikar@stuba.sk (M. Fikar).
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0098-1354/© 2017 Elsevier Ltd. All rights reserved.

trollers (Fuente et al., 2006; Chen et al., 2011), adaptive controllers
(Narayanan et al., 1997; Salehi et al., 2009), or generalized predic-
tive control feedback laws (Altnten, 2007) were employed, to name
a few. Even though controller design via conventional means has
been proven to be insufficient (Ibrahim, 2008) in several cases, a
simple PID controller is still commonly used in pH control.

Nowadays, PID controllers are the most widespread control
algorithms as they are used in more than 90% of the overall
simple feedback loops (Desborough and Miller, 2002). This con-
trol methodology is popular mainly due to its simple structure,
robustness, low computational/hardware demands, easy design,
and straightforward tuning. On the other hand, the drawback of
all PID controllers is that they do not apriori consider constraints
in the design. Even though, that this deficiency is usually tackled
via additional blocks, e.g., such as anti-windup schemes, tasks like
minimization of power consumption or specific safety conditions are
not an easy task to include into the control design Astrom and Ha
(2006).

On the other hand, model predictive control (MPC) excels in pro-
viding all of the aforementioned requirements, see Maciejowski
(2001). This methodology represents the state-of-the-art control
strategy, which finds its application especially in the industrial
field (Qin and Badgewell, 2003). However, if PID controllers are
already well adopted, the transition from PID into MPC is gener-
ally considered to be non-smooth and thus is not preferable, e.g.,
due to additional investments. Therefore, in this paper, we aim to
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exploit MPC policy as an outer optimization layer for, e.g., already
employed, PID controllers in order to improve control performance.
The main idea here is to shape references to PID controllers in an
optimal fashion using MPC. Such an approach is commonly used,
e.g., in chemical or petrochemical industry with the objective of
increasing the overall production and provide additional safety,
i.e., to guarantee constraints satisfaction while minimizing speci-
fied performance criterion. In literature, such paradigm of MPC and
PID controllers are referred as a reference governor control (Borrelli
et al., 2009; Bemporad, 1998).

As it was pointed out, implementation of MPC is not trivial since
to maintain grantees of optimality, stability and constraints sat-
isfaction, the optimization problem has to be solved within the
duration of one sample period. This requirement comes hand in
hand with a need of sufficient computational resources in control
hardware and an appropriate solver. These deficiencies can be mit-
igated via introducing explicit MPC, see. Bemporad et al. (2002),
Baotic et al. (2008), Pistikopoulos (2012). Here parametric pro-
gramming (Gal and Nedoma, 1972) is used to offline pre-calculate
analytic solution of the MPC optimization problem. The imple-
mentation is then reduced only to a simple table searching and
subsequent mere function evaluation of an affine expression, both
of which can be executed efficiently evenin a low-cost control hard-
ware. Furthermore, to mitigate even the memory footprint of such
controller, we propose to encode the analytic solution via so-called
region-less approach, which was pioneered in Borrelli et al. (2010)
and enhanced in Kvasnica et al. (2015), Drgon et al. (2017).

This work directly extends the results proposed in Holaza
(2016), i.e., we aim to control a continuous stirred-tank reactor
(CSTR), which consists of two storage tanks, two pumps and a
vessel, where a chemical reaction between the solution of acetic
acid and the solution of sodium hydroxide takes place. The control
objective is to adjust the flow rate of the alkaline stream (while
the acidic stream remains uncontrolled) such that pH of the mixed
product will track specified reference. To provide a good control
performance, we aim to design a reference governor scheme. Here,
MPC-based optimization layer shapes optimal references to a con-
ventional PI controller, which controls pH in the chemical vessel via
manipulating voltage of the pump feeding the reaction vessel with
the alkaline solution. It will be shown that implementation require-
ments of such control paradigm can be minimized via employing
region-less explicit approach.

The paper is organized as follows: experimental setup of the
controlled CSTR is introduced in Section 2. Prediction model of
CSTR is derived based on the measured experimental data in Sec-
tion 3. Control setup of the inner closed-loop with PI controller is
presented in Section 4, followed by MPC-based reference governor
design in Section 5. In Section 6 are discussed the experimental
results of the closed-loop control performance, and the main con-
clusions are formulated in Section 7.

2. Experimental process

This section provides basic description of the experimental pro-
cess, introduces chemicals, and defines chemical reaction, which
occurs inside of the chemical vessel. Moreover, here we state the
control setup and the control objective.

2.1. Process equipment and model

The controlled plant represents a laboratory CSTR of Armfield
PCT40 and auxiliary equipment. The scheme of the pH process is
depicted in Fig. 1. The process consists of two retention tanks that
provide solutions of inlet acid of concentration ca and inlet base of
concentration cg. Solutions are transferred from these tanks into

the bottom part of chemical vessel via two identical peristaltic
pumps, i.e., pa for acid and pg for base. Here both streams are con-
tinuously mixed by a stirrer and pH of the effluent is measured by
a probe. For convenience, short list of all components along with
their descriptions is provided next:

e chemical vessel with volume of V=1.5dm?,

e two peristaltic pumps (pa, pg) each of which admits voltage of
(up, ug) within [0, 5]V, what correspond to the flow rates (fa, fg)
of [0, 10] mls~1,

e two storage tanks that can hold up to 100 dm? of solution each,

e pH probe which returns signal in range of [0, 14].

We consider the acetic acid (CH3COOH) and the sodium
hydroxide (NaOH), with concentration of solutes cy =0.01 mol m—3
and cg =0.01 mol m~3, respectively. By dissolving aforementioned
solutes in water, following dissociation reactions take place

NaOH™2°Na+ + OH", (1a)
HACZH* 4+ Ac, (1b)

where Na* is sodium cation, OH~ is hydroxide, H* is hydro-
gen cation, HAc is abbreviation of acetic acid and Ac™~ is acetate
(ethanoate) ion CH3COO~. Sodium hydroxide is a strong base that
dissolves in the water completely while acetic acid is a weak acid
that dissociates only partially, what means that besides both ions
Ac~ and H* there exist molecules of HAc. The expression [-] denotes
the concentration of a specific chemical, i.e., [OH~] stands for the
concentration of hydroxide in mol m=3.

The pH of the base solution with concentration cg =0.01 mol m—3
can be computed from

pH = —logo[H*], (2)

where concentration of hydrogen cation can be determined per
dissociation constant of water

kw = [OH™][Ht] ~ 10714 (3)

Therefore, by plugging (3) into (2), the pH of the sodium hydrox-
ide solution is pH=—logjokw *+10g19[OH~]=12. On the other hand,
in order to compute pH of the acetic acid we need to introduce
dissociation constant of the acetic acid
[HT][ACT] _
[HAc]
Its pH value can be then computed as a positive root of the following
quadratic equation

x2 + kax — cpka = 0, (5)

ka = 107>, (4)

thus pH of the acetic acid with concentration c4 =0.01 molm=3 is
3.5.
Electro-neutrality of the solution gives

[Nat]+[H"] =[OH ]+ [Ac]. (6)
The material balance of the entire system is given as

v fen— Ga o, (72)

v _ s~ Ga+ foa (7b)

where x; is the concentration of acetic acid. Specifically, based
on (1b), x; =[HAc] +[Ac~]. State x; is the concentration of sodium
cation, namely x, =[Na*]. Next, by plugging [HAc]=x; — [Ac~] into
(4) we obtain

x1ka

AT T

(8)
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Fig. 1. Illustration of neutralization reaction vessel, where controlled variable is pH and control variable is voltage to the pump Ps.
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Fig. 2. Titration curve of the sodium hydroxide and the acetic acid, with fy =5mls~1.

which, together with (8), can substitute equilibrium concentrations
in (6) resulting in

kw X1ka
[H'] * ka+[H']

x+[H = 9)
After straightforward manipulations (9) can be rewritten into alge-
braic cubic equation, given as

[H*P 4 X + ka[H'I* + x2ka — x1ka — kw[H'] = kwka =0.  (10)

The complete model of the considered pH neutralization process is
then given by two differential equations (7) and one cubic algebraic
equation (10). The solution of (10) is known as a titration curve and
is shown in Fig. 2. We can observe the non-linear nature of the pro-
cess, which is characterized by S-shape curve. To design a control
strategy not only for the full range of pH but even for a specificinter-
val is a non-trivial task. Therefore, an advanced optimization-based

control strategy needs to be designed to ensure the high quality of
the closed-loop control performance.

2.2. Problem statement

Consider process described in Section 2.1, where streams of the
acid solution and the base solution are pumped into the chemical
vessel via pa and pg, respectively. Both streams are here mixed
with the stirrer and the final product is then taken from the top
of the chemical vessel such that volume of the mixture remains the
same. The pH probe is placed right next to the outgoing mixture
and the flow rate of the acidic solution is maintained constant, i.e.,
derivatives fA = u1p = 0. The control objective is to manipulate the
voltage up of the pump pg in such manner that the pH of the mixed
product will attain the desired reference. The list of all variables is
summarized next:

1. controlled variable is the pH of the stream from the chemical
vessel,y € R, wherey ¢ [0, 14] pH,

2. manipulated variable (input) is the voltage in the pump pg,
ii:=ug € R, withu € [0,5]V,

3. uncontrolled variables:
e voltage in the pump pa, up=2.5V (fax5mls™1),
e concentration of the acetic acid solution: c, =0.01 M,
e concentration of the sodium hydroxide solution: cg =0.01 M.

The main goal is to design such a control strategy that optimizes
the closed-loop control performance subject to the nonlinear CSTR
behavior in various working points taking into account constraints
on control and manipulated variables. Moreover, it is required that
the overall computational demand of the implemented strategy is
minimized.
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Fig. 3. Experimental validation of the identified model of CSTR. (For interpretation
of the references to color in text, the reader is referred to the web version of the
article.)

3. Experimental model of the controlled process

The objective of this section is to derive a mathematical model
of the controlled process. This is a crucial task as an accurate model
represents a cornerstone for all model-based control design tech-
niques. In the context of this paper, the design model will be used
to derive PI controller, and as a prediction model in MPC. Even
though that there exist several types of models (e.g. linear, non-
linear, or piecewise affine), we need to keep in mind that in this
case accuracy of the model comes hand in hand with its com-
plexity. And since we aim to design a control strategy with low
implementation requirements, i.e., the control algorithm will be
easily implementable also in standard control platforms with lim-
ited computation and memory resources, we restrict ourselves for
a single state linear time-invariant (LTI) model of the form

x(t) = Ax(t) + Bu(t),
y(t) = Cx(t),

where x(t) € R, u(t) € R, y(t) € R denote state, input and output,
respectively, at time t. A, B, C are state space coefficients and x(t) €
R is the state derivative at time t. We distinguish all real-valued
variables from their deviation form with bar. Concretely, it = u +
U is the real input, y =y +j* is the real output, u is the input in
deviation form, and y is the output in deviation form. Variables u*
and y° denote steady values of input and output, respectively.

To begin the process identification, we have firstly selected
operating point y° = 7, which approximately correspondents to the
steady state control action iI* = 2.5V. This point was chosen due to
the fact that pH =7 represents the neutral value that is particularly
required in neutralization processes. Moreover, a neighborhood
of this point is harmless for a majority of industrial components.
To describe the dynamical behavior of the controlled process by
(11) around the steady-state output value y%, we have chosen step-
changes of control actions from the interval & + 1V, concretely

(11a)

(11b)

u e {2.5,3.0,3.5,2.5,2.0,1.5} V, (12)

with step change period 1500s.

The corresponding input and output profiles are depicted in
Fig. 3 by green and blue solid lines. To suppress the high-frequency
noise of the measured data the first order Butterworth filter was
used with cut-off frequency 0.01rads~!. Based on the measured
data, the controlled system was identified by the first order system

Fig. 4. Model verification against new data set.
(11). The identified dynamics in the continuous time domain are in
form of
X(t) = —0.9524 x 1072x(t) + 0.1250 u(t),
y(t) =0.2196 x(t).

(13a)
(13b)

The same sequence of control inputs (12) was used to ver-
ify the identified model (13). The corresponding output profile is
depicted in Fig. 3 and it is denoted by the solid red curve. It can
be observed that the controlled process is nonlinear as it exhibits
non-symmetrical responses. Therefore, while the precision of the
identified model tracks the acidic environment (pH <7) well, the
precision in the alkaline environment (pH>7) is not so accurate.
The model (13) was also verified against a new set of input-output
data from the process (see Fig. 4). Here we can observe the same
relation between the model and process, i.e., the model is accurate
in the acidic environment while not so good near pH = 8. This model
mismatch will be compensated by the designed controller.

4. Inner closed-loop with PI controller

A simple closed-loop control scheme is proposed as a baseline
control strategy against which the MPC-base controller will be eval-
uated. Such a scheme is depicted in Fig. 5, where the PI controller is
implemented with back-calculation anti-windup method as visual-
ized in Fig. 6. Here, a Pl controller must be designed in order to fulfill
the control objectives. Family of PID controllers is widely used in
every branch of the industry, pH control included. The main reason
why such controllers are still the first choice in industry application
is their simple structure, robustness, and very low computational
demands.

There are numerous methods on tuning of a PID controller, the
majority of which is already embedded in various toolboxes, see
e.g. Oravec and BakoSova (2012), The MathWorks (2016). In this
paper, we have used interactive toolbox (Oravec and Bako3ova,
2012) to design PI controller (14) in its standard structure. Propor-
tional gain P=1.750 and integral gain constant [=0.0167 (see Fig. 6)
of the controller were chosen such that closed-loop response was
fast and without overshoots. The input-output formulation of such
PI controller is given by

u(t) = 1.7500é(t) + 0.0292e(t),

what can be translated into a state-space representation as
Xpi(t) =0.1250 e(t),

u(t) =0.2333 xpy(t) + 1.7500 e(t),

(14a)
(14b)
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PI
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Fig. 6. PI controller scheme with back-calculation anti-windup method. Recall that the manipulated variable u is the voltage on the pump pg.

where xpi(t), e(t) is the controller state and tracking error at time t,
respectively. Due to the presence of constraints on control inputs,
anti-windup technique is considered with back-calculation coeffi-
cient kaw =1.1711, see Fig. 6. The variable k,y directly influences the
performance of the anti-windup scheme. Increasing this variable
will result in decreased rise time of the control performance.

5. MPC-based reference governor

This section elaborates construction of MPC-based reference
governor as an outer control layer for the inner closed-loop, which
consists of PI controller (14) and the controlled system. The objec-
tive of the reference governor is to shape the reference w for the
inner control loop, such that the pH of the outgoing product y will
track the user specified reference r, while satisfying all of the prede-
fined constants. Such control scheme is depicted in Fig. 7. Note that
all variables with bar are real values, otherwise they are in their
deviation form. In the sequel, we start by designing a prediction
model for the MPC-based reference governor, then we introduce
a mathematical formulation of such control scheme. Finally, we
compute its explicit (analytic) solution and discuss its complexity.

5.1. Prediction model

Since MPC is a model-based control strategy, one need to design
an appropriate prediction model. In this case, such prediction
model has to include the entire inner loop of our control scheme
shown in Fig. 5. This is actually quite an easy task, as we already
have both identified the model of the controlled process (13) and
PI algorithm (14) in hand. To proceed, we firstly need to spec-
ify sampling period A =5s. This value was chosen based on the
dynamics of the closed-loop system. Subsequently, by exploiting
A, e(t) = w(t) — y(t) and straightforward mathematical manipula-
tions (Klauco and Kvasnica, 2017), one obtains the discrete-time
state-space model of the inner loop:

x(t + A) = Ax(t) + Bw(t), (15a)
u(t) = Cux(t) + Dyw(t), (15b)
() = Gyx(t), (15¢)
with
A {0.9909 —0.1189] . {0.5548

0.1263 0.7416 |’ 0.9887

The prediction model does not precisely fit the dynamics of the
combined plant and controller. To suppress this model mismatch

one needs to employ offset-free tracking (Borrelli and Morari, 2007;
Muske and Badgwell, 2002; Pannocchia and Rawlings, 2003) to
track the controlled output to the desired reference. This approach
is based on extending the model (15) by disturbance d, which
is added to the output equation (15c¢). Such augmented model is
defined as:

X(t + A) = Ax(t) + Bw(t), (16a)
u(t) = Cux(t) + Dyw(t), (16b)
y(t) = Cyx(t) + d(t), (16¢)
d(t + A) = d(t). (16d)

Without loss of generality, we assume in (16d) that the disturbance
d is considered constant, as we implement MPC in well-known
moving horizon control fashion. The state and disturbance observer
for the system (16) can be given as:

R(t+A) A o] [r0O] [B],. . - .
LY(HA)}_[O 1] {a(t)%[o}(”(”—“)w(f% (17a)

y() = [k } (7(6) = 7°) — Gy&(t) — d(¢), (17b)
2

where X(t), a(t), y(t) denote estimates of states, disturbance and
output, respectively, ¥ is the steady output and y(t) is the output
at time t. Gains Ky and k; are chosen such that the observer is stable
and further tuned to achieve desirable convergence. In our setup,
we have used k; =[0.01880.0217]" and k;, =0.2693.

5.2. MPC formulation

To improve control performance of the PI controller (14), we
aim to design a reference governor scheme, which will enforce con-
straints of the controlled variable y. Yet, these constraints will be
softened by slack variables s. This way, we can introduce an addi-
tional (more penalized) pH interval, which we would like to avoid.
Moreover, the feasibility of such feedback law will be enforced. The
MPC optimization problem of such reference governor scheme can
be stated as:

} , Cu=[02333 -0.3844], D, =[1.7500], Cy =[0.0000 0.2196] .
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Fig. 7. Closed-loop scheme with the reference governor.
The closed-loop implementation of the MPC-based reference
N_1 governorin(18)canbe executed, with the receding horizon fashion,
. - - via following steps:
minwy (4:5% + quwic = w1 + @0 + 7 - ) (18a) gsiep
k=0
= = _ 1. choose an initial vector 6(t)
_ N-1 ,
SL X1 = Axg +Bw, Vk e No™°, (18b) 2. solve optimization problem (18) with 6(t), what yields vector of
i : . T
-C Dyw,, Vk € NN-1 18 optimized variables w % :=[wqx, ..., Wy_1%, S¥] ,
Uk uXpe + DuWi, Vi€ Bo (18) 3. extract the first reference w(t)* = wox and sent it to the inner
Vi = G +do, Vk e NN, (18d) loop, o ‘ ,
4. based on the process outputy = y — * and applied control input
Xo = R(t), do = d(t), (18e) \X()t)*, use (17) to observe states X(t + A) and disturbance d(t +
s>0, (18f) 5. at next sample period construct new parameter vector 6(t +
~ T
N1 A) =[X(t + A),d(t + A), w(t)*, 7(t + A)] and go back to the
Umin < U < Umax, Yk € Ng™, (18g) second step.
Winin < Wy < Wmax, Yk € N§ =1, (18h)
Vi N-1 18i Since the objective function (18a) is quadratic and all constraints
Ymin =S =Yk = Ymax +5, ¥k € No ", (18i) (18b)—(18i) are linear, the optimization problem (18) is a quadratic

where N2 is a set of positive integers, ie., N ={a,a+1,a+
2,...,b}. Denote X, € RZ, wy € R, u, € Rand y, € R to be states
of the inner loop, the shaped reference, the control input from the
PI controller and the output from the process at the kth prediction
step, respectively. Next, N € N is prediction horizon, s € R is slack
variable, 7 € R is desired reference, wy_; is the shaped reference
form the previous sample instant and gs, qw, gy are positive defi-
nite weighting coefficients. Moreover, El(t) and X(t) are estimated
disturbances and states, respectively, given by the observer (17).
The disturbance is considered to be constant along the prediction
horizon.

Optimization problem in (18) is initialized, at
each discrete time t, by the vector of parameters
0(t):=[)?(t)T, a(t), wx(t—A), F(t)]T € R, where, e.g., wx(t — A)
denotes optimal value of the shaped reference used in the previous
sample instant A. The vector of optimized variables is defined by
wi=[wp, ..., Wn,_1,5]" € RN*L,

Each part of the objective function and every constraint in (18)
has the following impact on the optimization problem. In (18a)
the first two terms penalize slack variable and fluctuations of the
shaped references, while the last term provides convergence of the
process output to the desired reference. The dynamics of the inner
loop is described by (18b)-(18d), (18e) represents initial conditions
of the optimization problem, (18f) subjects slack variable to attain
only non-negative numbers, and constraints (18g)—(18i) restrict
values of control inputs, shaped references, and controlled outputs,
respectively.

program (QP), which can be solved be numerous state-of-the-art
solvers such as Gurobi Optimization (2014) or ILOG (Inc., 2003).
The problem, however, is that even with appropriate solver in hand,
which generally is on its own expensive, solving (18) at each sam-
ple instant A can be computationally demanding, i.e., power, time,
and/or hardware issues. Therefore, in the sequel, we will show how
to avoid these requirements, what will lead to a much simpler MPC
implementation.

5.3. Formulation of region-less explicit MPC

In this section, we will compute an analytic solution of QP in
(5.2). Consider w to be a vector of optimized variables and 6 to
be a vector of free parameters, initial conditions of (5.2), respec-
tively. After straightforward mathematical manipulations, the MPC
optimization problem (5.2) can be converted into

miny W Hw + 0" Fw (19a)

st. Gw <e+S0, (19b)

what is a parametric quadratic program (pQP).

As it was reported, e.g., in Borrelli (2003), Baotic et al. (2008),
the analytic solution of (19) is a continuous piecewise affine (PWA)
function, which maps vectors from the parameter space into the
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space of optimal control actions, i.e., k(#): @ — w*. Such function
can be defined as

f,0 +fi
wx = k(0):= . (20)

if 067?,],

fr0 +fr if 0 € Rg,

where R; denote ith critical polyhedral region, f; and f; are local
affine expressions for all i € N’f. Furthermore, for each critical
region holds:

1. int(R;) Nint(R;) = 0, Vi # j,
2. UiRi = Q,
3. 2={f|Iw*:Gw* <e+S0O},

with int(R;) denoting interior of the ith critical region. Subse-
quently, with k(@) in hand, the online evaluation of optimal control
actions w* is reduced only to a mere and division free func-
tion evaluation, i.e., consisting only of addition and multiplication.
Needlessly to say, both solutions of x(#) and (18) return the same
results.

The shortcoming, however, of (20) lies in the memory demands.
This is due to the fact that in order to compute w* one need to store
2 and all affine expressions f; and f;, respectively. And it should be
stress out that by increasing complexity of (18), i.e., by increasing
the number of optimized variables or the number of constraints, the
number of critical regions can grow exponentially, thus the mem-
ory requirement of (20) that can easily exceed available resources
of the targeted control hardware. To tackle this issue, so called
region-less explicit MPC was introduced.

Contrary to the standard (region-based) explicit MPC, the
region-less approach suggests expressing the analytic solution of
(19) without storing critical regions as polyhedral objects. Instead,
this methodology encodes the analytic solution by exploiting only
matrices of the original pQP (19) and the set of optimal active set
combinations A = {Aq, ..., Ag}, where 4; C {1, ..., n¢} denotes set
of locally active constraints, i.e., where (19b) holds with equal-
ity, and n. denotes the number of overall constraints. The main
advantage coming out from this methodology is significant mem-
ory savings, what extends the applicability of this control strategy
even for large scale systems.

To compute such region-less solution one needs to follow two-
step procedure, which can be performed completely offline. Both
steps rely on Karush-Kuhn-Tucker (KKT) conditions of the pQP (19)
which can be formulated as:

Gy wx =ey, +S4.0, (21a)
Gp;Wx < ey; +Sy:0, (21b)
Ax >0, (21¢)
Hw + +F70 + G4+ = 0, (21d)
Aa (Gawx—ey —S4,0) =0, (21e)

where (21a) with (21b) denote primal feasibility, (21c¢) denote dual
feasibility, (21d) optimality and (21e) complementary slackness
conditions, respectively. Moreover, A is vector of the dual variables,
G,; is a matrix obtained by taking rows of G based on indices in
Aj. The same notation is applied also for matrices e 4, S4;, Gv;, €x;
and Sy;, with A; denoting set of non-active local constraints, i.e.,
M = {1, ey nc}\A,-.

In the first step, the set of all locally optimal active sets combi-
nations A is enumerated. Generally, this means that one needs to

solve (21) for each possible active set candidate, the total number
of which is given by

Iw|

ne!
T'max = kZ: m s (22)
=0

where |w| denotes the number of optimization variables. The prob-
lem, however, is that rmax grows exponentially with the number of
optimized variables, thus this approach becomes quickly unprac-
tical. The remedy for this problem was proposed in Gupta et al.
(2011), where authors suggested an efficient branch-and-bound
method how to explore active set candidates. Here, additional fea-
sibility checks are performed in order to cut off redundant branches
in an exploration tree. This way exploration complexity is signifi-
cantly reduced, with the upper bound equal to rmax.

Next, in the second step, we construct local affine maps 0 — w*
for all optimal active set combination in A. Concretely, the vector
of optimal variables can be formulated from (21) as

Wi = —H’I(FT0+GI‘il*), (23)
where we assume that the Hessian H is invertible.! Furthermore,

an affine expression of the optimal dual variables can be obtained
by plugging (23) into (21a) what leads to

Ax = QAN + q(A), (24)
where?

QA = ~(G4H'GL) (S4 + G4HFT), (25a)
q(4) = —(GAiH"GI,)_leA,-. (25b)

Finally, with pQP data H, F, G, e, S of (19), the list of all active sets
A and Q(A;) with q(4;) for alli e N’f in hand,? online evaluation
of optimal control actions w* is reduced only to a simple linear
algebra. Specifically, for a given initial condition 6 one needs to find
anindexi e N’f for which both the dual feasibility (21c) as well as
the primal feasibility (19b) hold at the same time, i.e.,
Ax >0, (26a)
(26b)

with A* and w* given per (24) and (23), respectively. This procedure
can be done sequentially as reported in Algorithm 1.

Gwx < e + S0,

Algorithm 1. Online evaluation of region-less explicit MPC.

A, Q(A;), q(A;)Require: and pQP matrices H-1,F, G, e, S
1: function: REGIONLESSMPCO

ienf 2: for
A =Q(A4)0 +q(A) 3: Compute
4:ifA>0

w=-H"(F'0+ G\ 5: Compute

6: ifGw<e+SO
7w —w

8: return w*

9: endif

10: end if

11: end for
12: end function

Remark 1. An alternative region-less explicit MPC approach was
also proposed by Borrelli et al. (2010) where the authors suggest

1 The Hessian Hin (19) is positive definite, symmetric and invertible if g, > 0 and
qy>0in (18) holds.

2 Here, for sake of simplicity, we do not consider the degeneracy of Gy, ie., we
assume that G, is of full row rank. Approaches to tackle degenerate cases can be
found, e.g., in Spjo et al. (2005).

3 We recall that the inverse of the Hessian, i.e., H™!, as well as expressions in (23)
and (24) can be pre-computed offline for all i € N’f.
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to replace the computation of the primal optimizer in (23) by a
complete affine parameterization of the form

W = Qy(A)B + Gw(A). (27)

As a consequence, one requires more memory to store the factors
Q.,(A4;) and qy,(A4;). However, the upside is that the evaluation of
the primal optimizer via (27) is faster compared to the evaluation
via (23). The adaptation of Algorithm 1 to the parametric represen-
tation of the primal optimiser amounts to replacing Step 5 by (27).
Practical consequences of this change will be investigated in the
subsequent section.

6. Results and discussion

This section elaborates experimental results of pH control in
the chemical reactor. Firstly we specify parameters of MPC setup
followed by complexity discussion of its region-less explicit formu-
lation. Subsequently, we present experimental data of PI controller
as well as region-less explicit MPC. Control performances of both
controllers are compared by means of various criteria.

6.1. Setup of the MPC design

The setup of the MPC policy in (18) was designed as follows.
The weighting coefficients were chosen as to equivalently penal-
ize fluctuation of the shaped reference and the reference tracking,
while the emphasis was put into the penalty of slack variables,
ie. gs =103, qw = 10, qy = 10. Prediction model (18b)-(18d) was
given per (16)and initialized by the vector of parameters in the form
0(t):=[R(0), d(t), w % (t — A), ?(t)]T € R.The prediction horizon of
length of 25s was used, i.e., N=5. To allow MPC to operate only
with the admissible input voltage range &1 € [0, 5] V, the upper and
lower bound in (18g) were chosen as uyj, =—2.5V and umax =2.5 V.
The shaped reference w was restricted to attain only physically
realizable values by setting Wy, = —7 and Wmax = 7, what trans-
lates into interval of pH € [0, 14]. The output constraints (18i) were
Ymin=—1.25 and ymax =1.25, yet soften by slack variables s due
to measuring noise and considered process-model mismatch, see
Fig. 3.

With the chosen MPC setup, optimization problem (18) was
converted into pQP (19) with 31 constraints. We have employed
method proposed in Gupta et al. (2011) to generate the list A,
which consisted of 2979 optimal active set combinations, out of
max = 942 648 possible candidates. For each ith entry of this set,
we have pre-factorized expressions Q(.4;) and q(.4;) per (25a) and
(25b), respectively. Both of these steps were carried out in 208 s
by using MATLAB R2016b, Multi-Parametric Toolbox (Herceg et al.,
2013) and 3.4 GHz processor.

With the pre-computed region-less explicit MPC solution in
hand, a self-contained file was generated, which maps the parame-
ter vector # onto the vector of shaped references w* per Algorithm
1. Specifically, we had to store 438 floating numbers for pQP matri-
ces H'1, F, G, e and S, 13,430 integer numbers for A4, and 80,580
floating numbers for Q(.4;) and q(.4;). By allocating 2 bytes per inte-
ger and 8 bytes per single floating number, the overall memory
footprint of the region-less explicit controller is 675 kb when using
double-precision arithmetics.

We have also investigated how a complete parameterization of
the primal optimizer as in (27) in the spirit of Remark 1 influences
the complexity of the region-less solution. Specifically, computing
the factors Q,,(A4;) and q,(4;) in (27) increased the off-line con-
struction time by 1 s from 208 s to 209 s. More important, however,
is that the storage of the aforementioned factors resulted in a con-
siderable increase of the memory footprint from 675 kb to 1505 kb,
confirming the conclusions of Remark 1.

Moreover, we have also applied the standard region-based
approach to construct the explicit solution. This task was also per-
formed on 3.4 GHz machine running Multi-Parametric Toolbox. We
would like to note that one can use e.g. POP toolbox in the context
of PAROC (Oberdieck et al., 2016) as an alternative. The correspond-
ing explicit solution (20) was yielded in 276s and consisted of
2979 polyhedral regions. To export such controller, one would need
to store 254,304 floating points, what translates into 2034 kb of
memory. This represents 2.9-times greater memory requirements
compared to the region-less explicit MPC approach.

Finally, we have investigated the worst-case runtime of all three
methods measured as the runtime of Algorithm 1 for region-less
solutions, and as the time required to perform the sequential search
through all regions in the region-based scenario. The worst-case
runtimes amounted to 1.75 ms for the region-less approach imple-
mented via Algorithm 1, 1.59 ms for the region-less technique with
a complete parameterization of the primal optimizer as in (27), cf.
Remark 1, and 1.16 ms for the region-based approach. The differ-
ence in the worst-case evaluation time between both region-less
approaches is due to different computation of the primal optimizer
w ™ in the Step 5 of Algorithm 1, cf. Remark 1. All results are sum-
marized in Table 1.

The memory footprint of all explicit MPC solutions can be fur-
thermore reduced by converting double-precision (64 bit) numbers
either to single- (32 bit) or to half-precision (16 bit) accuracy.
Doing so on the one hand immediately reduces the memory con-
sumption by factors of 2 and 4, respectively. On the other hand,
such a reduction also inevitably introduces suboptimality. Table 2
reports achievable reduction of the memory footprint using various
arithmetic precisions. Moreover, it also shows induced loss of opti-
mality, evaluated by performing a series of closed-loop simulations
for 10 equidistantly placed initial conditions. As can be observed,
opting for single-precision arithmetics immediately reduces the
memory consumption of explicit MPC solutions by a factor of 2 at
virtually no loss of performance. Going for half-precision numbers
brings the memory consumption down even more at the expense
of only minor suboptimality. The choice of the number format is
therefore an another design decision control engineers can make
when aiming at implementing explicit MPC controllers on plat-
forms with limited storage capacities.

6.2. Experimental results of closed-loop control

This section describes experimental data obtained by both Pland
region-less explicit MPC policy. The objective of these controllers
was to manipulate voltage of the alkaline pump pg such that pH
of the mixed outlet would track the desired reference. The flow
rate of the acidic pump pa was maintained constant with voltage
up =2.5V. Both experiments were initialized from the steady state
y$ = 7. To illustrate control performance of both control schemes,
five successive reference changes were carried out, each within the
interval of pH = 5 &+ 1 and with time period 600 s.

The experimental data of the conventional PI closed-loop setup
(see Fig. 5) with the PI controller (14) are depicted in Fig. 8. Specif-
ically, Fig. 8a illustrates how the controlled variable yp; (blue-solid
line) tracks the desired reference r (red-solid line), with respect to
the soft constraints (black-dashed line). Furthermore, Fig. 8b shows
corresponding control voltage of the alkaline pump up; (cyan-solid
line) with their hard constraints (black-solid line). Based on the
control performance, one can observe that the settling time has
decreased, compared to the open-loop response from Fig. 3. On the
other hand, the main shortcomings of the proposed PI control are
overshoots of the controlled variable yp;. For example, the maximal
overshoot was 20% at time 3066 s.

The experimental data of the reference governor paradigm (see
Fig. 7), collected with the region-less explicit MPC (18), are shown
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Table 1
Complexity comparison of region-less and region-based explicit MPC approaches.
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Explicit MPC method Construction time [s] Memory footprint [kB]

Evaluation time (worst case) [ms]

Region-less via Alg. 1 208 675 1.75
Region-less via Rem. 1 209 1505 1.59
Region-based 276 2034 1.16
Table 2
Complexity comparison of region-less and region-based explicit MPC approaches w.r.t. different arithmetic precisions.
Memory requirements [kB] Suboptimality
Precision Region-less via Alg. 1 Region-less via Rem. 1 Region-based
64-bit 675 1505 2034 -
32-bit 351 753 1017 0.00%
16-bit 189 376 509 0.09%
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Fig. 8. PI control of pH in the chemical vessel. (For interpretation of the references
to color in text, the reader is referred to the web version of the article.)

in Fig. 9. Here, outputs ygg, references r, shaped references w and
control inputs iigg are denoted by green, red, magenta and pur-
ple solid lines, respectively. Moreover, notation of soft and hard
constraints is maintained the same. In figures, one can notice that
profile of the controlled variable has improved in terms of sup-
pressed overshoots. Concretely, the maximal overshoot at time
3066 s was reduced to only 4%. Yet, the settling time remained the
same. The violation of the soft constraints occurred due to uncap-
tured nonlinear dynamics of the system and measured noise. This
particular overshoot can be however easily eliminated by increas-

time [s]
(b) Control actions.

Fig. 9. Control of pH via reference governor.

ing gs, i.e., by a greater penalization of (18i). On the other hand, as a
consequence of this modification would be increased settling time
in the neighborhood of the soft constraints. Next, we have used
integrated squared error (ISE) criterion to characterize the con-
sumption of the control medium (solution of sodium hydroxide).
Based on this quality indicator, the reference governor scheme has
decreased medium and energy consumption by almost 2%, what is
mainly due to the mitigated overshoots of the controlled variable.
For convenience, control performance of both approaches is shown
in Fig. 10.
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Fig. 10. Comparison of PI and reference governor control performance.

7. Conclusions

This paper addressed a twofold issue. The first problem elabo-
rated the control of pH in the chemical vessel, where we aimed to
improve control performance of a conventional PI control strategy.
This task was achieved via employing reference governor scheme
to the inner closed loop, which consisted of the controlled plant
and PI controller. The objective of this additional control layer was
to shape optimal references in order to supervise the PI controller,
thus to enhance its performance, based on predictions of the future
evolution of the controlled system. To design the prediction model
for such MPC-based reference governor scheme we have firstly
identified the systems dynamics via several step responses and
then constructed inner loop based on the employed PI controller.
Furthermore, disturbance modeling was considered to handle the
process-model mismatch.

The second problem, elaborated in this paper, was dedicated
to the implementation requirement reduction of the proposed
reference governor scheme. In order to achieve this goal, hence
to provide a fast and memory efficient control policy, we have
employed the technique called region-less explicit MPC. In this
method, the entire feedback law is computed offline with the use
of the direct active set enumeration method, which allows one
to construct an explicit solution even for large parametric space
problems. Moreover, unlike in the standard region-based explicit
approach, construction of polyhedral critical regions and PWA feed-
back law is omitted and replaced by storing only the set of all

optimal active set combinations, pre-factorized dual variables of
the KKT system, and matrices of the original optimization problem.
This allows us to significantly decrease the memory footprint of
an explicit controller. Subsequently, with all pre-computed data in
hand, evaluation of optimal control actions can be then performed
by means of a sequential search technique. As reported in Algo-
rithm 1, this online evaluation relies on verifying primal and dual
feasibility condition of the KKT system, what requires only a sim-
ple linear algebra. Therefore implementation of such MPC approach
is fast, simple, and last, but not least, does not require additional
optimization solvers.

The designed region-less MPC-based reference governor was
used to control pH in the CSTR. Based on the experimental data
we have shown that the control performance, compared to con-
ventional PI closed-loop, has improved. Specifically, overshoots
of the controlled variable were mitigated, what led to savings
of the manipulated stream and energy, respectively. From the
implementation point of view, the region-less approach has exhib-
ited significant memory reduction. It has decreased the memory
requirements by a factor of 3 when compared with the stan-
dard region-based approach. Needlessly to say, this reduction was
obtained without introducing any sub-optimality of the controller.
The construction time of this feedback law was almost 25% faster.
On the other hand, the cost of the aforementioned decreased imple-
mentation requirements is the online evaluation time, which has
increased by 50%. This, however, did not represent an issue, as the
worst-case computation time of the optimal control actions was
negligible compared to the systems dynamics.
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We propose to apply artificial intelligence approaches in a warm-starting procedure to accelerate active set
methods that are used to solve strictly convex quadratic programs in the context of embedded model predictive
control (MPC). The proposed warm-starting is based on machine learning where a good initialization of the
active set method is learned from training data. Two approaches to generate the training data set are discussed,

one based on gridding the feasibility domain, and one based on closed-loop simulations with typical initial
conditions. The training data are then processed by machine learning-based classification algorithms that yield
a good estimate of the initial active set for the iterative active set algorithm. By means of extensive case
studies we demonstrate that the proposed approach is superior to existing warm-starting procedures in that
it considerably reduces the number of active set iterations, thus allowing embedded MPC to be implemented

using less computational effort.

1. Introduction

Model Predictive Control (MPC) is nowadays a de facto standard
control methodology when controlling multivariable systems where
satisfaction of constraints and optimization of the control performance
are required (Maciejowski, 2002; Rossiter, 2003; Camacho and Bordons,
2007). Most of MPC in practice is formulated and solved as convex
quadratic programs (QP), parameterized in the initial state measure-
ment. When controlling systems with fast dynamics, it is vital to be
able to solve such QPs fast enough. This, however, becomes challenging
when constraints of the implementation hardware, such as the available
computational power and memory storage, are taken into account,
especially when targeting simple hardware such as microcontrollers
(Zometa et al., 2013), field programmable gate arrays (Ling et al., 2008),
or programmable logic controllers (Huyck et al., 2012).

Various avenues to providing the solution to a given MPC-based QP
with minimal resources (computation and memory) can be pursued. One
option is to solve the QP off-line for all possible values of the initial
condition using parametric programming (Bemporad et al., 2002). Such
techniques, however, are limited to problems of small size, say, for a
short prediction horizon, up to 10 states and up to 4 control inputs.
For problems of bigger size, one usually solves the QP on-line. To do
so, a plethora of methods have been suggested, such as active set
methods (Nocedal and Wright, 2006; Wills and Ninness, 2010; Ferreau

* Corresponding author.

et al., 2008), interior point approaches (Rao et al., 1998), fast gradient
procedures (Richter et al., 2012; Kogel and Findeisen, 2011), gradient
projection algorithms (Patrinos and Bemporad, 2014), splitting methods
(O’Donoghue et al., 2013; Stathopoulos et al., 2014), and tailored MPC
algorithms (Liu and Kong, 2014), to name just a few. Among these,
the active set methods are frequently used due to their simplicity and
easiness of implementation in the embedded framework (Cimini and
Bemporad, 2017).

In this paper, we focus on active set methods (ASM). There, the
working active set .4 and the primal/dual optimizers are iteratively
updated until the global optimum of the convex QP is found. The
dominant speed factors of ASM are the number of iterations and the
cost of linear algebra in each iteration, with the former having larger
impact on the overall performance (Herceg et al., 2015).

As shown in Herceg et al. (2015), the number of ASM iterations
can be significantly decreased if the iterations are warm started from
some known initial active set .4, and the associated primal/dual feasible
solution. In Ferreau et al. (2008, 2014), the ASM is initialized from the
active set A*(r — 1) obtained at the previous time instant ¢ — 1. This,
however, does not take into account the current state measurement
and therefore works well only when the active sets do not change
much in time. An improved warm starting procedure, which takes into
account the information about the current state x(r), was proposed in
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Otta et al. (2015). There, LQR-based warm starting is used in conjunc-
tion with projections onto constraints. Therefore the approach is only
suitable, from a practical point of view, if the constraint set is simple,
such as a hyperbox. Finally, in Zeilinger et al. (2011) the authors have
proposed to devise a state-dependent warm start .A,(x(1)) by solving,
off-line, a parametric program. Although substantial reduction in the
number of iterations could be achieved, the procedure is limited to
systems with a modest number of states, say, below ten.

In this paper we propose to apply machine learning (ML) to accel-
erate primal active set methods used to solve QP-based MPC problems.
Specifically, we show how to construct a state-dependent warm start
procedure that yields the initial active set A, as a function of the current
state x(¢). Specifically, the policy A,(x(1)) is learned from training data
collected off-line. We show that by resorting to standard ML-based
classification algorithms, such as classification trees (Breiman et al.,
1984) and k-nearest neighbors (Dasarathy, 1991), the learned policy is
simple enough as to enable a fast and cheap embedded implementation,
and performs better compared to the feedback warm-starting of Ferreau
et al. (2008). Finally, the procedure is applicable to QP-based MPC prob-
lems where the constraint set is an arbitrary polyhedron, thus allowing,
among others, to include terminal set constraints. In fact, application of
machine learning procedures to solve optimization problems is not new.
Research presented in Nazemi (2014) and Elsayed et al. (2014) use the
neural networks to find optimal solution to the strictly convex QPs.

Note that the proposed machine-learning based acceleration of
active set methods does not replace the control algorithm, it merely
complements it. Specifically, as shown in Section 5, ML allows the ASM
to arrive at the optimal solution using a fewer number of iterations
compared to conventional methods, such as the one of Ferreau et al.
(2008). Since the primal active set method guarantees that the optimal
solution is found even if the initialization is not correct, the proposed
procedure maintains guarantees of closed-loop stability and constraint
satisfaction.

2. Preliminaries
2.1. QP-based MPC
For linear systems

x(t+ 1) = Ax(?) + Bu(?), @

subject to constraints x € X, u € U" with X C R", U" C R™, the context
of this paper revolves around solving the following MPC problem:

N-1

w mhr,l\, 1 x}VQfo + Z (xLQxxk +u,T(Quuk) (2a)
ety =

S.t. X3 = Ax + Bup, k=0,...,N -1, (2b)

(X)) EX XV, k=0,...,N—1, (2¢)

xy € X, 2d)

is a finite prediction horizon, A, B are system matrices, and X, U’, X;
are polyhedra that contain the origin in their respective interiors, and
X¢ C X. It is well known, see, e.g., Mayne et al. (2000) that (2) can be
converted into a parametric quadratic program

where Q¢ > 0, Oy > 0, Q, > 0 are penalty matrices, N € N < o

min 1/2UTHU +0"FU (3a)
s.t. GU < E0 + w, (3b)

with § = x, being the parameter and U = [, ..., u},_]" representing
the optimization variables. The vectors/matrices H, F, G, E, w can
be obtained from (2) using straightforward algebraic manipulations.
We remark that H > 0, thus the Hessian is invertible, since Q; > 0,
0Oy >0, Q, > 0 is assumed. The optimal open-loop sequence of control
actions, i.e., U*, can then be obtained by solving (3) for a particular
initial condition = x(r). MPC is then traditionally implemented in the
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receding horizon fashion where only the first element of U*, i.e., u(‘J‘
is implemented to the controlled system and the whole procedure is
repeated at the subsequent time instant for a new value of the initial
condition 4 = x(r).

2.2. Primal active set method for strictly convex QPs

The primal active set method (ASM) (Fletcher, 2013) is an iterative
procedure for finding the minimizer U* to (3) for a fixed value of the
parameter 6. At each iteration, the ASM searches for a vector 4 along
which the objective function (3a) decreases. To tackle constraints, the
procedure also iteratively updates the index set .A of constraints that are
active at the current iterate. Specifically, at each iteration the active set
method solves the equality-constrained QP (EQP) of the form

in L T T
min (U +4)'H(U +4) +0"F(U +4) (4a)
st G (U+4)=E 0+ wy, (4b)

where G 4 consists of the rows of G indexed by the set A C {1,...,c}
where ¢ is the number of constraints in (3b). In (4), U is considered
fixed and feasible, i.e., G ,U = E 40 + w 4, and therefore G 44 = 0 needs
to hold to retain feasibility. The improving direction 4 for (4) can be
solved from the Karush-Kuhn-Tucker system

191 _ _FT
[=le, S ) @
A
where 4 is the vector of Lagrange multipliers. If' ||4|| = 0 and 4, > 0 for
alli € A, U is the optimal solution and the iterations terminate. If, on
the other hand, some Lagrange multipliers are negative, one constraint
is removed from A, typically the one corresponding to the smallest
Lagrange multiplier, i.e., A = A\ {i*} with

* _—
i” = argmin Ais ©

and the procedure continues with the next iteration. If the improving
direction 4 is non-zero, the current iterate U is refined by U = U + a4.
Here, the step size a is given by a = min{1, f;}, where §; are defined,
for all j ¢ A for which G;4 >0, as

_ Ei0+w; -G;U @
=i
where G, is the jth row of the matrix. If « < 1, then some previously
inactive constraint becomes active when updating U along the direction
A. Among all such constraints, one typically (Fletcher, 2013) picks the
one that is activated first, i.e., j* = argmin ;8;, followed by adding j* to
the active set, i.e., A = AU {j*}. The complete procedure is reported as
Algorithm 1.

Remark 2.1. Algorithm 1 takes the initial active set A and the initial
primal solution Uj, as its inputs. If no prior information is available, one
can always choose A, = @ and U, = 0, provided 0 € U". If A, is given as
a non-empty set, U, can be compu.ted by Uy = G;O(E 4,0 + w4,) where
+ denotes the left Moore-Penrose inverse. []

Remark 2.2. As pointed out in Fletcher (2013, Chapter 10.3), Algo-
rithm 1 converges to the primal optimal solution U* regardless of the
choice of the initial active set A, provided it is chosen such that the
matrix G A is of full row rank. Naturally, each choice of .4, leads to a
different sequence of iterations. []

3. Problem statement

The number of iterations the ASM takes to converge to the optimal
solution U*(¢) for a given initial condition # = x(¢) at time instant ¢

! In the floating point environment, it is advised to replace the condition
|l4]l = 0 in Algorithm 1 by ||4|| < e for some small positive value of ¢, typically
equal to the machine precision.
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Algorithm 1 Active-Set Method
Choose initial active set .4, and a feasible solution U,
Set A < Ay, U < U,
while not converged do
Solve Eq. (5) for 4 and 1
if ||4|| = 0 then

if 2> 0 then
return U* = U
else
A < A\ {i*} per Eq. (6)
end if
else

Determine f; per Eq. (7) for j ¢ A, G;4>0
Set @ = min{ L}
Update U < U + a4
if a < 1 then
A < AU {j*} where j* = argmin; f;
end if
end if
end while

depends on the choice of the initial active set A, C {I,...,c}, where ¢
is the number of constraints in (3b). With no a-priori knowledge, A, is
typically chosen as an empty set .4, = @, along with U, = [0,...,0]T as
the initial feasible solution. Such a choice is referred to as cold-starting.

Alternatively, the ASM can be warm-started from some non-empty
initial active set A, # @ using prior knowledge. In the context of
feedback implementation of MPC, given U*(r — 1) and A*(r — 1) as
respective quantities obtained at the previous time instant + — 1 for
0 = x(t — 1), U*(¢) can be computed by invoking Algorithm 1 with
Ay = A*(t - 1) and Uy = U*(r — 1), see Ferreau et al. (2008). There
is, however, no guarantee that such a feedback-based warm-start is
better than cold-starting, especially when the active set A*(¢) differs
significantly in cardinality from A*(r — 1) (e.g., when 6 = x(¢) is far
away for # = x(7 — 1)). In fact, it could happen that such a warm-starting
increases the number of iterations as compared to cold-starting, as will
be demonstrated in Section 5.

In this paper we propose a novel warm-starting approach based on
machine learning that will reduce the number of iterations of the primal
active set method. This will be achieved by constructing a procedure
that yields A, as a function of the parameter 6 in (3). Specifically,
we seek the mapping « : R" — {1,...,c} such that A, = «x(0) allows
the ASM implemented per Algorithm 1 to converge faster compared to
cold-starting and traditionally used feedback warm-starting of Ferreau
et al. (2008). Moreover, in the spirit of embedded MPC, it is desirable
for x(-) to have a low memory footprint and being fast to evaluate. In
what follows we propose to construct the mapping «(-) by using machine
learning-based classification.

Remark 3.1. All procedures of this paper are directly applicable to
accelerate, in terms of reducing the number of iterations, dual active set
methods (Wills and Ninness, 2010), dual gradient projection methods
(Axehill and Hansson, 2008), online active set strategies (Ferreau et al.,
2008), as well as spline-based methods of Li and Swetits (1997). [

Remark 3.2. Unlike the warm-starting method proposed in Ferreau et
al. (2008), which is tailored to control-oriented setups, the methods of
this paper are also applicable to accelerate generic QP problems of the
form (3) that need to be solved multiple times for various values of the
parameter, say, 6(+ — 1) and 6(r), with 6(t — 1) having no direct relation
to 6(r). Such problems often occur, e.g., in economics (Dorfman et al.,
1958) and portfolio optimization (Wu and Liu, 2012), or in analysis of
elasto-plastic structures (Wanxie and Suming, 1988). [

The proposed machine learning-based warm starting of the active set
method only serves to reduce the number of iterations in Algorithm 1,
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thus to reduce the time needed to obtain the optimal control actions
U* in the MPC problem (2). Since Algorithm 1 always converges to
U™ irrespective of the choice of the initial active set (cf. Remark 2.2),
the proposed warm starting can never have a negative impact on control
stability. Specifically, stability of the MPC controller only depends on the
choice of Q¢ and X; in (2a) and (2d), respectively, see, e.g., Maciejowski
(2002).

Moreover, satisfaction of hard limits on states and inputs, repre-
sented by the constraint sets X and V" in (2c¢), is also preserved under
the proposed method as it only depends on Algorithm 1 computing the
optimal control actions U* that satisfy (2b)—(2d). As pointed out above,
this is always guaranteed by Algorithm 1 irrespective of the choice of
the initial active set A, by the arguments of Remark 2.2.

Robustness in terms of rejection of disturbances can be addressed
by a straightforward modification of the MPC problem in (2) by the
arguments of robust MPC as proposed in Mayne et al. (2000). Specif-
ically, the controller can be made robust against bounded additive
disturbances by contracting the state constraint set X. Note that even
after this modification the MPC problem in (2) remains a convex
quadratic program as in (3) and can therefore be solved by Algorithm 1
accelerated by the proposed warm starting based on machine learning.

4. Machine learning-based classification

Assume we are given a set of M distinct realizations of the parameter
6 in (3), i.e, {61y, >0} along with the set of respective? optimal

active sets {A(*l), A . Henceforth, we will refer to the set of tuples

{0 Az))} as the training data. In machine learning-based classification,
the task is to construct the classifier x(0) that identifies to which active
set a new observation 6 belongs to, by minimizing the classification error
among the training data, i.e.,

*
(M)}

M
min Y [Ix(0) ~ Af I @®)
i=1

The construction of the classifier x is a two step procedure that is
performed off-line. In the first step, the training data set is created.
Then, in the second step, the classifier is designed by solving (8).
The generation of the training data set is tackled in Section 4.1 while
two standard methods for constructing the classifier are reviewed in
Section 4.2.

4.1. Generation of training data

In this section we review two methods of generating the training
data set {(6;), A(’;))}. The first method is based on selecting M distinct
samples 6;, from the set © of parameters for which (3) is feasible, i.e.,

Q=1{0|3U s.t. GU < EO + w}. ©)]

Such a set can be constructed off-line by projecting the polyhedron P =
{(U,0) | GU - EO < w} onto the #-space using, for instance, the Fourier—
Motzkin elimination (Dantzig and Eaves, 1973), or the equality set
projection method (Jones et al., 2004). A Matlab-based implementation
of these methods is provided in the Multi-Parametric Toolbox (Herceg
et al., 2013). Once the set 2 is constructed, the samples Opyi=1,....M
can be selected, e.g., by equidistantly gridding the set Q. Subsequently,
for each sample 6, the associated optimal active set A% is obtained
from Algorithm 1. We reiterate that such a construction is performed
off-line, and therefore even large values of M can be considered.

The downside of such a procedure it that computing €2 by projection
is hard. Specifically, assume that 7 is given by ¢ inequalities as in (3b),
U € RN™ (here, N is the prediction horizon and m is the number
of inputs of the system), and 6 € R". Then eliminating d = Nm —n
dimensions from P (i.e., projecting 7 from the U — 0 space onto the 6

2 Notice that multiple distinct parameters can yield the same active set.
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space) can result in at most 4(c /4)2d inequalities that define £, a double
exponential complexity. Therefore the gridding-based approach is only
suitable, from a practical point of view, for problems of small size, say,
n <10, Nm < 30.

Alternatively, samples ;) can be drawn from an outer approximation
of Q that is easy to compute, such as the box approximation

Q2={010<0<0). (10)

Here, § € R” and 0 € R" can be computed by

9, =min(0; | GU < E0 +w}, j=1,....n, a1
and
0, = max (6 |GU < E6+w), j=1,...,n, 12)

where 6, is the jth element of the vector. Each of (11)-(12) is a
linear program (LP) in decision variables # and U. Thus the outer box
approximation Q of (9) can be computed with a total of 2n LPs. Since
Q 2 @, not all samples of 9 selected from @ are feasible for (3). In
such a case one only adopts the samples 6, that are feasible. Testing
feasibility of 6, can be done by solving a feasibility LP of finding U s.t.
GU < E6;, + w holds.

The second method is to determine the samples 6;) by performing,
off-line, closed-loop simulations of the system (1) subject to the MPC
feedback u* (1) = u(’)‘ (xo) from (2). Here, we first select a set of feasible
starting points x(;,(0) for j = 1,..., M using knowledge of the system
in (1), e.g., by considering “typical” initial conditions that are going
to be likely used in practice. Then, for each x;(0) one computes the
sequence of points Xt + 1) = Axy (@) + Bu*(t) fort = 0,...,T — 1
(here, T denotes the number of simulation steps) where at each step of
the simulation u* () = u} is obtained by solving (2) using Algorithm 1
for the initial condition x, = x(j(). As a consequence, one obtains a
set of closed-loop state trajectories {x;)(0),...,x;,(T)} along with the
associated optimal active sets A&(t), Finally, one takes as the training
data the set of 9 = x;(r) and A*l. = A*(t)foreach j = 1,.... M
and t = 0,...,T — 1. The total number of training data points is thus
M = MT. The advantage of this method is that the sample points 6, are
representative with respect to the evolution of the controlled system (1)
subject to the MPC controller (2).

4.2. Classifier construction

Given the training set {(6;, A(’;)) }, the function « that classifies a new
sample 6 to one of the active sets can be obtained from (8). The class
of classifiers that are easy to construct and yield a good performance
in terms of (8) includes, among others, classification trees (Breiman et
al., 1984), k-nearest neighbors (Dasarathy, 1991), naive Bayes classi-
fiers (Zhang, 2004), support vector machines and ensembles thereof
Cristianini and Shawe-Taylor (2000), random forests (Pal, 2005), and
neural networks (Gurney, 2003). Among these, only the classification
tree (CT) and the k-nearest neighbors (k-NN) approaches are pursued
here, as they were the most efficient ones for the types of problems
considered in this paper in terms of a low classification error and a low
complexity of the classifier.

4.2.1. Classification trees

Classification trees consist of a set of splitting functions ¢; : R" —
R, organized as a binary tree where each leaf node represents one
predicted optimal active set. In each non-leaf node, the sign of ¢;(9)
determines whether the next visited node is the one on the left or on
the right. The splitting functions o; are typically restricted to linear,
axis-aligned functions for simplicity of the construction. An example of
a classification tree for a binary classification is shown in Fig. 1(a). The
accuracy of the tree can be adjusted by hyperparameter optimization,
during which parameters like the minimal amount of samples in each
leaf node, and maximal number of splits, are selected in an optimal
fashion.
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(a) Classification tree. (b) k-NN classification.

Fig. 1. Visualization of two classifiers. Blue squares represent label 1 and red
discs correspond to label 2. The green disc is the unlabeled sample 6 to be
classified. In Fig. 1(b), the dashed lines represent two splitting functions o,
o,. Fig. 1(b) shows the k-NN classifier. If k = 4, then the unlabeled green point
will be assigned to label 1, as it has 4 blue points closer to it than the red points.
If k = 5, then the point is classified as label 2 since it has 5 red points closer to it
than the blue points. (For interpretation of the references to color in this figure
legend, the reader is referred to the web version of this article.)

4.2.2. K-nearest neighbors classifier

In the k-NN classification an unlabeled data point 6 is assigned to
a corresponding active set (the label) based on the distance from 6
to individual samples 6;. Specifically, for a given 6, one identifies k
training data points that are closest to 6 in some measure. Then, 6 is
classified to belong to the active set which is most frequent among the
k nearest samples. A graphical illustration of the procedure is shown
in Fig. 1(b). The constant k in k-NN classification is either specified
by the user or, alternatively, can be determined using hyperparameter
optimization. Moreover, the performance of the classification can be
adjusted by selecting the norm in which the distance between 6 and
6 is evaluated when searching for the k nearest neighbors.

4.3. Complete procedure

The proposed ML-based warm-starting procedure consists of a
learning phase and an implementation phase. The learning phase is
performed off-line and first requires the generation of the training

data set {(01), A7), .- Oy Af,y,))} per Section 4.1, followed by the

construction of the classifier x per Section 4.2.

In the implementation phase, the trained classifier assigns an un-
known data point 6 to one of the optimal active sets A(*l), ,A(*M) by
evaluating x(6). In the best case, x(6) = A*(0) and the on-line active
set method represented by Algorithm 1 converges in one iteration when
initialized by A, = k(). In general, however, x(9) # A*(9). In this case,
Algorithm 1 will need more than one iteration to converge to the global
optimum. However, as shown in Section 5, the number of iterations is
usually significantly lower compared to the warm-starting of Ferreau et
al. (2008).

In the context of feedback implementation of MPC, the implementa-
tion phase consists of the following steps:

1. measure the state of the system 6 = x(?);

2. evaluate the classifier A, = x(0);

3. run Algorithm 1 initialized by A, obtain U* = {ug, NI H

4. implement the control input u(r) = ”8 to the system (1) and repeat
from Step 1 at the subsequent time instant.

5. Case study
5.1. Illustrative case study for a SISO system

A double integrator system with A = [}915], B = [19] is considered
for the construction of the model predictive controller (MPC) in (2),
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ASM, the pink solid line the warm-started ASM, the solid green line depicts the number of iterations of warm-started ASM via a classification tree, while the red
dashed line represent warm-starting by the k-NN. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this

article.)

with prediction horizon N = 60. Weighting matrices Q¢, O, and The data points in the training data set were obtained by equidis-
0, were set to identity matrices of appropriate size. Moreover, we tantly gridding the feasibility domain £ (cf. Section 4.1, Eq. (9)), which
consider a constraint on the control action u € [-1, 1] and states was obtained via MPT3 toolbox (Herceg et al., 2013). Moreover, we
[-100, —100]T < x < [100, 100]T. The optimization problem in (3) consist have also constructed a testing data set, against which we evaluate the
of 60 optimization variables and of 242 inequality constraints. performance of the warm-started ASM. Specifically, by the equidistant
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gridding we obtained 258 initial conditions. Subsequently, we have
performed 258 closed-loop simulations. The length of each simulation
was 50 samples. For each simulation step, we collected the set of
active constraints, which results in 1035 unique combinations of active
constraints. Hence, we obtained the training data set which consists of
13158 data points. Next, we constructed two classifiers with hyper-
parameter optimization. First, the classification tree was obtained in
19 min and consisted of 2043 nodes. Second, the k-NN classifier was
constructed in 6 min, which consisted of 13 158 observation. Both clas-
sifiers were obtained using the Statistics and Machine Learning Toolbox
in MatLaB R2017b on Intel Core i5 machine with 8 GB of memory.

The performance of the warm-started active set method (ASM)
enhanced by the classification tree (CT) and the k-NN classifiers was
evaluated against a test data set consisting of 500 initial conditions. This
many closed-loop simulations with 100 steps were performed with the
MPC posed as a QP which was solved using a cold-started ASM, a warm-
started ASM as described in the Section 3, warm-started ASM with CT,
and warm-started ASM with k-NN. Results reported in Fig. 2, show the
cumulative number of iterations required by each of the ASM methods
to converge to the optimal solution. We can observe that in all cases,
the k-NN classifier provides an optimal estimate of the active set, hence
it outperforms the standard warm-starting as well as the cold-started
ASM. Moreover, the usage of CT in the warm-starting ASM decreases
the number of iterations in 98.2% cases.

Furthermore, we can observe, that by considering standardized
warm-starting procedure of the ASM, the total number of iterations
is increased in 17.6% of all test cases compared to the cold-started
ASM. Such a behavior is captured on the closed-loop profile of the case
number No. 465. The initial condition for this closed-loop profile was
set to x(0) = [-100.0 — 0.7]7. The Fig. 3 shows the trajectories of states,
control input and the number of iterations needed for the ASM method to
converge, respectively. In general, the ML-based ASM requires less than
3 iterations to converge during the entire simulation. On the other hand,
in the time instants 10 to 16 and from 30 to 34 the cold-started ASM
performs better than the standardized warm-started ASM. The main
reason behind this behavior, is the initialization of the ASM algorithm
1 by indexes of active constraints from the previous time instant. At the
time step ¢ = 33, the value of the state vector was x(33) = [2.9173, —-0.7]T,
and the optimal control action was u*(33) = —0.7795. The corresponding
optimal active set is in this case an empty set, however the standardized
ASM was initialized by A*(32) = {4}. Hence, it required 4 iteration
in total to converge. However, the cold-started ASM, as well as ASMs
enhanced via machine learning converged in 2 iterations.

Although counterintuitive, the warm starting of Ferreau et al. (2008)
sometimes causes Algorithm 1 to perform more iterations compared to
cold starting, as can be seen in Fig. 2. Our explanation for this behavior
is as follows. First, note that the warm-starting of Ferreau et al. (2008)
uses the optimal active set A*(r—1) obtained at the previous time instant
for 6(¢ — 1) to initialize Algorithm 1. However, since MPC is applied in
discrete time, the current state measurement 6(r) can, in fact, be far
away from 6(r — 1). Therefore .A*(¢) can be very different (in terms of
cardinality, hence in terms of the number of iterations of Algorithm 1
) from A*(r — 1). Therefore if the cardinality of A*(t — 1) is large and
the cardinality of .A*(¢) is small, one would be better of with initializing
Algorithm 1 with an empty active set (thus performing cold-starting) as
it would allow Algorithm 1 to converge to A*(¢) quicker. Evidently, as
observed in Fig. 2, this is often the case. On the other hand, the proposed
machine learning-based warm starting procedure is parameterized in
the current measurements 60(¢), therefore it yields better estimates of
the initial active set, thus allowing Algorithm 1 to arrive at the optimal
solution faster.

Note that the closed-loop trajectories obtained by solving for the
optimal control actions by running Algorithm 1 initialized in different
ways (cold start, warm start of Ferreau et al. (2008), as well as the
proposed machine learning-based warm start) coincide. This is a natural
consequence of Remark 2.2 which states that Algorithm 1 always
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Table 1

Influence of the training data size on the quality of the ML-based initializa-
tion, expressed by an average number of iterations N,,. Results are obtained
for the simulation case No. 465. Note that the cold-started ASM and the warm-
starting of Ferreau et al. (2008) require 267.2 and 213.3 iterations on average,
respectively.

Number of samples Navg Size [kB]
CT k-NN CT k-NN

1020 15.1 1.8 1648 47
1479 12.7 1.8 2433 70
1836 11.6 1.8 3025 86
3060 7.0 1.8 5133 133
4488 4.9 1.8 7 482 208
6222 2.8 1.8 10234 290
8262 1.9 1.8 13579 391

11679 1.9 1.7 19109 565

13158 1.8 1.6 21625 613

converges to the same optimal solution regardless of the choice of the
initial active set.

Naturally, the quality of the ML-based warm-starting depends on the
size of the training data set. The influence of the size of the training set
on the quality of the ML-based warm-start is reported in Table 1. As
can be seen, the k-NN classifier performs fairly well already for a small
number of training samples and provides a near-to-optimal estimates
of active constraints, regardless of the size of the training set. The
classification tree, on the other hand, befits greatly from more training
data. Needless to say, the larger the training data set, the larger is the
memory footprint of respective classifiers.

Note, that results reported in Fig. 2, Fig. 3 and Table 1 were obtained
by performing simulations with Matras R2017b on Intel Core i5 machine
with 8 GB of operational memory.

To measure the computational load of proposed enhancements to
the ASM, we recoded the procedure in Section 4.3 to C code using the
built-in Matlab function “codegen”. A target device selected for ASM
evaluation was a single-board computer based on Broadcom BCM2835
SoC (System-on-a-chip) with 700 MHz CPU (ARMv6 architecture) and
256 MB of RAM. The C code for each method was compiled directly on
the target device using a GCC compiler, using compiler’s optimization
setting O3, which improves the source code performance. By considering
the compilation option for size optimization, Os, we decreased the
size by approximately 1%, which had a non-measurable effect on the
execution time. Subsequently, we performed two closed-loop simula-
tions with initial conditions x(0) = [—-100.0, —0.7]7 (case No. 465), and
x(0) = [—88.6, 0.3]7 (case No. 108) to measure the execution time of
the optimization using 4 considered methods (cf. Fig. 3). Table 2 shows
alongside the memory requirements, also the longest execution time per
one time step and also the average time required by each individual
method. The utilization of machine learning enhancements of the ASM
method decreases the worst time case by a factor of 20, while on average
by a factor of 3.

5.2. Illustrative case study for a MIMO system

A larger case study involves a model of a Boeing 747 aircraft. The
states vector of this model consist of the airspeed in horizontal direction,
the airspeed in vertical direction, the rotation of the aircraft, and the
horizontal nose-tip angle. Manipulated variables are elevator angle and
the thrust. Finally, the measured variables are true air speed and the
climb rate. Further details about this benchmark model can be found in
Camacho and Bordons (2007). For illustration purposes, we introduce a
discretized state space model, using the sampling time of 0.2 s, expressed
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Table 2
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Computational load comparison of the embedded implementation of procedure in the Section 4.3 on Broadcom
BCM2835 chip (700 MHz CPU). For classification-tree application two cases are tested (cf. Fig. 2). Case no. 465
represents the situation where the CT approach outperforms the k-NN classifier. Case no. 108 represents a worst

case for the CT classifier.

Type of ASM Size [kB] Execution time [ms]
Worst case Average time
No. 465 No. 108 No. 465 No. 108
Cold-start 171 4032 4361 453 545
‘Warm-start of Ferreau et al. (2008) 176 3325 3005 375 429
CT warm-start 21625 167 1002 117 257
k-NN warm-start 613 168 169 144 144
‘ cold-start warm-start classification tree k-NN
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Fig. 4. Results for the Boeing 747 example: variable N,,, shows the average number of iterations, N,

‘max i the maximum number of iterations per one closed-loop

simulation. The closed-loop simulations involve the regulation of the Boeing 747 system (13) using MPC feedback policy.

as
0.9993 0.0076 —0.0005 —0.0644
A = —0.0096 0.9236 1.4290 0.0003
0.0039 -0.0186 0.9034  —0.0001 |’
0.0004 —-0.0019 0.1907 1.0000
- (13a)
0.0019 0.1999
B = —0.2051 0.0791
—0.2208 0.1145(°
—0.0225 0.0116
1.0000 0.0000 0.0000 0.0000
€= 0.0000 —1.0000 0.0000 7.7400| (13b)

Next, an model predictive controller was designed with N = 15,
matrices Qy = Iy, and Q¢ = Iy, were set to identity matrices, and
to ensure the stability the input penalty was set to Q,, = 10 - I,,,. Con-
straints on the manipulated variables were set to [-3, —3]T <u < [3, 3]T,
while the measured variables were constrained to [-42.5, —47.5]T <y <
[27, 23]7. The optimization problem consist of 30 decision variables and
of 124 inequality constraints.

Similarly to previous case study, the training data were obtained by
equidistant gridding of the feasibility domain. By this procedure, we
obtained 122 initial conditions, from which we performed closed-loop
simulations with 100 samples. The entire training set then consisted of
12200 data tuples, with 190 unique combinations of active constraints.
We constructed two classifiers with hyper-parameter optimization. The
classification tree was constructed in 16 min and consisted of 295 nodes.
The k-NN classifier was obtained in 4 min and is determined by 12200
observations.

The performance of the CT-based and k-NN-based warm-starting of
the ASM was tested on 200 simulations with initial conditions different
from the training data set. Each simulation length was N, = 100
samples. Results of this comparison in shown in Fig. 4, where we
compare the total number of iterations in each simulation case of the
ML-enhanced ASM with standardized warm-starting and with the cold-
start of the ASM. Again, we see that in 92.5% the usage of classification
tree decreases the total number of iterations compared to the warm-
starting of Ferreau et al. (2008), while the k-NN-based warm-start
improves the iteration count in 98% of all cases.

6. Conclusions

In this paper, we have shown how to decrease the time to solve the
MPC control problem posed as a QP. This was achieved by providing
better estimates of the active constraints for the active-set method using
machine learning tools. Specifically, the classification tree and the k-
NN classifier, were used to supply an estimate of the set of active
constraints based on the current value of the initial condition. The
numerical case study showed, that the number of iterations required
to converge to optimal solution can be reduced by several orders of
magnitude.

Reduced number of iterations also decreases the time required to
converge which allows for the embedded implementation of online
MPC. Results gathered on hardware simulations showed reduced time
of convergence when considering the machine-learning enhancements
of the active set method. Moreover the hardware-in-the loop simulation
shows that the time required to obtain the optimal control action is
decreased by a factor of 20.
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In our experiments, the k-NN classifier outperformed classification
trees. Our explanation is that the classification tree uses axis-aligned
separation hyperplanes, therefore the regions of validity of individual
initial active sets are hyperboxes. However, from the theory of explicit
MPC (Bemporad et al., 2002) we know that the exact regions of validity
are generic polytopes, not necessarily hyperboxes. Therefore the k-
NN classifier better approximates these general shapes, leading to an
initialization of Algorithm 1 that is closer to the truly optimal one, hence
allowing it to perform fewer iterations to converge.
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Abstract

Tunability is a major obstacle in the creation and subsequent application of the explicit model predictive control (MPC).
The main bottleneck lies in the need to reconstruct the parametric solution each time weighting factors changes. Such an
operation makes the implementation of the explicit MPC impractical. This manuscript addresses the problem of producing
a suboptimal parametric solution to the optimal control problem, where the change of the weighting factor does not warrant
the reconstruction of the explicit MPC. The solution is achieved by interpolating between two boundary explicit solutions for
a range of values in weighing factors. Furthermore, we show that the suboptimal solution enforces the closed-loop stability
and recursive feasibility. The stability and recursive feasibility are maintained by carefully choosing the terminal penalty and

terminal set in those boundary explicit solutions.

Key words: Model Predictive Control, Parametric Optimization, Tunable Controllers.

1 Introduction

In model predictive control (MPC) design, the tuning
matrices serve a dual purpose. First is scaling individ-
ual components of the state and input vectors. For this
purpose, the selection of penalty matrices is dictated by
the physics of the plant. While in this scaling approach,
we neglect the control-oriented objectives such as per-
formance or comfort. The second purpose of tuning ma-
trices is to manage the aggressivity of the controller. We
can find many industrial applications where fixed values
of tuning factors determined before control do not yield
satisfactory performance over time, e.g., see [16,17,19],
and references therein. Therefore, the tunability of the
MPC is a highly demanded feature by control engineers.
Implementation of optimal control problem with non-
fixed tuning factors in explicit MPC framework [3] can
be done in an optimal fashion in two ways. First, we can
construct a parametric solution to the MPC problem
subject to all parameters, which now includes tuning
factors, resulting in non-linear parametric optimization.
The second approach lies in reconstructing the explicit
solution each time instant if weighting factors change,
which counteracts the effect of having an explicit MPC.
So far, a limited number of scientific works have been
published in this direction. However, by addressing the
issue of effective real-time implementation of tunable

* Corresponding author J. Oravec. Tel. +421 259 325 364

Email addresses: juraj.oravec@stuba.sk (Juraj
Oravec), martin.klauco@stuba.sk (Martin Klauco).

Preprint submitted to Automatica

explicit MPC strategies, we significantly increase their
implementation potential in various fields of applica-
tions [18]. Moreover, these controllers can, to some ex-
tent, replace gain-scheduling controllers with the added
value of constraint satisfaction. The tunability proper-
ties of the explicit MPC solutions were previously ad-
dressed in [2], where a parametric solution with respect
to the weighting factor has been derived. The drawback
of the proposed solutions is its strict limitation to lin-
ear terms in the objective function, namely the 1/co-
norm. Furthermore, the authors in [2] provide a solution
only for MPCs with scalar tuning factor multiplying the
weighting factor related to the input penalty. Computing
explicit MPC that can be re-tuned online will necessarily
increase the complexity of the solution, as the number of
parameters needs to be increased. Unfortunately, 1/oco-
norm-based penalization setup is rarely used in prac-
tice, as the controller exhibits more aggressive behavior
around the origin than the quadratic (2-norm) counter-
parts. Moreover, 1/oo-norm penalization induces a sort
of a dead-zone behavior for the input penalty in the
sense that despite the input penalty being tuned in some
range, the optimal control input remains the same, i.e.,
the effect is discontinuous in contrast to the 2-norm case.
A notable step forward in producing online tunable im-
plementation of the explicit MPC with a 2-norm penal-
ization was presented in [6]. Here the authors present an
interpolation-based procedure, which allows for the on-
line tuning of the input weighting factor leading to a sub-
optimal solution. The proposed approach relies on two
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boundary explicit MPCs, which are constructed for two
specific input penalties. The presented approach allows
a real-time change in the input penalty matrix within
a given range and allows modifying the penalty matrix
during the operation without the necessity to resolve
optimization problems. The idea is to reconstruct the
close-to-optimal control action by devising the convex
combination of the available solutions of two boundary
explicit MPCs. The approach presented in this paper
significantly improves the propositions in [6], as we gen-
eralize the original results and, under mild assumptions,
we formulate a procedure where we guarantee the closed-
loop system stability and recursive feasibility [13]. The
proposed control strategy is significantly less complex
compared to the conventional approach in [2], and the
suboptimality level of the proposed scheme appears to
be negligible.

2 Problem statement

Throughout the paper, we consider the following two
MPC design problems implemented in the receding hori-
zon control fashion [12]. The first boundary MPC for-
mulations is stated as

N-1
min z\ PLan + Z (2] Qi + u] Rpug) (la)

UQ,UL -, UN—1

k=0
st xpp1 = Axyg + Bug, (1b)
ur €U, (1C)
T € X, (1d)
TN € 71, (16)
xo = 0(1), (1f)
k=0,1,...,N—1, (1g)

while the second one has a modification in the objective
function and terminal set, namely,

N—1

min z Puzy +Z(mZQka + u] Ryuy) (2a)
UQ,UT e s UN — 1 =

s.t.: (1b), (1¢), (1d), (1f), (1g), (2b)

zy € Tu, (2¢)

where N is prediction horizon, Pp,Pg € R"*™
QL,Qu € R™™™ Ry, Ry € R™*™ are terminal, state,
and input pairs of the penalty matrices, respectively.
Prediction model in (1b) has the form of linear time
invariant (LTT) system for state matrix A € R™*" and
input matrix B € R™*™. Vectors z € R”, u € R™ are
vectors of system states and control inputs, respectively.
U C R™ X C R” are sets of input and state con-
straints, respectively. Tr,, Ty C R"™, are sets of terminal
constraints. §(t) € Q is vector of initial conditions and
Q) C X is set of feasible initial conditions.

Assumption 2.1 Let MPC problems (1), (2) be asymp-
totically stable and recursive feasible. Assume, in (1), (2)
hold:

7

(1) setsU, X, T, Tu, Q are closed convex polyhedra
containing origin in their strict interiors,

(2) matrices Py, P, Qu,Qu, R, Ru are positive defi-
nite.

As the initial condition in (1f) has a parametric form,
the MPC problems in (1), (2) are problems of the mul-
tiparametric quadratic programming (mpQP), see [3].
Problem 2.1: Based on the parametric (explicit) solu-
tions of the MPC problems in (1), (2), the task is to ap-
proximate the optimal solution g for any MPC prob-
lem having input or state penalty matrix between the
matrix pair (Ry, Ry) or (Qv, Qu), respectively, without
the necessity to solve the optimization problem.

3 Tunable explicit MPC

Problem 2.1 is addressed by approximated solution of
the MPC problem having following form:

N—-1
min el Pry + (a:{@xk + uZEUk) (3a)

UQ, UL 5y UN —1 k=0
s.t.: (1b), (1c), (1d), (1f), (1g), (3)
TN € T, (3C)

where ]3, T are appropriate terminal penalty and ter-
minal constraint set, respectively. For input and state
penalty matrices in (3a), respectively, hold:

R=(p—1)RL+pRu, 0<p<1, (4a)
Q=(6-1)Qu+¢Qu, 0<o<1. (4b)

Remark 3.1 (Linear tuning)

We consider a linear tuning, i.e., either input penalty
R or state penalty Q in cost (3a) is tuned. Therefore,
if 0 < p < 1then @ = Qu = Qu, and, vice-versa, if
0< ¢ <1then R= Ry, = Ry hold.

Remark 3.2 (Input-penalty-based tuning)

Without loss of generality, hereafter, we consider a tuning
of input penalty R according to (4a). Analogous results
hold for state penalty Q tuning according to (4b).
Remark 3.3 (Application range) The application range
of the proposed tunable explicit MPC' is not limited just
to MPC formulation in (3). For the sake of simplicity,
we consider the general regulation problem, but various
formulations satisfying stability and recursive feasibility
could be applied, e.g., robust [10], regionless [9], approz-
imated [1], convez-lifting-based [15], etc.

The general structure of the MPC problems in (1), (2)
is restricted by following mild assumptions.

Assumption 3.1 Consider following assumptions hold:

(1) terminal penalties in (1la), (2a) are same and com-
puted according to P = P, = Py in (3a),



(2) terminal sets in (le), (2c) are same and computed
according to T = Tr, = Tu in (3c),

(3) input penalties Ry, Ry are diagonal matrices such
that A\i(Rr) < X\i(Ry) holds Vi = 1,...,m, where A
denotes vector of input penalty matriz eigenvalues.

Remark 3.4 (Sufficient prediction horizon)

Assumption 3.1 is necessary to provide the guarantees
on the closed-loop system stability and recursive feasibil-
ity. On the other hand, the sufficient length of the pre-
diction horizon N lead to omitting Assumption 3.1(1),
(2), see [14] to determine the minimum length prediction
horizon providing the stability guarantees.

The main benefit of the real-time tunable explicit MPC
is that for any p € [0, 1], the online evaluation of the ap-
proximated control action is optimization-free and boils
down to a mere linear function evaluations.

Definition 3.1 (Approximated control input) Given the
parametric solutions of MPC problems in (1), (2), and
current system measurement 6(t) € Q. The vector of
approzimated control inputs u € R™ for MPC problem
in (3) is evaluated using the conver combination:

where uy,, uy, respectively, are optimal control inputs of
MPC problems (1), (2) for 0(t).

Although the ug is approximated solution, it provides
primal feasibility of MPC problem in (3).

Lemma 3.5 (Primal feasibility) Given parametric solu-
tion of MPC problems in (1)—~(2), given MPC problem
in (3), and state measurement 0(t) € Q. Approzimated
solution w evaluated by Definition 3.1 ensures primal fea-
sibility of MPC problem in (3) for 0(t).

Proof: Let up, k, unk, k=0,1,..., N — 1, be the opti-
mal solutions of MPC problems in (1)—(2), respectively.
According to Definition 3.1, u is evaluated using (5). As
the consequence, for any 0(t) € Q holds:

ifupp <unpk = uLe < Up < upk, (6a)
if up k> v = vk < Uk < Uk, (6b)

for Vk=0,1,...,N — 1.

Optimal solutions wur, x, up, are primal feasible, i.e.,
ULk, UH,k € U. From the definition of the convex set
holds true that convex combination of uy, x, un . evalu-
ated by (5) satisfies that uy, € U for Vk =0,1,..., N —1.
Analogous hold true for state constraints in (1d), (1e), as
they are, according to a linear prediction model in (1b), a
linear combination of control inputs wy, i, un,k for given
state measurement 6(t) € Q. O

Assumption 3.2 (Terminal penalty)

Terminal penalty P = PT = 0 in (3a) is a matriz of
a common quadratic Lyapunov function V(x) = :rTISx,
V : R®" — R, constructed w.r.t. LTI prediction model
in (1b) and tunable input penalty Rin (3a) forVp within
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the range of interval [0, 1] in (4a).

In offline phase, there are various ways on how to con-
struct and/or validate Lyapunov function candidates,
and how to minimize their conservativeness. Inspired by
the approach in [7], we evaluate the terminal penalty

matrix P in (3a) by solving the following problem of
semidefinite programming (SDP):

Juin + tr(X) (7a)
X * x ok
AX+BY X * *

s.t.: = 07 ] = 1a 27 (7b)

Q:X 0~
1
RZY 0 0 ~f

where decision variables are X = XT € R", Y € R"*"™,
and v € R. Ry = Ry, Rs = Ry, and I, 0 are iden-
tity and zero matrices of appropriate dimensions, and
symbol * denotes Hermitian structure of LMIs in (7b).
Note, X > 0 is weighted inverted Lyapunov matrix such
that P = v X! and Y is well-known matrix of state
feedback parametrization. Further technical details are
introduced in [7]. The other strategies determining the
terminal penalty are reported, for example, in [4,11].

Assumption 3.3 (Terminal constraint)

Terminal constraint set T is a mazimal control invariant
set Coo comstructed in the intersection of the terminal
penalties in (1le), (2¢) w.r.t. input constraints in (1lc),

i.e., holds T =Coo C (TN Th) C X.

In offline phase, terminal sets 71, 71 in (1le), (2¢) are
determined to be control invariant for given MPC prob-
lems. We consider evaluation of these terminal sets based
on the solution of matrix Riccati equations in the LQR-
based control framework [5]. Next, following Assump-

tion 3.3, the terminal set 7 in (3c) is evaluated to be
a maximal control invariant set C,, constructed in the
intersection of 71, N Tg. Cs is constructed w.r.t. input
constraints in (1¢), i.e., once system states xj enter Coo,
there always exists such control input 4 that ensures
Tr4+1 € Coo hold true. Note, C always exists, as there
is a neighborhood of origin such that 0 € 71, 0 € Ty =
T, N Ta # @. The iterative procedure constructing Coo
is introduced, e.g., in [5].

Having a suitable terminal penalty matrix P and termi-

nal constraint set 7, we formulate the main results of
this work.

Theorem 3.6 (Tunable explicit MPC)

Given parametric solutions of MPC problems in (1), (2),
given MPC problem in (3), current system state mea-
surement 0(t) € Q, and corresponding control input uy by
Definition 3.1. If Assumptions 3.1,3.2, 3.3 hold, then the
closed-loop system is asymptotically stable and problem
in (3) is recursively feasible for any p within the range of
interval [0,1] in (4a).



Proof: According to Assumption 3.2, for Vp within the
range of interval [0, 1] in (4a), there exists a common
quadratic Lyapunov function represented by positive
definite matrix P for MPC problem in (3). According
to Assumption 3.1, the terminal constraint set 7 and
terminal penalty P of MPC problems in (1), (2) are
the same. According to Assumption 3.3, terminal con-
straint set 7 is maximal control invariant set Co, W.r.t.
constraints on control inputs in (1c).

The pair of control inputs ur, o, um,o represent the opti-
mal solutions of MPC problems in (1), (2), respectively.
This pair of optimal control inputs uy, o, un,0 was eval-
uated w.r.t. the same terminal penalty represented by
P, and system states converge to the same terminal
penalty set 7. As the consequence, they guarantees the
closed-loop system stability and recursive feasibility for
MPC problems in (1), (2), respectively.

According to Assumption 3.1, MPC problem in (3)
share the same terminal penalty and terminal constraint
set. According to Definition 3.1 and Lemma 3.5, for
any up holds (6). As the consequence, g lead to closed-
loop system stability and recursive feasibility of MPC
problem in (3). O

Compared to the implementation of the conventional
(non-tunable) explicit MPC, the proposed method in-
creases effort in both: (i) offline phase by solving two
parametric optimization problems and in (ii) online
phase by evaluating two boundary explicit control laws.
The evaluation of convex combination in (5) is negli-
gible. Moreover, the memory footprint increases as the
parametric solution of both MPC problems needs to
be stored. On the other hand, the real-time tunable
explicit MPC offers an infinite number of stabilizing
sub-optimal control actions (i.e., MPC controllers) for
input penalty tuning given by p € [0,1] (or ¢ € [0,1]
for state penalty tuning) in (4) without the necessity to
solve any optimization problem. This valuable benefit
enables convenient tuning, validation, and verification
of the closed-loop control performance reducing the
evaluation effort to a few linear algebra operations. The
increased online effort could be reduced by introducing
advanced techniques recalling some information from
the computation of wuy, to speed up evaluation of uy
in (5). This approach goes beyond the scope of this
paper and is a subject of further research.

Remark 3.7 (1-norm and oo-norm cost)

Cost functions in MPC problems (1), (2) have the form
of (squared) 2-norm. Analogous results of Lemma 3.5
and Theorem 3.6 hold for 1-norm and co-norm cost func-
tions. Moreover, as 1-norm and oo-norm are of linear
nature (piecewise affine), the suboptimality level of ap-
prozimated control input in (5) converge much faster to
the optimum value for given prediction horizon N. The
closed-loop system stability and recursive feasibility is-
sues of Assumptions 3.2, 3.3 can be addressed according
to Remark 3.4.
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4 Example

The simplified numerical example demonstrates the real-
time tunable level of aggressiveness/energy loses of the
closed-loop performance under different setups of (@, R)
proportion. This ability is illustrated considering a well-
known example of a double integrator system with LTT
prediction model in (1b) having A = Ll) j , B= ;2 ,
and following setup of MPC problems in (1), (2): QL =
QH:I,RL:0.57RH:10.071/[:{1,62—1 Sufl},
X={z:-5<z<5},and N = 2,3,5,10. Solving SDP
in (7) and evaluation of Co, return terminal penalty and
terminal set in the form

0.0651 —0.4463 0.8925

0.1742 —0.2388 0.9553

= 6.3743 0.5172 ~ 0.4004  0.6479 0.6479
P = , T =<x: z <

0.5172 15.5601 —0.0651 0.4463 0.8925

—0.1742  0.2388 0.9553

—0.4004 —0.6479 0.6479

Based on value of N, solving® MPC problems (1), (2)
lead to polytopic partitions having from 9 up to 21 crit-
ical regions for (1) and from 11 up to 15 critical regions
for (2), after processing an optimal regions merging [8].
The series of explicit MPC controllers for input penalty
R corresponding to particular setup of tuning parame-
ter p = 0.25,0.50,0.75 in (5) was constructed to inves-
tigate the closed-loop performance. Figure 1 depicts the
closed-loop control trajectories excited by initial condi-
tions zg = x15 = x30 = [4.5, —2.7]T for particular setup
of N = 10. The control profiles generated by approxi-
mated control inputs @ are compared to optimal perfor-
mance Uopt. Table 1 summarizes construction time tcon
of explicit controllers and the average real-time evalua-
tion of optimal ¢,p¢ and approximated t,p, control ac-
tions running non-optimized code on a non-industrial
hardware. It can be observed that approximated control
action increased a runtime, approximately, by factor 2.
On the other hand, there is no need to solve any multi-
parametric optimization problem online. Moreover, the
performance loss computed as a ratio of optimal and ap-
proximated closed-loop costs is negligible, as reported in
Table 1.

Table 1
Performance criteria.

performance loss [%)] offline [s] online [ms]
N | p=025 p=05 p=0.75 teon ot tapp
2 0.23 0.13 0.11 0.34 0.52 1.07
3 0.36 0.27 0.10 0.45 0.55 1.12
5 0.26 0.28 0.16 0.80 0.57 1.13
10 0.21 0.22 0.13 1.26 0.63 1.27

! The results were generated using Intel(R) Core(TM) i7-
1065G7 CPU 1.50 GHz, 16 GB RAM, MATLAB R2021b,
YALMIP R20210331, MPT v3.2.1, MOSEK v9.3.6.
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Fig. 1. Control performance of real-time tunable explicit
MPC ensured by u (dark red, dashed), ur, (blue, solid), un
(grey, solid), uopt (orange, dotted), reference (green, dotted),
constraints (black, dashed) for sequence of tuning parame-
ter p = 0.25,0.50,0.75.
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Series Editor’s Foreword

The aim of the series Advances in Industrial Control is to fill the gap between
theoretical research and practical applications in the area of control engineering,
contributing to the transition into practice of the most advanced control results, and
bearing in mind significant recent developments of control technology. It also
promotes the dissemination of knowledge related to the modern control solutions in
all sectors of industrial control, making it usable even to readers who are not experts
in the specific application field.

One of the distinctive features of the series Advances in Industrial Control is the
large variety of control methodologies which are reviewed and discussed with
reference to different kinds of industrial applications. Some of the control
methodologies discussed are extremely new and are explored in terms of their
advantages and limitations in industrial implementations for the first time. Others
are more classical but revisited in a more up-to-date fashion, taking into account the
recent technological developments that make their use in practical applications
nonetheless new.

The present monograph is indeed dedicated to a rather classical control topic, the
so-called reference governor approach. It first appeared in the 90s in the
continuous-time framework and in connection with linear dynamic systems. It was
further developed and extended to more general classes of systems in the subse-
quent decades. A reference governor is typically used to modify the reference signal
to a low-level control scheme in order to satisfy state and control constraints.
Nevertheless, it can be used to generate a reference signal which satisfies some
optimality requirements, or, in other cases, to improve an already-existing control
system avoiding an expensive upgrade of the control infrastructure.

Although the topic can be considered classical, it is treated in the book in an
original and in-depth way. What differentiates the present monograph from the
previous publications on the same subject is the industrial cutting. When using the
reference governor approach in practice, especially in the field of complex indus-
trial plants, it is not at all obvious how to design the governor itself. The modeling
of the dynamics of the closed-loop system on which the reference governor is
inserted becomes a crucial node. This is particularly true when the generation of the

vii
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viii Series Editor’s Foreword

reference signal is made using optimization techniques. In fact, the approach must
be implementable using the technology that is normally present in the industrial
sector. It must therefore be reviewed considering computation and implementation
issues. This and other aspects related to the use of the reference governor approach
in industry are fully dealt with in this book.

The particular attention that this book devotes to implementation and techno-
logical aspects of industrial control is confirmed by the care that has been put into
developing four interesting case studies related to realistic systems: a multivariable
boiler—turbine power plant, a magnetic levitation system, a residential building, and
a cascade of chemical reactors. In all the cases, the authors clarify how the process
performance can be significantly increased using the reference governor approach,
while providing safety guarantees by design.

This monograph enriches the series Advances in Industrial Control with a
volume which is likely to be very useful, first of all, to students and researchers,
since they will find in it a thorough tutorial overview of a classical control technique
that is very effective in practice. It will also be interesting for practitioners, who will
have precise indications and examples on how to transfer this approach into real
industrial control situations. Like most of the books in the series Advances in
Industrial Control, apart from its usefulness, it is also pleasant to read, with a fair
balance between the theoretical part and the application-oriented part.

Pavia, Italy Antonella Ferrara
University of Pavia

martin.klauco@stuba.sk

88



Preface

Control design for complex cyberphysical systems is a challenging task, especially
when the safety and economic performance of the control system are considered.
Two approaches are typically followed. The first option is to split the controlled
process into subsystems, each operated by its own feedback loop, giving rise to a
hierarchical composition of multiple controllers. The main issue, however, is how
to configure and coordinate individual controllers such that they achieve a shared
goal, such as the satisfaction of process constraints (e.g., pressures, temperatures,
concentrations, voltages, currents, etc.) and optimization of the economic perfor-
mance (e.g., minimization of the consumption of raw materials and heat/mass flows
or maximization of the purity and the yields of products). This hierarchical direction
therefore requires significant resources to be invested towards finding a suitable
tuning of individual controllers and to perform extensive tests to confirm the sat-
isfaction of the design goals. On the plus side, the control system being split into
components allows individual subsystems to operate autonomously, thus providing
easy maintenance and upgrade.

The second option is to employ a model-based control design procedure where
the process is operated by a single, centralized, control system that takes all
interactions into account. On the one hand, such an approach yields a safe and
economically optimal operation by design as it is based on determining the control
actions by solving an optimization problem that explicitly accounts for process
constraints and economic performance. On the other hand, however, the centralized
nature poses significant challenges in terms of practical implementation.
Specifically, the centralized control system represents a single point of failure and
any disruption of the main controller can render the whole production processes
inoperable. Moreover, the centralized controller requires significant implementation
resources in terms of computational power and storage as to be able to calculate
control moves for the whole system at once.

This monograph covers a third direction, referred to as the reference governor
approach. It can be viewed as an extension of the hierarchical design procedure
where the control system is composed of numerous low-level feedback loops
coordinated by a central model-based node. Its task is to determine, in a safe and

X
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economically effective fashion, the setpoints for the low-level controllers. Such an
arrangement provides several crucial advantages. First, safety and maximization
of the economic performance are achieved by design as the selection of the set-
points is performed by solving an optimization problem that directly takes these
objectives into account. Second, keeping the low-level controllers in place abol-
ishes the single point of failure, allowing the production to continue even if there is
disruption (e.g., during upgrades and maintenance) in the central node. Third, the
reference governor approach is an ideal solution for retrofit applications where the
aim is to improve the quality and the quantity of the production without having to
invest significant resources into a costly upgrade of the control infrastructure. Last
but not least, the reference governor framework allows for a separation of time-
scales where the central decision-maker needs can run on a longer sampling time
(thus reducing the required computational resources), delegating the handling of
fast dynamics to the simple low-level controllers.

Several questions arise when employing the reference governor framework in
practice. The first one is how to capture the inherent dynamics of the low-level
controllers in a way that allows for subsequent optimization of setpoints.
Conventionally, reference governor setups have only been employed when the
underlying low-level controllers are linear, as is the case of PID or LQR controllers.
The reason being that the subsequent calculation of optimal setpoints boils down to
solving a relatively simple optimization problem (denoted as a convex problem),
allowing for its real-time implementation on the existing control hardware.
However, it is far from clear how to apply reference governors if the low-level
regulators are not linear. This monograph provides one of the possible answers.
Specifically, it shows how to formulate the search for optimal setpoints for two
important classes of low-level controllers: rule-based regulators and
optimization-based controllers. In the rule-based scenario, the low-level controllers
are represented by finite state machines that entail heuristic switching laws, such as
those conveniently used in thermostats. The second category is represented by
low-level controllers that use model predictive control to determine the optimal
control inputs. For either case, the monograph shows that the search for optimal
setpoints boils down to solving mixed-integer optimization problems.

The second question is how to formulate the central decision-making opti-
mization problem in a way that allows it to be solved swiftly on hardware that is
typically used in process automation. Two avenues are persuaded. The first one is
based on pre-calculating the optimal solution of the reference governor problem
off-line using parametric programming. Once available, the solution can then be
encoded as a lookup table, allowing for a very fast and simple implementation in
the real-time environment even on hardware with modest computational resources.
To mitigate the storage requirements of parametric solutions, the lookup table can
be further postprocessed to reduce its size at the expense of a slight deterioration of
performance, but without sacrificing safety. The second avenue concentrates on
selecting the setpoints for low-level controllers by solving an optimization problem
online at each sampling instance. Here, the monograph shows various ways of
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achieving a formulation that is easy and fast to solve even if the underlying opti-
mization problem features integer variables.

The final question is how to demonstrate versatility and applicability of the
reference governor approach. To this respect, the monograph discusses four realistic
case studies. The first one, reported in Chap. 7, considers the optimization of
setpoints for multiple PID controllers that control a multivariable boiler—turbine
powerplant. In Chap. 8, the control of a magnetic levitation system with a single
PID low-level controller is introduced. The controlled system features a fast
dynamics with response times in the order of milliseconds and therefore necessi-
tates a fast implementation of the reference governor. This is achieved by resorting
to parametric solutions encoded as lookup tables. Implementation of a reference
governor for a system with rule-based low-level controllers is reported in Chap. 9.
The case study considers the management of thermal comfort in residential
buildings where the reference governor optimizes temperature setpoints for a
relay-based thermostat. Finally, the design of a reference governor for multiple
optimization-based low-level controllers for a cascade of chemical reactors is dis-
cussed in Chap. 10. All case studies illustrate that with sufficient care, the process
performance can be significantly increased while providing safety guarantees by
design.

The objectives of the monograph can be summarized as follows:

¢ introduction to mathematical optimization problems required to determine
optimal setpoints (Chap. 2),

e formulation of model-based optimal decision-making problems via the model
predictive control framework (Chap. 3),

e description of modeling techniques for various types of low-level controllers
(Chaps. 4-6),

e demonstration of the versatility and applicability of the reference governor
framework by means of realistic case studies (Chaps. 7-10).

The reported results summarize and extend the research outcomes of the authors
since 2013 that have been published in numerous peer-reviewed journals and
presented at various IFAC and IEEE conferences. The monograph is structured as a
step-by-step guide that allows theoreticians and practitioners alike to understand the
underlying mathematical concept, to formulate reference governor solutions, and to
implement them in practice.

Bratislava, Slovakia Martin Klauco
Michal Kvasnica
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