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SURVEY PAPER

TUNING AND IMPLEMENTATION METHODS FOR

FRACTIONAL-ORDER CONTROLLERS

Ivo Petráš

Abstract

This survey paper presents methods of tuning and implementation of
Fractional-Order Controllers (FOC). In the article are presented tuning,
auto-tuning and self-tuning methods for the FOC. As the FOC are con-
sidered fractional PID controllers, the Commande Robuste d’Ordre Non
Entier (CRONE) controller and fractional-order lead-lag compensators. As
implementation techniques are described the IIR and FIR filters forms of
approximation methods, which can be easily implemented in microproces-
sor devices such as for example the Programmable Logic Controller (PLC),
etc. The possibility for analogue implementation of such kind of controllers
is also mentioned. An example of practical implementation of the FOC
together with all problems and restrictions are described as well.

MSC 2010 : Primary 26A33, Secondary 93C05

Key Words and Phrases: fractional calculus, fractional-order controller,
tuning, implementation

1. Introduction

It is well-known that fractional calculus is more than 300 years old
topic. There is a number of applications in various areas, that were al-
ready published, for instance [6, 13, 17, 20, 23, 31]. One important area
of application is control theory. During the last 20 years a huge effort has
been made to describe various possibilities of how to implement the frac-
tional calculus techniques in control theory. We can mention for example:
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new type of fractional-order controllers, new fractional-order model for the
plant (process), etc. In this article we will focus on fractional-order con-
trollers because of a wide area of applications. As already noted in [8, 9],
fractional-order control, namely fractional PID controllers, could be ubiq-
uitous in industry. The main motivation is that in process control more
than 95% of the control loops are of PI/PID type [1]. For example a typ-
ical mill in Canada has more than 2000 control loops, where 97% loops
are based on PI control. However, only 20% of control loops work well.
The reason is bad tuning, actuator and sensor problems and so on. This
is the reason, why we focus on fractional-order controllers, tuning tech-
niques, implementation techniques, their restrictions and limitations, while
the fractional-order controllers are based on microprocessors and also on
the control performance assessment technology for industrial applications.

This article is organized as follows: The essential definitions of frac-
tional calculus are described in the next section. Then the typical fractional
order controllers and their tuning, implementation technique are described.
The article is concluded with an example of practical implementation of the
FOC to control a temperature of electrical heater.

2. Fractional calculus fundamentals

Fractional calculus is a generalization of integration and differentiation
to non-integer order fundamental operator aD

α
t , where a and t are the

bounds of the operation.

Definition 2.1. The continuous fractional integro-differential opera-
tor is defined as

aD
α
t =

⎧
⎨
⎩

dα

dtα : α > 0,
1 : α = 0,∫ t
a(dτ)

−α : α < 0.

Several alternative definitions of the fractional derivative exist, see
e.g. [31]. We will consider just two of them, Caputo’s definition and the
Grünwald-Letnikov definition.

Definition 2.2. Caputo’s definition [7] of fractional derivative can
be written as (see e.g. [31]):

aD
α
t f(t) =

1

Γ(n− α)

∫ t

a

f (n)(τ)

(t− τ)α−n+1
dτ, (2.1)

for (n− 1 < α < n). It holds an important property: the initial conditions
for fractional-order differential equations with Caputo’s derivative are in
the same form as for integer-order differential equations.
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Definition 2.3. If we consider k = t−a
h , where a is a real constant,

which expresses a limit value, we can write the Grünwald-Letnikov (GL)
definition as (see [31]):

aD
α
t f(t) = lim

h→0

1

hα

[ t−a
h

]∑

j=0

(−1)j
(
α

j

)
f(t− jh), (2.2)

where [x] means the integer part of x, a and t are the bounds of operation
for aD

α
t f(t). This form of definition is very helpful for obtaining a numerical

solution of fractional differential equations.

For zero initial conditions and lower limit a = 0, the Laplace transform
of fractional derivatives (Grünwald-Letnikov and Caputo), reduces to [31]:

L {0Dα
t f(t)} = sαF (s). (2.3)

The fractional differentiation/integration are linear operations:

0D
α
t (af(t) + bg(t)) = a 0D

α
t f(t) + b 0D

α
t g(t). (2.4)

Some other important properties of the fractional derivatives and inte-
grals can be found in several works (e.g.: [17, 20, 22, 23, 31], etc.).

3. Fractional-order controllers

The fractional-order controller (FOC) PIλDδ (also known as PIλDμ

controller) was proposed in [30] as a generalization of the PID controller
with integrator of real order λ and differentiator of real order δ. The transfer
function of such controller in the Laplace domain has this form:

C(s) =
U(s)

E(s)
= Kp + Ti s

−λ + Td s
δ, (λ, δ > 0), (3.1)

where Kp is the proportional constant, Ti is the integration constant and
Td is the differentiation constant.

Figure 1. General structure of a fractional PIλDδ controller.
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As we can see in Fig. 1, the internal structure of the fractional-order
controller consists of the parallel connection, the proportional, integration,
and derivative part. The transfer function (3.1) corresponds in time domain
to the fractional differential equation of the form:

u(t) = Kp e(t) + Ti 0D
−λ
t e(t) + Td 0D

δ
t e(t), (3.2)

or discrete transfer function given in the following expression:

C(z) =
U(z)

E(z)
= Kp +

Ti

(ω(z−1))λ
+ Td(ω(z

−1))δ, (3.3)

where ω(z−1) denotes the discrete operator, expressed as a function of the
complex variable z or the shift operator z−1.

Taking λ = 1 and δ = 1, we obtain a classical PID controller. If λ = 0
and Ti = 0, we obtain a PDδ controller, etc. All these types of controllers
are particular cases of the fractional-order controller, which is more flexible
and gives an opportunity to better adjust the dynamical properties of the
fractional-order control system.

It can also be mentioned that there are many other modifications of the
fractional PIλDδ controller [15, 20, 19, 39] and other considerations of the
fractional-order controller. For example, we can mention several of them:

• CRONE controller (2nd generation), characterized by the band-
limited lead effect [23, 32]:

C(s) = C0
(1 + s/ωb)

r

(1 + s/ωh)r−1
, (3.4)

where 0 < ωb < ωh, C0 > 0 and r ∈ (1, 2). There are a number of
real-life applications of three generations of the CRONE controller
[23].

• Fractional lead-lag compensator [20], which is given by

C(s) = kc

(
s+ 1/λ

s+ 1/xλ

)r

= kcx
r

(
λs+ 1

xλs+ 1

)r

, (3.5)

where 0 < x < 1, x ∈ R, λ ∈ R, and r ∈ R.

• Non-integer integral and its application to control as a reference
function [5, 18]; Bode suggested an ideal shape of the loop transfer
function in his work on design of feedback amplifiers in 1945. Ideal
loop transfer function has the form:

L(s) =

(
s

ωgc

)α

, (α < 0), (3.6)
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where ωgc is desired crossover frequency and α is the slope of the
ideal cut-off characteristic.
The phase margin is Φm = π(1 + α/2) for all values of the gain.

The amplitude margin Am is infinity. The constant phase margin
60o, 45o, and 30o correspond to the slopes α = −1.33, −1.5, and
−1.66. The Nyquist curve for ideal Bode transfer function is simply
a straight line through the origin with arg(L(jω)) = απ/2.

• TID compensator [16], which has structure similar to a PID con-
troller but the proportional component is replaced with a tilted
component having a transfer function s to the power of (−1/n).
The resulting transfer function of the TID controller has the form:

C(s) =
T

s1/n
+

I

s
+Ds, (3.7)

where T , I and D are the controller constants and n is a non-zero
real number, preferably between 2 and 3. The transfer function
(3.7) more closely approximates an optimal transfer function and
an overall response is achieved, which is closer to the theoretical
optimal response determined by Bode [5].

4. Design of controller parameters

There are already a large number of controller parameters design meth-
ods. Most of them have been developed only recently. A good review of
tuning methods for fractional PID controllers has been done in [34, 35].
They mentioned modified Ziegler and Nichols method and various analyt-
ical methods such as for example dominant poles, internal model control,
etc. and the numerical methods, which are usually based on the numerical
evaluation of an objective function (minimization). Some other methods
can be found in [4, 6, 10, 33]. It can be expected that FOC (3.1) may
enhance the systems control performance due to more tuning knobs intro-
duced.

Here, we mention three basic strategies of the parameters tuning (clas-
sical, self and auto tuning).

4.1. Classical tuning methods

The tuning of PIλDδ controller parameters is determined according to
the given requirements. These requirements are, for example, the damping
ratio, the steady-state error (ess), dynamical properties, etc. One of the
methods being developed is the method of dominant roots [24], based on
the given stability measure and the damping ratio of the closed control
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loop. Assuming that, the desired dominant roots are a pair of complex
conjugate root as follows:

s1,2 = −σ ± jωd,

designed for the damping ratio ζ and natural frequency ωn. The damping
constant (stability measure) is σ = ζωn and the damped natural frequency

of oscillation ωd = ωn

√
1− ζ2. The design of parameters: Kp, Ti, λ, Td

and δ can be computed numerically from characteristic equation. More
specifically, for simple plant model P (s), this can be done by solving

min
Kp,Ti,λ,Td,δ

||C(s)P (s) + 1||s=−σ±jωd
.

Another possible way to obtain the controller parameters is using the
tuning formula, based on gain Am and phase Φm margins specifications
for crossover frequency ωcg. Gain and phase margins have always served
as important measures of robustness. The equations that define the phase
margin and the gain crossover frequency are expressed as [20, 37]:

|C(jωcg)P (ωcg)|dB = 0dB

arg(C(jωcg)P (ωcg)) = −π +Φm (4.1)

The above equations are also often used for so-called auto-tuning tech-
niques.

Last but not least we should mention the optimization algorithm based
on the integral absolute error (IAE) minimization [30]:

IAE =

∫ t

0
|e(t)|dt =

∫ t

0
|r(t)− y(t)|dt,

where r(t) is the desired value of closed control loop and y(t) is the real value
of the closed control loop. This method does not ensure the desired stability
measure of the closed control loop. Ths measure of stability has to be
checked out additionally by some known method as for example frequency
method [9].

Other minimization algorithms can be based on other type of cost func-
tions or on the H∞ norm minimisation [25].

4.2. Self-tuning methods

It is well-known that Model Reference Adaptive Control (MRAC) has
become a standard part in textbooks on adaptive control (e.g.: [1, 2]).
The fractional-order calculus can be introduced into MRAC scheme in two
ways. One is the use of fractional derivatives for the adjustment rules
and the other one is the use of fractional-order reference models. The
new adjustment rule and modification of MRAC problem by introducing
fractional-order system as the reference model has been studied in [37].
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4.3. Auto-tuning methods

The relay auto-tuning process is widely used in industrial applications,
see [1]. Some considerations have to be taken into account concerning the
auto-tuning method for this fractional-order structure, [39]:

(1) The simplicity of the auto-tuning method is an important goal to
achieve, since it is the aim to implement it for industrial applications
by using, for instance, a PLC or a PC with a data acquisition board.
That is, the tuning rules for the parameters of the fractional-order
controller must be given by simple equations and computable within
a sample time appropriate for the control hardware and for the
plant.

(2) It would be convenient to apply the relay test to obtain experi-
mentally the information of the plant, due to the reliability of this
method.

Figure 2. Relay auto-tuning scheme with delay.

A standard relay test, which is shown in Fig. 2, can be also used for
the fractional-order controllers auto-tuning [19]. For this scheme are given
the following relations:

arg(P (jωc)) = −π + ωcθa,

|P (jωc)| =
πa

4d
=

1

N(a)
, (4.2)

where P (jωc) is the transfer function of the process at the frequency ωc,
which is the frequency of the output signal y(t) corresponding to the delay
θa, d is the relay output, a is the amplitude of the output signal, and N(a)
is the equivalent relay gain. The condition for oscillation is

N(a)P (jω) = −1

and this condition can be easily checked graphically by plotting 1/N(a) on
the Nyquist plot.

The problem would be how to select the right value of θa, which cor-
responds to a specific frequency ωc. An iterative method can be used to
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solve this problem. This technique was already developed and decribed for
the fractional-order controller of PIλ, PDμ, and PIλDμ types [19]. Such
method allows a flexible and direct selection of the parameters of the con-
troller through the knowledge of the magnitude and phase of the plant at
the frequency of interest, obtained with the relay test.

5. Implementation techniques

Implementation techniques for the FOC have been described in several
works. Some proposals we can be found in the work [38]. An analogue im-
plementation was proposed in the book [26] and a digital implementation
was suggested in the book [6]. We will focus only on the digital implemen-
tation techniques. Having tuned the controllers, to implement them we
have to take into account other considerations, such as memory size and
computational load required by the algorithm, knowing that, in any case,
the fractional orders must be approximated by integer ones.

5.1. Fractional derivative/integral approximation

In general, if a function f(t) is approximated by a grid function, f(kh),
where h is the grid size, the approximation for its fractional derivative of
order r can be expressed as [6, 20]:

yh(kh) = h∓r
(
ω
(
z−1

))±r
fh (kh) , (5.1)

where z−1 is the backward shift operator and ω
(
z−1

)
is a generating func-

tion. This generating function and its expansion determine both the form
of the approximation and the coefficients. In this way, the discretization
of continuous fractional-order differentiator/integrator s±r (r ∈ R) can be
expressed as s±r ≈ (ω(z−1))±r.

As a generating function ω(z−1) the following formula can be used in
general [3]:

ω(z−1) =

(
1

βT

1− z−1

γ + (1− γ)z−1

)
, (5.2)

where β and γ are denoted the gain and phase tuning parameters, re-
spectively, and T is the sampling period. For example, when β = 1 and
γ = {0, 1/2, 7/8, 1, 3/2}, the generating function (5.2) becomes the forward
Euler, the Tustin, the Al-Alaoui, the backward Euler, the implicit Adams
rules, respectively. In this sense, the generating formula can be tuned more
precisely.

The expansion of the generating functions can be done by Power Se-
ries Expansion (PSE) or Continued Fraction Expansion (CFE). It is very
important to note that PSE scheme leads to approximations in the form
of polynomials of degree p, that is, the discretized fractional-order deriva-
tive is in the form of FIR filters, which have only zeros. The CFE scheme
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leads to approximations in the form of rational function and the discretized
fractional-order derivative is in the form of IIR filters.

Then, the resulting transfer function, approximating the fractional-
order operators via PSE method, can be obtained by applying the rela-
tionship

D±r(z) =
Y (z)

F (z)
≈ PSE

{
(ω(z−1)±r

}
p
� Pp(z

−1), (5.3)

where Y (z) is the Z transform of the output sequence y(kT ), F (z) is the Z
transform of the input sequence f(kT ), and PSE{u} denotes the expression,
which results from the power series expansion of the function u, D±r(z)
denotes the discrete equivalent of the fractional-order operator, considered
as processes, and Pp(z

−1) is the polynomial with degree p of variable z−1.

The resulting discrete transfer function, approximating fractional-order
operators via CFE method, can be expressed as:

D±r(z−1) =
Y (z)

F (z)
≈ CFE

{
(ω(z−1))±r

}
p,q

� Pp(z
−1)

Qq(z−1)
=

p0 + p1z
−1 + · · ·+ pmz−m

q0 + q1z−1 + · · ·+ qnz−n
,

where CFE{u} denotes the continued fraction expansion of u; p and q are
the orders of the approximation and P and Q are polynomials of degrees p
and q. Normally, we can set p = q = n.

Both above described approximation techniques are usable for the FOC
implementation in MATLAB, [29].

5.2. Control algorithm

Generally, the control algorithm can be based on the canonical form of
IIR filter, which can be expressed as follows:

F (z−1) =
Y (z−1)

U(z−1)
=

b0 + b1z
−1 + b2z

−2 + · · ·+ bMz−M

a0 + a1z−1 + a2z−2 + · · ·+ aNz−N
, (5.4)

where a0 = 1 for compatibility with the definitions used in MATLAB.
Normally, we choose polynomials degrees (approximation order) M = N .

The FOC in the form of FIR or IIR filter can be directly implemented
to any microprocessor based devices as for instance the PLC, PIC or IPC.
A direct form of such implementation using canonical form with input e(k)
and output u(k) range mapping to the interval 0 - UFOC [V] divided into
two sections: initialization code and loop code. The pseudo-code for the
position algorithm implementation of the discretized FOC controller has
the following form [6, 9, 28]:
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(* initialization code *)

scale := 32752; % input and output

order := 5; % order of approximation

U_FOC := 10; % input and output voltage

% range: 5[V], 10[V], ...

a[0] := 1; a[1] := ...; a[2] := ...;

a[3] := ...; a[4] := ...; a[5] := ...;

b[0] := ...; b[1] := ...; b[2] := ...;

b[3] := ...; b[4] := ...; b[5] := ...;

loop i := 0 to order do

s[i] := 0;

endloop

(* loop code *)

in := (REAL(input)/scale) * U_FOC;

feedback := 0;

feedforward := 0; loop i:=1 to order do

feedback := feedback - a[i] * s[i];

feedforward := feedforward + b[i] * s[i];

endloop

s[0] := in + a[0] * feedback;

out := b[0] * s[1] + feedforward;

loop i := order downto 1 do

s[i] := s[i-1];

endloop

output := INT(out*scale)/U_FOC;

The disadvantage with this solution is that the complete controller is
calculated using floating point arithmetic.

There are many softwares for programming the above pseudocode. For
example: Microchip MPLAB, HiTech C Compiler, PICBasic Pro, Struc-
tured Text, Automation Basic, Ladder Diagram, etc. These software kits
provide us with simple communication between PC and the microproces-
sor, and control algorithm programming and loading to the memory of the
microprocessor.

5.3. Controller inputs/outputs

The fractional-order controller input/output signals are normally ana-
log signals. In the case of current outputs on module it is 0-20 mA or 4-20
mA. In the case of voltage outputs on module it is 0-10 V, ± 5 V or 0-5 V.
It is important to note that AD/DA converter resolution (12-bits, 14-bits,
. . . ) influences the precision. In some cases the actuator accepts only two
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values, on (logical 1) or off (logical 0). In such case, the cycle time τc is
specified (fixed), and controller gives a pulse of width [1]:

τp(t) =
u(t)− umin

umax − umin
τc .

The above approach is known as a pulse width modulation (PWM). Fig. 3
illustrates the principles of the PWM (τp(t) = f(u(t))).

Figure 3. Pulse width modulation principle.

The output voltage range of TTL signal for many industrial devices is
24 V (log 1). The voltage range for analog signal is usually expressed in
the form 0 - 10 V or as a number between 0 and 32767.

5.4. Devices for implementation of discrete FOC

There are many possibilities how to implenent a discrete FOC. Having
a discrete transfer function in form of IIR or FIR filter we can use a general
control algorithm described in previous subsection. Such algorithm can be
implemented in any known processor devices as for example: IPC, PIC,
AVR, PC with IO card or PLC [14, 21, 28]. Nowadays, the PLC plays a
very important role in automation. It is necessary to have prepared the
FOC algorithm for such devices and the form of function block e.g. FOC.
Another possibility for implementing the controllers is the use of specific
microelectronic devices, such as FPGA, FPAA and switched capacitors.

In addition, we will consider the PLC as the best solution for the FOC
industrial implementation. The main advantages are: modular system with
large memory and CPU speed, well developed SW environment, operating
system (runtime) with solved service for interruption, AD/DA conversion,
timing, etc. All tasks are located in n cyclic classes as it is depicted in
Fig. 4. Each class has some priority and sampling time (period). We have
to take into account that distribution of tasks to the cyclic classes is a very
important role. Usually the cyclic class #1 has highest priority and so on.
If the task in cyclic class #1 is not finished, task in cyclic class #2 does not
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start, etc. It is necessary to consider the time for AD (input reading) and
DA (output writing) conversions and the time for task calculation itself.
For instance if we have task FOC depicted in Fig. 4, the duration of task
τcalc(t) << T , where T is the sampling period of certain class. This is
the main reason why we need a good approximation of the fractional-order
derivative/integral with an appropriate number of coefficients type (INT,
REAL, . . . ), that will not occupy the memory of the PLC/IPC and will
not consume the processor time.

Figure 4. Cyclic classes in PLC runtime.

For sampling period T selection we can use common recommendations
used for the integer-order system, which are described in standard control
books (e.g. [11]).

6. Limitations on control system design

Typical sources for fundamental limitations in control systems design
are, see [1]:

• Process dynamics: is very often the limiting factor, namely time
delays, poles and zeros in the right half plane, gain of the system,
etc.

• Nonlinearities: there are many reasons, why the nonlinearities should
be considered. Let us show only few of them: nonlinear character-
istic of the actuator, nonlinearity in the controlled plant, noise in
measured signals, actuator saturation, and so on.
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• Disturbances: disturbances and noise in measurement often limit
the accuracy. The disturbances with combination of nonlinearity
can limit for example the controller gain.

• Process uncertainties: process models are only approximation of
reality. The process dynamic may change during the operation and
therefore model parameters have some uncertainties, which can be
compensated by changing the controller parameters.

7. Modifications of fractional-order control

Several modifications of the fractional-order control can be used. Among
the most used ones are the following:

• Filtering the desired value r(t): filtering the desired value r(t) by
first or second order filter is a very frequently used trick. Instead
of step change of the desired value, which could be a problem es-
pecially for derivative part in controller, the control algorithm ex-
ecutes slow change of the desired value and changes of the control
signal are not that extreme. For most applications, a first-order
filter is satisfactory. We recommend the first-order prefilter in the
form:

Hp(z) =
kf

1− kfz−1
,

where kf is the prefilter constant.

• Using a controlled value in proportional and derivative parts of con-
troller: above-mentioned problem related to step changes of control
signal due to step changes of desired value r(t) can also be solved
via replacing the control error e(t) = r(t)− y(t) by controlled value
y(t). This modification can help a lot, especially, when desired value
has changed rapidly and therefore the actuator becomes saturated
(nonlinearity of actuator).

• Filtering the derivative action: due to noisy signal on measured
controlled value, the differentiation of noise can involve inappropri-
ate changes of control signal. Derivative action is more sensitive to
higher-frequency terms in the inputs. Because of this the derivative
part in the controller can be filtered by first- and second-order high
frequency filter. For the first-order filter in derivative part and with
a genuine integral action, we can write the transfer function of the
fractional-order controller in the form:

C(s) =
U(s)

E(s)
= Kp + Ti

s1−λ

s
+

Td s
δ

Tfs+ 1
, (λ, δ > 0), (7.1)
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where Tf = N/Td is the filter constant. For N = 0, we obtain the
usual FOC described by relation (3.1).

• Limitation of integral action: this limitation is also known as wind-
up of the controller. It is due to the fact that actuator has also
limitations and for instance if the actuator is at the end position and
the control error is not zero, integral part of the controller rapidly
grows and the controller calculates unreal value of the control signal
and therefore the actuator stays at the end position until the sign
of control error is changed. This problem is known as wind-up or
integral saturation and it can be solved via limitation of integral
part in the controller. Another possibility of how to avoid wind-up
is to introduce limiters of the desired values so that the controller
output will never reach the actuator bounds.

Obviously there are many other modifications of the control algorithms,
which help us to implement the fractional-order controller in practice. For
instance, we can mention initial conditions for a non-impact controller con-
nection to control loop, analog and digital filtering of measured values, etc.

8. Control performance assessment index

There are many sources of poor control performance in industrial pro-
cesses. It has been estimated that almost 60% control systems have per-
formance problem due to some reason, such as for example inadequate
controller tuning, missing feed-forward compensation, inappropriate con-
trol structure, and so on. The natural question is: “How healthy is the
control system?” The problem statement is depicted in Fig. 5.

Figure 5. Control performance assessment
problem formulation [12].

As mentioned in the book [1], the design, tuning and implementation
of control strategies and controllers are only the first phase in the solution
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of a control problem. The second phase includes operation, supervision,
and maintenance. After some time in operation, the control system perfor-
mances may deteriorate because of variations in the process and the oper-
ation. Therefore it is important to supervise the control loop and detect
these faults. One of the most widely used supervisory functions is based
on the Harris index, where the idea is based on calculating the variance
of the process output and then comparing it with the minimum variance
obtainable. The Harris index is defined as

IH = 1− σ2
MV

σ2
y

,

where σ2
MV is the minimum variance of the process output, and σ2

y is the
actual process output variance. The Harris index IH can have value between
zero and one. Such monitoring of the performances provides information
about the loop performance compared to the ideal performance. The Harris
index has been extended to multi-input multi-output systems as well.

If the control performance assessment shows that control system does
not work properly, it is necessary to do a redesign of the control system
and again calculate the performance indexes and compare them to alarm
limits. The test procedure has been suggested in [12] and can be adopted
also for the fractional-order control system.

9. Example: Application of FOC to temperature control

9.1. Control system description

The mathematical model of the object used as the system to be con-
trolled has the form [27]:

G(s) =
1

39.69s1.26 + 0.598
(9.1)

for which the parameters were obtained by an identification method based
on the measured step response of the system depicted in Fig. 6.

The controller design was done in [27], according to the method (poles
placement) described in [24], for desired stability measure σ = 2.0. The
obtained fractional-order PDδ controller designed for the fractional-order
model (9.1) has continuous transfer function:

C(s) = 64.47 + 48.99s0.5. (9.2)

Let us consider the single input - single output feedback control system
shown in Fig. 7, where r(t) is the required value, e(t) is control error, u(t)
is control value and y(t) is actual controlled value. We have used prefilter
as well as control signal limiters.
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Figure 6. Unit-step response of controlled object.

Figure 7. Experimental set-up HW loop.

Since the advantages of using a fractional controller in this particular
case were shown in [27], in this section we compare two possible realizations
of the fractional-order PDδ controllers.

The first controller is the FOC implemented in the form of FIR filter
and the second one is in the form of IIR filter.

For implementing the controllers a position algorithm with reference
digital prefiltering has been used. This algorithm consists of several steps
(calculating the control error, calculating the control value, etc.).
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9.2. Experimental setup and results

The system to be controlled is a heater (electrical radiator). The tem-
perature is measured by a radiating pyrometer, filtered by an analogue
active filter, and driven to host PC with IO card PCL 812. The control
signal from analogue output on the PCL card is connected to the actuator
(thyristor changer) where 0-5V signal is changed to 20-220V. The reference
value follows the law:

r[oC] =
330

5
r[V ] + 20 . (9.3)

In the experiments the following parameters have been used:

• T = 1 sec, (� 1% of the system rise time);
• L = 100 (order of the FIR filter);
• kf = 0.5; (prefilter parameter);
• p = q = 4 (order of the IIR filter).

With these parameters, the implemented controllers are [36]:

CR(z) = 64.47 + 48.99

∑100
k=0 (−1)k

(0.5
k

)
z100−k

z100
, (9.4)

CT (z) = 64.47 + 48.99 ×

× 0.316z4 − 1.038z3 + 1.248z2 − 0.645z + 0.119

0.256z4 − 0.639z3 + 0.488z2 − 0.078z − 0.027
.

The transfer function of the digital prefilter is:

Hp(z) =
0.5

1− 0.5z−1
.

This prefiltering improved control loop performances e.g. less over-
shoot, etc. Usually, it is suitable to use the first-order system as a prefilter
with time constant which corresponds to the time constant of controlled
systems.

The simulation results are obtained by applying the controllers CR(z)
and CT (z) to the process transfer function. Presented results consider the
ideal case, that is, no actuator saturation and unity feedback. Simulated
step responses of the controlled system with controllers CR(z) and CT (z)
are shown in Fig. 8. In this figure it can be observed that the performances
for both controllers are identical.

The measured step responses of the controlled system with controllers
CR(z) and CT (z) are shown in Fig. 9. As in the case of simulations, the
almost identical performances obtained with both controllers can be ob-
served.

The advantage of using the second method for implementation is clear:
while the controller CR(z) is a FIR filter of order 100, the controller CT (z) is
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Figure 8. Simulated responses to unit-step input.

Figure 9. Measured responses to unit-step input.

an IIR filter of order 4. From the obtained results it can be concluded that
for implementing the digital fractional controller it is highly interesting to
use the generating function (Tustin rule) and continued fraction expansion,
because it reduces, without performance degradation, the digital system
requirements. This means that the implementation of CT (z) has reduced
requirements on memory and computation time. Such form of the FOC
implementation is also applicable in most industry applications.
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10. Conclusions

In this paper we described a survey of tuning and implementation tech-
niques for the fractional-order controllers. We demonstrated the mentioned
methods on illustrative example, where a limitation due to nonlinearity as
well as a modification (prefilter) have been considered.
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20



302 I. Petráš
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Recall that �� � ��� and �� �
��� for � � �� � � � � �. By [1,

Properties (44,45)], (25) equals to
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��� ��. Therefore,
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Now, by Lemma 4,
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The second equality is due to �	�
� � � �	�
�. Thus, (25) finally
boils down to
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On the other hand,
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is the transpose of the matrix in (25), and hence equals to
�

���
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�
� � �� � (27)

Similarly,

�� �
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� ��	��� � ��� � ���� (28)

Now, substituting (26)–(28) into (24), (20) follows.
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Identification of Parameters of a Half-Order System

Ivo Petráš, Dominik Sierociuk, and Igor Podlubny

Abstract—This correspondence presents the half-order system behavior
and its parameter identification. The identification is based on fitting the
measured data using the Mittag-Leffler function. The data were collected
for a discharge of a half-order system. The values of parameters obtained
by a new identification method are in good agreement with the calculated
interval for theoretical values, which takes into account the manufacturing
tolerances of the used electrical elements.

Index Terms—Domino ladder, fractance, fractional calculus, fractional
integrator, half-order system, Mittag-Leffler function.

I. FRACTIONAL CALCULUS INTRODUCTION

Non integer order calculus (a. k. a fractional calculus) is more then
300 years old. However, only during recent decades has it become a
powerful and widely used tool for better modeling, control of pro-
cesses, and signal processing in many fields of science and engineering
[1]–[9]. The term “fractional calculus” has some historical background
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and is used for denoting the theory of integration and differentiation of
arbitrary real (not necessarily integer) order.

The standard notation for denoting the left-sided fractional-order
differentiation of a function ���� defined in the interval ��� �� is
��

�

� ����, with � � �. Sometimes a simplified notation � ������ or
	�����
	�� is used. In some applications also right-sided fractional
derivatives ��

�

� ���� are used, but in the present article we will use
only left-sided fractional derivatives. Even from the notation one can
see that evaluation of the left-sided fractional-order operators require
the values of the function ���� in the interval ��� ��. When � becomes
an integer number, this interval shrinks to the vicinity of the point
�, and we obtain the classical integer-order derivatives as particular
cases. There are several definitions of the fractional derivatives and in-
tegrals, but in this work we use only the Caputo definition of fractional
differentiation, which can be written as [1]:

�

��
�

� ���� �
�

���� ��

�

�

� ����� �

��� � ������
	��

��� � � �  ��� (1)

where ���� is Euler’s gamma function.
The Caputo definition (1) is extremely useful in the time domain

studies, because the initial conditions for the fractional-order differ-
ential equations with the Caputo derivatives can be given in the same
form as for the integer-order differential equations. This is an advantage
in applied problems, which require the use of initial conditions con-
taining starting values of the function and its integer-order derivatives
����� � ���� � ���� � � � � � ��������. Other definitions of fractional dif-
ferentiation do not have such a convenient property.

The formula for the Laplace transform of the Caputo fractional
derivative (1) has the form [1]:

�

�

���� ���
�

� ����	� � ��� ����

���

���

�����������	��

��� � � �  ��� (2)

If the process ���� is considered from the state of absolute rest, so
���� and its integer-order derivatives up to �����-th order are equal to
zero at the starting time � � 	, then the Laplace transform of the �-th
derivative of ���� is simply ��� ���.

II. FRACTIONAL DEVICES

A. Fractances

A circuit that exhibits fractional-order behavior is called a fractance
[1]. The fractance devices have the following characteristics [10]. First,
the phase angle is constant independent of the frequency within a wide
frequency band. Second, it is possible to construct a filter having a
moderate frequency characteristics which can not be realized by using
the conventional devices.

Generally speaking, there are three basic types of fractances. The
most popular are a domino ladder circuit network [11] and a constant
phase element [12]. Another type is a tree structure of electrical ele-
ments [10], and finally, we can consider a transmission line circuit (or
symmetrical domino ladder [13]). The review of most of the previous
efforts can be found in [14].

Design of fractances having given order � can be done easily using
any of the rational approximations or a truncated continued fraction
expansion (CFE), which also gives a rational approximation [15], [16].
Truncated CFE does not require any further transformation; a rational
approximation based on any other methods must be first transformed
to the form of a continued fraction; then the values of the electrical
elements, which are necessary for building a fractance, are determined
from the obtained finite continued fraction. If all coefficients of the

Fig. 1. Domino ladder scheme.

Fig. 2. Proposed analogue model of half-order integrator (capacitor).

obtained finite continued fraction are positive, then the fractance can be
made of classical passive elements (resistors and capacitors). If some
of the coefficients are negative, then the fractance can be made with the
help of negative impedance converters [14], [15].

B. Traditional Domino Ladder (Half-Order Integrator)

Several different algorithms for approximation the fractional order
integrators are currently available (e.g., [11], [14], [17], [18]). Most of
them are based on some form of approximation of irrational transfer
functions in the complex domain. The commonly used approaches in-
clude the aforementioned CFE method and its modifications, or repre-
sentation by a quotient of polynomials in � in a factorized form.

The main disadvantage of these algorithms is that the values of elec-
trical elements (like resistors and capacitors) needed for the approxima-
tion are not the standard values of elements produced by manufacturers.

However, it is still possible to obtain highly accurate and practically
usable implementations of a fractional-order integrator using only stan-
dard elements with the standard values available in the market. The
idea of this practical approach to implementation of fractional-order
systems is based on the domino ladder structure.

The domino ladder circuit shown in Fig. 1 has the following
impedance [19]–[21]:

���� � �

�

�� 
 �

	�

�
�

�

�

��
�
� (3)

In the ideal case of infinite realization, (3) gives a half-order integrator
or capacitor; a truncated realization gives its approximation.

C. Domino Ladder With Alternating Resistors

For building an accurate analog approximation of the half-order in-
tegrator using easily accessible elements available in the market, the
approach presented in Fig. 2 can be used.

Based on the observation made in article [22], we can formulate the
following design algorithm:

a) Choose the values of �� and � in order to obtain the required
low frequency limit.

b) Choose the value of �� in order to satisfy the condition �� �

���. This condition allows one to select those values of resistors
that are available as manufactured.
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24



IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 60, NO. 10, OCTOBER 2012 5563

c) Choose the ladder length � (number of steps in the domino
ladder) in order to obtain the desired frequency range of
approximation.

Because the ladder shown in Fig. 2 is not a usual domino ladder
circuit, for calculation of the impedance we cannot use the relationship
(3), but we have to use a modified version in the form:

���� � �� �
�

�� � �

� �

(4)

and a �-truncated realization gives its approximation. In the ideal case
of infinite realization, (4) gives a half-order integrator or a capacitor. If
we consider a ladder that is long enough, we can write the following
formula for the ladder impedance:

���� �
�

�������
�

�

������
� (5)

where � � ���� � ���	� � �� is the time constant of the ladder
and � � �������	� is the resistance per unit length of the ladder. As
it has mentioned above, a domino ladder can be built to approximate
a fractional order capacitor [23], with capacitance �� � � ���	� �
�	� ��� as well. Physical unit of such capacitance is Farad/(second)���,
which is (second)���/Ohm. The time constant � of the domino ladder
can be expressed as ��	�
 � �� � �����
. It is not consistent,
so the time constant 
 is used in order to maintain the physical unit
consistency and desired unit of the impedance ���� in Ohm.

Following the considerations in [24], we have to introduce the time
scaling constant 
 ���, where in our case � � ���, to maintain a con-
sistent set of units for the fractional-order system in Fig. 2. This gives
the following modified domino ladder impedance in the general form:

����� � ������ �

 ����

�����
�


 ���

����
�

�


����
� (6)

where 
�� � ��	
��� and for � � ��� we obtain the impedance in
ohm of the half-order capacitor with a unit in farad. Scaling time con-
stant 
 has small value, i.e., 
 � ��. Relation between the integer time
scale and the fractional “transformed” time scale was clearly described
in [25].

III. EXPERIMENTAL RESULTS

A. Experimental Setup

The tested circuit has the following parameters of the circuit pre-
sented in Fig. 2: �� � ���� �� �� � ���� �� � � ��� nF, and
numbers of steps in the ladders was taken � � ���. The sampling
period was �� � ������ second. The manufacturing tolerance of the
elements used for making such ladders is 1% for resistors and 20% for
capacitors. For such values of the resistors and capacitors we obtain the
following impedance of the domino ladder:

������ �
�


������
� (7)

where the constant 
�� � ������ � ���� is in Farad.
As we can observe in the Bode plots depicted in Fig. 3, the domino

ladder with 130 steps approximates the half-order integral or capac-
itor over three decades, which is very good approximation. It is well
known that ideal fractional integrator has phase ��� � ���	� and
magnitude ���� � ���� dB/dec. In our case for � � ��� they are
��� � ���� and ���� � ��� dB/dec.

The electronic scheme presented in Fig. 4 uses two operational am-
plifiers. The first one is working in the half-order system configuration

Fig. 3. Measured Bode plots of half-order integrator (capacitor) approximated
by the domino ladder (4) of 130 steps with the values of electrical elements:
� � ���� �� � � ���� �, and � � ��� nF.

Fig. 4. Electronic circuit of measurement setup for half-order system.

Fig. 5. Experimental setup used for measurements: 1—domino ladder, 2—de-
tail of ladder, 3—dSPACE card, 4—computer with Matlab/Simulink SW.

and the second one is working in the inverse unit-gain for compen-
sating the signal inversion of the amplifier. The �� is an input and ��
is an output of the half-order system.

For the experimental verification of the method introduced in this
work, the circuit presented in Fig. 4 has been built. For measurements,
the modified domino ladder circuit was connected to the amplifier elec-
tronic circuit of the operational amplifiers TL071 and to the dSPACE
DS1103 DSP card connected to a computer with Matlab. We have
chosen the TL071 specially because it has a circuit for compensating
the DC offset. The actual laboratory setup is shown in Fig. 5.
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B. Half-Order Model Derivation

The final impedance of the circuit presented in Fig. 4 is given as:

����� �
�����

�����
�

����

����������������� � ��
�

����

	��	�
���� � �
�

(8)
The time constant 7.8719 in the (8) of the circuit presented in Fig. 4

is in the unit of seconds, which is usual time constant of such circuit
connection, also so called an inertial system.

The transfer function (8) corresponds with the fractional differential
equation:

	��	�
�� �
���
� ����� � ����� � ���������� (9)

Equation (9) can be rewritten to the form:

�
� �

���
� ����� � ����	������ � �����������	 (10)

where input voltage ����� � 
 and ����� � � for charging the
system, and ����� � � and ����� � 
 for discharge of the system;
where 
 is a constant voltage.

It is worth noting that constants in the fractional differential equation
(10), which were obtained by calculation from electrical elements, are
under some inaccuracy because of the mentioned electrical elements
manufacturing tolerance (1% for resistors and 20% for capacitors). The
estimated average error is approximately within ���%.

Based on the estimated tolerance, we can write the (10) in the fol-
lowing form with the interval parameters:

�
� �

�����������
� ������������	 ���
������ � ����
	 �����������	 (11)

that is, � � �����	 ����� and � � ������	 ���
�. Alternatively, we can
consider the domino ladder with  � �� as a long enough and fix the
order to � � ���. In such case we get:

�
� �

���
� ����� � ������	 ���
������ � ����
	 ������������ (12)

In our case we use the (12) for the discharge, so ����� � � and ����� �

 . Then the final form of the initial-value problem for the fractional
differential equation describing the behavior of the considered half-
order system is:

�
� �

���
� ����� � ������	 ���
������ � �

����� � 
 (13)

C. Derivation of the Type of the Identification Problem

After the system is fully charged, the voltage ����� is switched off.
After this, the discharge of the system is described by the equation for
the voltage ����� in terms of the Caputo derivative:

�
� �

�
� ����� � ������ � � (14)

The initial condition is the value of the voltage at the instance when
the voltage ����� was switched off:

����� � 
� (15)

Since the Caputo derivative of a constant is zero, substitution

����� � ���� �
 (16)

gives the problem

�
� �

�
� ���� � ����� � ��
	 ���� � �� (17)

The Laplace transform gives:

� ������ � �� � �
�


�
(18)

and after rearrangement we have

� ��� � �
�
���

�� � �
(19)

Using the inverse Laplace transform we obtain

���� � ��
�
�
����������

�� (20)

where ���	��� is the Mittag-Leffler function defined as [1] (Matlab
code with calculation algorithm is available in [26]):

���	��� �

�


	�

�


���� � ��
� (21)

Returning to ����� and using the properties of the Mittag-Leffler
function yields

����� � 
��� ��
�
����������

��� � 
��������
��� (22)

D. Data Fitting Using the Mittag-Leffler Function

In order to obtain a model for the measured data, we have developed
a new approach to data fitting, which is based on using the Mittag-
Leffler function and which, in fact, allows obtaining models of non-
integer order [27].

In the present article the measured data are fitted by the function of
the same structure as (22), that is

� � ����������
��	 (23)

The parameters to be identified are �	 �, and ��.
If the data are fitted by the function (23), then this means that they

are modeled by the solution of the following initial-value problem for
a two-term fractional-order differential equation containing the Caputo
fractional derivative of order �:

�
��

�
� ���� � ����� � �	 ���� � ��� (24)

E. Identification Results

The measurements were realized for the process of discharge of the
inertial connection of a ladder depicted in Fig. 4. The data were col-
lected for the time period of 1 sec. The measured data were fitted by
the function

����� � 
��������
��	 (25)

where the parameters �	
	 � were subjects for identification.
For this purpose we created a Matlab routine “MLFFIT”; this routine

is published at the Matlab Central File Exchange [28]. The results of
the parameter identification are:

� � ������	 
 � �����
	 � � ����� (26)

Since the infinite ladder should have the order equal to � � ���,
another attempt has been undertaken, where � was fixed as equal to
0.5, and only 
 and � were subjects for identification. In this case, we
obtained:

� � ���	 
 � ������	 � � ����� (27)

which is practically the same as the result of identification of all three
parameters. This means that the ladder with  � �� steps is long
enough to be considered as an approximation of an infinite ladder.

Therefore, the process of discharge of a ladder in the studied circuit
is described by the following initial value problem for a two-term frac-
tional differential equation:

�
� �

���
� ����� � ���������� � �

����� � ������ (28)
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Fig. 6. Fitting half-order system discharge by the Mittag-Leffler function.

The measured data and the fitting curve are shown in Fig. 6. The pa-
rameters obtained by identification are very close to the calculated ones
if we take into account the estimated errors due to the manufacturing
tolerances of the electrical elements used in the studied circuit.

When using our MLFFIT routine for Matlab, it is worth remem-
bering that the underlying Matlab function FMINSERCH used for min-
imization is based on simplex search method, which may sometimes
lead to finding a local minimum instead of the global one; changing
the initial guess is a standard approach in such situations.

IV. DISCUSSION

As we can observe in Fig. 6, the measured data, mathematical model
with the parameters obtained by identification and mathematical model
with the parameters obtained by calculation fit very well. The identi-
fied model gives satisfactory results, the calculated mean square error
is ��� � ���� � �	

��. The response of the model with identified
parameters is in the corridor of the possible responses for the model
with calculated parameters expressed in the interval form because of
the electrical elements tolerances. Even the measured data lie in this
corridor, which confirm the correctness of our approach. It also con-
firms that estimation of the average error was correct.

The small difference between the calculated and the identified order
� is due to the finite number of the domino ladder steps. In our case
the number of steps was � � �
	 and the order was identified as � �

	����	. Clearly, the theoretical value of the order, � � 	��, can be
obtained only for the infinite ladder, which is physically unrealizable.
In the considered case it has been demonstrated that the ladder with
� � �
	 is long enough to be considered as having order � � 	��

within some tolerance.
The presented half-order system can be used for additional exper-

iments, such as measurement of responses to various inputs and also
in control systems using fractional-order controllers [29], signal pro-
cessing using new type of filters [30], new type of neural networks [31],
and as well as for identification of the thermal processes [32].

V. CONCLUSION

In this work we have presented the experimental study of the
half-order system behavior described by two-term fractional differen-
tial equation, and its parameters identification by a new Mittag-Leffler
function fitting method. In order to have a good consistency of the
parameter obtained by the identification and calculated parameters,
a time scaling constant � has been introduced, and also a different
approach for calculation of the domino ladder constant. The obtained

experimental results confirm the validity of our approach. Similar re-
sults were obtained in [33], where a fractional-order system described
by three-term fractional differential equation was studied.

Besides the studied behavior of the considered half-order system,
the variable-order behavior of domino ladder for long time intervals
has been observed [27]. In the further work we will described a voltage
distribution in a ladder circuit using the model based on fractional par-
tial differential equations.
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Enhancing the Resolution of the Spectrogram
Based on a Simple Adaptation Procedure

Tsz K. Hon and Apostolos Georgakis

Abstract—This work is concerned with improving the quality of signal
localization for the short-time Fourier transform by properly adjusting the
size of its analysis window over time. The adaptation procedure involves
the estimation of an area in the time-frequency plane which is more com-
pact than the support of the fixed-window spectrogram. Then, at each time
instant, the optimal window is selected such that the signal energy is max-
imized within the identified area. The proposed method achieves its objec-
tives, and can compare favorably with alternative time-adaptive spectro-
grams as well as with advanced quadratic representations.

Index Terms—Short-time Fourier transform, spectrogram, time-fre-
quency analysis.

I. INTRODUCTION

It is often useful to know the temporal distribution of the frequency
content of a signal. A simple way to acquire this information is to per-
form the Fourier transform over short analysis intervals. The short-time
Fourier transform (STFT) [1] remains to date the principal method for
routine time-frequency (TF) analysis. Recent application examples of
the STFT and its variants include signal denoising [2], [3], and instan-
taneous frequency estimation [4].
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The STFT is simple, efficient, and robust. On the other hand, its per-
formance is heavily dependent on the analysis window. In communities
like speech and radar processing—for which the STFT has been a pri-
mary tool for decades—experience usually dictates the choice of this
window. In general though, the selection is arbitrary, and this is why
the STFT has been criticized as a heuristic method. What is worse, the
application of a fixed window for the short-time analysis of the entire
signal can be ineffective, since the signal may vary significantly over
its lifespan.

Dealing with the window problem has been greatly facilitated by
the fact that the STFT can be optimized locally. This has encouraged
the development of methods for adapting the STFT to the local struc-
ture of the analyzed signal [5]–[9]. The associated methodologies can
broadly be classified into two categories; those based on the conven-
tional STFT definition, where the duration of the analysis window is
usually the sole parameter optimized at each time instant, and those in-
troducing modified versions of the STFT in which the window can be
adjusted at every time-frequency location. Adapting the STFT both in
time and frequency generally leads to computationally expensive algo-
rithms. In addition, this degree of sophistication may be unnecessary
in certain practical situations [7]. In such cases, the former class of
methodologies is preferable because they combine good performance
and efficient implementation.

In this work, we introduce a new method for the time adaptation of
the STFT. In the following sections, we first briefly review the theo-
retical ideas underpinning our approach, and then provide a detailed
account of the proposed scheme. Its performance is then illustrated by
using test signals, and comparisons are made with other adaptive spec-
trograms as well as with renowned quadratic TF representations.

II. THEORETICAL BACKGROUND

The following sections provide a brief overview of the main ideas
pertaining to this work.

A. The Classical Short-Time Fourier Transform

The STFT of a signal ���� can be defined as [1]:

���� ����� � ����� � ����������	�� (1)

where ����� is the short-time analysis window. This is typically a real
and symmetric function centered at zero, tapering off to zero away
from its centre such that its effective duration is 
. Hence, at each
time instant, (1) computes the Fourier transform of a short portion of
the signal around �. Accordingly, the short-time energy-density spec-
trum ���� ����� can be obtained as the squared magnitude of (1), i.e.,
����� ����� � ����� ������

�, and is commonly called the spectro-
gram. When a unit-energy window is used then the total energy of the
spectrogram equals that of the signal.

There exists an elemental relationship between the spectrogram
and the Wigner distribution (WD) ����� �� � ��� � �

�
����� �

�

�
������	� . Namely, the convolution of the WD of the signal with the

WD of the STFT window renders the spectrogram, i.e.,

����� ����� � ���� � � ��� ��� � � � � � �	� 	�  (2)

The WD is widely recognized for its high TF concentration [10], [11].
On the other hand, it suffers from the presence of cross-term interfer-
ence which limits its readability, and prevents it from being strictly
positive. Although the process in (2) is known to eliminate interfer-
ence and restore positivity, it also smears the signal in the TF plane.
So, despite its relative advantages, the spectrogram yields inferior TF
signal localization compared to the WD. This deterioration depends on
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a b s t r a c t

This paper deals with the Bloch equations which are a set of macroscopic equations that
are used for modeling of nuclear magnetization as a function of time. These equations
were introduced by Felix Bloch in 1946 and they are used for a description of the Nuclear
Magnetic Resonance (NMR). This physical phenomenon is used in medicine, chemistry,
physics, and engineering to study complex material. Fractional-order generalization of the
Bloch equations was presented by RichardMagin et al. in 2008 as an opportunity to extend
their use to describe a wider range of experimental situations involving heterogeneous,
porous, or composite materials.

In this paper we describe numerical and simulation models (created for Matlab/
Simulink) of the classical and the fractional-order Bloch equations. The behaviour and
stability analysis of the Bloch equations are presented as well.

© 2010 Elsevier Ltd. All rights reserved.

1. Introduction

Fractional calculus has been known for more then 300 years. These mathematical phenomena allow us to describe a real
object more accurately than the classical ‘‘integer’’ order methods. The nature of real objects is ‘‘fractional’’ [1–3]. However,
for many of them the fractionality is very low. A typical example of a fractional order system is the voltage–current relation
of a semi-infinite lossy transmission line [4] or the diffusion of heat through a semi-infinite solid, where heat flow is equal
to the half-derivative of the temperature [2].

At the present time there are many methods for approximation of fractional derivatives and integrals and fractional
calculus can be easily used in wide areas of applications. Fractional order calculus plays an important role in physics [5,6],
electrical engineering [7,8,3], control systems [9–11,1], robotics [12], signal processing [13,14], chemistry [15], chaos [16,17],
bioengineering [18], etc.

In this paper, we offer an application of fractional calculus in NMR,which ismodeled by Bloch equations. Basic definitions
of fractional calculus, fractional order dynamic systems and numerical methods are presented first in Section 2. Then, stabil-
ity conditions for the fractional order dynamical systems are introduced in Section 3. The integer-order and fractional-order
Bloch equations are described and analyzed in Section 4. Additionally, several simulation examples are presented and com-
mented in Section 5. Some concluding remarks are mentioned in Section 6. The code of the Matlab function is in Appendix.

2. Fractional calculus

2.1. Basic definitions and properties

Fractional calculus is a generalization of integration and differentiation to non-integer order fundamental operator aD
q
t ,

where a and t are the bounds of the operation and q ∈ R. The continuous integro-differential operator is defined as

∗ Tel.: +421 55 602 5194; fax: +421 55 602 5194.
E-mail address: ivo.petras@tuke.sk.

0898-1221/$ – see front matter© 2010 Elsevier Ltd. All rights reserved.
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aD
q
t =


dq

dtq
: q > 0,

1 : q = 0,∫ t

a
(dτ)q : q < 0.

The most frequently used definitions for the general fractional differ-integral are: Grünwald–Letnikov (GL), Riemann–
Liouville, Weyl, and Caputo’s definition [15,2].

In this paper we will consider mainly the GL and Caputo’s definitions. Both mentioned definitions are equivalent for a
wide class of functions [2].

Definition 1. If we consider n =
t−a
h , where a is a real constant, which expresses a limit value, we canwrite the GL definition

as

aD
q
t f (t) = lim

h→0

1
hq

[n]−
j=0

(−1)j

q
j


f (t − jh), (1)

where [.] means the integer part.

Definition 2. Caputo’s definition of fractional derivatives can be written as

aD
q
t f (t) =

1
Γ (n − q)

∫ t

a

f (n)(τ )

(t − τ)q−n+1
dτ , (2)

for (n − 1 < q < n).

The initial conditions for the fractional order differential equations with Caputo’s derivatives are in the same form as for
the integer-order differential equations.

Two general properties of the fractional-order derivative will be used. The first is a composition of a fractional with an
integer-order derivative and the second is the property of linearity.

Property 1. Similar to integer-order differentiation, fractional differentiation is a linear operation [2]:

aD
q
t (λf (t) + µg(t)) = λ aD

q
t f (t) + µ aD

q
t g(t). (3)

Property 2. The fractional-order derivative commutes with integer-order derivation [2],

dn

dtn
(aD

q
t f (t)) = aD

q
t


dnf (t)
dtn


= aD

q+n
t f (t), (4)

under the condition t = a we have f (k)(a) = 0, (k = 0, 1, 2, . . . , n− 1). The relationship (4) says the operators dn
dtn , n ∈ N and

aD
q
t , q ∈ R commute.

Some other properties and clear geometric and physical interpretations of the fractional integral and derivative are
described in [19].

2.2. Fractional-order systems

The fractional-order linear time invariant (LTI) system can be represented by the following state–space model (e.g.
[20,1,21])

0D
q
t x(t) = Ax(t) + Bu(t)

y(t) = Cx(t), (5)

where x ∈ Rn, u ∈ Rr and y ∈ Rp are the state, input and output vectors of the system and A ∈ Rn×n, B ∈ Rn×r , C ∈ Rp×n, and
q = [q1, q2, . . . , qn]T are the fractional orders. If q1 = q2 = · · · qn ≡ q, system (5) is called a commensurate order system,
otherwise it is an incommensurate order system.

2.3. Numerical methods

For numerical calculation of the fractional-order derivative we can use the relation (6) derived from the Grünwald–
Letnikov definition (1). This approach is based on the fact that for a wide class of functions, two definitions — GL (1),
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and Caputo’s (2) — are equivalent. The relation for the explicit numerical approximation of q-th derivative at the points
kh (k = 1, 2, . . .) has the following form [2,13,9]:

(k−L/h)D
q
tk f (t) ≈ h−q

k−
j=0

(−1)j

q
j


f (tk−j), (6)

where L is the ‘‘memory length’’, tk = kh, h is the time step of calculation and (−1)j


q
j


are binomial coefficients

c(q)
j (j = 0, 1, . . .). For their calculation we can use the following expression [9]:

c(q)
0 = 1, c(q)

j =


1 −

1 + q
j


c(q)
j−1. (7)

Then, the general numerical solution of the fractional differential equation

aD
q
t y(t) = f (y(t), t),

can be expressed as

y(tk) = f (y(tk), tk) hq
−

k−
j=v

c(q)
j y(tk−j). (8)

For the memory term expressed by a sum, a ‘‘short memory’’ principle can be used. Then the lower index of the sums in the
relations (8) will be v = 1 for k < (L/h) and v = k − (L/h) for k > (L/h), or without using the ‘‘short memory’’ principle,
we put v = 1 for all k.

Obviously, for this simplification we pay a penalty in the form of some inaccuracy. If f (t) ≤ M , we can easily establish
the following estimate for determining the memory length L, providing the required accuracy ϵ:

L ≥


M

ϵ|Γ (1 − q)|

1/q

. (9)

An evaluation of the short memory effect and the convergence relation of the error between short and long memory were
clearly described and also proved in [2].

For a numerical simulation of the fractional order system a method on the basis of the Adams–Bashforth–Moulton type
predictor–corrector scheme has also been proposed [22,23]. It is suitable for Caputo’s derivative because it just requires the
initial conditions and for the unknown function it has a clear physical meaning. The method is based on the fact that the
fractional differential equation

0D
q
t y(t) = f (y(t), t), y(k)(0) = y(k)

0 , k = 0, 1, . . . ,m − 1

is equivalent to the Volterra integral equation

y(t) =

[q]−1−
k=0

y(k)
0

tk

k!
+

1
Γ (q)

∫ t

0
(t − τ)q−1f (τ , y(τ ))dτ . (10)

Discretizing the Volterra equation (10) for a uniform grid created by tn = nh (n = 0, 1, . . . ,N), h = Tsim/N and using the
short memory principle (fixed or logarithmic [24]), we obtain a good numerical approximation of the true solution y(tn)
of the fractional differential equation at preserving the order of accuracy. Assume that we have calculated approximations
yh(tj), j = 1, 2, . . . , n and we want to obtain yh(tn+1) by means of the equations

yh(tn+1) =

m−1−
k=0

tkn+1

k!
y(k)
0 +

hq

Γ (α + 2)
f (tn+1, y

p
h(tn+1)) +

hq

Γ (α + 2)

n−
j=0

aj,n+1f (tj, yn(tj)), (11)

where

aj,n+1 =

nq+1
− (n − q)(n + 1)q, : if j = 0,

(n − j + 2)q+1
+ (n − j)q+1

+ 2(n − j + 1)q+1
: if 1 ≤ j ≤ n,

1, : if j = n + 1.

The preliminary approximation yph(tn+1) is called a predictor and it is given by

yph(tn+1) =

m−1−
k=0

tkn+1

k!
y(k)
0 +

1
Γ (q)

n−
j=0

bj,n+1f (tj, yn(tj)), (12)
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Fig. 1. Properties of the Simulink nid block.

where

bj,n+1 =
hq

q
((n + 1 − j)q − (n − j)q). (13)

A slightly improved predictor–corrector approach for solving the Fokker–Planck equation has been noted in [22,25]. A
collection of the various numerical algorithms was also presented in [26].

A detailed review of the various approximation methods and techniques (Carlson’s [8], Charef’s [27], CRONE-
Oustaloup’s [28], etc.) for continuous and discrete fractional-order models in the form of IIR and FIR filters was done in the
work [13]. Some other approaches were described in the work [29]. Here, we also should mention the approach proposed
by Hwang, which is based on the B-splines function [30] and Podlubny’s matrix approach for linear fractional differential
equations and a set of such equations [31,32].

For comparison,we canmentionmethods described in [13,27]which lead to an approximation in the IIR form. Someof the
mentioned frequencymethods in both forms of approximations have been realized as theMatlab routines inDuarte Valerio’s
toolbox called ninteger (see a detailed review in [33]). In this toolbox was also created a Simulink block nid for fractional
derivatives and integrals (see Fig. 1), where the order of the derivative/integral and the method of its approximation can be
selected. We will use this block for creating the fractional-order system model in Matlab/Simulink (see e.g. [34]).

3. Stability of the fractional-order LTI system

However, we cannot directly use an algebraic tool as for example the Routh–Hurwitz criteria for the fractional order
system because we do not have a characteristic polynomial but pseudo-polynomials with rational powers—multivalued
function.

Whendealingwith incommensurate fractional order systems (or, in general,with fractional order systems) it is important
to bear in mind that P (sq) , q ∈ R is a multivalued function of sq (s is a Laplace operator), q =

u
v
, the domain of which can be

viewed as a Riemann surfacewith a finite number of Riemann sheets v, where the origin is a branch point and the branch cut
is assumed at R−. Function sq becomes holomorphic in the complement of the branch cut line. It is a fact that in multivalued
functions only the first Riemann sheet has its physical significance (see e.g. [35,21]).

As we can see in the previous subsection, in the fractional case, the stability is different from the integer one. An
interesting notion is that a stable fractional system may have roots in the right half of the complex w-plane (see Fig. 2).
Since the principal sheet of the Riemann surface is defined as −π < arg(s) < π , by using the mapping w = sq, the
corresponding w domain is defined by −qπ < arg(w) < qπ , and the w plane region corresponding to the right half plane
of this sheet is defined by −qπ/2 < arg(w) < qπ/2.

Mapping the poles from the sq-plane into the w-plane, where q ∈ Q such as q =
k
m for k,m ∈ N and |arg(w)| = |φ|, can

be done by the following rule: if we assume k = 1, then themapping from the s-plane to thew-plane is independent of k. The
unstable region from the s-plane transforms to sector |φ| < π

2m and the stable region transforms to sector π
2m < |φ| < π

m .
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(a) 0 < q < 1. (b) 1 < q < 2.

Fig. 2. Stability regions of the fractional-order system in complex w-plane.

The region where |φ| > π
m is not physical. Therefore, the system will be stable if all roots in the w-plane lie in the region

|φ| > π
2m .

Theorem 1 ([36–39]). It has been shown that commensurate system (5) is stable if the following condition is satisfied (also if the
triplet A, B, C is minimal):

|arg(eig(A))| > q
π

2
, (14)

where 0 < q < 2 and eig(A) represents the eigenvalues of matrix A.

Theorem 2 ([40]). Consider the following autonomous system for the internal stability definition:

0D
q
t x(t) = Ax(t), x(0) = x0, (15)

with q = [q1, q2, . . . , qn]T and its n-dimensional representation:

0D
q1
t x1(t) = a11x1(t) + a12x2(t) + · · · + a1nxn(t)

0D
q2
t x2(t) = a21x1(t) + a22x2(t) + · · · + a2nxn(t)

· · ·

0D
qn
t xn(t) = an1x1(t) + an2x2(t) + · · · + annxn(t) (16)

where all qi’s are rational numbers between 0 and 2. Assume m to be the least common multiple of the denominators ui’s of qi’s,
where qi = vi/ui, vi, ui ∈ Z+ for i = 1, 2, . . . , n and we set γ = 1/m. Define:

det

λmq1 − a11 −a12 · · · −a1n
−a21 λmq2 − a22 · · · −a2n
· · ·

−an1 −an2 · · · λmqn − ann

 = 0. (17)

The characteristic equation (17) can be transformed to an integer order polynomial equation if all qi’s are rational numbers.
Then the zero solution of system (16) is globally asymptotically stable if all roots λi’s of the characteristic (polynomial)
equation (17) satisfy

|arg(λi)| > γ
π

2
for all i.

Denote λ by sγ in Eq. (17), we get the characteristic equation in the form det(sγ I − A) = 0.

4. Bloch equations

4.1. Integer-order Bloch equations

In physics and bio-engineering, specifically in NMR or magnetic resonance imaging the Bloch equations are a set of
macroscopic equations that are used to calculate the nuclear magnetization M = (Mx(t),My(t),Mz(t)) as a function of
time when relaxation times are T1 (spin–lattice) and T2 (spin–spin). These equations were introduced by Felix Bloch in 1946
and can be expressed in the following form [41]:

dMx(t)
dt

= γ (M(t) × B(t))x −
Mx(t)
T2

,

dMy(t)
dt

= γ (M(t) × B(t))y −
My(t)
T2

, (18)

dMz(t)
dt

= γ (M(t) × B(t))z −
Mz(t) − M0

T1
,
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Fig. 3. Simulink model of Eqs. (21).

where γ /2π is the gyromagnetic ratio, B(t) = (Bx(t), By(t), B0 + 1Bz(t)) is the magnetic field experienced by the nuclei,
andM0 is the equilibrium magnetization.

However, the relaxation terms describe the return to equilibrium, but only for a field pointing along the z-axis, the Bloch
equations (18) for the constant static magnetic field B0 (z-component) reduce to the equations [42]

dMx(t)
dt

= ω0My(t) −
Mx(t)
T2

,

dMy(t)
dt

= −ω0Mx(t) −
My(t)
T2

, (19)

dMz(t)
dt

=
M0 − Mz(t)

T1
,

where ω0 = γ B0 and ω0 = 2π f0 (e.g. gyromagnetic ratio γ /2π = f0/B0 = 42.57 MHz/T for water protons).
The complete set of analytical solutions is [42]

Mx(t) = e−t/T2(Mx(0) cosω0t + My(0) sinω0t)

My(t) = e−t/T2(My(0) cosω0t − Mx(0) sinω0t) (20)

Mz(t) = Mz(0)e−t/T1 + M0(1 − e−t/T1).

The equilibrium or steady-state solution can be found from the asymptotic limit t → ∞ of (20).
The state Bloch equations (19) are given by using the integration operation and have the form:

Mx(t) =

∫ t

0

[
ω0My(t) −

Mx(t)
T2

]
dt,

My(t) =

∫ t

0

[
−ω0Mx(t) −

My(t)
T2

]
dt, (21)

Mz(t) =

∫ t

0

[
M0 − Mz(t)

T1

]
dt.

The system model developed from the state equations (21) by using the Matlab/Simulink environment is depicted in
Fig. 3.
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Fig. 4. Simulink model of Eqs. (23).

4.2. Fractional-order Bloch equations

Now, we consider the fractional-order Bloch equations, where integer-order derivatives are replaced by fractional-order
ones. A mathematical description of the fractional-order system with Caputo’s derivatives is expressed as [43]

0D
q1
t Mx(t) = ω′

0My(t) −
Mx(t)
T ′

2
,

0D
q2
t My(t) = −ω′

0Mx(t) −
My(t)
T ′

2
, (22)

0D
q3
t Mz(t) =

M0 − Mz(t)
T ′

1
,

where q1, q2, and q3 are the derivative orders. The total order of the system is q̄ =(q1, q2, q3). Here, ω′

0, T
′

1, and T ′

2 have the
units of (s)−q to maintain a consistent set of units for the magnetization.

An analytical solution of the fractional-order Bloch equations (22) based on the Mittag-Leffler function has been derived
and discussed in [43].

The state expression of the fractional-order Bloch equations (22) with parameters ω′

0, T
′

1, and T ′

2 are given by using the
integration operation and the properties (3) and (4) and have the form:

Mx(t) = 0D
1−q1
t

∫ t

0

[
ω′

0My(t) −
Mx(t)
T ′

2

]
dt


,

My(t) = 0D
1−q2
t

∫ t

0

[
−ω′

0Mx(t) −
My(t)
T ′

2

]
dt


, (23)

Mz(t) = 0D
1−q3
t

∫ t

0

[
M0 − Mz(t)

T ′

1

]
dt


.

The system model developed from the state equations (23) for system parameters ω′

0, T
′

1, and T ′

2 by using the
Matlab/Simulink environment is depicted in Fig. 4.

5. Simulation results

For simulation purposes, we can use models created for Matlab/Simulink described in the previous section or we
can derive a numerical solution of the fractional Bloch equations (22) using one of the methods (Grn̈wald–Letnikov or
Adams–Bashforth–Moulton) described in Section 2. As it has been shown in paper [16], both numerical methods have
approximately the same order of accuracy and a good match of numerical solutions. Because of this, we will derive a
numerical solution of Bloch equations (22) by using the relationship (8), which leads to an easier numerical solution in
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(a) 2D: (Mx(t) vs. My(t)).

(b) 3D: (Mx(t) vs. My(t) vs.Mz(t)).

Fig. 5. Numerical solutions of Bloch equations (24) with parameters: q ≡ q1 = q2 ≈ 1.03163, T ′

1 = 1 (s)q, T ′

2 = 20 (ms)q, f0 = 160 Hz, and initial
conditionsMx(0) = 0,My(0) = 100,Mz(0) = 0 for Tsim = 0.1 s.

the form:

Mx(tk) =


ω′

0My(tk−1) −
Mx(tk−1)

T ′

2


hq1 −

k−
j=v

c(q1)
j Mx(tk−j),

My(tk) =


−ω′

0Mx(tk) −
My(tk−1)

T ′

2


hq2 −

k−
j=v

c(q2)
j My(tk−j), (24)

Mz(tk) =


M0 − Mz(tk−1)

T ′

1


hq3 −

k−
j=v

c(q3)
j Mz(tk−j),

where Tsim is the simulation time, k = 1, 2, 3, . . . ,N , for N = [Tsim/h], and (Mx(0),My(0),Mz(0)) is the start point (initial
conditions). The binomial coefficients c(q)

j are calculated according to the relation (7). All simulations described in this section
were performed without using the short memory principle (v = 1) for time step h = 0.00001.
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(a) 2D: (Mx(t) vs. My(t)).

(b) 3D: (Mx(t) vs. My(t) vs.Mz(t)).

Fig. 6. Numerical solutions of Bloch equations (22) with parameters: q ≡ q1 = q2 = q3 = 1, T ′

1 = 1 s, T ′

2 = 20 ms, f0 = 160 Hz, and initial conditions
Mx(0) = 0,My(0) = 100,Mz(0) = 0 for Tsim = 1 s.

For the numerical solution (24) of the Bloch equations (22) was created as a Matlab function FOBlochEqs() for which
the code and syntax are listed in Appendix.

Stability of the fractional-order Bloch equations (22) can be investigated according to Theorem1 or 2. The first and second
equation of set (22) are a couple and the third one is independent of them. The stability condition is determined from the
following expression

0D
q
t

[
Mx(t)
My(t)

]
=

−
1
T ′

2
ω′

0

−ω′

0 −
1
T ′

2

 [
Mx(t)
My(t)

]
, (25)

where q = [q1, q2]T .
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Fig. 7. Numerical solutions of the integer-order Bloch equations in plane (Mx(t) vs.My(t)) obtained by the Matlab/Simulink model (Fig. 3) for simulation
time 1 s.

The system matrix is defined as

A =

−
1
T ′

2
ω′

0

−ω′

0 −
1
T ′

2

 . (26)

For the following system parameters [43]: T ′

2 = 20 (ms)q, and f0 = 160 Hz we obtain the eigenvalues eig(A) =

−50 ± 1005.3i and |arg(eig(A))| = 1.6205. According to the stability condition of Theorem 1, system (25) for the above
parameters is stable if q < 1.03163 in the case q1 = q2. For q1 = q2 ≈ 1.03163 we get the critical stability border and the
solution of the system (25) is depicted in Fig. 5. In Fig. 5(a), we observe a limit cycle and Fig. 5(b) plots a spiral.

In the case, where we consider q1 = q2 = q3 = 1 in (22), we have the integer-order (classical) model of the Bloch
equations (18), and the numerical solution obtained by (24) is shown in Fig. 6.

The solution of the integer-order Bloch equations (19) with parameters: T1 = 1 s, T2 = 20 ms, f0 = 160 Hz, and initial
conditions Mx(0) = 0,My(0) = 100,Mz(0) = 0 obtained by the Matlab/Simulink model (see Fig. 3) for Tsim = 1 s is
depicted in Fig. 7.

When we consider q1 = q2 = q3 = 0.9 in (22), we have the fractional-order model of the Bloch equations (18), and the
numerical solution obtained by (24) is shown in Fig. 8.

The solution of the fractional-order Bloch equations (22) with parameters: q ≡ q1 = q2 = q3 = 0.9, T ′

1 = 1 (s)q,
T ′

2 = 20 (ms)q, f0 = 160 Hz, and initial conditions Mx(0) = 0,My(0) = 100,Mz(0) = 0 obtained by Matlab/Simulink
model (see Fig. 4) for Tsim = 1 s is depicted in Fig. 10.

In Fig. 9 the comparison of the analytical and numerical solutions of the fractional-order Bloch equations (22) for Mx(t)
andMy(t), respectively is depicted. The analytical solution of the Eq. (22) based on the Mittag-Leffler function was obtained
from [43] and for the numerical solution were used the relations (24). For computation of the Mittag-Leffler function was
used a Matlab function mlf() created by Podlubny and Kačeňák [44]. We can observe a good consistency of both solutions.
The same result could be also observed forMz(t).

When we will consider q1 = 0.8, q2 = 0.9, and q3 = 1.0 in (22), we have the fractional-order model of the Bloch
equations (18), and the numerical solution obtained by (24) is shown in Fig. 11.

According to Theorem 2, the stability condition for equation orders q1 = 0.8, q2 = 0.9, q3 = 1.0 of the solution depicted
in Fig. 11 is given as |arg(λi)| > π/(2m) ∀i. For m = 10 we get the characteristic polynomial in the form

λ17
+ 50λ8

+ 50λ9
+ 2500 + 102 400π2

= 0.

All λi (i = 1, 2, . . . , 17) satisfy the condition | arg(λi)| > π/20 and therefore the system is stable.
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(a) 2D: (Mx(t) vs. My(t)).

(b) 3D: (Mx(t) vs. My(t) vs.Mz(t)).

Fig. 8. Numerical solutions of Bloch equations (24) with parameters: q ≡ q1 = q2 = q3 = 0.9, T ′

1 = 1 (s)q, T ′

2 = 20 (ms)q, f0 = 160 Hz, and initial
conditionsMx(0) = 0,My(0) = 100,Mz(0) = 0 for Tsim = 1 s.

The solution of the fractional-order Bloch equations (22) with parameters: q1 = 0.8, q2 = 0.9, q3 = 1.0, T ′

1 =

1 (s)q, T ′

2 = 20 (ms)q, f0 = 160 Hz, and initial conditions Mx(0) = 0,My(0) = 100,Mz(0) = 0 obtained by the
Matlab/Simulink model (see Fig. 4) for Tsim = 1 s is depicted in Fig. 12.

Figs. 6–12 illustrate dynamic between the Mx(t),Mx(t), and Mz(t), respectively, in 2D and 3D, for the fractional and the
integer order relaxation. Entire trajectory of magnetization for both cases is shown also in 3D with the starting at initial
conditions (Mx(0),My(0),Mz(0)) and returning back to its equilibrium value ofM0.

6. Conclusions

In this paper we have presented fractional-order Bloch equations and the method for their numerical solution and
simulation. A created mathematical model for NMR allows us to investigate and describe magnetization for spin dynamics
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(a)Mx(t) vs. time.

(b) My(t) vs. time.

Fig. 9. Comparison of analytical and numerical solutions of Bloch equations (22) with parameters: q ≡ q1 = q2 = q3 = 0.9, T ′

1 = 1 (s)q, T ′

2 =

20 (ms)q, f0 = 160 Hz, and initial conditionsMx(0) = 0,My(0) = 100,Mz(0) = 0 for Tsim = 0.02 s.

(relaxation times T1 and T2) at resonance frequency ω0 in a static magnetic field B0. By illustrative examples we have shown
the behavior of this model for integer and fractional orders of derivatives in the model.

To obtain numerical solutions of the fractional-order Bloch equations aMatlab function and Simulinkmodel was created,
which can be used for various equations parameters, initial conditions and desired simulation time.

In further work we will investigate a stability for the interval orders and interval parameters of fractional-order Bloch
equations.

Acknowledgement

This work was supported in part by the Slovak Grant Agency for Science under grants VEGA: 1/0390/10, 1/0365/08,
1/0404/08, and grant APVV-0040-07.
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Fig. 10. Numerical solutions of fractional-order (q1 = q2 = q3 = 0.9) Bloch equations in plane (Mx(t) vs. My(t)) obtained by the Matlab/Simulink model
(Fig. 4) for simulation time 1 s.

Appendix. Matlab function

function [T, Y]=FOBlochEqs(parameters, orders, TSim, Y0)
%
% Numerical Solution of the Fractional-Order Bloch’s System
%
% D^q1 Mx(t) = omega_0 My(t) - Mx(t)/T2
% D^q2 My(t) = -omega_0 Mx(t) - My(t)/T2
% D^q3 Mz(t) = (M0 - Mz(t))/T1
%
% function [T, Y] = FOBlochEqs(parameters, orders, TSim, Y0)
%
% Input: parameters - model parameters [omega_0, T1, T2, M0]
% orders - derivatives orders [q1, q2, q3]
% TSim - simulation time (0 - TSim) in sec
% Y0 - initial conditions [Y0(1), Y0(2), Y0(3)]
%
% Output: T - simulation time (0 : Tstep: TSim)
% Y - solution of the system (Mx=Y(1), My=Y(2), Mz=Y(3))
%
% Author: (c) Ivo Petras (ivo.petras@tuke.sk), 2010.

% time step:
h=0.00001;
% number of calculated mesh points:
n=round(TSim/h);
%orders of derivatives, respectively:
q1=orders(1); q2=orders(2); q3=orders(3);
% constants of Bloch’s system:
omega_0=parameters(1); T1=parameters(2);
T2=parameters(3); M0=parameters(4);
% binomial coefficients calculation:
cp1=1; cp2=1; cp3=1;
for j=1:n

c1(j)=(1-(1+q1)/j)*cp1;
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(a) 2D: (Mx(t) vs. My(t)).

(b) 3D: (Mx(t) vs.My(t) vs. Mz(t)).

Fig. 11. Numerical solutions of Bloch equations (24) with parameters: q1 = 0.8, q2 = 0.9, q3 = 1.0, T ′

1 = 1 (s)q, T ′

2 = 20 (ms)q, f0 = 160 Hz, and initial
conditionsMx(0) = 0,My(0) = 100,Mz(0) = 0 for Tsim = 1 s.

c2(j)=(1-(1+q2)/j)*cp2;
c3(j)=(1-(1+q3)/j)*cp3;
cp1=c1(j); cp2=c2(j); cp3=c3(j);

end
% initial conditions setting:
Mx(1)=Y0(1); My(1)=Y0(2); Mz(1)=Y0(3);
% calculation of numerical solution:
for i=2:n

Mx(i)=(omega_0*My(i-1)-Mx(i-1)/T2)*h^q1 - memo(Mx, c1, i);
My(i)=(-omega_0*Mx(i)-My(i-1)/T2)*h^q2 - memo(My, c2, i);
Mz(i)=((M0-Mz(i-1))/T1)*h^q3 - memo(Mz, c3, i);

end
for j=1:n
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Fig. 12. Numerical solutions of fractional-order (q1 = 0.8, q2 = 0.9, q3 = 1.0) Bloch equations in plane (Mx(t) vs.My(t)) obtained by theMatlab/Simulink
model (Fig. 4) for simulation time 1 s.

Y(j,1)=Mx(j); Y(j,2)=My(j); Y(j,3)=Mz(j);
end
T=0:h:TSim;
%
function [yo] = memo(r, c, k)
%
temp = 0;
for j=1:k-1

temp = temp + c(j)*r(k-j);
end
yo = temp;
%
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Fractional-Order Memristor-Based Chua’s Circuit
Ivo Petráš, Member, IEEE

Abstract—This express brief deals with the memristor-based
Chua’s circuit. For the first time, the fractional-order model
for such system is presented. A numerical solution of the
fractional-order memristor-based Chua’s equations is derived for
simulations. The dynamical behavior and stability analysis of this
system are described and investigated as well.

Index Terms—Chaos, Chua’s circuit, fractional calculus,
fractional-order Chua’s equations, memristive systems,
memristor.

I. INTRODUCTION

FRACTIONAL calculus is a topic that is more than
300 years old. These mathematical phenomena attracted

many scientists and engineers in various areas of applications
such as (e.g., [1]–[4], etc.) physics, chemistry, bioengineering,
signal processing, control systems, etc. A very important area
of applications is the chaos theory, where the new mathematical
models were already proposed and used (e.g., [5]–[7]).

In this brief, we offer an application of fractional calculus in
a nonlinear electrical circuit, which is modeled by fractional-
order equations. This brief is organized as follows.

Basic facts of fractional calculus, fractional-order dynamic
systems, numerical methods, and models of basic electrical ele-
ments are first presented in Section II. Then, stability conditions
for the fractional-order dynamical systems are introduced in
Section III. The integer-order and fractional-order equations
of memristor-based Chua’s oscillators and their numerical so-
lution are described, analyzed, and illustrated in Section IV.
In Section V, the simulation examples are presented. Some
conclusion remarks are mentioned in Section VI.

II. FRACTIONAL CALCULUS

A. Basic Facts

Fractional calculus is a generalization of integration and
differentiation to non-integer-order fundamental operator aD

q
t ,

where a and t are the bounds of the operation, and q ∈ R.
The most frequently used definitions for the general frac-

tional differintegral are [2], [3] the Grünwald–Letnikov (GL),
the Riemann–Liouville (RL), and Caputo’s definition.

In this brief, we will consider with the GL definition. If we
assume that n = (t− a)/h, where a is a real constant, which
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expresses a limit value, we can write the GL definition as

aD
q
t f(t) = lim

h→0

1

hq

[n]∑

i=0

(−1)i
(
q

i

)
f(t− ih) (1)

where [.] means the integer part.

B. Numerical Methods

For numerical calculation of the fractional-order derivative,
we use the relation (2) derived from the GL definition (1). This
approach is based on the fact that, for a wide class of functions,
the well-known definitions—GL (1), RL, and Caputo’s—are
equivalent. The relation for the explicit numerical approxima-
tion of the qth derivative at the points kh (k = 1, 2, . . .) has the
following form [3], [8]:

(k−Lm/h)D
q
tk
f(t) ≈ h−q

k∑

i=0

c
(q)
i f(tk−i) (2)

where Lm is the “memory length,” tk = kh, h is the time step
of calculation, and c

(q)
i (i = 0, 1, . . .) are binomial coefficients.

For their calculation, we can use the following expression [8]:

c
(q)
0 = 1, c

(q)
i =

(
1− 1 + q

i

)
c
(q)
i−1. (3)

Then, general numerical solution of the fractional differential
equation

aD
q
t y(t) = f (y(t), t)

can be expressed as

y(tk) = f (y(tk), tk)h
q −

k∑

i=v

c
(q)
i y(tk−i). (4)

For the memory term expressed by the sum in (4), a “short-
memory” principle can be used. Then, the lower index of
the sums in relations (4) will be v = 1 for k < (Lm/h) and
v = k − (Lm/h) for k > (Lm/h), or without using a “short-
memory” principle, we put v = 1 for all k.

C. Fractional Calculus and Electricity

There are a large number of electric and magnetic phenom-
ena where the fractional calculus can be used [4]. We will
consider three of them—capacitor, inductor, and memristor.

Westerlund and Ekstam in 1994 proposed a new linear
capacitor model [9]. For a general input voltage V (t), the
current is

I(t) = C
dαV (t)

dtα
≡ C0D

α
t V (t) (5)

1549-7747/$26.00 © 2010 IEEE
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Fig. 1. Connection of the four basic electrical elements (inspired by [13]).

where C is the capacitance of the capacitor. It is related to the
kind of dielectric. Another constant α (order) is related to the
losses of the capacitor. Westerlund provided in his work the table
of various capacitor dielectrics with appropriated constant α,
which has experimentally been obtained by measurements.

Westerlund also described the behavior of a real inductor [4].
For a general current in the inductor, the voltage is

V (t) = L
dαI(t)

dtα
≡ L0D

α
t I(t) (6)

where L is inductance of the inductor, and the constant α
(order) is related to the “proximity effect.” Some coefficients
α for real inductors can be found in [10].

Prof. Leon O. Chua in 1971 predicted a new circuit
element—called memristor—characterized by a relationship
between the charge q(t) and the flux φ(t). Chua extrapolated the
conceptual symmetry between the resistor, inductor, and capac-
itor and inferred that the memristor is a similarly fundamental
device [11], which belongs to a class of the memristive systems
[12]. This relation is illustrated in Fig. 1.

The memristor used in this brief is a flux-controlled memris-
tor that is characterized by

I(t) = W (φ(t))V (t), for W (φ(t)) = dq(φ)/dφ (7)

where W (φ(t)) is an incremental memductance of the memris-
tor. Similar to a capacitor and an inductor, the memristor is also
not an ideal circuit element, and we can predict the fractional-
order model of this basic fourth element [14].

D. Fractional-Order Nonlinear System

In this brief, we consider the following general incommensu-
rate fractional-order nonlinear system:

0D
qi
t xi(t) = fi (x1(t), x2(t), . . . , xn(t), t)

xi(0) = ci, i = 1, 2, . . . , n (8)

where ci are initial conditions. The vector representation
of (8) is

Dqx = f(x) (9)

where q = [q1, q2, . . . , qn]
T for 0 < qi < 2, (i = 1, 2, . . . , n),

and x ∈ Rn.
The equilibrium points of (9) are calculated via solving the

following equation:

f(x) = 0 (10)

and we suppose that E∗ = (x∗
1, x

∗
2, . . . , x

∗
n) is its equilibrium

point.

III. STABILITY OF A FRACTIONAL-ORDER

NONLINEAR SYSTEM

The stability of the fractional-order nonlinear system is very
complex, and it is different from the fractional-order linear
system because nonlinear systems have several equilibrium
points. This topic is still open [15]. Some known results are
the following.

Theorem 1

The equilibrium points are asymptotically stable for q1 =
q2 = · · · = qn ≡ q if all the eigenvalues λi (i = 1, 2, . . . , n) of
the Jacobian matrix J = ∂f/∂x, where f = [f1, f2, . . . , fn]

T ,
evaluated at the equilibrium E∗, satisfy the following condition
[7], [16], [17]:

|arg (eig(J))| = |arg(λi)| > q
π

2
, i = 1, 2, . . . , n. (11)

When we consider the incommensurate fractional-order sys-
tem q1 �= q2 �= · · · �= qn and suppose that m is the least com-
mon multiple (LCM) of the denominators ui’s of qi’s, where
qi = vi/ui, vi, ui ∈ Z+ for i = 1, 2, . . . , n, and we set γ =
1/m, (9) is asymptotically stable if [18]

|arg(λ)| > γ
π

2

for all roots λ of the following equation:

det (diag ([λmq1λmq2 . . . λmqn ])− J) = 0. (12)

A necessary stability condition for fractional-order systems
(9) to remain chaotic is keeping at least one eigenvalue λ in
the unstable region [16]. The number of equilibrium points
and eigenvalues for one-scroll, double-scroll, and multiscroll
attractors was exactly described in this brief [19]. For instance,
assume that a 3-D chaotic system has only three equilibria.
Therefore, if a system has a double-scroll attractor, it may
have two saddle–focus points surrounded by scrolls and one
additional saddle point, etc.

Theorem 2

Suppose that the unstable eigenvalues of scroll saddle points
are λ1,2 = r1,2 ± jω1,2. The necessary condition to exhibit the
double-scroll attractor of (9) is the eigenvalues λ1,2 remaining
in the unstable region. The condition for the commensurate
derivatives order is

q >
2

π
atan

( |ωi|
ri

)
, i = 1, 2. (13)

This condition can be used to determine the minimum order
for which a nonlinear system can generate chaos [16]. In other
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Fig. 2. Chua’s circuit with a memristor and negative conductance.

Fig. 3. Characteristic of a piecewise-linear flux-controlled memristor.

words, when the instability measure π/2m−min(|arg(λ)|) is
negative, the system cannot be chaotic [19].

IV. CONCEPT OF THE NEW CHUA’S CIRCUIT

The well-known classical Chua’s circuit was proposed in
[20]. It is a simple electronic circuit that exhibits nonlinear
dynamical phenomena such as bifurcation and chaos.

The fractional-order Chua’s system was described and inves-
tigated in many works [3], [6], [21]. Similar to the classical
one, it contains a capacitor C, an inductor L, a resistor R, and
a nonlinear resistor, which is known as the Chua’s diode.

Since the memristor was postulated by Prof. L. O. Chua in
1971 and discovered by Williams et al. (HP laboratory) in 2008,
it has become the fourth circuit element. This fact allows us to
use a memristor as a nonlinear element in a circuit that exhibits
chaos. In the case of Chua’s circuit, the nonlinear resistor is
replaced by a memristor (M).

The memristor in Fig. 2 is a flux-controlled memristor whose
characteristic is given by [11]

IM (t) = W (φ(t))V1(t) (14)

where W (φ(t)) is called the incremental memductance defined
by (7). For the flux-controlled memristor, a monotonically
increasing piecewise-linear characteristic was assumed [22].
The memristor constitutive relation is shown in Fig. 3 and can
be expressed as

q(φ) = bφ+ 0.5(a− b)× (|φ+ 1| − |φ− 1|) (15)

where a, b > 0. The memductance function that is obtained
from the q(φ) function is

W (φ) =
dq(φ)

dφ

{
a : |φ| < 1,
b : |φ| > 1.

(16)

The dynamics of the Chua’s circuit with a passive memris-
tor (flux-controlled memristor and negative conductance [23])
depicted in Fig. 2 is given by the following set of differential
equations:

dV1(t)

dt
=

1

C1

[
(V2(t)− V1(t))

R
+ V1(t) (G−W (φ(t)))

]
,

dV2(t)

dt
=

1

C2

[
(V1(t)− V2(t))

R
+ IL(t)

]
,

dIL(t)

dt
=

1

L
[−V2(t)−RLIL(t)] ,

dφ(t)

dt
=V1(t) (17)

where functions q(φ) and W (φ) are given by (15) and (16),
respectively.

When we set

x =V1, y = V2, z = IL, w = φ, C2 = 1,

α=1/C1, β=1/L, γ=RL/L, ζ=G, R=1, (18)

then (17) can be transformed into the dimensionless form [22]

dx(t)

dt
=α (y(t)− x(t) + ζx(t)−W (w)x(t)) ,

dy(t)

dt
=x(t)− y(t) + z(t),

dz(t)

dt
= − βy(t)− γz(t),

dw(t)

dt
=x(t) (19)

where the piecewise-linear function W (w) is given as

W (w) =

{
a : |w| < 1,
b : |w| > 1.

(20)

The equilibrium points of the system (19) are given by setting
the left side of the equations to zero, except the last one. We
set w = constant, which corresponds to the w-axis [22]. The
Jacobian matrix at this equilibrium state E∗ is

JW =

⎡
⎢⎣
α (−1 + ζ −W (w)) α 0 0

1 −1 1 0
0 −β −γ 0
1 0 0 0

⎤
⎥⎦ . (21)

If we consider a fractional-order model for each electrical
element in the circuit depicted in Fig. 2, we can write a more
general mathematical model for this circuit. As it was already
mentioned, a real capacitor and a real inductor are “fractional,”
and for a real memristor, we postulated a fractional-order
model as well (dαφ(t)/dtα = V (t)). By using a technique of
fractional calculus, we obtain the following equations:

0D
q1
t x(t) =α (y(t)− x(t) + ζx(t)−W (w)x(t)) ,

0D
q2
t y(t) =x(t)− y(t) + z(t),

0D
q3
t z(t) = − βy(t)− γz(t),

0D
q4
t w(t) =x(t) (22)

where function W (w) is given by (20), and q1, q2, q3, and
q4 are the fractional orders of the real electrical elements
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(memristive systems): capacitor C1, capacitor C2, inductor L,
and memristor M , respectively.

The stability of the new fractional-order memristor-based
Chua’s system can be investigated by using Theorem 1. For the
fractional-incommensurate-order system (22), we can rewrite
the real order as qi = vi/ui, vi, ui ∈ Z+ for i = 1, 2, 3, 4, and
if we set γ = 1/m, where m is the LCM of the denominators,
the characteristic equation of the system (22) for Jacobian
matrix JW is

det (diag ([λmq1 λmq2 λmq3 λmq4 ])− JW ) = 0

and the stability condition is defined as

|arg(λi)| > γ
π

2

for all eigenvalues λi.
When we consider a simple case where the fractional-order

memristor-based Chua’s system has a commensurate order,
which means that q1 = q2 = q3 = q4 ≡ q, the stability can be
investigated according to Theorem 1, where the condition is

|arg (eig(JW ))| = |arg(λi)| > q
π

2

for all eigenvalues λi.
In the case of the piecewise nonlinearity depicted in Fig. 3,

we should investigate the characteristic equation for the lin-
ear part with slope a and for the linear part with slope b,
respectively.

A necessary stability condition for fractional-order systems
(22) to remain chaotic is keeping at least one eigenvalue λ in
the unstable region. According to condition (13) of Theorem 2,
we can also determine a minimal order q for which a nonlinear
system has chaotic behavior.

Because the frequency approximation techniques are unreli-
able in recognizing chaos in fractional-order nonlinear systems
[17], for simulation purposes, we use a numerical solution of
the memristor-based Chua’s equations (22) obtained by the
method described in [24]. That is, a time-domain method is
derived by using relationship (2), which leads to equations in
the form

x(tk) = (α (y(tk−1)− x(tk−1) + ζx(tk−1)

−W (w(tk−1))x(tk−1)))h
q1 −

k∑

i=v

c
(q1)
i x(tk−i),

y(tk) = (x(tk)− y(tk−1) + z(tk−1))h
q2

−
k∑

i=v

c
(q2)
i y(tk−i),

z(tk) = (−βy(tk)− γz(tk−1))h
q3 −

k∑

i=v

c
(q3)
i z(tk−i),

w(tk) =x(tk)h
q4 −

k∑

i=v

c
(q4)
i w(tk−i) (23)

where

W (w(tk−1)) = a, for |w(tk−1)| < 1,

W (w(tk−1)) = b, for |w(tk−1)| > 1 (24)

and where Tsim is the simulation time, k = 1, 2, 3, . . . , N , for
N = [Tsim/h], and (x(0), y(0), z(0), w(0)) is the start point

Fig. 4. Strange attractor of the memristor-based Chua’s system (22) in the
wxy state space for parameters α = 10, β = 13, γ = 0.1, ζ = 1.5, a = 0.3,
and b = 0.8 and orders q1 = q2 = q3 = q4 = 0.97.

Fig. 5. Strange attractor of the memristor-based Chua’s system (22) in the
xyz state space for parameters α = 10, β = 13, γ = 0.1, ζ = 1.5, a = 0.3,
and b = 0.8 and orders q1 = q2 = q3 = q4 = 0.97.

(initial conditions). The binomial coefficients c
(q)
i are calcu-

lated according to relation (3).

V. ILLUSTRATIVE EXAMPLES

Let us consider the following parameter set:

α=10 β=13 γ=0.1 ζ=1.5 a=0.3 b=0.8. (25)

For these parameters, a minimal commensurate order given
by Theorem 2 is q > 0.95 because the eigenvalues are λ1,2 ≈
0.2228154143± 2.8941365766j. We performed a simulation
for the aforementioned parameters and commensurate order
q = 0.97 (q1 = q2 = q3 = q4 = 0.97). It means that the total
order is 3.88.

In Figs. 4 and 5, chaotic attractors in the 3-D state space for
Tsim = 200 s are depicted. Both simulations were performed
without using the short-memory principle (v = 1) for time step
h = 0.005 with the following initial conditions: x(0) = 0.8,
y(0) = 0.05, z(0) = 0.007, and w(0) = 0.6.

When we consider real orders of capacitor models [9], i.e.,
q1 = q2 = 0.98, and a real order of the inductor model [10],
i.e., q3 = 0.99, and we assume a real order of the memristor
model, i.e., q4 = 0.97, for the parameters in (25) with initial
conditions x(0) = 0.8, y(0) = 0.05, z(0) = 0.007, and w(0) =
0.6, simulation time Tsim = 100 s, and time step h = 0.005,
we get the chaotic double-scroll attractor as well for the total
system order 3.92.

In Figs. 6 and 7, chaotic attractors in the 3-D state space for
Tsim = 100 s are depicted. The simulations were performed
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Fig. 6. Strange attractor of the memristor-based Chua’s system (22) in the
wxy state space for parameters α = 10, β = 13, γ = 0.1, ζ = 1.5, a = 0.3,
and b = 0.8 and orders q1 = q2 = 0.98, q3 = 0.99, and q4 = 0.97.

Fig. 7. Strange attractor of the memristor-based Chua’s system (22) in the
xyz state space for parameters α = 10, β = 13, γ = 0.1, ζ = 1.5, a = 0.3,
and b = 0.8 and orders q1 = q2 = 0.98, q3 = 0.99, and q4 = 0.97.

without using the short-memory principle (v = 1) for time step
h = 0.005 with the following initial conditions: x(0) = 0.8,
y(0) = 0.05, z(0) = 0.007, and w(0) = 0.6. In this case, we
just estimated the real order of the memristor. Simulations
show the double-scroll atractors, and we can observe a chaotic
behavior. It can also be confirmed by using Theorem 1. The
characteristic equation of the system (22) with the parameters in
(25), orders q1 = q2 = 0.98 = 98/100, q3 = 0.99 = 99/100,
and q4 = 0.97 = 97/100, with m = 100, for Jacobian matrix
(21) and slope a is

λ392 − λ294 + 0.1λ293 − 12λ196 + 12.9λ195 − 27.2λ97 = 0

and for Jacobian matrix (21) and slope b, it has the following
form:

λ392 + 4λ294 + 0.1λ293 − 7λ196 + 13.4λ195 + 38.3λ97 = 0.

Both of the aforementioned characteristic equations are poly-
nomials of very high order, and it is difficult to analytically find
the roots of such polynomials. Because of this, we have used a
MATLAB routine roots(). For the system to remain chaotic,
there should be at least one root λ in the unstable region;
it means that |arg(λ)| < π/(2m) = π/200. This condition is
satisfied for roots λ1 = 0 and λ2 ≈ 1.0120565137 of slope
a and λ1 = 0 and λ2,3 ≈ 1.0107809162± 0.0153011315j of
slope b. Such equilibrium point is the unstable focus node.
These results confirm the results obtained via simulations.

VI. CONCLUSION

In this brief, we have presented the fractional-order
memristor-based Chua’s equations and methods for their nu-
merical solution, simulation, and stability analysis.

The results show that fractional calculus is a very useful
tool even in nonlinear circuit analysis. By using the fractional
differential equations, we get a total order of the system that is
less than the number of differential equations. In the case of a
chaotic system usually described by three equations, we obtain
a total order of less than three, and chaos still can be observed. In
the case of a hyperchaotic system, the situation is similar. It opens
a new area of applications for the proposed chaotic system.
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FRACTIONAL – ORDER FEEDBACK CONTROL
OF A DC MOTOR

Ivo Petráš
∗

This paper deals with the feedback control of a DC motor speed with using the fractional-order controller. The permanent-
magnet DC motor is often used in mechatronic and other fields of control theory and therefore its control is very important.
The mathematical description of the fractional - order controller and its implementation in the analogue and the discrete
domains is presented. An example of simulation and possible realization of the particular case of digital fractional-order

PIλDδ controller are shown as well. The hardware realization is proposed in digital form with the microprocessor and in
analogue form with the fractance circuits.

K e y w o r d s: fractional calculus, fractional-order controller, microprocessor, fractance, DC motor

1 INTRODUCTION

The DC motor is a power actuator, which converts di-
rect current electrical energy into rotational mechanical
energy. The DC motors are still often used in industry
and in numerous control applications, robotic manipula-
tors and commercial applications such as disk drive, tape
motor as well.

We will consider the armature - controlled DC motor
utilizes a constant field current. This kind of the DC mo-
tor will be controlled by a nonconventional control tech-
nique which is known as a fractional-order control. Men-
tioned technique was developed during last few decades
and there are various practical applications as for exam-
ple flexible spacecraft attitude control [25], car suspen-
sion control [29], temperature control [32], motor control
[51], etc. This idea of the fractional calculus application
to control theory was described in many other works (eg:
[4], [15], [31], [38], etc) and its advantages were proved as
well. All these works used the continuous models based
on fractional differential equations or transfer function.
For practical application of the fractional-order models
in control and for realization of the fractional-order con-
trollers (FOC), we need discrete fractional-order models.
It is also well known that the fractional-order systems
have an unlimited memory (infinite dimensional) while
the integer-order systems have a limited memory (finite
dimensional). It is important to approximately describe
the fractional-order systems using a finite difference equa-
tions. We will consider new discretization technique pro-
posed by Chen et al in [12]. Obtained discrete version
of fractional order controller will be implemented by a
microprocessor and proposed to the DC motor control.

This article is organized as follow: In section 2, we
present a brief introduction to fractional calculus and its
approximation. Section 3 presents mathematical model
of DC motor as a controlled object. Section 4 deals with

fractional order control. Section 5 presents some simula-
tion results. Section 6 treats of proposal to digital and
analogue realization of the FOC. Section 7 concludes this
paper by some remarks and conclusions.

2 FUNDAMENTALS OF
FRACTIONAL CALCULUS

2.1 A bit of history and definitions

Fractional calculus is a generalization of integration
and differentiation to non-integer (fractional) order fun-
damental operator aD

r
t , where a and t are the limits and

(r ∈ R) is the order of the operation. There are several
definition of fractional integration and differentiation (see
[28], [29], [39]). The most often used are the Grünwald-
Letnikov (GL) definition and the Riemann-Liuville defi-
nition (RL). For a wide class of functions, the two defini-
tions – GL and RL – are equivalent [39].

The GL is given as

aD
r
t f(t) = lim

h→0
h−r

[ t−a
h ]∑

j=0

(−1)j
(
r

j

)
f(t− jh), (1)

where [·] means the integer part. The RL definition is
given as

aD
r
t f(t) =

1

Γ(n− r)

dn

dtn

∫ t

a

f(τ)

(t− τ)r−n+1
dτ , (2)

for (n − 1 < r < n) and where Γ(·) is the Gamma
function.

For many engineering applications the Laplace trans-
form methods are often used. The Laplace transform of
the GL and RL fractional derivative/integral, under zero
initial conditions for order r is given by [28]:

L- {aD±r
t f(t); s} = s±rF (s) . (3)
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Fig. 1. Bode’s ideal loop

Fig. 2. Bode plots of transfer function Go(s) in (5)

Some other important properties of the fractional
derivatives and integrals can be found in several works
([28],[ 29], [39], etc).

Geometric and physical interpretation of fractional in-
tegration and fractional differentiation were exactly de-
scribed in [40].

2.2 Bode’s ideal loop as a reference model

H. W. Bode suggested an ideal shape of the loop trans-
fer function in his work on design of feedback amplifiers
in 1945. Ideal loop transfer function has form [7]:

L(s) =
( s

ωgc

)α

, (4)

where ωgc is desired crossover frequency and α is slope
of the ideal cut-off characteristic.

Phase margin is Φm = π(1+α/2) for all values of the
gain. The amplitude margin Am is infinity. The constant
phase margin 60o , 45o and 30o correspond to the slopes
α = −1.33, −1.5 and −1.66.

The Nyquist curve for ideal Bode transfer function is
simply a straight line through the origin with
arg(L(jω)) = απ/2.

Bode’s transfer function (4) can be used as a reference
system in the following form [3], [24], [36], [41], [50]:

Gc(s) =
K

sα +K
, Go(s) =

K

sα
, (0 < α < 2), (5)

where Gc(s) is transfer function of closed loop and Go(s)
is transfer function in open loop.

General characteristics of Bode’s ideal transfer func-
tion are:

(a) Open loop:

• Magnitude: constant slope of −α20 dB/dec;

• Crossover frequency: a function of K;

• Phase: horizontal line of −απ
2 ;

• Nyquist: straight line at argument −απ
2 .

(b) Closed loop:

• Gain margin: Am = ∞ ;

• Phase margin: constant : Φm = π
(
1− α

2

)
;

• Step response:

y(t) = KtαEα,α+1 (−Ktα) ,

where Ea,b(z) is the Mittag-Leffler function of two
parameters [38].

2.3 Continuous time approximation of fractional
calculus

A detailed review of the various approximation meth-
ods and techniques for continuous and discrete fractional-
order models in form of IIR and FIR filters was done in
work [45].

For simulation purpose, here we present the Oustaloup’s
approximation algorithm [29], [30]. The method is based
on the approximation of a function of the form:

H(s) = sr, r ∈ R, r ∈ [−1; 1] (6)

for the frequency range selected as (ωb, ωh) by a rational
function:

Ĥ(s) = Co

N∏

k=−N

s+ ω′
k

s+ ωk
(7)

using the following set of synthesis formulas for zeros,
poles and the gain:

ω′
k = ωb

(ωh

ωb

) k+N+0.5(1−r)
2N+1

,

ωk = ωb

(ωh

ωb

) k+N+0.5(1−r)
2N+1

, (8)

Co =
(ωh

ωb

)− r
2

N∏

k=−N

ωk

ω′
k

, (9)

where ωh, ωb are the high and low transitional frequen-
cies. An implementation of this algorithm in Matlab as a
function script ora foc() is given in [14].

Using the described Oustaloup-Recursive-Approxi-
mation (ORA) method with:

ωh = 103, ωb = 10−3, (10)

the obtained approximation for fractional function

H(s) = s−
1
2 is:

Ĥ5(s) =

s5 + 74.97s4 + 768.5s3 + 1218s2 + 298.5s+ 10

10s5 + 298.5s4 + 1218s3 + 768.5s2 + 74.97s+ 1
. (11)

The Bode plots and the unit step response of the ap-
proximated fractional order integrator (11) are depicted
in Fig. 3. Bode plots can be compared with the ideal plots
depicted in Fig. 2.
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Fig. 3. Characteristics of approximated fractional order integrator (11): Bode plots for r = −0.5 and N = 5 (left), Unit step response
for r = −0.5 and N = 5 (right)

2.4 Discrete time approximation of fractional
calculus

In general, the discretization of fractional-order differ-
entiator/integrator s±r (r ∈ R) can be expressed by the

so-called generating function s ≈ ω(z−1). This generat-
ing function and its expansion determine both the form
of the approximation and the coefficients [19].

As a generating function ω(z−1) can be used in gen-
erally the following formula [6]:

ω(z−1) =
( 1

βT

1− z−1

γ + (1− γ)z−1

)
, (12)

where β and γ are denoted the gain and phase tuning
parameters, respectively. For example, when β = 1 and
γ = {0, 1/2, 7/8, 1, 3/2} , the generating function (12)
becomes the forward Euler, the Tustin, the Al-Alaoui, the
backward Euler, the implicit Adams rules, respectively. In
this sense the generating formula can be tuned precisely.

The expansion of the generating functions can be done
by Power Series Expansion (PSE) or Continued Fraction
Expansion (CFE).

It is very important to note that PSE scheme leads to
approximations in the form of polynomials, that is, the
discretized fractional order derivative is in the form of
FIR filters, which have only zeros.

Taking into account that our aim is to obtain discrete
equivalents to the fractional integrodifferential operators
in the Laplace domain, s±r , the following considerations
have to be made [46]:

1. sr , (0 < r < 1), viewed as an operator, has a branch
cut along the negative real axis for arguments of s on
(−π, π) but is free of poles and zeros.

2. It is well known that, for interpolation or evaluation
purposes, rational functions are sometimes superior to
polynomials, roughly speaking, because of their abil-
ity to model functions with zeros and poles. In other
words, for evaluation purposes, rational approxima-
tions frequently converge much more rapidly than PSE

and have a wider domain of convergence in the com-
plex plane.

In this paper, for directly discretizing sr , (0 < r < 1),
we shall concentrate on the IIR form of discretization
where as a generating function we will adopt an Al-Alaoui
idea on mixed scheme of Euler and Tustin operators [1],
[2] but we will use a different ration between both oper-
ators. The mentioned new operator, raised to power ±r ,
has the form [34]:

(ω(z−1))±r =
(1 + a

T

1− z−1

1 + az−1

)±r

, (13)

where a is ratio term and r is fractional order. The ratio
term a is the amount of phase shift and this tuning knob
is sufficient for most solved engineering problems.

In expanding the above in rational functions, we will
use the CFE. It should be pointed out that, for control
applications, the obtained approximate discrete-time ra-
tional transfer function should be stable and minimum
phase. Furthermore, for a better fit to the continuous fre-
quency response, it would be of high interest to obtain
discrete approximations with poles an zeros interlaced
along the line z ∈ (−1, 1) of the z plane. The direct dis-
cretization approximations proposed in this paper enjoy
the desirable properties.

The result of such approximation for an irrational

function, Ĝ(z−1), can be expressed by G(z−1) in the
CFE form [46]:

G(z−1) ≃

a0(z
−1) +

b1(z
−1)

a1(z−1) + b2(z−1)

a2(z−1)+
b3(z−1)

a3(z−1)+...

= a0(z
−1) +

b1(z
−1)

a1(z−1)+

b2(z
−1)

a2(z−1)+
. . .

b3(z
−1)

a3(z−1)+
. . .
(14)

where ai and bi are either rational functions of the vari-
able z−1 or constants. The application of the method
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Fig. 4. Characteristics of approximated fractional order differentiator (16): Bode plots for r = 0.5, n = 5, a = 1/3, and T = 0.001 s in
(15) (left), Unit step responses for r = 0.5, n = 5, a = 1/3, and T = 0.001 s in (15) (right)

Fig. 5. Characteristics of approximated fractional order integrator (17): Bode plots for r = −0.5, n = 5, a = 1/3, and T = 0.001 s in
(15) (left), Unit step responses for r = −0.5, n = 5, a = 1/3, and T = 0.001 s in (15) (right)

yields a rational function, G(z−1), which is an approxi-

mation of the irrational function Ĝ(z−1).

The resulting discrete transfer function, approximat-

ing fractional-order operators, can be expressed as:

(ω(z−1))±r ≈
(1 + a

T

)±r

CFE
{( 1− z−1

1 + az−1

)±r}
p,q

=
(1 + a

T

)±r Pp(z
−1)

Qq(z−1)
, (15)

=
(1 + a

T

)±r p0 + p1z
−1 + · · ·+ pmz−p

q0 + q1z−1 + · · ·+ qnz−q
,

where CFE{u} denotes the continued fraction expansion

of u ; p and q are the orders of the approximation and

P and Q are polynomials of degrees p and q . Normally,

we can set p = q = n .

In Matlab Symbolic Toolbox, by the following script,

for a given n we can easily get the approximated direct

discretization of fractional order derivative (let us denote

that x = z−1 ):

syms r a x;maple(’with(numtheory)’);

f = ((1-x)/(1+a*x))^r;;

n=5; n2=2*n;

maple([’cfe := cfrac(’ char(f) ’,x,n2);’])

pq=maple(’P over Q := nthconver’,’cfe’,n2)

p0=maple(’P := nthnumer’,’cfe’,n2)

q0=maple(’Q := nthdenom’,’cfe’,n2)

p=(p0(5:length(p0)));q=(q0(5:length(q0)));

p1=collect(sym(p),x)

q1=collect(sym(q),x)

Modified and improved digital fractional-order differen-
tiator using fractional sample delay and digital integrator
using recursive Romberg integration rule and fractional
order delay as well has been described in [42].

Some others solutions for design IIR approximation us-
ing least-squares eg: the Padé approximation, the Prony’s
method and the Shranks’ method were described in [6].
The Prony and Shranks methods can produce better ap-
proximations the widely used CFE method. The Padé and
the CFE methods yield the same approximation (causal,
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Fig. 6. General model of a DC motor

Fig. 7. Mathematical model of a DC motor

stable and minimum phase). Different approach of the
CFE method was used in [23].

Here we present some results for fractional order r =
±0.5 (half order derivative/integral). The value of ap-
proximation order n is truncated to n = 5 and weighting
factor a was chosen a = 1/3. Assume sampling period
T = 0.001 s.

For r = 0.5 we have the following approximation of
the fractional half-order derivative:

G(z−1) =
985.9− 1315z−1 + 328.6z−2 + 36.51z−3

27− 18z−1 − 3z−2 + z−3
(16)

The Bode plots and unit step response of the digi-
tal fractional order differentiator (16) and the analytical
continuous solution of a fractional semi-derivative are de-
picted in Fig. 4. Poles and zeros of the transfer function
(16) lie in a unit circle.

For r = −0.5 we have the following approximation of
the fractional half-order integral:

G(z−1) =
0.739− 0.493z−1− 0.0822z−2+ 0.0274z−3

27− 36z−1 + 9z−2 + z−3

(17)

The Bode plots and unit step response of the digital
fractional order integrator (17) and the analytical contin-
uous solution of a fractional semi-derivative are depicted
in Fig. 5. Poles and zeros of the transfer function (17) lie
in a unit circle.

3 MODEL OF A DC MOTOR

We will consider the general model of the DC motor
(DCM) which is depicted in Fig. 6. The applied voltage
Va controls the angular velocity ω(t).

The relations for the armature controlled DC motor
are shown schematically in Fig. 7. Transfer function (with
Td(s) = 0) has the form [16]:

GDCM (s) =
θ(s)

Va(s)
=

Km

s[(Ls+R)(Js+Kf) +KbKm]
.

(18)
However, for many DCM the time constant of the ar-
mature is negligible and therefore we can simplify model
(18). A simplified continuous mathematical model has the
following form:

GDCM (s) =
θ(s)

Va(s)
=

Km

s[R(Js+Kf) +KbKm]

=
[Km/(RKf +KbKm)]

s(τs+ 1)
=

KDCM

s(τs+ 1)
, (19)

where the time constant τ = RJ/(RKf + KbKm) and
KDCM = Km/(RKf + KbKm). It is of interest to note
that Km = Kb .

This mini DC motor with model number PPN13KA12C
is great for robots, remote control applications, CD and
DVD mechanics, etc. Specifications are [21]: min. volt-
age 1.5 V, nominal voltage 2 V, max. voltage 2.5 V, max.
rated current 0.08 A, no load speed 3830 r/min and
rated load speed 3315 r/min. For our mini DC motor
the physical constants are: R = 6Ω, Km = Kb = 0.1,
Kf = 0.2 Nms and J = 0.01 kgm2/s2 . For these motor
constants the transfer function (19) of the DC motor has
the form:

GDCM (s) =
0.08

s(0.05s+ 1)
. (20)

Discrete mathematical model of the DC motor (20)
obtained via new discretization method (13), for sampling
period T = 0.001 s and a = 1/3, has the following form:

GDCM (z−1) =

8.89× 10−3z−2 + 0.053z−1 + 0.08

8.844× 104z−2 − 1.787× 105z−1 + 9.022× 104
. (21)

In Fig. 8 is depicted the comparison of the continues
(20) and dicsrete (21) model of the DC motor. As we can
observe in figures, both models have a good agreement.

4 FRACTIONAL–ORDER CONTROL

4.1 Preliminary consideration

As we mentioned in introduction, we can also find
works dealing with the application of the fractional cal-
culus tool in control theory, but these works have usually
theoretical character, whereas the number of works, in
which a real object is analyzed and the fractional - or-
der controller is designed and implemented in practice, is
very small. The main reason for this fact is the difficulty
of controller implementation. This difficulty arises from
the mathematical nature of fractional operators, which,
defined by convolution and implying a non-limited mem-
ory, demand hard requirements of processors memory and
velocity capacities.

doc. Ing. I. Petráš, PhD: vybrané publikácie
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Fig. 8. Comparison of characteristics for both models of a DC motor: Bode plots of the motor models (left), Comparison of characteristics
for both models of a DC motor (right)

Fig. 9. Feedback control loop

4.2 Fractional-order controllers

The fractional-order PIλDδ controller was proposed
as a generalization of the PID controller with integrator
of real order λ and differentiator of real order δ . The
transfer function of such type the controller in Laplace
domain has form [38]:

C(s) =
U(s)

E(s)
= Kp +Ki s

−λ +Kd s
δ, (λ, δ > 0) , (22)

where Kp is the proportional constant, Ki is the inte-
gration constant and Kd is the differentiation constant.

Transfer function (22) corresponds in discrete domain
with the discrete transfer function in the following ex-
pression [46]:

C(z−1) =
U(z−1)

E(z−1)
=Kp +Ki(ω(z

−1))−λ+Kd(ω(z
−1))δ,

(23)
where λ and δ are arbitrary real numbers.

Taking λ = 1 and δ = 1, we obtain a classical PID
controller. If δ = 0 and Kd = 0, we obtain a PIλ

controller, etc. All these types of controllers are particular

cases of the PIλDδ controller, which is more flexible
and gives an opportunity to better adjust the dynamical
properties of the fractional-order control system.

There are many another considerations of the frac-
tional-order controller. For example we can notice the
CRONE controller [29], the non-integer integral and its
application to control [24] or the TID compensator [20],

which has a similar structure as a PID controller but the

proportional component is replaced with a tilted compo-

nent having a transfer function s to the power of (−1/n).

All those fractional-order controllers are sometimes

called optimal phase controllers because only with non-

integer order we can get a constant phase somewhere be-

tween 0o and −180o depending on the parameters λ and

δ .

4.3 Fractional-order controller design

For the FOC design we will use an idea which was

proposed by Bode [7] and for first time used to the motion

control described by Tustin [43]. This principle was also

used by Manabe to induction motor speed control [25].

The several methods and tuning techniques for the

FOC parameters were developed during the past ten

years. They are based on various approaches (see [5], [13],

[22], [26], [31], [49], [52]).

In Fig. 9 is depicted feedback control loop, where C(s)

is transfer function of controller and GDCM (s) is transfer

function of the DC motor.

We will design the controller, which give us a step re-

sponse of feedback control loop with overshoot indepen-

dent of payload changes (iso-damping). In the frequency

domain point of view it means phase margin independent

of the payload changes.

Phase margin of controlled system is [9], [48]

Φm = arg [C(jωg)GDCM (jωg)] + π , (24)

where jωg is the crossover frequency. Independent phase

margin means in other words constant phase. This can

be accomplished by controller of the form

C(s) = k1
k2s+ 1

sµ
, k1 = 1/KDCM , k2 = τ . (25)
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Fig. 10. Characteristics of fractional order transfer function (28): Bode plots – continuous and discrete models n = 5, a = 1/3, and
T = 0.1 s (left), Unit step responses –continuous and discrete models n = 5, a = 1/3, and T = 0.1 s (right)

Fig. 11. Simulink block nipid - fractional order controller

Fig. 12. Simulink model for feedback control of the DC motor

Such controller gives a constant phase margin and ob-
tained phase margin is

Φm = arg [C(jω)GDCM (jω)] + π

= arg

[
k1KDCM

(jω)(1+µ)

]
+ π

= arg
[
(jω)−(1+µ)

]
+ π = π − (1 + µ)

π

2
. (26)

For our parameters of controlled object (20) and de-
sired phase margin Φm = 45o , we get the following con-
stants of the fractional order controllres (25): k1 = 12.5,
k2 = 0.05 and µ = 0.5. With these constants we obtain

a fractional IλDδ controller, which is a particular case of
the PIλDδ controller and has the form

C(s) =
τ

KDCM
s0.5 +

1

KDCMs0.5

= Kds
0.5 +Kis

−0.5 = 0.625
√
s+

12.5√
s
, (27)

where Ki = 12.5, Kd = 0.625 and δ = λ = 0.5.

According to relation (26), by using a controller (27),
we can obtain a phase margin

Φm = arg [C(jω)GDCM (jω)] + π = π − (1.5)
π

2
= 45◦,

which was desired phase margin specification.

5 SIMULATION RESULTS

The transfer function of the closed feedback control
loop with the fractional-order controller (27) and the DC
motor (20) has the following form:

Gc(s) =
Go(s)

1 +Go(s)
=

GDCM (s)C(s)

1 +GDCM (s)C(s)

=
0.05s+ 1

0.05s2.5 + s1.5 + 0.05s+ 1
, (28)

where Go(s) is the transfer function of the open control
loop with

Go(s) =
0.05s+ 1

0.05s2.5 + s1.5
.

The feedback control loop described above can be sim-
ulated in Matlab environment with using the approxima-
tion technique described before, namely Oustaloup’s re-
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Fig. 13. Comparison of unit step responses of a feedback control loop: Unit step response without actuator saturation overshoot ≈ 30%,
set. time ≈ 11 s (left), Unit step response with actuator saturation overshoot ≈ 40 %, settling time ≈ 14 s (right)

cursive approximation function ora foc() for the desired
frequency range given in (10).

close all; clear all;

Gs DCM=tf([0.08],[0.05 1 0]);

Cs=(0.625*ora foc(0.5,6,0.001,1000))

+(12.5*ora foc(-0.5,6,0.001,1000));

Gs close=(Gs DCM*Cs)/(1+(Gs DCM*Cs));

step(Gs close,15);

Gs open=(Gs DCM*Cs);

bode(Gs open);

[Gm,Pm] = margin(Gs open);

The results obtained via described Matlab scripts are
depicted in Fig. 10. Continues model is shown with solid
line. Phase margin is Φm ≈ 44.9◦ and gain margin is
infinite.

The disrete version of the continues fractional order
transfer function can be obtained with using the digital
operator (13) and Matlab function for approximation of
digital fractional order derivative/integral dfod1(). As-
sume that T = 0.1 s and a = 1/3.

close all; clear all;

T=0.1;

a=1/3;

z=tf(’z’,T,’variable’,’z^-1’)

Hz=((1+a)/T)*((1-z^-1)/(1+a*z^-1));

Gz DCM=0.08/(Hz*(0.05*Hz+1));

Cz=0.625*dfod1(5,T,a,0.5)+12.5*dfod1(5,T,a,-0.5);

Gz close=(Gz DCM*Cz)/(1+(Gz DCM*Cz));

step(Gz close,15);

Gz open=(Gz DCM*Cz);

bode(Gz open);

[Gm,Pm] = margin(Gz open);

The results obtained via described Matlab scripts are
depicted in Fig. 10. Discrete model is shown with dashed
line. Phase margin is Φm ≈ 45.1◦ and gain margin is
infinite.

Simulation of the closed feedback loop can also be
dome in Matlab/Simulink environment, where fractional
- order controller is realized via nipid block proposed by

D. Valerio [44], where block parameters are depicted in
Fig. 11.

General Simulink model is shown in Fig. 12. Block
constants were set according to parameters of DC motor
and fractional-order controller.

Time domain simulation results for fractional order
feedback loop are depicted in Fig. 13. Obtained results
are comparable with the results obtained with simulation
in Matlab by routines.

Stability analysis is investigated by solving the char-
acteristic equation of transfer function (28) with using
Matlab function solve()

s=solve(’0.05*s^2.5 + s^1.5 + 0.05*s + 1 = 0’,’s’)

with the following results: s1,2 = −0.5 ± 0.86602j and
s3 = −20. It means that feedback control loop is stable.

As we can observe in Fig. 13, the quality indexes (over-
shoot and settling time) are worse in the case of control
loop with saturation, because of controller power limita-
tions.

Fig. 14. Actuator for the DC motor

6 PROPOSED REALIZATIONS OF FOC

Basically, there are two methods for realization of the
FOC. One is a digital realization based on processor de-
vices and appropriate control algorithm and the second
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Fig. 15. Proposal for digital implementation of the FOC: Block diagram of the digital fractional-order controller based on PIC processor
(left), Block diagram of the canonical representation of IIR filter form (right)

one is an analogue realization based on analogue circuits
so-called fractance. In this section is described both of
them.

In Fig. 14 is depicted the actuator for connection the
DC motor to the FOC.

6.1 Digital realization: Control algorithm and
HW

This realization can be based on implementation of the
control algorithm in the processor devices, e.g.: PLC con-
troller [35], processor C51 or PIC [33], PCL IO card [47],
etc. Suppose that processor PIC18F458 is used [55]. Some
experimental measurements with this processor were al-
ready done in [33].

Generally, the control algorithm is be based on canon-
ical form of IIR filter, which can be expressed as follow

F (z−1) =
U(z−1)

E(z−1)
=

b0 + b1z
−1 + b2z

−2 + · · ·+ bMz−M

a0 + a1z−1 + a2z−2 + · · ·+ aNz−N
, (29)

where a0 = 1 for compatible with the definitions used in
Matlab. Normally, we choose M = N .

For designed fractional-order controller (27) we can use
the half-order approximations (16) and (17), respectively.
The resulting discrete transfer function of the fractional-
order controller arranged to canonical form (29) is repre-
sented as

C(z−1) =
(
23.17− 61.33z−1 + 55.87z−2 − 18.52z−3

+ 0.268z−4 + 0.560z−5 + 0.032z−6
)/(

1.00− 2.00z−1

+ 1.11z−2 − 0.111z−4 + 0.0082z−5 + 0.0014z−6
)

(30)

This controller can be directly implemented to any pro-
cessor based devices as for instance PLC or PIC depicted
in Fig. 15 left. A direct form of such implementation using

canonical form shown in Fig. 15 right with input e(k) and
output u(k) range mapping to the interval 0−UFOC [V]
is divided into two sections: initialization code and cyclic

code. Pseudocode has the following syntax

(* initialization code *)

scale := 32752; % input and output

order := 6; % order of approximation

U FOC := 5; % input and output voltage range: 5[V], 10[V],
...

a[0] := 1.0; a[1] := -2.0; a[2] := 1.11; a[3] := 0.0;

a[4] := -0.111; a[5] := 0.0082; a[6] := 0.0014;

b[0] := 23.17; b[1] := -61.33; b[2] := 55.87; b[3] := -18.52;

b[4] := 0.268; b[5] := 0.560; b[6] := 0.032;

loop i := 0 to order do

s[i] := 0;

endloop

(* cyclic code *)

in := (REAL(input)/scale) * U FOC;

feedback := 0; feedforward := 0;

loop i:=1 to order do

feedback := feedback - a[i] * s[i];

feedforward := feedforward + b[i] * s[i];

endloop

s[0] := in + a[0] * feedback;

out := b[0] * s[1] + feedforward;

loop i := order downto 1 do

s[i] := s[i-1];

endloop output := INT(out*scale)/U FOC;

Fig. 16. Finite ladder circuit
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Fig. 17. Analogue fractional-order PIλDδ controller

The disadvantage with this solution is that the com-
plete controller is calculated using floating point arith-
metic.

There are many softwares for PIC programming. As
for example: Microchip MPLAB, HiTech C Compiler,
PICBasic Pro, etc.

6.2 Analogue realization: Fractance circuits and
fractor

A circuit exhibiting fractional-order behavior is called
a fractance [39]. The fractance devices have the follow-
ing characteristics [27], [28], [18]. First the phase angle
is constant independent of the frequency within a wide
frequency band. Second it is possible to construct a fil-
ter which has moderated characteristics which can not be
realized by using the conventional devices.

Generally speaking, there are three basic fractance de-
vices. The most popular is a domino ladder circuit net-
work. Very often used is a tree structure of electrical ele-
ments and finally, we can find out also some transmission
line circuit. Here we must mention that all basic electrical
elements (resistor, capacitor and coil) are not ideal [10],
[54].

Design of fractances can be done easily using any of the
rational approximations [36] or a truncated CFE, which
also gives a rational approximation.

Truncated CFE does not require any further trans-
formation; a rational approximation based on any other
methods must be transformed to the form of a continued
fraction. The values of the electric elements, which are
necessary for building a fractance, are then determined
from the obtained finite continued fraction. If all coeffi-
cients of the obtained finite continued fraction are posi-
tive, then the fractance can be made of classical passive
elements (resistors and capacitors). If some of the coeffi-
cients are negative, then the fractance can be made with
the help of negative impedance converters [37].

Domino ladder lattice networks can approximate frac-
tional operator more effectively than the lumped net-
works [17].

Let us consider the circuit depicted in Fig. 16, where
Z2k−1(s) and Y2k(s), k = 1, . . . , n , are given impedances
of the circuit elements. The resulting impedance Z(s) of
the entire circuit can be found easily, if we consider it in
the right-to-left direction:

Z(s) = Z1(s)+

1

Y2(s) +
1

Z3(s) +
1

Y4(s) +

1
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .

1

Y2n−2(s) +
1

Z2n−1(s) +
1

Y2n(s)

(31)

The relationship between the finite domino ladder net-
work, shown in Fig. 16, and the continued fraction (31)
provides an easy method for designing a circuit with
a given impedance Z(s). For this one has to obtain
a continued fraction expansion for Z(s). Then the ob-
tained particular expressions for Z2k−1(s) and Y2k(s),
k = 1, . . . , n , will give the types of necessary components
of the circuit and their nominal values.

Rational approximation of the fractional integrator/
differentiator can be formally expressed as

s±α ≈
{Pp(s)

Qq(s)

}
p,q

= Z(s) , (32)

where p and q are the orders of the rational approxi-
mation, P and Q are polynomials of degree p and q ,
respectively.

For direct calculation of circuit elements was proposed
method by Wang [53]. This method was designed for con-
structing resistive-capacitive ladder network and trans-
mission lines that have a generalized Warburg impedance
As−α , where A is independent of the angular frequency
and 0 < α < 1. This impedance may appear at an elec-
trode/electrolyte interface, etc. The impedance of the lad-
der network (or transmission line) can be evaluated and
rewritten as a continued fraction expansion:

Z(s) = R0 +
1

C0s+

1

R1+

1

C1s+

1

R2+

1

C2s+
. . . (33)

If we consider that Z2k−1 ≡ Rk−1 and Y2k ≡ Ck−1 for
k = 1, . . . , n in Fig. 16, then the values of the resistors
and capacitors of the network are specified by

Rk = 2hαP (α)
Γ(k + α)

Γ(k + 1− α)
− hαδko

Ck = h1−α(2k + 1)
Γ(k + 1− α)

P (α)Γ(k + 1 + α)
,

P (α) =
Γ(1− α)

Γ(α)
,

(34)

where 0 < α < 1, h is an arbitrary small number, δko is
the Kronecker delta, and k is an integer, k ∈ [0,∞).
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In Fig. 17 is depicted an analogue implementation of
fractional-order PIλDδ controller. Fractional order dif-
ferentiator is approximated by general Warburg impedan-
ce Z(s)d and fractional order integrator is approximated
by impedance Z(s)i , where orders of both approxima-
tions are 0 < α < 1. For orders greater than 1, the War-
burg impedance can be combined with classical integer
order one. Usually we suppose R2 = R1 in Fig. 17. For
proportional gain Kp we can write the formula

Kp =
R3

R4
.

The integration and derivation constants Ki and Kd can
be computed from relationships

Ki =
Z(s)i
Ri

, Kd =
Rd

Z(s)d
.

In the case, if we use identical resistors (R -series) and
identical capacitors (C -shunt) in the fractances, then the
behavior of the circuit will be as a half-order integra-
tor/differentiator. Realization and measurements of such
kind controllers were done in [36]. Some others experi-
mental results we can find in [11].

Instead fractance circuit the new electrical element
introduced by G. Bohannan which is so-called fractor can
be used as well [8]. This element — fractor made from a
material with the properties of LiN2H5SO4 has been
already used for temperature control [5].

7 CONCLUSION

In this paper was presented a case study of frac-
tional order feedback control of a DC motor. Described
method is based on Bode’s ideal control loop. Design
algorithm for fractional-order PIλDδ controller param-
eters uses a phase margin specification of open con-
trol loop. Another very important advantage is an iso-
damping property of such control loop. Simulation results
obtained via Matlab/Simulink confirm the described the-
oretical suggestion. This article also proposed digital and
analogue realization of fractional-order controller. De-
scribed techniques are useful for practical implementation
of fractional-order controllers as the non-conventional
control techniques. However this approach also gave a
good start for analysis and design of the analog fractional
order controller. The fractional-order controller gives us
an insight into the concept of memory of the fractional
order operator. The design, realization, and implementa-
tion of the fractional order control systems also became
possible and much easier than before.
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Abstract

This paper deals with fractional calculus and its approximate discretization. Two direct

discretization methods useful in control and digital filtering are presented for discretizing the

fractional-order differentiator or integrator. Detailed mathematical formulae and tables are

given. An illustrative example is presented to show the practically usefulness of the two

proposed discretization schemes. Comparative remarks between the two methods are also

given.

r 2003 The Franklin Institute. Published by Elsevier Ltd. All rights reserved.

Keywords: Fractional differentiator; Fractional-order controllers; Tustin operator; Power series

expansion; Continued fraction expansion; Discretization

1. Introduction

The idea of fractional calculus has been known since the development of the
regular calculus, with the first reference probably being associated with correspon-
dence between Leibniz and L’Hospital in 1695. There are many applications of the
fractional-order calculus such as physical system modeling [1], control theory (e.g.
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[2–8]), to name a few. For the latest development of fractional calculus in automatic
control and robotics, we cite [9]. For practical application of the fractional-order
models (e.g. for realization of fractional-order controllers (FOC)), one needs to
discretize the FOC. It is well known that the fractional-order systems involve
unlimited memory (infinite dimensional) while the integer-order systems are with
limited memory (finite dimensional). It is important to approximately describe the
fractional-order system using a finite difference equation. To do so, rational
approximations [10] are often used mainly in continuous-time domain. In practice,
direct discretization is more preferred. The work of this paper provides a way to
achieve direct discretization of fractional-order operator using Tustin operator.

In this paper, two practically useful direct discretization methods are presented
and compared by some illustrative examples. The first one is the recursive Tustin
discretization scheme based on Muir’s recursion (Tustin+Muir). The other scheme is
the continued fraction expansion (CFE) of the Tustin operator (Tustin+CFE). Two
direct discretization schemes are then applied, as an illustrative example, to a double
integrator plant with an uncertain gain. The robustness of FOC is demonstrated and
the two direct discretization schemes are compared. It is found that Tustin+CFE

scheme is better in terms of accuracy while Tustin+Muir is attractive for its nice
closed-form recursion. Both schemes presented are applicable in FOC implementa-
tion. Note that the discretization schemes presented in [11] were based on different
operators and therefore, the reported results were hard to compare. In this paper,
based on the same Tustin operator, the two discretization schemes are now
comparable. Moreover, in this paper, an illustrative example is included to
demonstrate how a fractional-order controller can be applied to a double integrator
plant with an uncertain gain.

This paper is organized as follows: in Section 2, fractional-order derivative and its
discretization are briefly reviewed; Section 3 presents a new direct discretization
scheme based on Tustin operator and Muir recursion; Section 4 details another
direct discretization scheme based on the Tustin operator and the continued fraction
expansion method; Section 5 presents a fractional-order control of a double
integrator plant with possible uncertainty in the plant gain. Section 6 concludes this
paper with some remarks.

2. Fractional-order derivative and its discretization

Fractional calculus is a generalization of integration and differentiation to a
fractional, or non-integer, order fundamental operator aDr

t ; where a and t are the
limits and r; ðrARÞ the order of the operation. Two commonly used definitions for
the general fractional integrodifferential are the Gr .unwald–Letnikov (GL) definition
and the Riemann–Liouville (RL) definition [8,12]. The GL definition is that

aDr
tf ðtÞ ¼ lim

h-0
h�r

X½ðt�aÞ=h�

j¼0

ð�1Þ j r

j

 !
f ðt � jhÞ; ð1Þ
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where ½�� means the integer part, r
j

� �
is the fractional binomial coefficient. while the

RL definition is

aDr
t f ðtÞ ¼

1

Gðn � rÞ
dn

dtn

Z t

a

f ðtÞ

ðt � tÞr�nþ1
dt ð2Þ

for ðn � 1oronÞ and where Gð�Þ is the Euler’s gamma function.
For convenience, Laplace domain notion is usually used to describe the fractional

integro-differential operation [8]. The Laplace transform of the RL fractional derivative/
integral (2) under zero initial conditions for order r; ð0oro1Þ is given by [12]:

df aD7r
t f ðtÞ; sg ¼ s7rF ðsÞ; ð3Þ

where F ðsÞ is the normal Laplace transform of f ðtÞ and a ¼ 0:
The key point in digital implementation of an FOC is the numerical evaluation or

discretization of the fractional-order differentiator sr: In general, there are two
discretization methods: direct discretization and indirect discretization. In indirect

discretization methods, two steps are required, i.e., frequency domain fitting in
continuous time domain first and then discretizing the fit s-transfer function. In this
paper, we focus on the direct discretization method.

The simplest and most straightforward method is the direct discretization using
finite memory length expansion from GL definition (1). This approach is based on
the fact that, for a wide class of functions, the two definitions—GL (1) and RL (2)—
are equivalent [8]. In general, the discretization of fractional-order differentiator/
integrator s7r; ðrARÞ can be expressed by the so-called generating function s ¼
oðz�1Þ: This generating function and its expansion determine both the form of the
approximation and the coefficients [13]. For example, when a backward difference
rule is used, i.e., oðz�1Þ ¼ ð1 � z�1Þ=T ; performing the power series expansion (PSE)
of ð1 � z�1Þ7r gives the discretization formula for the GL definition (1). By using the
short memory principle [8], the discrete equivalent of the fractional-order integro-
differential operator, ðoðz�1ÞÞ7r; is given by

D7ðrÞðzÞ ¼ ðoðz�1ÞÞ7r ¼ T8rz�½L=T �
X½L=T �

j¼0

ð�1Þ j 7r

j

 !
z½L=T ��j ; ð4Þ

where T is the sampling period, L is the memory length and ð�1Þj 7r
j

� �
are binomial

coefficients c
ðrÞ
j ; ð j ¼ 0; 1;yÞ where

c
ðrÞ
0 ¼ 1; c

ðrÞ
j ¼ 1 �

1 þ ð7rÞ
j

� �
c
ðrÞ
j�1: ð5Þ

It is very important to note that the PSE scheme leads to approximations in the form
of polynomials, that is, the discretized fractional-order derivative is in the form of
FIR (finite impulse response) filters. Taking into account that our aim is to obtain
discrete equivalents to the fractional integrodifferential operators in the Laplace
domain, s7r; the following considerations have to be made:

(1) sr; ð0oro1Þ; viewed as an operator, has a branch cut along the negative real axis
for arguments of s on ð�p;pÞ but is free of poles and zeros.
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(2) A dense interlacing of simple poles and zeros along a line in the s plane is, in
some way, equivalent to a branch cut.

(3) It is well known that, for interpolation or evaluation purposes, rational
functions are sometimes superior to polynomials, roughly speaking, because of
their ability to model functions with zeros and poles. In other words, for
evaluation purposes, compared to PSE, the rational approximation usually
converges much more rapidly and has a wider domain of convergence in the
complex plane.

(4) The Tustin transformation or the trapezoidal rule maps adequately the stability
regions of the s plane on the z plane, and maps the points s ¼ 0; s ¼ �N to the
points z ¼ 1 and �1; respectively.

Therefore, in this paper, for the direct discretization of sr; ð0oro1Þ; we shall
concentrate on the trapezoidal rule or Tustin operator as the generating function as
follows:

ðoðz�1ÞÞ7r ¼
2

T

1 � z�1

1 þ z�1

� �7r

: ð6Þ

In expanding the above into a rational function, we shall use two techniques. The
first one is based on Muir-recursion applied to numerator and denominator of the
Tustin operator and the second one is by the continued fraction expansion. It should
be pointed out that, for control applications, the obtained approximate discrete-time
rational transfer function should be stable and minimum phase. Furthermore, for a
better fit to the continuous frequency response, it would be of high interest to obtain
discrete approximations with poles an zeros interlaced along the line zAð�1; 1Þ of the
z plane. As it will be shown later, the two direct discretization approximations
proposed in this paper enjoy the above desirable properties. In the next sections, we
first introduce the new direct discretization scheme by recursive Tustin transforma-
tion followed by the second direct discretization scheme by continued fraction
expansion of the Tustin operator.

3. Direct discretization by recursive Tustin transformation

One of the key points of Tustin discretization of fractional-order differentiator is
how to get a recursive formula similar to (5) in the preceeding subsection. Here, we
introduce the so-called Muir-recursion scheme, which was originally used in
geophysical data processing with applications to petroleum prospecting [14]. The
Muir-recursion was motivated in computing the vertical plane wave reflection
response via the impedance of a stack of n-layered earth. This scheme can be used in
recursive discretization of fractional-order differentiator of Tustin generating
function. In the following, without loss of generality, assume that rA½�1; 1�: In
order to simplify the presentation, we only give the recursive formula for positive r

ðoðz�1ÞÞr ¼
2

T

� �r
1 � z�1

1 þ z�1

� �r

¼
2

T

� �r

lim
n-N

Anðz�1; rÞ
Anðz�1;�rÞ

; ð7Þ
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where

A0ðz�1; rÞ ¼ 1; Anðz�1; rÞ ¼ An�1ðz�1; rÞ � cnznAn�1ðz; rÞ ð8Þ

and

cn ¼
r=n; n is odd;

0; n is even:

(
ð9Þ

For any given order of approximation n; we can use MATLAB symbolic toolbox to
generate an expression for Anðz�1; rÞ: Therefore,

srE
2

T

� �r
Anðz�1; rÞ

Anðz�1;�rÞ
:

For a ready reference, we listed Anðz�1; rÞ in Table 1 up to n ¼ 9; which should be
sufficient in many applications.

Remark 3.1. To examine the correctness of the Muir-recursion used for the recursive
discretization of the fractional-order derivative operator, one can compare the
symbolic Taylor expansion of (6). It has been verified that the proposed recursive
formula is as correct as Taylor series expansion till the order of approximation.

As an example, using the recursive method described in this section, the
discretization of s0:5 sampled at 0:001 s is studied numerically, and the approximate
models are

G1ðzÞ ¼
44:72z � 22:36

z þ 0:5
; G3ðzÞ ¼

44:72z3 � 22:36z2 þ 3:727z � 7:454

z3 þ 0:5z2 þ 0:08333z þ 0:1667
;
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Table 1

Table of formulae Anðz�1; rÞ for n ¼ 1;y; 9

n Anðz�1; rÞ

0 1

1 �rz�1 þ 1

3 �
1

3
rz�3 þ

1

3
r2z�2 � rz�1 þ 1

5 �
1

5
rz�5 þ

1

5
r2z�4 �

1

3
r þ

1

15
r3

� �
z3 þ

2

5
r2z�2 � rz�1 þ 1

7 �
1

7
rz�7 þ

1

7
r2z�6 �

1

5
r þ

2

35
r3

� �
z�5 þ

26

105
r2 þ

1

105
r4

� �
z�4

�
1

3
r þ

2

21
r3

� �
z�3 þ

3

7
r2z�2 � rz�1 þ 1

9 �
1

9
rz�9 þ

1

9
r2z�8 �

1

7
r þ

1

21
r3

� �
z�7 þ

34

189
r2 þ

2

189
r4

� �
z�6

�
1

5
r þ

16

189
r3 þ

1

945
r5

� �
z�5 þ

17

63
r2 þ

1

63
r4

� �
z�4

�
1

3
r þ

1

9
r3

� �
z�3 þ

4

9
r2z�2 � rz�1 þ 1
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G7ðzÞ ¼
44:72z7 � 22:36z6 þ 4:792z5 � 7:986z4 þ 2:795z3 � 4:792z2 þ 1:597z � 3:194

z7 þ 0:5z6 þ 0:1071z5 þ 0:1786z4 þ 0:0625z3 þ 0:1071z2 þ 0:0357z þ 0:07143
;

G9ðzÞ ¼

44:72z9 � 22:36z8 þ 4:969z7 � 8:075z6 þ 3:061z5 � 4:947z4þ

2:041z3 � 3:461z2 þ 1:242z � 2:485

z9 þ 0:5z8 þ 0:1111z7 þ 0:1806z6 þ 0:06845z5 þ 0:1106z4þ

0:04563z3 þ 0:07738z2 þ 0:02778z þ 0:05556

:

We present four plots as shown in Fig. 1 and to show the effectiveness of the
approximate discretization with Z-transfer function given above, the approxima-
tions are compared with the exact solution (straight lines).

It should be pointed out that the direct discretization method introduced above
always gives a Z-transfer function with stable minimum phase characteristics.
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Fig. 1. Approximate discretization of s0:5 at T ¼ 0:001 s:
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4. Direct discretization by continued fraction expansion of Tustin transformation

It is well known that, compared to the power series expansion method, the
continued fraction expansion (CFE) is a method for evaluation of functions with
faster convergence and larger domain of convergence in the complex plane [15,16].
Using CFE, an approximation for any irrational function GðzÞ can be expressed in
the form

GðzÞC a0ðzÞ þ
b1ðzÞ

a1ðzÞ þ
b2ðzÞ

a2ðzÞþ
b3ðzÞ

a3ðzÞþ?

¼ a0ðzÞ þ
b1ðzÞ

a1ðzÞþ
b2ðzÞ

a2ðzÞþ
b3ðzÞ

a3ðzÞþ
?; ð10Þ

where a0
is and b0

is are either rational functions of the variable z or constants. The
application of the method yields a rational function, #GðzÞ; which is an approximation
of the irrational function GðzÞ:

The resulting discrete transfer function, approximating fractional-order operators,
can be expressed as

D7rðzÞ ¼
Y ðzÞ
F ðzÞ

¼
2

T

� �7r

CFE
1 � z�1

1 þ z�1

� �7r
( )

p;q

¼
2

T

� �7r
Ppðz�1Þ
Qqðz�1Þ

; ð11Þ

where T is the sampling period, CFEfug denotes the function from applying the
continued fraction expansion to the function u; Y ðzÞ is the Z transform of the output
sequence yðnTÞ; F ðzÞ is the Z transform of the input sequence f ðnTÞ; p and q are the
orders of the approximation, and P and Q are polynomials of degrees p and q;
correspondingly, in the variable z�1:

By using MAPLE or MATLAB Symbolic Math Toolbox, the obtained symbolic
approximation has the following form:

DrðzÞ ¼ 1 þ
z�1

�1
2

1
r
þ z�1

�2þ z�1

3
2

r
r2�1

þ z�1

2þ z�1

�5
2

r2�1
rð�4þr2Þþ

z�1

�2þ?

: ð12Þ

In Table 2, the general expressions for numerator and denominator of DrðzÞ in (11)
are listed for p ¼ q ¼ 1; 3; 5; 7; 9:
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Table 2

Numerators and denominators of DrðzÞ (12) for different r

p ¼ q Ppðz�1Þ ðk ¼ 1Þ; and Qqðz�1Þðk ¼ 0Þ

1 ð�1Þkz�1r þ 1

3 ð�1Þkðr3 � 4rÞz�3 þ ð6r2 � 9Þz�2 þ ð�1Þk15z�1r þ 15

5 ð�1Þkðr5 � 20r3 þ 64rÞz�5 þ ð�195r2 þ 15r4 þ 225Þz�4 þ ð�1Þkð105r3 � 735rÞz�3 þ ð420r2 � 1050Þz�2 þ ð�1Þk945z�1r þ 945

7 ð�1Þkð784r3 þ r7 � 56r5 � 2304rÞz�7 þ ð10612r2 � 1190r4 � 11025 þ 28r6Þz�6 þ ð�1Þkð53487r þ 378r5 � 11340r3Þz�5 þ ð99225 � 59850r2 þ
3150r4Þz�4 þ ð�1Þkð17325r3 � 173250rÞz�3 þ ð�218295 þ 62370r2Þz�2 þ ð�1Þk135135z�1r þ 135135

9 ð�1Þkð�52480r3 þ 147456r þ r9 � 120r7 þ 4368r5Þz�9 þ ð45r8 þ 120330r4 � 909765r2 � 4410r6 þ 893025Þz�8 þ ð�1Þkð�5742495r �
76230r5 þ 1451835r3 þ 990r7Þz�7 þ ð�13097700 þ 9514890r2 � 796950r4 þ 13860r6Þz�6 þ ð�1Þkð33648615r � 5405400r3 þ 135135r5Þz�5 þ
ð�23648625r2 þ 51081030 þ 945945r4Þz�4 þ ð�1Þkð�61486425r þ 4729725r3Þz�3 þ ð16216200r2 � 72972900Þz�2 þ ð�1Þk34459425z�1r þ
34459425
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80



With r ¼ 0:5 and T ¼ 0:001 s; the approximate models for p ¼ q ¼ 1; 3; 7; 9 are

G1ðzÞ ¼ 44:72
z � 0:5

z þ 0:5
; G3ðzÞ ¼ 44:72

z3 � 0:5z2 � 0:5z þ 0:125

z3 þ 0:5z2 � 0:5z � 0:125
;

G7ðzÞ ¼ 44:72

z7 � 0:5z6 � 1:5z5 þ 0:625z4 þ 0:625z3 � 0:1875z2

�0:0625z þ 0:007813

z7 þ 0:5z6 � 1:5z5 � 0:625z4 þ 0:625z3 þ 0:1875z2

�0:0625z � 0:007813

;

G9ðzÞ ¼ 44:72

z9 � 0:5z8 � 2z7 þ 0:875z6 þ 1:313z5 � 0:4688z4 � 0:3125z3

þ0:07813z2 þ 0:01953z � 0:001953

z9 þ 0:5z8 � 2z7 � 0:875z6 þ 1:313z5 þ 0:4688z4 � 0:3125z3

�0:07813z2 þ 0:01953z þ 0:001953

:

In Figs. 2 and 3, the Bode plots and the distributions of zeros and poles of the
approximations are presented. In Fig. 2, the effectiveness of the approximations
fitting the ideal responses in a wide range of frequencies, in both magnitude and
phase, can be observed. In Fig. 3, it can be observed that the approximations fulfill
the two desired properties: (i) all the poles and zeros lie inside the unit circle, and
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Fig. 2. CFE approximate discretization of s0:5 at T ¼ 0:001 s: Bode plots (approximation orders 1; 3; 7; 9).
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(ii) the poles and zeros are interlaced along the segment of the real axis
corresponding to zAð�1; 1Þ:

5. An illustrative application example

Consider a system with the following transfer function in the form of a double
integrator

HðsÞ ¼
A

s2
;

where the gain A is uncertain.
As can be seen in [17], this plant is one of the most fundamental systems in control

applications, representing single-degree-of-freedom translational and rotational
motion, with applications in many practical problems (see [17] and references
included): low-friction, free rigid-body motion, single-axis spacecraft rotation and
rotary crane motion. The double integrator plant model has also been used in flexible
robotics (see [18]).
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Fig. 3. CFE approximate discretization of s0:5 at T ¼ 0:001 s: Zero-pole distribution (approximation

orders 1; 2;y; 9).
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Suppose a fractional-order controller of the form

DðsÞ ¼ sr; 0oro1 ð13Þ

is to be used. The open-loop transfer function of the controlled system will be of the
form

FoðsÞ ¼ DðsÞGðsÞ ¼
A

s2�r
:

The above transfer function is in the form of the Bode’s ideal transfer function [8]
with the following properties:

(a) Open loop:
(1) the amplitude curve has a constant slope of �ð2 � rÞ;
(2) the crossover frequency depends only on A;
(3) the phase curve is a horizontal line at �ð2 � rÞðp=2Þ;
(4) the Nyquist curve is a straight line through the origin with argument

�ð2 � rÞðp=2Þ
(b) Closed loop with unity negative feedback:

(1) the transfer function has the form

FcðsÞ ¼
A

s2�r þ A
; ð14Þ

(2) the gain margin is infinite;
(3) the phase margin is constant, Fm ¼ p 1 � 2�r

2

� �
;

(4) the step response has the expression (see [8,19]):

yðtÞ ¼ At2�rE2�r;2�rþ1ð�At2�rÞ;

where E2�r;2�rþ1ð�At2�rÞ is the Mittag–Leffler function in two parameters.
Assuming AARþ; such a step response exhibits an overshoot independent
of parameter A and dependent only on the parameter r; the fractional-
order. This is a desired property in some applications such as car suspension
control system, etc.

If A ¼ 100; r ¼ 0:5; the following properties can be achieved:

* phase margin, Fm ¼ 45�;
* rise time, tr ¼ 0:018 s;
* overshoot, Mp ¼ 35%;
* peak time, tp ¼ 0:029 s:

In Figs. 4–6, the following results are displayed: Bode plots for D1ðzÞ and D2ðzÞ
(Fig. 4), the two discrete approximations of the controller DðsÞ (13) where D1ðzÞ is via
Tustin+Muir scheme with n ¼ 7 and D2ðzÞ the Tustin+CFE scheme with p ¼ q ¼ 7;
Bode plots for the controlled system with several values of A (Fig. 5), and the step
responses of the controlled system for several values of A (Fig. 6). As can be
observed, the Tustin+CFE scheme performs a better frequency-domain approxima-
tion with a more flat phase response in a wider frequency range. This leads to the
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time-domain behavior of the controlled system closer to the theoretical one for a
wider range of A values. The most interesting feature of the fractional-order
controlled system is the equal-overshoot behavior when A varies. The overshoot is
close to 35%; the theoretically predicted value for AAð1000; 9000Þ when D2ðzÞ is used
as the controller. When D1ðzÞ is used, we can see that the 35% overshoot can be
maintained only when AX9000: Clearly, due to a better phase approximation of
D2ðzÞ to DðsÞ; compared to D1ðzÞ; D2ðzÞ gives better time-domain performance which
is also in accordance with the obtained phase margins of the controlled system. We
can see that with the introduction of a fractional-order controller, in terms of
overshoot and oscillation/damping, the control performance is more robust with
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respect to the uncertain plant gain. As we have demonstrated above, the plant gain
can be allowed to vary in a very large range. Under the same order of
approximation, compared to the Tustin+Muir scheme, Tustin+CFE scheme gives
a better fit to the original continuous FOC. However, Tustin+Muir is more
attractive in the sense that it has a nice closed-form recursive expansion formulae
which may be useful when the order of approximation of FOC would be determined
in real time.

6. Concluding remarks

We have presented two direct discretization schemes for implementation of
fractional-order controller. The first scheme uses the Muir recursion formula for
recursive Tustin operator expansion while the other scheme is by the continued
fraction expansion. Practically useful formula and tables are given. Illustrative
examples are presented to show the practically usefulness of the two proposed
discretization schemes. Comparative remarks between the two methods are also
given.
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Abstract. An approach to the design of analogue circuits, implementing fractional-order controllers, is presented.
The suggested approach is based on the use of continued fraction expansions; in the case of negative coefficients
in a continued fraction expansion, the use of negative impedance converters is proposed. Several possible methods
for obtaining suitable rational appromixations and continued fraction expansions are discussed. An example of
realization of a fractional-order Iλ controller is presented and illustrated by obtained measurements. The suggested
approach can be used for the control of very fast processes, where the use of digital controllers is difficult or
impossible.

Keywords: Fractional calculus, fractional differentiation, fractional integration, fractional-order controller, real-
ization.

1. Introduction

Although digital controllers are used more and more frequently for controlling many types of
complex processes, the role of analogue controllers should not be undervalued. Indeed, digital
controllers have some natural limitations, coming from their discrete nature, such as the length
of the sampling period and the time of computation, which should be significantly less than
the length of the sampling period. This sometimes makes the use of digital controllers prac-
tically impossible, especially in case of fast processes, such as vibrations, and the alternative
approach to controlling fast processes is represented by analogue controllers.

In this paper we describe an approach to the design of analogue fractional-order controllers.
The paper is organized as follows. First, we recall some basic relationships for describing

fractional-order systems and fractional-order controllers. Then we discuss some uses of con-
tinued fraction expansions, including their applications in the control theory. Finally, we show
how continued fraction expansions can be used for designing analogue circuits, implementing
� Partially supported by grant No. VEGA 1/7098/20 of the Slovak Grant Agency for Science.
�� Partially supported by FEDER Research Grant No. IFD97-0755-C02-01.

� � � Partially supported by a research grant of the Austrian Institute for Central and Eastern Europe.
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fractional-order systems and controllers. We also give an example of implementation of an Iλ

controller.

2. Fractional-Order Systems and Controllers

General information about various approaches to fractional-order differentiation and integra-
tion can be found in the available monographs on this subject [1–4] and in some other articles
in this special issue. Because of this, we do not discuss general definitions here. Instead,
we recall only the expressions for describing fractional-order systems and PIλDµ controllers
[3, 5], which are subjects of our interest in this paper.

2.1. FRACTIONAL DIFFERENTIAL EQUATIONS AND TRANSFER FUNCTIONS

A fractional-order control system can be described by a fractional differential equation of the
form

anD
αny(t) + an−1D

αn−1y(t) + · · · + a0D
α0y(t)

= bmD
βmu(t)+ bm−1D

βm−1u(t)+ · · · + b0D
β0u(t), (1)

or by a continuous transfer function of the form:

G(s) = bms
βm + bm−1s

βm−1 + · · · + b0s
β0

ans
αn + an−1s

αn−1 + · · · + a0s
α0
, (2)

where Dγ ≡ 0D
γ
t denotes the Riemann-Liouville or Caputo fractional derivative [3]; ak

(k = 0, . . . , n), bk (k = 0, . . . , m) are constant; and αk (k = 0, . . . , n), βk (k = 0, . . . , m)
are arbitrary real numbers.

Without loss of generality we can assume that αn > αn−1 > . . . > α0, and βm > βm−1 >

. . . > β0.

2.2. PIλDµ CONTROLLERS

The fractional-order PIλDµ controller was proposed in [3, 5, 6] as a generalization of the
PID controller with integrator of real order λ and differentiator of real order µ. The transfer
function of such type the controller in Laplace domain has form:

Gc(s) = U(s)

E(s)
= K + Ti s

−λ + Td s
µ (λ, µ > 0), (3)

whereK is the proportional constant, Ti is the integration constant and Td is the differentiation
constant. As we can see (Figure 1), the internal structure of the fractional-order controller con-
sists of the parallel connection the proportional, integration, and derivative part [7]. Transfer
function (3) corresponds in time domain with fractional differential equation (4)

u(t) = Ke(t) + Ti 0D
−λ
t e(t)+ Td 0D

µ
t . (4)

Taking λ = 1 and µ = 1, we obtain a classical PID controller. If λ = 0 and/or Ti = 0, we
obtain a PDµ controller, etc. All these types of controllers are particular cases of the fractional-
order controller, which is more flexible and gives an opportunity to better adjust the dynamical
properties of the fractional-order control system.
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Figure 1. General structure of a PIλDµ controller.

As we see from Figure 1, a PIλDµ controller can be easily implemented in analogue
form if we know how to build an analogue circuit corresponding to sα , α ∈ R. Below we
will demonstrate how this can be done using rational approximations and continued fraction
expansions.

It can also be mentioned that the other kind of fractional-order controller, which character-
ized by the band-limited lead effect, can be found in the available literature [8, 9]:

Gc(s) = C

(
1 + τsr

1 + τ ′sr

)
, r ∈ R,C ∈ R, τ ′ < τ. (5)

This type of controller can be realized using a recursive distribution of poles and zeros [10].

3. Some Uses of Continued Fractions

In this section we discuss some applications of continued fractions. First we recall their use
for approximating functions and investigating stability of linear systems. Then we introduce a
new relationship between continued fractions and multiple nested-loop systems.

3.1. CFES AND APPROXIMATIONS OF FUNCTIONS

It is well known that the Continued Fraction Expansions (CFE) is a method for evaluation
of functions, that frequently converges much more rapidly than power series expansions, and
converges in a much larger domain in the complex plane [11]. The result of such approxima-
tion for an irrational function, G(s), can be expressed in the form:

G(s) � a0(s)+ b1(s)

a1(s)+ b2(s)

a2(s)+ b3(s)
a3(s)+···

= a0(s)+ b1(s)

a1(s)+
b2(s)

a2(s)+
b3(s)

a3(s)+ · · · , (6)

where ais and bis are rational functions of the variable s, or are constant. The application
of the method yields a rational function, Ĝ(s), which is an approximation of the irrational
function G(s).

On the other hand, for interpolation purposes, rational functions are sometimes superior to
polynomials. This is, roughly speaking, due to their ability to model functions with poles. (As
it can be seen later, branch points can be considered as accumulations of interlaced poles and
zeros). These techniques are based on the approximations of an irrational function, G(s), by
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a rational function defined by the quotient of two polynomials in the variable s:

G(s) � Ri(i+1)...(i+m) = Pµ(s)

Qν(s)
,

= p0 + p1s + · · · + pµs
µ

q0 + q1s + · · · + qνsν
(7)

m+ 1 = µ+ ν + 1,

passing through the points (si,G(si)), . . . , (si+m,G(si+m)).

3.2. CFE AND STABILITY OF LINEAR SYSTEMS

It is also known that continuous fraction expansions can be used for investigating stability of
linear systems. For this, the characteristic polynomial Q(s) of the differential equation of the
system should be divided in two parts, the ‘even’ part (containing even powers of s) and the
‘odd’ part (containing odd powers of s):

Q(s) = m(s)+ n(s).

Then these two parts of the characteristic polynomial are used for creating its test function in
the form of a fraction, in which the highest power of s is contained in the denominator:

R(s) = m(s)

n(s)

(
or R(s) = n(s)

m(s)

)
.

The rational function R(s) should be written in the form of a continuous fraction:

R(s) = 1

b1s + 1

b2s + 1

. . . . . . . . . . . .

bn−1s + 1

bns

. (8)

If bk > 0, k = 1, . . . , n, then the system is stable. If some bk is negative, then the system
is unstable.

Considering the continued fraction (8) as a tool for designing a corresponding LC circuit,
we can conclude that stability of a linear system is equivalent to realizability of its test function
R(s) with the help of only passive electric components.

3.3. CFE AND NESTED MULTIPLE-LOOP CONTROL SYSTEMS

Let us now establish an interesting new relationship between continued fractions and nested
multiple-loop control systems.

We first recall the known fact that the transfer function R(s) of the control loop with a
negative feedback shown in Figure 2 is given by [7]

R(s) = G(s)

1 +G(s)H(s)
. (9)
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Figure 2. A control loop with a negative feedback.

Figure 3. Nested multiple-loop control system – level 1.

From (9) it immediately follows that the transfer function of the circuit shown in Figure 3
is

P2n(s) = 1

1 + 1 · Y ∗
2n(s)

= 1

Y2n(s)
, (10)

where Y2n(s) = Y ∗
2n(s)+ 1.

Using Equations (9) and (10) we obtain the transfer function of the system shown in
Figure 4:

Q2n−1(s) = Z2n−1(s)+ P2n(s) = Z2n−1(s)+ 1

Y2n(s)
. (11)

Combining Equations (9) and (10) we find the transfer function of the nested multiple-loop
system shown in Figure 5:

P2n−2(s) = Q2n−1(s)

1 +Q2n−1(s)Y2n−2(s)
= 1

Y2n−2(s)+ 1

Q2n−1(s)

= 1

Y2n−2(s)+ 1

Z2n−1(s)+ 1

Y2n(s)
.

(12)

The transfer function of the system shown in Figure 6 is then given by the relationship

Q2n−3(s) = Z2n−3(s)+ P2n−2(s)

= Z2n−3(s)+ 1

Y2n−2(s)+ 1

Z2n−1(s)+ 1

Y2n(s)
.

(13)
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91



286 I. Podlubny et al.

Figure 4. Nested multiple-loop control system – level 2.

Figure 5. Nested multiple-loop control system – level 3.

Continuing this process, we obtain the transfer function of the nested multiple-loop control
system shown in Figure 7 in the form of a continued fraction expansion, which is identical
with the Equation (24):

Z(s) = Z1(s)+ 1

Y2(s)+ 1

Z3(s)+ 1

Y4(s)+ 1

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
1

Y2n−2(s)+ 1

Z2n−1(s)+ 1

Y2n(s)
.

Similarly to the above considerations, we can obtain a continued fraction expansion of
the transfer function of the other interesting type of a nested multiple-loop control system,
depicted in Figure 8:

Z(s) = 1

Z1(s)+ 1

Y2(s)+ 1

Z3(s)+ 1

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
1

Y2n−2(s)+ 1

Z2n−1(s)+ 1

Y2n(s)
.

(14)
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92



Analogue Realizations of Fractional-Order Controllers 287

Figure 6. Nested multiple-loop control system – level 4.

Figure 7. Nested multiple-loop control system of the first type.

Figure 8. Nested multiple-loop control system of the second type.
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Both types of nested multiple-loop systems, presented in this section, can be used for
simulations and realizations of arbitrary transcendental transfer functions. For this, the transfer
function should be developed in a continued fraction, which after truncation can be represen-
ted by a nested multiple-loop system shown in Figures 7 or 8.

4. CFE and Rational Approximations of sα

In general [12], a rational approximation of the function G(s) = s−α , 0 < α < 1 (the frac-
tional integral operator in the Laplace domain) can be obtained by performing the CFE of the
functions:

Gh(s) = 1

(1 + sT )α
, (15)

Gl(s) =
(

1 + 1

s

)α
, (16)

where Gh(s) is the approximation for high frequencies (ωT 
 1), and Gl(s) the approxima-
tion for low frequencies (ω � 1).

EXAMPLE 1. Performing the CFE of the function (15), with T = 1, α = 0.5, we obtain

H1(s) = 0.3513s4 + 1.405s3 + 0.8433s2 + 0.1574s + 0.008995

s4 + 1.333s3 + 0.478s2 + 0.064s + 0.002844
.

EXAMPLE 2. Performing the CFE of the function (16), with T = 1, α = 0.5, we obtain

H2(s) = s4 + 4s3 + 2.4s2 + 0.448s + 0.0256

9s4 + 12s3 + 4.32s2 + 0.576s + 0.0256
.

5. Other Rational Approximations for sα

Besides using continued fractions, there are also other methods [13] for obtaining rational
approximations of fractional-order systems. However, since a ratio of two polynomials can be
expressed in the form of a finite continued fraction, any rational approximation is equivalent
to a certain finite continued fraction.

5.1. CARLSON’S METHOD

The method proposed by Carlson in [14], derived from a regular Newton process used for
iterative approximation of the α-th root, can be considered as belonging to this group. The
starting point of the method is the statement of the following relationships:

(H(s))1/α − (G(s)) = 0; H(s) = (G(s))α . (17)

Defining α = 1/q, m = q/2, in each iteration, starting from the initial value H0(s) = 1,
an approximated rational function is obtained in the form:

Hi(s) = Hi−1(s)
(q −m) (Hi−1(s))

2 + (q +m)G(s)

(q +m) (Hi−1(s))
2 + (q −m)G(s)

. (18)
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EXAMPLE 3. Starting from H(s) = (1/s)1/2, H0(s) = 1, after two iterations, we obtain

H3(s) = s4 + 36s3 + 126s2 + 84s + 9

9s4 + 84s3 + 126s2 + 36s + 1
.

5.2. MATSUDA’S METHOD

The method suggested in [15] is based on the approximation of an irrational function by a
rational one, obtained by CFE and fitting the original function in a set of logarithmically
spaced points. Assuming that the selected points are sk , k = 0, 1, 2, . . ., the approximation
takes on the form:

H(s) = a0 + s − s0

a1+
s − s1

a2+
s − s2

a3+ · · · , (19)

where

ai = vi(si), v0(s) = H(s), vi+1(s) = s − si

vi(s)− ai
. (20)

EXAMPLE 4. With G(s) = (1/s)1/2, finitial = 1, ffinal = 100, fk = {1, 1.7783, 3.1623,
5.6234, 10, 17.783, 31.623, 56.234, 100}, we obtain

H4(s) = 0.08549s4 + 4.877s3 + 20.84s2 + 12.995s + 1

s4 + 13s3 + 20.84s2 + 4.876s + 0.08551
.

5.3. OUSTALOUP’S METHOD

The method [8–10] is based on the approximation of a function of the form:

H(s) = sδ, δ ∈ R+ (21)

by a rational function

Ĥ (s) = C

N∏
k=−N

1 + s/ωk

1 + s/ω′
k

, (22)

using the following set of synthesis formulas:

ω′
0 = α−0.5ωu, ω0 = α0.5ωu,

ω′
k+1

ω′
k

= ωk+1

ωk
= αη > 1,

ω′
k+1

ωk
= η > 0,

ωk

ω′
k

= α > 0, N = log (ωN/ω0)

log (αη)
, δ = logα

log (αη)
, (23)

with ωu being the unit gain frequency and the central frequency of a band of frequencies
geometrically distributed around it. That is, ωu = √

ωhωb, ωh, ωb are the high and low
transitional frequencies.
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Figure 9. Finite ladder circuit.

EXAMPLE 5. Using the Oustaloup’s method with

ωh = 102, ωb = 10−2,

from which we have α = η = 2.5119, the obtained approximation for s−1/2 is

H5(s) = s5 + 74.97s4 + 768.5s3 + 1218s2 + 298.5s + 10

10s5 + 298.5s4 + 1218s3 + 768.5s2 + 74.97s + 1
.

6. Design of Fractances Based on Rational Approximations and CFEs

A circuit exhibiting fractional-order behaviour is called a fractance [3].
Design of fractances can be done easily using any of the aforementioned rational approxim-

ations or a truncated CFE, which also gives a rational approximation (see, for example, [16]).
Truncated CFE does not require any further transformation; a rational approximation based
on any other methods must be transformed to the form of a continued fraction. The values
of the electric elements, which are necessary for building a fractance, are then determined
from the obtained finite continued fraction. If all coefficients of the obtained finite continued
fraction are positive, then the fractance can be made of classical passive elements (resistors
and capacitors). If some of the coefficients are negative, then the fractance can be made with
the help of negative impedance converters (Section 6.2).

6.1. DOMINO LADDER CIRCUIT

Let us consider the circuit depicted in Figure 9, where Z2k−1(s) and Y2k(s), k = 1, . . . , n, are
given impedances of the circuit elements. The resulting impedance Z(s) of the entire circuit
can be found easily, if we consider it in the right-to-left direction:

Z(s) = Z1(s)+ 1

Y2(s)+ 1

Z3(s)+ 1

Y4(s)+ 1

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
1

Y2n−2(s)+ 1

Z2n−1(s)+ 1

Y2n(s)
.

(24)

The relationship between the finite domino ladder network, shown in Figure 9, and the con-
tinued fraction (24) provides an easy method for designing a circuit with a given impedance
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Z(s). For this one has to obtain a continued fraction expansion for Z(s). Then the obtained
particular expressions for Z2k−1(s) and Y2k(s), k = 1, . . . , n, will give the types of necessary
components of the circuit and their nominal values.

EXAMPLE 6. To design a circuit with the impedance

Z(s) = s4 + 4s2 + 1

s3 + s
, (25)

we have to develop Z(s) in continued fraction

Z(s) = s4 + 4s2 + 1

s3 + s
= s + 1

1

3
s + 1

9

2
s + 1

2

3
s.

(26)

From this expansion it follows that

Z1(s) = s, Z3(s) = 9

2
s, Y2(s) = 1

3
s, Y4(s) = 2

3
s.

Therefore, for the analogue realization in the form of the first Cauer’s canonic LC circuit
[17] we have to choose the following values of coils and capacitors:

L1 = 1 [H ], L3 = 9

2
[H ], C2 = 1

3
[F ], C4 = 2

3
[F ].

EXAMPLE 7. The function Z(s) given by Equation (25) can be written also in the form

Z(s) = s4 + 4s2 + 1

s3 + s
= 1

s
+ 1

1

3s
+ 1

9

2s
+ 1

2

3s
.

(27)

From this expansion it follows that

Z1(s) = 1

s
, Z3(s) = 9

2s
, Y2(s) = 1

3s
, Y4(s) = 2

3s
.

Therefore, for the analogue realization in the form of the second Cauer’s canonic LC circuit
[17] we have to choose the following values of coils and capacitors:

C1 = 1 [F ], C3 = 2

9
[F ], L2 = 3 [H ], L4 = 3

2
[H ].

EXAMPLE 8. To design a circuit with the impedance

Z(s) = s4 + 3s2 + 8

2s3 + 4s
, (28)
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one has to obtain a continuous fraction representation of the function Z(s),

Z(s) = s4 + 3s2 + 8

2s3 + 4s
= 1

2
s + 1

2s + 1

− 1

12
s + 1

−3

2
s

.

(29)

From this expansion it follows that

Z1(s) = 1

2
s, Z3(s) = − 1

12
s, Y2(s) = 2s, Y4(s) = −3

2
s.

Therefore, for the analogue realization in the form of the first Cauer’s canonic LC circuit
[17] we have to choose the following values of coils and capacitors:

L1 = 1

2
[H ], L3 = − 1

12
[H ], C2 = 2 [F ], C4 = −3

2
[F ].

Here we see negative inductances and capacitance. Such elements cannot be realized using
passive electric components. However, they can be realized with the help of active compon-
ents, namely operating amplifiers.

6.2. NEGATIVE-IMPEDANCE CONVERTERS

The previous example shows that the use of CFE for analogue realization of arbitrary transfer
functions may lead to the appearance of negative impedances. This observation is not un-
known. For example, in the paper [12], Dutta Roy recalls Khovanskii’s continued fraction
expansion for x1/2 found in [18] and makes a remark that

. . . if x is replaced by the complex frequency variable s, then the realization would
require a negative resistance. Thus, the [Khovanskii’s] CFEs do not seem to be useful
for realization of fractional inductor or capacitor.

Then he describes a method for circumventing this difficulty, which gives a continued fraction
expansion with positive coefficients.

However, the possibility of realization of negative impedances in electric circuits has been
pointed out by Bode [19, chapter IX]. Later, in 1970s, operational amplifiers appeared, which
significantly simplified creation of circuits exhibiting negative resistances, negative capa-
citances, and negative inductances. Such circuits are called negative-impedance converters
[20].

The simplest scheme of a negative-impedance converter (or current inverter) is shown in
Figure 10. The circuit consists of an operational amplifier, two resistors of equal resistance R,
and a component with the impedance Z. The entire circuit, considered as a single element,
has negative impedance −Z. This means that Iin = Vin/(−Z)).

For example, taking a resistor of resistance RZ instead of the elementZ, we obtain a circuit,
which behaves like a negative resistance −RZ. The negative resistance means that if such an
element of negative resistance, for instance, −10 k: is connected in series with a classical
20 k: resistor, then the resistance of the resulting connection is 10 k:.

Let us now recall Example 8. Using negative-impedance converters, it is possible to design
a circuit with the required impedance Z(s), which will contain a negative capacitance C4 and
a negative inductance L3.
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Figure 10. Negative-impedance converter.

Figure 11. Analogue fractional-order Iλ controller.

7. Example: Fractional-Order Iλ Controller

For experimental measurement we built a fractional-order Iλ controller which is a particular
case of the PIλDµ controller, (if K = 0 and Td = 0). The controller was realized in the
form of the finite domino ladder (n = 12), connected to feedback in operational amplifier
(Figure 11). It should be noted that the described methods work for arbitrary orders, but
the circuit elements with computed values are not usually available. Because of this, in our
experiment we proposed and realized the integrator with order λ = 0.5. It should be mentioned
that this simple case of the controller order can be realized also using the methods described
in [21–24], which do not involve explicit rational approximations.

In the case, if we will use identical resistors (R-series) and identical capacitors (C-shunt)
in the FDL, then the behaviour of the circuit will be as a half-order integrator/differentiator.
We used the resistor values R = 1k: (Rj = R, j = 1, . . . , n) and the capacitor values
C = 1µF (Cj = C, j = 1, . . . , n). For better measurement results we used two operational
amplifiers TL081CN in inverting connection.

A block diagram of the analogue fractional-order Iλ controller realization is shown in
Figure 11.

The resistors R1 and R2 are R1 = R2 = 22 k:. The integration constant Ti can be

computed from relationship Ti = 1/
√
R/(R2

i ∗ C), and for Ri = 22 k: we have Ti = 1.4374.

The transfer function of the realized analogue fractional-order Iλ controller is

Gc(s) = 1.4374 s−0.5. (30)

Adjustment of the integration constant Ti of the fractional-order Iλ controller depicted
in Figure 11 was done by resistor Ri . If we change the resistor Ri , the integration constant
changes the value in the required interval.

In Figures 12 and 13 the measured characteristics of realized analogue fractional-order Iλ

controller are presented. In Figure 12 Bode plots a shown, and in Figure 13 is the time response
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Figure 12. Bode plots of the I1/2 controller (measurements).

Figure 13. Time response of the I1/2 controller to unit step input (measurements).

to the square input signal (unit step). We used frequency 100 Hz and amplitude ±10 V. It can
be seen from Figure 12 that the realized analogue of fractional-order Iλ controller provides a
good approximation in the frequency range [102 rad/sec, 5 · 102 rad/sec].

Measurements were done using IWATSU Digital Storagescope DS-8617 100 MHz, Hew-
lett Packard 35670A dynamic signal analyzer, Hewlett Packard 33120A 15 MHz function/
arbitrary waveform generator, power supply Thurlby-Thandar PL320QMD.
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8. Conclusion

In this paper we have demonstrated that the suggested use of continued fraction expansions
is a good general method for obtaining analogue devices (fractances) described by fractional
differential equations or by fractional-order transfer functions. Moreover, this approach can
be used for realization of other types of systems with transcendental transfer functions, which
can be developed in continued fractions. Furthermore, it has been shown that any rational
approximation of the transfer function can be used for designing the corresponding analogue
circuit, even if some of the coefficients of the resulting continued fraction are negative.

We have also introduced two types of nested multiple-loop systems, which can be easily
used for modelling, simulation, and realization of fractional-order systems and controllers,
and more generally for modelling, simulation and realization of systems, for which a rational
approximation of the transfer function can be obtained.

The exposition has been illustrated with several examples, including analogue realization
of an Iλ controller, for which experimental results were presented.
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