
FMINSDP – a code for solving optimization problems with

matrix inequality constraints
https://se.mathworks.com/matlabcentral/fileexchange/43643-fminsdp

Carl-Johan Thore

September 1, 2016

This document is a theoretical and practical introduction to the Matlab-code fminsdp, designed
to find local solutions to non-linear, non-convex optimization problems (NLPs) with both scalar
constraints and (small-size) matrix inequality constraints.

Notation. A matrix A ∈ Rm×m is said to be positive semi-definite if yTAy ≥ 0 for all y ∈ Rm.
It is convenient to introduce the notation ”A � 0” to indicate that A is positive semi-definite.
A matrix inequality is here defined as an expression of the form

A(x) � 0, (1)

where A is a map from Ω ⊂ Rn to the space Sm of symmetric, real-valued matrices of size m×m.

1 The optimization problem

fminsdp attempts to find a local solution to non-linear, non-convex optimization problems of the
form

minimize
x∈Rn

f(x)

subject to



Aeqx = beq linear equality constraints

Ax ≤ b linear inequality constraints

ceq(x) = 0 nonlinear equality constraints

c(x) ≤ 0 nonlinear inequality constraints

l ≤ x ≤ u box constraints

Ai(x) � 0, i = 1, ..., q matrix inequality constraints,

(2)

where Aeq, A, beq, b, l and u are constant matrices and vectors, respectively. The functions
f , c, ceq and Ai : Ωi → Smi , i = 1, ..., q, can be non-linear and are (preferably) at least
twice continuously differentiable. Users familiar with fmincon from the Optimization Toolbox
in Matlab [10] should recognize the form of problem (2) — the novelty here is the addition of q
matrix inequality constraints.

fminsdp offers three different methods to treat problem (2): the ”cholesky-method”, the ”ldl-
method” [2] and ”penlab” [5]. The first two methods works by reformulating the problem into
a standard NLP which can be solved by any of the NLP-solvers interfaced by fminsdp. The
third method relies on the external solver PENLAB1, which treats the problem directly using an
augmented Lagrangian-type algorithm [5].

1Downloadable from http://web.mat.bham.ac.uk/kocvara/penlab/.

https://se.mathworks.com/matlabcentral/fileexchange/43643-fminsdp
http://web.mat.bham.ac.uk/kocvara/penlab/


Carl-Johan Thore fminsdp - Optimization with matrix inequality constraints

2 Theoretical background

2.1 The cholesky-method

In the cholesky-method, fminsdp reformulates the matrix inequality constraints into scalar equal-
ity constraints using the fact that a matrix is positive semi-definite if and only if it admits a
Cholesky decomposition. In other words,

Theorem 1. A symmetric matrix A � 0 if and only if

A = LLT

for some lower triangular matrix L.

By default in fminsdp, L is restricted to the space of lower triangular m×m-matrices with non-
negative diagonal elements, referred to as Lm. Non-negativity of the diagonal elements is not
required by the theory, but enforcement of this condition is often important for computational
efficiency.

fminsdp makes use of the function svec : Rm×m → Rp, where p denotes the number of non-
zero elements in the Cholesky factor L of a given matrix; i.e., the number of elements in the
sparsity pattern of L, obtained by a symbolic Cholesky factorization of the given matrix. svec
takes, column-wise, the elements of the input matrix corresponding to potential non-zeros of L
and stacks them on top of each other to form a vector of length p. If the lower triangular part of
L ∈ Lm is full we have p = m(m+ 1)/2 and

svec(A) = (A11, A21, . . . , Am1, A22, . . . , Am2, . . . , Amm)T;

i.e., the vector svec(A) contains the elements of the lower triangular part of A.
Now, based on Theorem 1, problem (2) is reformulated into the following problem:

minimize
x∈Rn, `1∈Rp1 , ..., `q∈Rpq

f(x)

subject to



Aeqx = beq

Ax ≤ b
ceq(x) = 0

c(x) ≤ 0

l ≤ x ≤ u
l̃ ≤ (`1, . . . , `q) ≤ ũ
svec

(
Ai(x)−Li(`i)Li(`i)

T
)

= 0, i = 1, ..., q

diag{Li(`i)} ≥ 0, i = 1, ..., q,

(3)

where the variables `i defining the non-zero elements of the Cholesky factors are referred to as
auxiliary variables, l̃ are ũ are constant vectors, and diag returns a vector containing the diagonal
elements of a matrix. This problem is in a form amenable to direct treatment by an NLP-solver,
and this is the problem to which fminsdp attempts to find a local solution.

Note. Any local minimum of problem (3) is also a local minimum for (2), and vice versa
(assuming that bounds on the auxiliary variables do not prevent this). However, problem (3)
may have additional stationary points not present in (2). The author has not experienced any
difficulties obviously attributed to this fact, but it cannot be ruled out that it might cause trouble
on some problems.

A key motivation behind fminsdp is to abstract away the exact treatment of the matrix
inequality constraints so that the user only ”sees” a problem of the form (2); that is, the user
should not have to deal with the Cholesky factors and the auxiliary variables. Thus, when using
fminsdp one only works with the primary variables x, and user-supplied derivatives are only
with respect to x. The examples in Section 7 and the folder examples shows how this is done in
practice.

2



Carl-Johan Thore fminsdp - Optimization with matrix inequality constraints

2.2 The ldl-method

In the ldl-method [12, 2], fminsdp reformulates the matrix inequality constraints into scalar
inequality constraints using the fact that a matrix is positive semi-definite if and only if the
diagonal elements in an LDL-factorization of the matrix is non-negative. In other words,

Theorem 2. A symmetric m×m-matrix A � 0 if and only if

di(A) ≥ 0, i = 1, . . . ,m, (4)

where di(A) are the diagonal elements in an LDL-factorization of A.

The original problem (2) is now replaced by

minimize
x∈Rn

f(x)

subject to



Aeqx = beq

Ax ≤ b
ceq(x) = 0

c(x) ≤ 0

l ≤ x ≤ u
dij(Ai(x)) ≥ 0, j = 1, . . . ,mi, i = 1, . . . , q,

(5)

The functions dij : Sm → R are smooth, and concave, on the set of positive definite matrices
[12], so provided Ai(x) are always positive definite, (5) is a smooth NLP. In practise, even if
Ai(x) are all positive definite at the initial point (see section 3), this property can not be ensured
throughout the optimization process without taking special measures. When using fmincon the
line search step-length can be reduced until, due to continuity, Ai(x) is positive definite. When
using the NLP-solver gcmma the subproblems are made more conservative to reach the same
effect.

Compared to the cholesky-method, the ldl-method introduces no additional variables, but
requires, e.g., shortening of the search step in line-search procedures, and derivatives of the
matrix constraints can be more expensive to compute.

When using NLP-solver gcmma the computational cost can sometimes be reduced significantly
by using an active-set approach [2] where the gcmma subproblem only takes into accounts those
constraints which satisfies

dij(Ai(x)) ≤ η,

where η is a positive constant. This approach can be efficient for problems with low-rank solu-
tions, and is activated by setting the option eta (see Section 6.1) to some suitable value.

2.3 Penlab

The reader is referred to [5] and references therein for a description of the algorithm implemented
in PENLAB.

3 Infeasible initial points

It is recommended that the user supplies an initial point which is feasible with respect to the
constraints of problem (2), in particular the matrix inequality constraints. If the latter is not
possible, an option can be set (see section 6.1) so that fminsdp attempts to solve the following

3



Carl-Johan Thore fminsdp - Optimization with matrix inequality constraints

problem in place of (2):

minimize
x∈Rn, s∈R

f(x) + cs

subject to



Aeqx = beq

Ax ≤ b
ceq(x) = 0

c(x) ≤ 0

l ≤ x ≤ u
Ai(x) + sImi � 0, i = 1, ..., q

s ≤ s ≤ s.

(6)

Here s is an auxiliary variable, Imi , i = 1, ..., q, are identity matrices of size mi ×mi, and s and
s are constants. The constant c appearing in the objective should be set to some large positive
number (finding a suitable value might require experimenting a bit) such that s becomes close
to zero at a solution.

Unless the user specifies something else, given x0 fminsdp will generate an initial value for
the auxiliary variable according to

s0 = max
i=1,...,q

(
−min {λ1(Ai(x0)),−10−12}

)
,

where λ1(·) returns the smallest eigenvalue of a matrix. This guarantees that Ai(x0)+s0I
mi � 0

for all i.

Note. The ldl-method requires a feasible initial point, so if you’re unable to supply such a point
you must set c > 0. The cholesky- and penlab-methods do not require a feasible initial point.

4 Problem size and some limitations

Assuming the constraint matrices are of small size or very sparse, fminsdp might be able to
solve large-scale problems within reasonable time. The ldl-method might also work for problems
involving large constraint matrices. For the cholesky-method, one can expect a fairly large
number of auxiliary variables and thus many non-zero elements in the constraint Jacobian (and
Hessian of the Lagrangian), resulting in much memory and CPU time being devoted to solution
of linear systems by the NLP solver used to solve (3). Penlab, finally, relies on exact second-
derivative information which can make problems costly to solve.

Here are some additional things to note:

1. NLP-solvers ipopt, knitro, snopt, penlab, mma and gcmma must be downloaded and in-
stalled separately.

2. Penlab requires a user-supplied function for evaluating the Hessian of the Lagrangian.

3. The ldl-method can currently not make use of a user-supplied Hessian of the Lagrangian
and has only been tested with NLP-solvers fmincon and gcmma.

4. Although it is possible to improve performance by implementing parts of the code as MEX-
functions, fminsdp is a pure Matlab-code. The reason is to make installation, set up and
maintenance as easy as possible. The interested user could try out the Matlab-function
profile to identify bottlenecks in the code and implement them as MEX-functions instead.

5 Alternatives

There are many important special cases of problem (2) for which specialized solvers are available.
Although this is possible, fminsdp is not intended to replace such solvers, which, when applicable,
can be a lot faster.

4



Carl-Johan Thore fminsdp - Optimization with matrix inequality constraints

The following is an incomplete list of currently available solvers:

• Problems with linear matrix inequality (LMI) constraints:
SeDuMi, SDPT3, SDPA, LMI Lab, PENSDP, BMISolver, PENBMI, PENNON

• Problems with bilinear matrix inequality (BMI) constraints:.
BMISolver, PENBMI, PENNON, PENLAB

• General problems of type (2):
PENNON, PENLAB

Note that except for PENNON, and its open-source version PENLAB, there are additional con-
straints on the structure of the problems treated by the listed solvers.

The Matlab code YALMIP [8] provides a convenient unified interface to the solvers listed
above (except BMISolver).

One could of think of other criteria, not without drawbacks of course, for positive semi-
definiteness beside the ones used here that might be used to obtain a standard NLP formulation
of (2). Non-negativity of the smallest eigenvalue or of the leading principle minors of a matrix
are both necessary and sufficient criteria. If one is satisfied with sufficiency, diagonal dominance
could also be considered.

6 Using fminsdp

A user of fminsdp is expected to provide two functions; one for evaluating the objective function
(i) and one for evaluating the non-linear constraints (ii):

i. [fval,grad ] = objfun(x)

ii. [cineq,ceq,cineqgrad,ceqgrad ] = nonlcon(x)

(Here and in the following it is assumed that the reader is familiar with the Matlab syntax.) The
return arguments written in italics are optional and only needed if the user wishes to provide
gradients for the objective and constraints. The matrix inequality constraints are defined in the
non-linear constraints function (even linear matrix inequalities). The values of the constraint
matrices, vectorized using svec, are returned as the last elements in the output vector ceq; see
Section 7 for an example.

In addition to objective and non-linear constraints functions, the user may optionally provide
a function for evaluating the Hessian of the Lagrangian:

• H = hessian(x,lambda),

where lambda is a struct with two fields ineqnonlin and eqnonlin containing values of the La-
grange multipliers associated with the non-linear inequality and equality constraints, respectively,
and one field sigma which only used when running with NLP-solver Ipopt.

The calling syntax of fminsdp is similar to that of fmincon:

>> [x,fval,exitflag,output,lambda,grad,hessian] = ...

fminsdp(objfun,x0,A,b,Aeq,beq,lb,ub,nonlcon,options)

Unlike fmincon, at least 9 input arguments are required. If your problem has no linear con-
straints and no simple bounds, the corresponding input arguments can be set to empty matrices.
Note that fminsdp does not support passing additional arguments to the objective or constraint
functions through an 11-th input argument. To pass additional arguments to the user-supplied
functions one should use anonymous or nested functions.

5



Carl-Johan Thore fminsdp - Optimization with matrix inequality constraints

6.1 Options

A number of options are available when calling fminsdp. These are passed to the code in the
form of a struct containing parameter-value pairs. The most convenient way to specify options
is to use the function sdpoptionset:

>> options = sdpoptionset(’MatrixInequalities’,true);

In addition to the options accepted by the function optimset from the Matlab Optimization
Toolbox, the following options are available when calling fminsdp:

MatrixInequalities logical scalar
Indicates whether or not the problem has any matrix inequality constraints. If not, fminsdp will
simply call the NLP solver specified using options.NLPsolver.
Default: true

Aind scalar or numeric array
Marks the beginning of each matrix constraint in the vector ceq returned from the non-linear
constraints function. If the option sp pattern, described below, is used it is only necessary to
mark the beginning of the first matrix constraint.
Default: 1

method {’cholesky’, ’ldl’, ’penlab’}
Select treatment of matrix inequality constraints.
Default: ’cholesky’

NLPsolver {’fmincon’, ’ipopt’, ’snopt’, ’knitro’, ’mma’, ’gcmma’}
Select NLP-solver (not applicable if method=’penlab’). Interfaces are provided to fmincon, Ipopt
[13], SNOPT [6], KNITRO [3], MMA/GCMMA [9], and PENLAB. NOTE: If you run Ipopt older
than 3.11.0, make sure to modify the file ipopt main.m appropriately.
Default: ’fmincon’

max cpu time positive scalar
Maximum CPU time. Applicable to NLP-solvers fmincon, ipopt, mma and gcmma.
Default: inf

sp pattern (sparse) matrix or cell array of matrices
Sparsity patterns of the matrix constraints. If this option is used, the user must provide one
matrix for each matrix constraint.
Default: []

L0 (sparse) matrix or cell array of matrices
Initial guess for the Cholesky factors of the matrix constraints. If the user does not provide an
initial guess, fminsdp will generate one by attempting a Cholesky factorization of the constraint
matrices at the initial point. If this fails, fminsdp will add a multiple of the identity matrix to
the constraint matrices until all of them are positive definite and use the Cholesky factorizations
of these matrices as an initial guess.
Default: []

Ldiag low scalar or numeric array
Lower bound(s) on the diagonal elements of the Cholesky factors.
Default: 0

L low scalar or array of doubles
Lower bound(s) on the off-diagonal element of the Cholesky factors
Default: -inf

L upp scalar or array of doubles
Upper bound(s) on the elements of the Cholesky factors (including the diagonal elements).
Default: inf

6



Carl-Johan Thore fminsdp - Optimization with matrix inequality constraints

eta positive scalar
Tolerance for determining the active set when using the ldl-method with NLP-solver gcmma.
Default: inf

c non-negative scalar
If c > 0, fminsdp attempts to solve problem (6) instead of (2). The user may in this case also
let the objective function be empty; i.e., the first input argument to fminsdp can be set to ’[]’.
This is useful when one wants to check feasibility of one or more matrix inequalities.
Default: 0

s low scalar
Lower bound on the auxiliary variable s in problem (6).
Default: 0

s upp scalar
Upper bound on the auxiliary variable s in problem (6).
Default: inf

HessianCheck {’on’, ’off’}
Simple check of Hessian of the Lagrangian against finite differences at the initial point. Assumes
you have the code DERIVEST, which must be obtained separately, on your Matlab path. This
check can be very time consuming and should preferably be carried out on small instances of a
problem.
Default: ’off’

HessMult {function handle, ’on’}
If using fmincon with options.SubProblemAlgorithm = ’cg’, you can work with Hessian times
vector products directly, thereby avoiding the formation of the full Hessian of the Lagrangian.
Set to a function handle or simply to ’on’ if the Hessian of the Lagrangian with respect to the
primary variables is zero. Only applicable when using the cholesky-method.
Default: []

ipopt struct
Options to be passed on to NLP solver Ipopt. Please refer to the Ipopt documentation for a list
of available options.
Default: []

eigs opts struct
Options passed to the Matlab function eigs used for eigenvalue computations.
Default: struct(’isreal’,true,’issym’,true)

KnitroOptionsFile character array
Name of an options file to be read by NLP solver KNITRO. Please refer to the KNITRO docu-
mentation for a list of available options.
Default: []

SnoptOptionsFile character array
Name of an options file to be read by NLP solver SNOPT. Please refer to the SNOPT documen-
tation for a list of available options.
Default: []

GradPattern numeric array
Sparsity pattern for the gradient of the objective function. Only used by NLP solver SNOPT and
only effective if you also set options.JacobPattern (see the fmincon documentation for details
on the latter).
Default: []

7



Carl-Johan Thore fminsdp - Optimization with matrix inequality constraints

6.2 Output

The available output arguments from fminsdp are the same as those of fmincon:

>> [x,fval,exitflag,output,lambda,grad,hessian] = fminsdp(...)

The only difference is that the struct output, the fourth output argument, contains some addi-
tional fields (some are only available when running the cholesky-method):

A cell array of matrices
Constraint matrices evaluated at the solution x.

L cell array of matrices
Cholesky factors of the constraint matrices evaluated at the solution x. These are computed
by assembling each Li from the variable vector `i and not by a Cholesky factorization of the
corresponding constraint matrix.

L0 cell array of matrices
Cholesky factors of the constraint matrices evaluated at the initial point x0.

nxvars numeric scalar
Number of primary variables.

nLvars numeric scalar
Number of auxiliary variables.

A size numeric array
Size of the constraint matrices; i.e., mi in (3).

nMatrixConstraints numeric scalar
Number of matrix constraints.

NLPsolver string
Selected NLP solver.

It the user has set options.c to some positive number in order to solve problem (6), then
two additional fields are available:

s0 double scalar
Initial value for the auxiliary variable s.

s double scalar
Value of s at the solution.

7 A tutorial example

To aid the user, a very simple tutorial example is provided here. For more details, please refer
to the examples found in the examples-folder.

Consider the following (non-sense) problem:

minimize
x∈R

x2

subject to


x3 = 0

x2 ≤ 0(
x x2

x2 0

)
� 0

(7)

To solve this problem using fminsdp we need to implement at least two functions:

1. The objective function:

8



Carl-Johan Thore fminsdp - Optimization with matrix inequality constraints

function [fval,grad] = objfun(x)

fval = x^2;

if nargout>1

grad = 2*x;

end

2. The non-linear constraints function:

function [cineq,ceq,cineqgrad,ceqgrad] = nonlcon(x)

cineq = x^2;

ceq = [x^3; svec([x x^2; x^2 0]))];

if nargout>2

cineqgrad = 2*x;

ceqgrad = [3*x^2 svec([1 2*x; 2*x 0])’];

end

A function for evaluating the Hessian of the Lagrangian is optional, but recommended. One such
function is given here:

function H = hessian(x, lambda)

H = lambda.ineqnonlin*2 + lambda.eqnonlin(1)*6*x + ...

lambda.eqnonlin(2:end,1)’*svec([0 2; 2 0]));

Using the functions specified above, a simple script to solve problem (7) can now be written:

% Mark the beginning of the matrix inequality constraints in the vector ceq

% returned from nonlcon

options.Aind = 2;

% Specify that analytical gradients should be used

options.GradObj = ’on’;

options.GradConstr = ’on’;

% Specify that the function "hessian" should be used for the

% Hessian of the Lagrangian

options.Hessian = ’user-supplied’

options.HessFcn = @(x,lambda) hessian(x,lambda);

% Specify initial point

x0 = 1;

% Call fminsdp

[x,fval] = fminsdp(objfun,x0,[],[],[],[],[],[],nonlcon,options);

8 Practicalities

For a given problem there are usually a number of things that can be done to improve numerical
performance. One can, for instance, try out various scalings or introduce new variables and
constraints to reduce the degree of non-linearity. Here are some additional tips:

Exploit sparsity

9



Carl-Johan Thore fminsdp - Optimization with matrix inequality constraints

In many cases, the functions Ai, i = 1, ..., q, are sparse in the sense that the matrix Ai(x) is
sparse for every x. This fact can be exploited to reduce the number of auxiliary variables and
nonlinear constraints for the cholesky-method.

To take advantage of sparsity, the user should compute the sparsity pattern of each matrix
constraint (or an (pessimistic) estimate thereof) and supply this to fminsdp via the option
sp pattern. For the dummy problem in Section 7 we simply add two lines to the driver script:

sp_A = [1 1; 1 0] % Sparsity pattern of the constraint matrix

options.sp_pattern = sp_A;

...

[x,fval] = fminsdp(@(x) objfun(x),x0,[],[],[],...

[],[],[],@(x) nonlcon(x),options);

Add artificial upper and lower bounds

Even though some of the variables in your problem has no ”natural” bounds on them, it is
usually wise to add upper and lower bounds. These bounds should of course be loose enough to
not exclude any solution of interest, but even if they don’t, setting them too tight might have a
negative impact on the solution process. Therefore, a bit of experimenting is recommended.

Bounds on the auxiliary variables in the cholesky-method can be specified by setting options.L low

and options.L upp. Sometimes it is easy to derive suitable bounds a priori [11].

Experiment with various solvers and algorithms

fminsdp can use fmincon, SNOPT, KNITRO, Ipopt, mma, gcmma and PENLAB to solve prob-
lems (3). In addition, fmincon and KNITRO lets the user choose between three different al-
gorithms (two interior-point and one sqp). It is unlikely that a single solver and/or algorithm
is best suited for all types of problems so it is recommended that the user experiment with
various alternatives. The author’s experience is that the interior-point method of fmincon (se-
lected by setting options.Algorithm=’interior-point’ and options.SubProblemAlgorithm

= ’ldl-factorization’) works well in terms of the number of function evaluations, but that
more efficient handling of the linear algebra makes the other solvers better suited for larger
problems.

Provide gradients and Hessian of the Lagrangian

Providing code that computes gradients and the Hessian of the Lagrangian is usually a good idea
(if you use Ipopt you must provide code for evaluating gradients; SNOPT does not make use
of code for evaluating the Hessian of the Lagrangian). Due to the homogeneity of svec one has
simply

∂svec(A)

∂xi
= svec

(
∂A
∂xi

)
,

and for a function L(x) = λTsvec(A(x)),

∂2L

∂xi∂xj
= λT svec

(
∂2A
∂xi∂xj

)
.

The user is strongly recommended to check the correctness of the derivatives by comparing
against finite-difference approximations. This can be done by setting options.DerivativeCheck=’on’

and options.HessianCheck=’on’. If necessary, the accuracy of the finite-difference approxima-
tions in fmincon can be increased by setting options.FinDiffType=’central’.

10



Carl-Johan Thore fminsdp - Optimization with matrix inequality constraints

If you use NLP solvers SNOPT, Ipopt or KNITRO, you can also provide sparsity pat-
terns for the constraint Jacobian, and Ipopt and KNITRO can also exploit a sparsity pat-
tern for the Hessian of the Lagrangian. Sparsity patterns are passed to the solvers by setting
options.JacobPattern and options.HessPattern to sparse matrices.

As an alternative to deriving and implementing derivatives one might consider using automatic
differentiation, which provides derivatives with accuracy to machine precision, and, at least in
principle, does so completely automatically.

9 Examples

This section comprise a brief description of three problems concerned with structural optimization
of (plane) trusses. Implementations of the example problem can be found in the folder examples.2

Let nd = 2 be the number of spatial dimensions, N the number of nodes in the truss, and
nfixed the number of prescribed (to zero) displacement components. The number of displacement
degrees of freedom is n = ndN − nfixed and there are m potential bars in the truss. The m
bar volumes are collected in a vector x ≥ 0 which is used to parametrize the design of the
truss. Assuming (infinitesimally) small deformations and a quasi-static situation, the nodal
displacement vector u ∈ Rn satisfies the equilibrium equation

K(x)u = f , (8)

where K(x) is known as the stiffness matrix and f ∈ Rn contains forces applied to the nodes.
The stiffness matrix is given by

K(x) =

m∑
i=1

xiEibib
T
i ,

where xi is the volume of the i:th bar, Ei the Young’s modulus, and the vectors bi depend on
the geometry of the undeformed truss. Clearly, K(x) is positive semi-definite and symmetric.
Assuming rigid body motions are prevented, by appropriate support conditions, and x > 0, it is
even positive definite.

1. The first problem in the examples-folder is to minimize the volume of a truss subject to the
equilibrium condition (8) and an upper bound c on the so-called compliance fTu. This can be
formulated as a problem involving a single LMI:

minimize
x∈Rm

m∑
i=1

xi

subject to


(

c fT

f K(x)

)
� 0

xi ≥ 0, i = 1, . . . ,m.

(9)

2. A drawback of problem (9) is that optimized structures may be unstable in the sense that
they are prone to global buckling. One way to avoid many such designs is to impose an additional
constraint [7] requiring that

K(x) +G(u(x),x) � 0, (10)

where the geometrix stiffness matrix

G(u(x),x) =

m∑
i=1

xiEib
T
i u(x)γiγ

T
i ,

2Note that there are often many different ways to formulate such problems [4, 1], and formulations other than
those given here may certainly be better suited to one’s needs. Here, however, we are specifically interested in
solving problems with matrix inequality constraints.

11



Carl-Johan Thore fminsdp - Optimization with matrix inequality constraints

in which u(x) denotes a solution to (8) and γi depend on the geometry of the undeformed truss.
Adding (10) to (9) leads to the following problem involving both a linear and a non-linear

matrix inequality3:

minimize
x∈Rm

m∑
i=1

xi

subject to


(

c fT

f K(x)

)
� 0

K(x) +G(u(x),x) � 0

xi ≥ ε, i = 1, . . . ,m,

(11)

where ε is a small positive number introduced to avoid singularity of the stiffness matrix. Kočvara
[7] showed that a solution to this problem corresponds to a truss that will not exhibit global,
linear buckling for loads of the form τf , τ ∈ [0, 1).

3. The third example problem is an alternative formulation of problem (11) obtained by treating
the displacements as explicit variables in the optimization problem:

minimize
x∈Rm,u∈Rn

m∑
i=1

xi

subject to


fTu ≤ c
K(x)u = f

K(x) +G(u,x) � 0

xi ≥ ε, i = 1, . . . ,m.

In this formulation, the upper bound on the compliance is a linear constraint, the equilibrium
equation a set of bilinear equality constraints, and the stability constraint is a BMI.

To see how these problems can be solved with fminsdp, and what optimized designs might look
like, please check out the Matlab codes found in the examples-folder.

3In practice it is perhaps better to replace the LMI in (11) by the non-linear constraint fTu(x) ≤ c but we
keep it to illustrate solution of a problem with more than one matrix inequality.

12



Carl-Johan Thore fminsdp - Optimization with matrix inequality constraints

References

[1] Bendsøe M, Ben-Tal A, Zowe J (1994) Optimization methods for truss geometry and topol-
ogy design. Structural Optimization 7:141–159

[2] Bogani C, Kocvara M, Stingl M (2009) A new approach to the solution of the VTS prob-
lem with vibration and buckling constraints. In: 8th World Congress on Structural and
Multidisciplinary Optimization

[3] Byrd R, Nocedal J, Waltz R (2006) KNITRO: An integrated package for nonlinear opti-
mization. In: Large-Scale Nonlinear Optimization, Springer, pp 35–59

[4] Christensen P, Klarbring A (2009) An Introduction to Structural Optimization. Springer

[5] Fiala J, Kocvara M, Stingl M (2013) Penlab - a solver for nonlinear semidefinite program-
ming. arXiv:13115240 URL https://arxiv.org/abs/1311.5240

[6] Gill P, Murray W, Saunders M (2002) SNOPT: an SQP algorithm for large-scale constrained
optimization. SIAM Journal on Optimization 12:979–1006

[7] Kočvara M (2002) On the modeling and solving of the truss design problem with global
stability constraints. Structural and Multidisciplinary Optimization 23:189–203

[8] Löfberg J (2004) YALMIP : A toolbox for modeling and optimization in MATLAB. In:
Proceedings of the CACSD Conference, Taipei, Taiwan, URL http://users.isy.liu.se/

johanl/yalmip

[9] Svanberg K (2007) MMA and GCMMA, versions September 2007. URL http://www.math.

kth.se/\char‘~krille/gcmma07.pdf

[10] The MathWorks Inc (2011) Optimization Toolbox - User’s Guide. Natick, MA, 2000

[11] Thore CJ, Holmberg E, Klarbring A (2015) Large-scale robust topology optimization under
load-uncertainty. In: 11th World Congress on Structural and Multidisciplinary Optimisation

[12] Vanderbei R, Benson H (2000) On formulating semidefinite programming problems as
smooth convex nonlinear optimization problems. Tech. rep., Center for Discrete Mathe-
matics &#38; Theoretical Computer Science

[13] Wächter A, Biegler L (2006) On the implementation of a primal-dual interior point filter
line search algorithm for large-scale nonlinear programming. Mathematical programming
106:25–57

13

https://arxiv.org/abs/1311.5240
http://users.isy.liu.se/johanl/yalmip
http://users.isy.liu.se/johanl/yalmip
http://www.math.kth.se/\char `~ krille/gcmma07.pdf
http://www.math.kth.se/\char `~ krille/gcmma07.pdf

	The optimization problem
	Theoretical background
	The cholesky-method
	The ldl-method
	Penlab

	Infeasible initial points
	Problem size and some limitations
	Alternatives
	Using fminsdp
	Options
	Output

	A tutorial example
	Practicalities
	Examples

