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Regularized Nonlinear Moving Horizon Observer -
Theory and application to automotive friction
estimation

Sui Dan and Tor A. Johansen

Department of Engineering Cybernetics, Norwegian Uniteis Science
and Technology, Trondheim, Norway.

Abstract: A constrained moving horizon observer is described andyaedlifor nonlinear discrete-time
systems. The algorithm is proved to converge exponentiaityer a detectability assumption and the
data being persistently exciting. However, in many prattestimation problems, such as combined
state and parameter estimation, the data may not be petbisteciting. The algorithm therefore has
regularization mechanisms to ensure robustness and grdegiradation of performance in time periods
when the data are not exciting. This includes the use of aig#imates in the moving horizon cost
function, and the use of thresholded singular value decaitipo to avoid ill-conditioned or ill-posed
inversion of the associated nonlinear algebraic equattmatsdefine the moving horizon state estimate.
The latter regularization relies on monitoring of the rarfilan estimate of a Hessian-like matrix and
conditions for exponential convergence are given. The ateth in particular useful with augmented
state space models corresponding to mixed state and pa&ra@séimation problems, or dynamics that
are not asymptotically stable, as illustrated with simolaexamples. The main example considers wheel
slip estimation for automotive applications using nordirig overparameterized tyre friction models
where persistence of excitation does not hold.

1. INTRODUCTION robustness. It should also be mentioned that other vanstio
of the Kalman filter, such as particle filters and the unsakénte
The state estimation problem of nonlinear discrete-time syKalman filter, also show great promise for nonlinear state es
tems is investigated. A least-squares optimal state etitima timation Rawlings and Bakshi (2006), Kandepu et al. (2008),
problem can be formulated by minimizing a properly weighte®@lviken et al. (2001).

least-squares criterion defined on the full data historyzoar, direct approach to the deterministic discrete-time reedir
subject to the nonlinear model equations, Moraal and Grizz) ;e problem is to view the problem as one of inverting a

(1995b), Rao et al. (2003). This is, however, impractical ag.q ence of nonlinear algebraic equations defined from the
infinite memory and processing will be needed as the amount hte update and measurement equations, and some moving

daéa grqwslunbpunded_ with tim%. Alternativeély,; welll knOW.rliime horizon. In principle, this approach avoids the use of a
sub-optimal estimator is given by an Extended Kalman Filz 4 iance matrix estimate, or any other historical infation

ter (EKF) which approximates this |east-squares problech a'Eyeyond the data window and a priori state estimate, and leads

defines a finite memory recursive algorithm suited for real; conceptually simple problem formulation and tuning pa-

time implementation, where only the last measurement il USe, meters. Such discrete-time observers are formulatetiain t
to updgte the state est.imate, basgd on the past history belig ey of numerical nonlinear optimization and analyzéithw
approximately summarized by estimates of the state and t pect to stability in Moraal and Grizzle (1995b), Alestian
error covariance matrix, Gelb (2002). Unfortunately, theFE ;5 (2008). Some earlier contributions based on'similaasi;

is based on various stochastic assumptions on noise and djss given in Glad (1983), Zimmer (1994), while Biyik and
turbances that are rarely met in practice, and in combinatio.a (2006) provides results on how to use a continuous time

with nonlinearities and model uncertainty, this may leadte .\ 4l in the discrete time desian. As pointed out in Grossman

gcceptable pctlarformdance o;‘]f[he EKFhA poszibl_e be:]ter ude0ft1999) the dead beat type of %Iesignpphilosophy (Moraal and
ynamic model and past history when updating the state est- P ;

mate is made by a Moving Horizon State Estimator (MHE) th;&fnzzle (1995b)) does not explicitly take into account rstbu

K f afini ; ind f both ess to noise, and some modifications are required as pipose
makes use of a finite memory moving window of both currenf, g ossman (1999). It should be mentioned that common to

and histo.rical measurement data .in the Ieast-squa.resim:.mixe all methods is the use of numerical methods subject to the
possibly in addition to a state estimate and covarianceixnatr

estimate to set the initial conditions at the beginning efdata underlying assumption that local minima and multiple sofs
window, see Rao et al. (2003), Moraal and Grizzle (1995bST,]ay restrict convergence properties to be only local
Alessandri et al. (1999), Alessandri et al. (2008) for diffg  Uniform observability (in some form, see also Raff et al.
formulation relying on somewhat different assumptionsctsu (2005), Alamir (1999)) is assumed for stability or converge

an MHE can also be considered a sub-optimal approximatigroofs in the above mentioned references, including the, EKF
to an estimator that uses the full history of past data, anteso Reif et al. (1998), Reif and Unbehauen (1999). Uniform obser
empirical studies, Haseltine and Rawlings (2005) showttiat ability means that the system and data are such that thegonobl
MHE can perform better than the EKF in terms of accuracy anef inverting the nonlinear algebraic equations is wellgub#
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the sense of Tikhonov and Arsenin (1977), i.e. that the stagssumptions are violated, which is followed by two numérica
estimate solution exists, is unique and depends contityiougxamples presented in Section 4. Final discussion andoncl
on the measurement data. In the context of optimization th&ons are given in Section 5.

is commonly referred to as stability of the solution, that ba The following notation and nomenclature is used. For a wecto
guaranteed under certain regularity and rank conditiciascl n 9 - ) ’

(1983). This robustness is essential in any practical eagitin X € R", let||x|| = vx"x denote the Euclidean norm. Recall that
since otherwise the estimates will be impossible to computi€ induced matrix norrfjM|| equals ;[nhe largest singular value
and will be divergent or highly sensitive to imperfectionsls 0f M. For two vectoraﬁ ﬁn andy € R™ we let colx,y) denote

as numerical round-off errors, quantization and measuneméhe column vector irR™™ wherex andy are stacked into a
noise. However, uniform observability is a restrictiveuasg-  Single column. The Moore-Penrose pseudo-inverse Golub and
tion that is likely not to hold in certain interesting and ioxfant ~ van Loan (1983) of a matrid is denoted ++and we rec_alll tr%at
state estimation applications. This is in particular troedom- ~ for @ matrixM of full rank it is given byM :T('V' M)~*M

bined state and parameter estimation problems where ttee st‘é(h'l‘?r in general it is defined aM* =VS'U" whereM =
space model is augmented with the unknown parameters, G&SY' IS a singular value decomposition whe3gs a diago-
(2002), and convergence of the parameter estimates widreiep Nal matrix with the singular valuess, ..., g, on the diagonal,

on the information contents in the data, typically formathas andS" is the diagonal matri$ = diag(1/0, ..., 1/01,0, ..,0)

a condition for persistently exciting (PE) input data appea V\{herer <nof the_SlnguIar val.ues are non-zero. The compo-
in adaptive control and estimation, e.g. Krstic et al. (9@ Sition of two functionsf andg is written f o g(x) = f(g(x)).
boundedness of the EKF covariance matrix estimate, Reif et &inally, a functionp : R* — Ris called &K-function if ¢ (0) =0
(1998), Reif and Unbehauen (1999). In many practical applic@nd it is strictly increasing.

tions the data will be sufficiently exciting for significardgnods

of time, but may in some time intervals contain insufficiexi e 2. NONLINEAR MHE PROBLEM FORMULATION

citation and information. It should also be noted that widme . . . . .

exceptions (e.g. Panteley et al. (2001), Sedoglavic (206&)h Consider the following discrete-time nonlinear system:

uniform observability and PE conditions are difficult to ifyer X1 = (X, ) (1a)

a priori. ¥t = h(x, u), (1b)

In this paper we consider strongly detectable systems Mora#herex € X € R, u € UC R™ andy; € R are respectively
and Grizzle (1995a), and the objective and novel contritouti t_he state, input and measurement vectors,tasdhe discrete

of the present work is to provide and study an MHE methoime index. The setX andU are assumed to be convex and
based on Alessandri et al. (2008) and others with altermatigompact. TheN + 1 consecutive measurements of outputs and
weighting and regularization to achieve satisfactory ficat  INPUts until timet are denoted &% = col(yt—n, Yt-N+1, -+, %t)
performance also when the condition of uniform observabili @1dUt = COl(L_n, U—N+1, -+, k). To expresy; as a function

is violated due to temporarily lack of persistence of excita®f X—n andUt, denotef™ (x) = f(x, ) andh' (%) = h(x, W),

tion, or the system not being observable. The relaxation f&d note from (1b) that the following algebraic map can be
detectability was envisioned in Alessandri et al. (2008), aformulated, Moraal and Grizzle (1995b):

though no proofs of the convergence were given. Following Y = H(%-n,Ut)

the spirit of Moraal and Grizzle (1995a) we introduce preati = H (%_N)

regularization mechanisms that monitor and estimate tloe-in
mation contents and degree of excitation in the data, arel tak
corresponding action by adaptively weighting the measured
data and a priori estimates from the dynamic model. Although :
the MHE formulation based on Alessandri et al. (2008) does h*o f%1lo...0 fU4N(x_N)

not rely on an explicit uncertainty estimate in terms of & Copefinjtion 1. Moraal and Grizzle (1995b) The system (1) is
variance matrix estimate (unlike formulations that maylapp _opservablaf there exists aK-function ¢ such that for all
an arrival cost estimate, Rao et al. (2003)), the monitoahg X1, X € X there exists a feasibley € UN*L such that

persistent excitation in the moving horizon nonlinear obse ’ 2 5
relies on a related Hessian matrix estimate. This makes the ¢ (I[x2 —x2[?) < [IH(xq,Ut) — H(x2,Up) ||~
approach similar in spirit to well known modifications of theDefinition 2a. The inputU; € UN*1 is said to beN-excitingfor
EKF and Recursive Least Squares estimation methods tlyat réheN-observable system (1) at tirhé& there exists & -function
on monitoring and resetting of the covariance matrix eséma ¢; that for allx;, x, € X satisfies

directional forgetting and using singular value decomimsi w12 _ 2

for numerically robust matrix inversion. Preliminary résiare Pulxa =xel[%) = fH (xa,U) = H O, L) 1%
presented in Sui and Johansen (2010b), and further results @om Proposition 2.4.7 in Abraham et al. (1983), we have
pre-filtering using EKF in combination with the MHE strategy _ _ _

and other examples are given in Poloni et al. (2010). H(xa,U) = H O, Ur) = @1, %) 0 =), ®)

huth (thN)
hUt-N+1 5 fU-N (%-N)
: @)

where

The outline of the paper is as follows: After the introduc- 14

tion, a description of the nonlinear moving horizon estiorat Pr(x1,%2) = /0 ¢ (1= s+, Ur)ds (4)
problem and the relevant assumptions are given in Section % .
together with an analysis of its convergence under StroRg o, jated (see also Moraal and Grizzle (1995b), Alessandr
servability and with informative data. Section 4_extendsdb- et al. (2008), Fiacco (1983) and others for similar resilts)
server to have graceful degradation and practical perfonma

also for the case when the data are not informative and otHggmma 1.If X andU are compact and convex sets, the func-
tions f andh are twice differentiable oK x U and the Jacobian

ke in the linear case, an observability rank condition ban
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matrix %—'j((x,ut) has full rank (equal taw) for all x € X and

someU; € UN*L, then the system iN-observable and the input

U; is N-exciting for the system (1) at tinte

the input data are ndtl-exciting at all times. If the input
is notN-exciting at certain points in time, the state estimation

inversion problem (Moraal and Grizzle (1995b)) will be ill-
posed (the solution does not exist, is not unique, or does not

Proof. Due to the observability rank condition being satisfieddepend continuously on the data) or ill-conditioned (thigjue
@ (-)®¢(-) > 0 and the system of nonlinear algebraic equationgPlution is unaccepably sensitive to perturbations of )

(3) can be inverted as follows:
X1 —X2 = cl:’t-*_ (X17X2) (H (Xla Ut) —H (X27Ut))7

2
%2 —X%2|2 < |[H(x1,U) — H(x,Up) ||,

.t
TEZ(XLXZ)

where 15 (x1,%2) = || D (X1,%2)||. This proves that the condi-

tions in Definitions 1 and 2a hold witkh(s) = s/p? where
P = SUR, w,exx e+t || P (x1,%2)|| is bounded due td and
h are twice differentiable on the compact ¥ek U. O

Define theN-information vector at timé as

lt = col(Yt—N,- -, Yt,Ut-N,-- -, Ut).

and particular consideration is required to achieve a robus
estimator. Such modifications are generally known as regula
ization methods, see Tikhonov and Arsenin (1977). A common
method, Tikhonov and Arsenin (1977), is to augment the cost
function with a penalty on deviation from a priori informarti
and makes the estimated solution degrade gracefully When
notN-exciting.! We utilize an explicit regularization approach
that weights open loop predictions made with the underlying
model (1) similar to Alessandri et al. (2008). This will have
similar filtering effect as reducing the feedback gain ofanst
dard nonlinear observer or detuning the gain of an EKF thinoug
online tuning of the process noise covariance matrix. Furth
regularization will be motivated later, and introducedéction

When a system is ndi-observable, it is not possible to recon-3'

struct exactly all the state components from khénformation

A convergent estimator is pursued by the following consgdj

vector. However, in some cases one may be able to reconstrugighted, and regularized least-squares criterion

exactly at least some components, based oiNtirgormation

vector, and the remaining components can be reconstructed

asymptotically. This corresponds to the notion of detatitab
where we suppose there exists a coordinate transforid —
D C R%, whereD is the convex hull off (X):

d=col(§,z) = T(x) 5)

IRNgs XN, ) = WY — He(R-ny)) ]2
+ [IMe (Rent — X-n) 12 (8a)
S.t. XNt € X, (8b)

with M; andW being time-varying weight matrices. L8¢ =
ming_, J(X—nt, %N, It) subject to (10)-(8b), lex”" ; be the

such that the following dynamics are equivalent to (1) foy anassociated optimal estimate, and the estimation erroffisete

initial condition inX and inputs inU,

¢ =Fi(&,z, W) (6a)
71 =F(z,w) (6b)
Yt =0(z, ). (6¢c)

This transform effectively partitions the staxeinto an ob-
servable state and an unobservable stafe The following
strong detectability definition is taken from Moraal andZ3te
(1995a):

Definition 3. The system (1) istrongly N-detectabld

(1) there exists a coordinate transfofim X — D that brings
the system in the form (6);

(2) the sub-system (6b)-(6c) ié-observable;

as
& N=XN—% Nt 9)
The state estimates on the remainder of the horizon are given
by
)’zi-ﬁ-lAt:f()’zi,taui% IZt_N77t_l (10)
Itis assumed that an a priori estimator is determined as
X-N=f(& N_1t1,U-N-1). (11)
This formulation is a slight extension of Alessandri et 20@8)
with some additional flexibility provided by the time-vang
weighting matrices and M;, which will be exploited in

section 3. The conditioky" W > 0 may not be sufficient for
unigueness of a solution when the input is Ne¢xciting. How-

(3) the sub-system (6a) has uniformly contractive dynamicever, the conditiod M; > 0 is generally sufficient to guaran-

i.e. there exists a constanf < 1 such that for all cdk;,z) €
D, col(&2,2) € D andu € U, the functionF; satisfies

[F1(é1,2u) = F1(&2,zu)|| < La||é1— &f|".
with a suitable nornj| - ||

O

tee that the problem has a unique solutigry ;. This means
that the second term of (8a) can be viewed as a regularization
term and the matridl; containing regularization parameters.

We remark that the formulation does not account for model er-

It is remarked that since there is considerable freedomen t/Or Or disturbances (or process noise) since in (8a) therdima

choice of transfornil' and the norm|| - ||’, the contractivity
assumption in part 3 of the definition is not very restrictiver

linear systems, it is equivalent to the conventional detsatity

definition with|[x||" = vXTPxfor P=PT > 0.

Definition 2b. The inputU; is said to beN-exciting for a

strongly N-detectable system (1) at tinmeif it is N-exciting
for the sub-system (6b)-(6c) at tinhe

The concept oN-exciting inputimposes requirements that may,

be difficult to assess a priori. In section 3 we will study hidw

model is assumed to hold perfectly in the predictions. This ¢
easily be relaxed by introducing additional error variahitebe
optimized, like in Rao et al. (2003).

We first study the convergence of the MHE for the case when
the input is assumed to ¢-informative at all time, since this

will help us understand and handle cases when this does not
hold, too.

1 Alternative regularization methods exist, and one impligigularization
method is to rely on the regularizing effect of an iterativep@ach that
onverges to a solution only asymptotically as+ « (and not converges
to a solution at each individual timig, see e.g. Tautenhahn (1994). Hence,

excitation can be monitOFGQ online, and US.ed .in modification regularizing effect is also achieved with the iterativéa-sptimal variants
to the basic MHE when this requirement is violated becausiescribed in Moraal and Grizzle (1995b); Alessandri et2008).
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The following are assumed throughout this paper: oF
) ’ PP L= max |2 (&.zu)|

(A1) The sefU is compact and convex, and the output sequence deb,ucl

{%} and the input sequende: } are bounded. La— max Hﬂ(x W
(A2) For any co{é1,z) € T(X) and co(§z,2) € T(X), then 8 xexuev ! ax D
col(é1,2) € T(X). oT

(A3) The convex and compact S€tis controlled invarianti.e. kr = r)w(wggx“a(x)n,

f(x,w) € X for all x € X and the controly for allt > 0. .
(A4) The initial statex € X, andxg € X. oT

(A5) The functionsf andh are twice differentiable oX x U, ox

and the function&,, F, andg are twice differentiable o x U. km = sup||M||

(AB) T(x) is continuously differentiable and bounded away _ !

from singularity for allx € X such thafl~1(x) is well defined. ~ Then forallx.n,%-n,%_y; € X

(A7) The system (1) is stronglM-detectable and the inplk R

is N-exciting for all timet > 0. P <KGLAKE 1 ([|&-N-1— &2 N_1e1?

. . . +||z2—N-1— 2tO_N—l,t—ﬂ \2) (15)
In the stability analysis we will need to make use of the coor-
dinate transform (5) into observable and unobservablestatProof. First, we remark that the Lipschitz-like constants are
although we emphasize that knowledge of this transformis n#ell defined due to (A5) and (A6) and the compactnesX of
needed for the implementation of the observer. To expfess andU. Since (A3) and (A4) holdx.n is a feasible solution
a function ofz_n andU; (note that it does not depend on theof the MHE problem (8). From the optimality of 7, we
unobservable states), the following algebraic mappinglmn have J° < J(x_n,%-n,lt). It is easy to see thatW (¥ —

k-1 = max
T-1 = Mmax|

Ol

formulated similar to the mappird: H(%-n,U)) |12 = W (Y — G(z_n,Ut))||?> =0, and
Yo = G(z-n, W) [IMe (N = %-n)I 12 < Ky X — X1
=Gi(z-n) " " < kl%/ILIZSHXI*N*l_)?fol,tfl”Z
- Ut-N — Lo...o FU-N -
- COI(g (thN)’ 970 F2 ° °© F2 (zth))- (12) < kl%/l L§k$—1(||£t—N—l _ EtO—N—lA,t—l”z
5 2
First, we establish lower and upper bounds on the optimal cos +H[z-Nn-1— f—N—l,PlH )
functionJ®: and the result followsa
Lemma 2.Let Theorem 1.Let
> Ozt = kmLaky 1Pz,
2
(2N, B ) = / —-G((1- 97N+ ., U)ds 2 _min( —H__ YA-LD
0 (72 o ) . qz 2(1+“)7 2(1+“) )
Pzt = Pr(z-N, 2 ng) = [(WMPP(z-NZng) 1-12
" H=30L
Then for allx—n, %’y €X 1-1,
T

¥ > 1/p§,tHZt*N - f—N,tHZ (13)

By choosing appropriate weight matr_idﬂ{sa}nth, thengz < _
Proof. Using the fact that the system (1) can be transforme@ and the observer error dynamics is uniformly exponentially
using (5), there existh n = T(xn), d° ; = T(_y,) and stable for anyo, Xo € X.

i~ = T(X—n) such that in the new coordinates, the system iproof, From the lower and upper bounds in Lemmas 2 and 3,

in the form of (6a)-(6c). Note that the least squares termhen t ; ; x/ﬁ <
right-hand side of expression (8a) in the new coordinati@ms irjc’i\‘tgtg :\‘nteglégltl;[]at\|f|| *l12° < [I1£]l+ 2], we have for all

be rewritten as N N
lz-N—2Z Nl < Gztllz-n-1— Ztoerl,tle
IME (% = Ge(ZFn) 12 = [W(Ge(z-n) — G (Fn) 1 +0ztll& N1 &N 1l (16)

Since X is positively invariant, thenx_n € X, and x_y is
From arguments similar to Lemma 1, it is clear thdtcan a feasible solution. From (A2), we know ¢&l_n,Z ;) is
be chosen such thag, is uniformly bounded by any chosen also a feasible solution. Considering the cost functionhe t
positive number, and MHE problem (8), it is clear that cofi_n,2 ) is also an
optimal solution, since the first term does not depend on the
IMK(Y = G(Z N UD)IIP > 1/P2el|z-n — £ ngll>. (14)  unobservable states and the second term is zerdd.g, =
&—n. Then from (A7),

Taking zero as the lower bound on the second term of (8a) we 20 20
get (13).0 18-~ — &Nl < Lall&t-n-1— &2 N1 -1l

Lemma 3.Let +Loflzna1—Z nogeall- (A7)
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Let st = [|z-n — 2 ]I, andspe = || & n — éo N/l Then qualitative understanding of the method. Hence, the theary
combiﬂning (16) and_(ﬁ) gives ' =Nt vides a guideline, rather than replacement, for practigaihg
as illustrated in the examples.
Sl, q AR q , Sl, -1 L.
<32: ) < < f; E;) <32:1> : (18)  |f the data are nol-exciting, the second term of the observer

cost function dominates and the observer degenerates to an

open loop observer for the state combinations that are not

excited, providedVi has full column rank in the sub-space
Sit ) _ [ Oz, Ozt S1to1 S0\ _ (S0 corresponding to the linear combination of states not being
St/ Ly L1 St1)  \ %0/ \S0/° excited. WithM M, > 0 this is trivially satisfied. This may

be a satisfactory solution if the system has open loop asymp-

totically stable dynamics within the region of operatioimce
the observer may still converge and give accurate estimiates

Sinces; > 0, itfollows thats ; <S¢, i =1,2, where we define
the 2nd order linear time-varying system

Consider a Lyapunov function candidatés;,s;) = § + yg
with y > 0. It follows that

V(Sit,%2t) — V(S1t-1,%2¢-1) practise, the accuracy will then depend entirely on the raayu
— *(1*Q§t _ VL%)_Sit_lf (y— qgt _ VLE)_%t_l of the model. If the system is not open loop asymptotically
N ’ o ’ ’ stable, and in particular if there are significant model ex;ro
+2(0z; + yLal2)Sit-154-1. this approach may not be satisfactory since errors will be al
According to Young’s inequality, for any > 0, lowed to accumulate without the presence of feedback from
V(S1t,50) — V(S1e-1,5201) measurements. This will be the case in a mixed parameter and
P ) . state estimation problem with the state space col(x,0)
<—(1-og - VLZ)ﬁ,tfl — (Y=g — VLl)i,tfl corresponds to the system stgtand the unknown parameters
+ (qit + VL1L2)/H§¢_1 + (qit + VLlLZ)“%,t—l 6 and the augmented dynamics
< -0 1 &1 Hen = 10, &, 14) v
Where ' ’ Bi1=6 (24)
Yt =h(xt, &) (25)
_1_ 2 2 Regardless of the system dynamf¢she augmented parameter
O =1-(1+1/m)a V(LZ * LlLZ/IJ) (19) dynamicsf ; = & are not asymptotically stable and estimates
& =y(1-L%) — (14 p)oZ, — yLilop (20)  may drift off due to integrated errors (see Example 1 later).

the next section we introduce further methods for weighting
and regularization that degrade gracefully when data arBlyo
exciting, which are particularly useful when the systemas n

First, choosg such that1Lop = 1(1—L3%). Then the first term
of & dominates its third term by a factor 3, and

1-12 asymptotically stable and there are model errors, as inake ¢
= > 0. (21)  with mixed state and parameter estimation.
3L1Lo
Second, choosgsuch thay(LiLz/u+L3) = 3, which leadsto 3 ADAPTIVE WEIGHTING AND REGULARIZATION
the first term 01d; dominating its third term by a factor 3, and WITHOUT PERSISTENCE OF EXCITATION
1-12
Y= 73L§(1+ 2L2) > 0. (22)  In order to implement excitation-sensitive regularizatidt

) _ ) _ is essential to be able to monitor if the data &rexciting
Third, sinceqy; is chosen such that the first terms of b@h  or not. ForN-observable systems, the conditipp; < @ <

and&, dominate their second terms by a factor 2, respectivelg, /(kyLsk; 1) will depend on the existence of a (not too small)

and we have L € > 0 such that
L+ 1/ < 5 = < % O (N, R N )P (XN, R g) 2 €l >0 (26)
L §1+ ‘le)) forallt > 0, where
2 2 2 _ Y- 1
A+ ez /y=51-L1) =0 < 2(174#11)7 q’t(Xl,Xz):/O :—XH((lfs)lersxz,Ut)ds (27)

such thatd; > 0 andd, > 0. There always exists a mat:  This condition comes from the requirement @f being N-
with some sufficiently smaky and a matri¥\f for some suffi-  exciting at allt and is similar to a PE condition. Unfortunately,
ciently smallp; such thaty;; < g, suchthady >0andd >0, sinced (x_n,% ) depends on the unknowe y we cannot
and the 2nd order LTV system is uniformly exponentially &ab computep: (X_n ’ ) = (WD (x_n, %)) || exactly at
for the given initial conditions. Sincg; < § and (A6) holds, 5 hoint in timﬁotio'\l’:‘nonitor iU, is Nigzcl}lt’;ng. ‘Instead, we

the error dynamics is also uniformly exponentially statde f have to rely on some approximation or estimateaf). If it is
anyxo,xo € X. 0 assumed thate || is small, then

Assumption (A2) is used in the proof to ensure that a feasible o 0 0 oH .
solutionX_n remains feasible in the transformed coordinates ~ Pt0¢—N,Xn) & Pe(Xn e Knt) = W(thNmUt)
when the observable states are replaced by their optimaésal HT o OH /o

This assumption is trivially satisfied for al-observable sys- and we can use (% ) = [1(Gx (Rn e, V) G (Rne, V)™

tem. For systems that are Métobservable, bull-detectable, it %(fﬁm,ut)vwn to approximatep: (%—n, %) Consider

will Stl||h0|d triviaIIy in many cas_es a_s iIIu_strated in Emple 1 a Singu|ar value decomposition (SVD), Golub and van Loan
later. Like many other assumptions in this paper, such a$, (A{1983)

it will not be trivial to verify unlessT is known. However, oH . T
Theorem 1 remains of value in such cases since it provides a W(Xﬁmaut) =USV; . (28)
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Any singular value (diagonal element of the matgiy that is P (hon — &2 y) = Pot T Mo — A ny)-
zero or close to zero indicates that a componentis unolisierva ' ’ '
or the input is notN-exciting. Moreover, the corresponding N
row of the; matrix will indicate which components cannot WDzt = WDyl

be estimated. The Jacobian has the structural propertytshat = (WD) =Nl (Wdyi) ™

rank will be no larger than difz) = n; < ny, due to certain . ' Tanst

components being unobservaﬁbzl)e. In addition, its rank can be = [ (WPze) || < Il -l |‘\/t$6ut W (34)
reduced by data being nbitexciting as discussed in Lemma 1.1t is known thatj|n|| = 1 and||[¢|| < kr, then from (32)

The N-excitation of data may therefore be monitored through . + T+

the robust computation of the rank of the Jacobian matrixgisi Pzt = [|(W®20)™[| < kTHVtSBUt W] < krar

the SVD, Golub and van Loan (1983). From Theorem 1, to obtain conditions on the Lyapunov func-
tion, qzt = kr1B8L3pzt < G, Therefore, the convergence condi-
fion is implied bya < G,/ (Lsk;-1kr B). Note that (34) and the
lowing arguments only holds fdte|| in a neighborhood of

e origin, therefore only local exponential convergemsailts.

It follows that

In general, we do not want to make the estimation of th
unobservable or unexcited components depend on the mdas
data. This is effectively achieved by utilizing the SVD iny,
order to compute a "robust pseudo-inverse” where the irver
of small singular values is set to zero rather than let grow
unbounded. The tuning parameters with this adaptive choic&\biand M;

are the non-negative scalass 6 and 3. It is worthwhile to
notice that since they are scalars, a successful tuningeof th
Bbserver will depend on appropriate scaling of the varmatel
'model equations.

We know that convergence depends\Winbeing chosen such
that pz¢ is bounded by a sufficiently small number. To pursu
this objective, one may choo¥¢ such that, whenever possible

IO (RN Rn ) =, (29) : - :
wherea > 0 is a sufficiently small scalar. In order to give zeroWhen the data are not considerbexciting at some time

weight on data for components that are either unobservable'SStam’ thend should be tuned such that the corresponding

unexcited, we modify this ideal design equation into theemorSlngular values ofx(-) will be less thar such thak defined

. . . Y by (31) will not have full rank. The means that the error in
practical and realistic design objective the corresponding state combinations will not be penalined

1OMUS 5V )| = { a, if |§][>9 (30) the first term in the criterion, and due to the second term the
0 0, otherwise estimates will be propagated by the open loop moqlel dynamics
where the thresholded pseudo-inveg = diag1/c;1,..., [N case of augmented parameter stdies = @ this means

1/0:,,0,...,0) whereoy, ..., g are the singular values Iargerthat they are essentially frozen at their value from the iprev

than somed > 0 and the zeros correspond to small singula?ample'
values whose inverse is set to zero, Golub and van Loan (198Bpth 3 > 0 andd > 0 could be considered as regularization

This leads to parameters that must be chosen carefully in order to tune the
W = (1/a) S, 5UtT (31) practical performance of the observer. In the ideal case ait
satisfying ' perfect m_odel, no noise, no disturbances Brelxciting datz_a at
(WD (R, )Tl < a. (32) allsampling instant one could choode- 3 = 0. As a practical
HereM, is chosen as ' ' tuning guideline we propose to first chogBe> O_|n ordef to
M = Bln,, (33) achieve acceptable filtering and performance with typicide

and disturbance levels for typical cases when the dat&Nare
exciting. Second) > 0 is chosen in order to achieve acceptable
performance also in operating conditions when the dataare n
N-exciting.

wheref3 > 0 is a scalar.The following result shows that thie
defined in (32) satisfies the conditions of Theorem 1 locally.

Theorem 2.If W is chosen according to (31) with being
sufficiently small and 6< o < 0z/(Lskr-1krB), thenW is
bounded and the observer error dynamics is locally unifprml

exponentially stable. 4. EXAMPLES

Proof. Boundedness o follows directly froma, d > 0. Since 4.1 Example 1 - mixed state and parameter estimation
d is sufficiently small and the data akeexciting, we assume
without loss of generality that the mathi¥ P2 (z_n, %> ) has Consider the following nonlinear system

full rank. Using similar arguments as Lemma 1, it is easy to X1 = —2X1 + %o (35a)
show that (1f1) in the proof of Th(?orem lis stlllAc\)/alld. %o = —Xp -+ Xa(U— W) (35h)
Y—H (XtofN,UUt) =@ ()Q—Nv)(tCLN,t)(Xt—N - thN,t)7 X3 =0 (35C)
Y = G(Zng:Ut) = PP (2N Zng) (@-N — Z ) y=Xo+V. (35d)
To simplify the notation, le®y; = @t (%N, % ;) and®z = One may think ofkz as a parameter representing an unknown
PP (z-N,Z Ny)- SinceY —HR U =Y = G(Z_n,U), gain on the input, where the third state equation is an autanen
Do (Zn — 2 ) = Pt (N — )’zto—N,t)- tion for the purpose of estimating this parameter. It isicteat

X1 is not observable, but corresponds to a stable sub-system.

Itis known that It is also clear that the observability & will depend on the

thon — Ay = TN — %), excitationu, while x, is generally observable.
wherely = [7 ZT((1-9)%-n+9¢_y,)ds Togetherwitte= The same observability and detectability properties hotdife
nd, wheren = Oy, (nn,)» Inyxn,), we have discretized system with sampling intertal= 0.1. Whenu =0
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for all time, the rank Of%—':(@r\].put) is 1. Whenu is white  control system, one should also estimate one or more parame-

. . . ters of the friction model Johansen et al. (2003); Alvareal et
noise, the rank o% (%_ng,Ut) is 2 almost always. (2005). ( )

In this simulation example we choo$é = 2 such that the consjder the longitudinal dynamics corresponding to oneabh
moving window has length -1 = 3. The base case is definedynq 1/4 of a vehicle mass (quarter-car model). The wheel slip
as follows. We use the adaptive weighting law (31) vatk-1,  gqynamics are important in the control algorithm of an anti-

0 = 0.1. Measurement noise, with independent uniformly disyyck prake systems (ABS), Burckhardt (1993); Johansen. et al
tributedv € [—0.5,0.5], is added to the base case. The input 1$2003)

chosen with periods without informative data as followsrDu

ing 0<t < 30t;, u= 0. During 3@; <t < 60t;, u is discrete- V= _leul()\), (36a)
time white noise. During &9 <t < 12Qs, u= 0. In the simu- rln 1 ) 1

lation, true system has an input disturbance with 0.15, and A=—=(Z(1-2a - E, L (A —LT 36b
the model used in the MHE observer has no explicit knowledge Y m( )+ J () + vy (36D)
of the input disturbance. In the following figures, true stat v(1—2)

are shown in solid line; estimated states of proposed wagk ar y=—"7-—" (36¢)

r

shown in dash-dot line; estimated states using the allematwherev is the longitudinal speed, = (v— ar) /v is longitu-

setting with fixedW{ are shown in dash line. The following dinal tyre slip, T, is torque acting on wheel axi§, — mg is

initial conditions are usedo = [4,~7,2,% = [3,-5.9,-1]. the vertical force,u; is the friction coefficient, ang is the
e Case 1: Default settings are used for the proposed worgngular wheel speed measurement. This application reqjaire
for the alternative method, choodé= 4l and = 1. The combined state and parameter estimator since only the angul
simulation result is shown in Figure 1. wheel speed = w is measured, such that bottandv needs to
e Case 2: Choosf = 0,i = 0,1,2 for the proposed work; be estimated togehter with parameters of the tire-roatidric
for the alternative method, choo#d¢ = | and = 0. The model that defines the friction coefficiepi. The parameters

simulation result is shown in Figure 2. used in the paper are given in Table 1.
. i true
e Case 3: The measurements are generated using the tr Y8 Desaripion Valle Uit

system while the model in the observer differs by addingm

10% error on all model parameters. Choase= 0.03, %ﬁe&\gr}:;n:iﬁhe wheel. 1325 ,;‘g%

Bi = 0.01 andd = 0.2 for the proposed work; for the Wheel radius. 0345 m

method Of WOI’k (Alessandri et al. (2008)), ChOWez 41 g Acceleration of gra\/ity_ 9.81 m/s2

andf = 1. The simulation result is shown in Figure 3. F, Vertical force. 3188  kg?/&
The example shows that the adaptive weighting with the thres Z, ;zg%lgrdg;aelescfeed' rrzjs,s
olded singular value inversion effectively freezes thexaited 2 Longitudinal tyre slip. mis
parameter estimate and thereby avoids the parameter &stimar, Torque acting on wheel axis. Nm
drift that otherwise may result due to unmatched model errorr Friction force between wheel and road. N
(input disturbance) when there are no excitations. Thisiéestd Table 1. Model vaiables. The numeric values are
the estimator degrading to integrated in an open loop fashio nominal values used in the simulation case study.

the parameter modé? = 0 in this case. Additional regular-

ization is achieved by3 > 0 since otherwise the parameter

estimation will be mainly dominated by noise, as shown bycasdn the example the friction coefficieni;(A) is a nonlinear
2. function of the longitudinal sligi with

H1(A) = Bsin(C(arctarBA —E(BA —arctar{BA)))). (37)
and the paramete C,E and 6 characterize the tire and the

CHoad surface. Typical values of paramet8€,E and 6 are
agiven by Matusko et al. (2003)

4.2 Example 2 - Wheel slip and tyre-road friction estimation

An anti-lock brake system (ABS) controls the slip of ea
wheel of a vehicle to prevent it from locking such that
high friction is achieved and steerability is maintainediag
hard braking. ABS brakes are characterized by robust adapti Dry asphalt:B=10.38 C=1.65 E =0.65663 6 =1
behavior with respect to highly uncertain tyre charactiess Snow: B=14.395 C=0.9, E = —6.439, 6 = 0.3
and fast changing road surface properties and they have belehn

Conmersaly sl s o 303 ear (Brcariidh e CTORTALSI (0 o) desibe e ol

speed of the wheel perimetarr. The slip value oA = 0(v=
Since the vehicle forces transferred from the tires to tte&lro cwr) characterizes the free motion of the wheel where no friction
determine the vehicle motion, accurate information aboatlr force Fy is exerted. If the slip attains the value= 1 then the
surface properties (dry, wet, snow, ice, etc.) has a sigmific wheel is locked ¢ = 0). The typical friction curvegi(A) are
importance in ABS and other automotive active safety systenshown in Figure 4. The friction coefficient is generally a
However, such forces and road surface properties are ysudifferentiable function with the property(0) =0 andu(A) >0
difficult to measure, since sensors are too complex and expdar A > 0. Figure 4 shows how increases with slip\ up to
sive for use in production cars. Therefore, it is necessary some value, where it attains its maximum value. For higher
estimate them from the computed or measurable signals suwsllp values, the friction coefficient will decrease to a mingim
as angular wheel speed and the torque acting on the wheeldue where the wheel is locked and only the sliding friction
axis. In order to take advantage of a friction model to esgmawill act on the wheel. The dependence of friction on the road
the longitudinal wheel slips and speed for use in a wheel sliondition is also exemplified in Figure 4. For wet or icy roads
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Fig. 1. Simulation results of example 1, case 1.
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Fig. 2. Simulation results of example 1, case 2.
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Fig. 3. Simulation results of example 1, case 3.
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tion condition (and uniform observability) will not hold.his

=T challenging parameterization is chosen in order to ilatstr

Dry | the power of the proposed method, and in particular that the

/ / algorithm will accurately detect the excitation level oéttiata

~ at any time and adapt the weights accordingly when ugihg

| defined by (31). Therefore, the proposed MHE algorithm is ap-
| plied to the combined state and parameter estimation proble

e | ] Considering the parametefisE, C, B as augmented states, the

statesB,C,E, 6 are added,

| B=0,C=0,E=0, 6 =0. (39)
/S”OW | The constraints on the states are given as

i 1.<v(t) < 30,
] 0<A(t) <1,
, 1 0<6(t) <1,

/ R T S T S T SO T 9 <B(t) < 155,

0 <C(t) < 3,

~75 <E(t) < 2.
Fig. 4. Typical friction curvegii(A). Here we choosa = 0.01 andB = 1.W is chosen withd = 0.8.

the maximum friction is small and the right part of the curse i o Case 3, for dry asphalt, the simulation result is shown in
typically flatter. Figure 7.

We consider the tyre/road maximum friction coefficiéras an ~ ® C@se 4, for snow, the simulation result is shown in Figure
augmented state. We get the augmented wheel slip dynamics
. 1 In the figures, the true states are shown in solid lines and est
V= EFZ“(A ), (383)  mated states are shown in dash lines. It is interesting terabs
. 1/1 r2 1r that the estimation is robust and that the SVD thresholding
A= Ny (ﬁ(l —A)+ j) F2u(A,0) + v 3Tb, (38b) effectively prevents the estimates &,C, E) from drifting and
. becoming highly incorrect when there is not much excitatipn
6=0. (38c) they are poorly observable. There are slightly more esxoftat

In general, some reasonable constraints of parametersdshdin the dry asphalt case (stronger braking and higher whigs)sl

be added into the MHE problem. Here the constraints are giveimd the adaptive weighting makes more attempts to estimate

as below: the parameter€ and E in this case, compared to the show
v(t) >1.0, 0<A(t) <1, 0<0(t) <1 scenario.. The paramet8ris in_ both cases not excited, while

- . . ood estimates of the most important vairiablesand 6 are

and the system is discretized using th_e standarql EU|er.mmhgchieved in both scenarios. Further results and discussign

We remark that the lower bound eft) is conventional, since .. 0’5 i and Johansen (2010a)

the ABS application will handle low speed as an exceptioﬂ '

where controllability is lost due to the singularity at= 0

Johansen et al. (2003). In the example we choose the initial 5. DISCUSSION AND CONCLUSIONS

conditionsv(0) = 20,A (0) = 0.01, and the true value®, B,C

and E are given according to the different scenarios for dryrheoretical and practical properties of a regularized ineak

asphalt and snow. In the simulation, choose the initial arpri moving horizon observer were demonstrated in this paper.

estimates/(0) = 19,A(0) = 0,6(0) = 0.6, B(0) =12, C(0) =  Although no convergence problems due to local minima were

1.3 and E(0) = 0. The horizon is chosen & = 10. The encountered in the simulation example in this paper, it is

sampling intervat; = 0.01 s, and Gaussian white noise withimportant to have in mind that the method will rely on a

variance @ rad/s is applied to the measurements. We choosefficiently accurate guess of the initial a priori estimate

a = 0.01 andf; = 1, andW is chosen according to (31) with cases when sub-optimal local minima exist.

0=01. The main feature of the proposed method is systematic hrandli
e Case 1, for dry asphalt, the simulation result is shown inf nonlinear systems that are neither uniformly obseryaise
Figure 5. persistently excited, and may not be asymptotically stathés
e Case 2, for snow, the simulation result is shown in Figurg a typical situation with mixed parameter and state estona
6. with an augmented state space model. With the exceptioreof th
: ; liminary results in Sui and Johansen (2010b); Moraal and
We observe that although the estimate of the single parame e L
6 converges to an accurate estimate, the observer stillifails gnzzle (1995a), this 'S(;F’ tdh_e %eSt ﬁf the autr;]ors knc:yvledge
estimating the velocity and wheel slip in Case 2 due to thgnpﬁrta}ntlss%e notstu r']e In eptl In ahny Oth er r|110n ma‘ﬁHg
inaccurate fixed values &, C andE used in the model. Hence, g‘g orlzonfo”serveg T g exalmg es Sh CI’IWt at the me':m;e can
there is a potential benefit of estimating aB& andE. e successfully tuned and applied in challenging cases tihieen
uniform observability and persistence of excitation ctiodis
Next, it is assumed that the parametBr€, E, 68 are unknown. are not fulfilled, even with a highly over-parameterized elod
With this parameterization one has to expect that the modeithout the need for careful a priori analysis of obsenitibil
will be over-parameterized such that the persistence dfaexc and persistence of excitation conditions. By proper sgadind
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Fig. 5. Example 2: Simulation results of case 1, dry aspbak,unknown parameter.
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Fig. 6. Example 2: Simulation results of case 2, snow, onenawk parameter.
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Fig. 7. Example 2: Simulation results of case 3, with dry adipioad conditions and 4 unknown parameters.
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Abstract: The paper develops procedures for calculating the maximal values of the 1-norm and
the infinity-norm of the Lagrangian multipliers for QP problems. These can be used in MPC
design to design penalty functions for exact soft constraints, thus ensuring that the constraints
will be violated only if there exists no solution where all constraints are satisfied.

Copyright© 2011 Author

1. INTRODUCTION

Model Predictive Control (MPC) has been a remarkable
industrial success, with thousands of installations world-
wide (Qin and Badgwell (2003)). A distinguishing fea-
ture of MPC controllers is the relative ease with which
constraints in both states/outputs and inputs are han-
dled. Nevertheless, such constraints may introduce many
complexities that an industrial MPC controller need to
address. There has been particular focus on the effect of
hard output constraints on stability (Zafiriou and Marchal
(1991); de Olivieira and Biegler (1994)) as well at the use of
soft constraint formulations to ensure a feasible optimiza-
tion problem, see (Scokaert and Rawlings (1999); Vada
(2000); Hovd and Braatz (2001)) and references therein.

A fairly typical MPC formulation may be expressed as

N-1
ot 3 (e Rt Qu) (1)
+ryQraN

s.t. Grag + Hyu, < by, k€ [0,..., N] @)
Tp41 = Axy + Bug, xo = given (3)
Q>=0,Qf=0R>0 (@)

It is now fairly well known how ensure that this problem
corresponds to a constrained infinite horizon problem,
details may be found in e.g. (Rossiter (2003)).

For compactness of notation, we will in the following
assume that the future states are eliminated from the
MPC constraints, and that the resulting MPC problem
is expressed as:

min  (0.5u” Hu + 2 Fu) (5)
To = given
Gu<W + Exg (6)

* This paper is based on work submitted to the 2011 IFAC World
Congress. The present version is intended for members of the NIL
project groups.
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T
where u = [uaulT, ‘e 7u%71}

The MPC formulation shown above is a socalled hard
constrained problem. There may be initial states zo for
which there exists no input sequence {u} for which the
constraints are fulfilled. In such a situation the optimiza-
tion solver will find no solution, and what input to apply
to the plant will not be defined. This is in general consid-
ered unacceptable in industrial practice. Practical MPC
implementations therefore include some way of relaxing
the constraints to ensure that the optimization problem is
always feasible and the input to the plant is always well
defined. There are several ways of doing this (Scokaert and
Rawlings (1999)), one of the simplest and most common
is to use soft constraints. When using soft constraints,
the MPC formulation includes a variable in the constraint
equations which allows relaxing (some of) the constraints,
while the optimization cost function includes terms which
penalize the constraint violation. Thus, with a soft con-
straint formulation, (1) is replaced by

N-1
min Z (uf Ruk + «f Qi) (7)
Uo,UL,  ,UN—1,€ k=0

“rﬂ?llj\}Qf.%‘N + 9(6)

whereas the constraint equations (2) are modified as
follows

Grrp + Hyup <bg + €, k € [0,...,N]
EkZO

(8)

Remark: Naturally, we will soften constraints only if
this is physically meaningful and safe to do so. Input
constraints are typically hard constraints given by the
physics of the process, and it would then be absurd to
soften such constraints. However, many state/output con-
straints represent operational desirables (product quality
specifications, comfort of operators, etc.), and violating
such constraints for some period may be acceptable.

The penalty function g(e) is typically given by
g(e) = cle+ ' Qe

(9)
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A desirable property of the penalty function ¢ is that it
should ensure ezact soft constraints, i.e., that the (hard)
constraints will be fulfilled whenever this is possible.
Only the linear terms in the penalty function determines
whether the soft constraints are exact. The quadratic term
should ensures that modified QP problem is a standard
QP, but is otherwise held to be of less importance. Typ-
ically, the elements of (. are therefore small, although
one with some more careful choice of (). may influence
the tradeoff between constraint violations in different vari-
ables. This issue will not be pursued any further here.
Ensuring that the soft constraints are exact is considered
to be of primary importance, and we will therefore focus
on the linear term in the penalty function in this paper.

A sufficiently high weight on the linear term in the penalty
function will ensure that the soft constraints are exact.
However, too high weight is generally not desirable, since
that may lead to unnecessarily violent control action
should the plant for some reason be outside of the (hard
constrained) feasible region.

In the next section, we will briefly state existing criteria for
ensuring the soft constraints are exact, and explain why
this has generally been considered an intractable problem.
In subsequent sections we will detail how to use multi-level
programming to ensure that the soft constraints are exact.
The resulting optimization problems will be mixed-integer
linear programs (MI(L)P’s). MILPs are non-convex, but
very efficient solvers exist for this class of optimization
problems, making it possible to solve problems of non-
trivial size.

2. EXACT PENALTY FUNCTIONS IN MPC

Denote the cost function of the optimization problem, as
shown in (1), by fr(u,xo). The cost function for the soft
constrained MPC in (7) is similarly denoted fs(u,zo,€) =
fr(u, o)+ g(€). We will here only consider the linear term
in g(e€), as it is this term that determines whether the soft
constraints are exact. We will assume that this linear term
in g(e) can be expressed in terms of an L, norm of e. For
a vector a, the L,-norm of a, denoted ||al|,, is given by

1/p
llall, = (Z Iail”>

In MPC, Li-norm and Ly,-norm penalty functions are
frequently used. The Li-norm is the sum of the absolute
values of the vector elements (and the slack variables in
the MPC criterion are non-negative), whereas the Loo-
norm is the magnitude of the maximum vector element.
These vector norms are therefore easily included in the
function g(e). The Lao-norm is the conventional Euclidian
vector length. However, this is not commonly used for
(exact) penalty functions, since the linear term in the
penalty function then is not a linear function of the vector
elements.

(10)

The Li-norm penalty function increases the number of
decision variables in the optimization problem by the
number of constraints that are relaxed. In contrast, the
Lyo-norm penalty function only increases the number of
decision variables in the optimization problem by 1 - since
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the same slack variable can be used for all relaxed con-
straints. For this reason, L..-norm penalty functions are
often preferred, although it is shown in (Rao et al. (1998))
that the addition of the Li-norm optimization variables
can be handled at virtually no additional computational
cost if problem structure is utilized in the QP solver. On
the other hand, the L,,-norm can result in unexpected
behaviour and poor performance if it is used to soften an
output constraint for which there is an inverse response.
In (Hovd and Braatz (2001)) it was shown how to mini-
mize this problem by using time-dependent weights in the
optimization criterion.

For a Li-norm penalty function the linear term in g(e)
takes the form

(11)

where k is a scalar and m is the number of constraints
that are relaxed. For an L..-norm penalty function only
a single slack variable is required, and the linear term in
g(€) therefore simplifies to

Gi,00(€) = ke (12)

In standard optimization textbooks (e.g., Fletcher (1987))
we find conditions for ensuring that the soft constraints
are exact. A L, norm penalty function ensures that the
soft constraints are exact, provided that the weight k on
the linear term of the penalty function is larger than the
maximal value of the dual norm of the Lagrangian multi-
pliers of the corresponding hard-constrained optimization
problem. The dual norm of an L, norm is denoted by an
index pg, such that

1 1
4= =1
P Pd

(13)

Thus, the dual norm of the Li-norm is the L.,-norm, and
vice versa, whereas the Lo-norm is its own dual.

This means that if we use an L,.-norm penalty function
and want to ensure that the soft constraints are exact,
we must find the maximal value over the entire feasible
region for the Li-norm of the Lagrangian multipliers
of the hard constrained problem. This is a non-convex
optimization problem which in general has been considered
intractable. In the next section we will briefly introduce
multi-level programming, which we will use to reformulate
the optimization of the norm of the Lagrangian multipliers
into an MI(L)P problem.

3. MULTI-LEVEL PROGRAMMING

Multi-level programming is the generalization of the more
common bi-level programming, where the constraints of
the main optimization problem involve the solution of
another (lower level) optimization problem.
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min Vi (y, 2) (14) mAin Vuly, z) (23)
Yy Y, Z2,A,8,V
subjectto Gyr(y,z) <0 subjectto Gyr(y,z) <0 (24)
Guge(y,z) =0 Gue(y,z) =0 (25)
z = argmin Vi, (y, 2) A>0 (26)
subjectto Gprr(y,2z) <0 A< Ms (27)
Gre(y,2) =0 Gri(y,2) <0 (28)
Gre(y,z) =0 (29)
Bi-level programming has been addressed since the 1970’s, Gri(y,z) > —M(1—s) (30)
and the survey (Colson et al. (2005)) lists several con- _

tributions in the control area going back to the early VeL(y, 2, A,v) =0 (31)
1980’s, but due to the inherent difficulty of these prob- s€{0,1} (32)

lem formulations, they have been used rather sporadically
since. However, with increasing availability of computing
power, interest in these problems is returning (e.g., Kookos
and Perkins (2003), Hovd and Kookos (2005), Jones and
Morari (2009), Manum et al. (2009)).

3.1 Replacing lower-level problem with KKT conditions

In this paper, the lower-level optimization problem con-
sidered will be an MPC problem. These problems can be
assumed to be convex and regular, admitting a unique
optimal solution for everywhere in the feasible region for
the problem. The lower-level optimization problem can
therefore be replaced by its Karush-Kuhn-Tucker condi-
tions (KKT), resulting in

Jin, Vu(y, z) (15)
subjectto Gyr(y,z) <0 (16)
Gur(y,z)=0 (17)

A>0 (18)
Grr(y,z) <0 (19)
Gre(y,z)=0 (20)
AxGr(y,z)=0 (21)
V.L(y,z,\,v) =0 (22)

where the x symbol indicate that element & of the vector A
of Lagrangian multipliers multiply constraint equation & in
the original lower-level constraints. L(y, z, A) = Vi.(y, z) +
M'Gri(y,2) + vITGre(y, 2) is the Lagrangian function of
the lower-level problem. Notice that there are no non-
negativity constraints for the Lagrangian multipliers v for
the equality constraints.

3.2 Reformulating KKT conditions using binary variables

We apply the technique proposed by (Fortuny-Amat and
McCarl (1981)) to reformulate the non-convex complemen-
tarity conditions 21 using binary variables s:

where M is some sufficiently large scalar. The following
section will detail how this solution approach can be used
to maximize the norm of the Lagrangian multipliers, which
is needed in MPC for the design of exact soft constraints.

4. MAXIMIZING THE NORM OF THE
LAGRANGIAN MULTIPLIER VECTOR

We will here apply the techniques of the preceding section
to the hard-constrained MPC problem in (1) - (3), to find
the norm of the Lagrangian multiplier vector. First, the
problem of maximizing the L;-norm, required for making
soft constraints exact for a penalty function using the L,
norm, is addressed. Thereafter, maximization of the L.-
norm is addressed.

4.1 Mazimizing the Li-norm

Maximizing the Li-norm of the Lagrangian multiplier
vector for (5) - (6) can be done by solving

max 17\ (33)
subject Zo

u=arg muin (0.5u" Hu + 2§ Fu) (34)

subject to  Gu < W + Exg (35)

where 1 denotes a column vector of ones. In a slight
contrast to ordinary bilevel programming, we see that the
upper-level criterion here does not become well defined
until the lower level optimization problem is replaced by its
KKT conditions - only then do the Lagrangian multipliers
appear explicitly in the problem.

max 17\ (36)
subject to
A>0 (37)
A< Ms (38)
Gu—W —FExy <0 (39)
Gu—W — Exg>—-M(1—-5s) (40)
Hu+Flzg+GT'A=0 (41)
s € {0,1} (42)

Constraints (39) are the constraints of the original MPC
problem. The presence of these constraints mean that we
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do not have to calculate the feasible region explicitly.
This is a major advantage, since the projection operation
involved in calculating the feasible region can be com-
putationally very demanding for large systems. However,
although the KKT conditions for the MPC problem (the
lower-level problem) uniquely determine the optimal w,
they do not uniquely determine the Lagrangian multipliers
A. The direct inclusion of A as free variables in the max-
imization will therefore result in unnecessarily large \’s -
bounded only by M in (38). We are instead after small
N’s that fulfill the KKT conditions for the MPC problem.
To this end, we insert an additional minimization in the
formulation above:

zax 1 (43)
subjecg t70

Gu—W — Exg>—-M(1—5s) (44)

Gu—W —Exq <0 (45)

min 0.5\ (46)
subject to

A>0 (47)

A< Ms (48)

Hu+ FT20+G"A =0 (49)

s € {0,1} (50)

Proceeding as before with replacing the lower-level opti-
mization problem with its KKT condition, and expressing
the complementarity conditions as binary variables, we
arrive at

o S 1 =
subject to
Gu—W —FExg>-M(1—-5s) (52)
Gu—W — Bz <0 (53)
A< Ms (54)
A>0 (55)
Hu+ FT204+GTA=0 (56)
A+ [-TI]0+Gu=0 (57)
§>0 (58)
§ < Mv (59)
[{}45} > —M(1-v) (60)
se€{0,1} (61)
v e{0,1} (62)

Comparing (54), (55) and (60), we observe that for these
constraints to be consistent we need

[

1-s (63)
Thus, the final formulation becomes
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o s 1 S
subject to

Gu—W — FExyg <0 (65)

Gu—W — Exg>—-M(1—5s) (66)

A>0 (67)

A< Ms (68)

Hu+ FT2o+GT"A=0 (69)

A [-T116+Gpu=0 (70)

0>0 (71)

5<M{%:ﬂ (72)

s €{0,1} (73)

We observe that we have retained the complementarity
conditions for the MPC problem. The final formulation
therefore retains the optimal solution to the MPC prob-
lem, with the additional constraint that the Lagrangian
multipliers found minimize the 2-norm among the La-
grangian multipliers that satisfy the KKT conditions for
the MPC problem. The overall optimization formulation
maximizes the corresponding 1-norm over the feasible re-
gion.

4.2 Mazimizing the Lo-norm

Finding the maximum of the L.,-norm of the Lagrangian
multipliers requires solving

max 7y (74)
o
subject to
A<y (75)
min  0.5u” Hu + 2 Fu (76)
subject to
Gu<W + Ex (77)

Replacing the lower optimization problem with its KKT
conditions, we obtain

max vy (78)
T,y AU, S
subject to

A<~y 79

A>0 80

A< Ms 81

Gu—W — EiCO § 0
Gu—W — Exo>—-M(1—25)

Hu+ FTzo+G"A=0

se€{0,1}

However, as above we note that the Lagrangian multipliers
are not uniquely determined by the KKT conditions for the
lower optimization problem, and the v we are after is the
smallest v for which there exists Lagrangian multipliers A

fulfilling the KKT conditions. Therefore, we again insert
a lower-level optimization:
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max vy (86) max (109)
To,u,S L0,V AU, S8, 0, 0,11
subject to subject to
Gu—W — FExp <0 (87) Gu—W — Exzg<0 (110)
Gu—W —FEzxog>—-M(1-5) (88) Gu—W — Exg>—M(1—s) (111)
min 0.5v2 (89) A<~ (112)
7,
subject to A>0 (113)
A<~ (90) A< Ms (114)
A>0 (91) A=y=-M(1-w) (115)
A< Ms (92) Hu+ FTzg+G"A=0 (116)
Hu+ F'zg+G"A=0 (93) [2] + {iT —01 é} 5 (117)
se{0,1} (94) -
G
5]
Note that although the optimum of the inserted lower-
level optimization problem does not necessarily uniquely 5§>0 (118)
define the optimal value of the \’s, it does uniquely define -
the optimal value of 7, which we are after. Replacing the V1
lower-level optimization problem with the corresponding O<SM|l-s (119)
KKT-conditions, and expressing the the complementarity 1-s
conditions with binary variables, we obtain se€{0,1} (120)
v €{0,1} (121)
max v (95) 5. EXAMPLES
L0,V AU, 8,0, 1,V
subject to The proposed procedure will next be illustrated on two
Gu—W — Exg <0 (96) examples.
Gu—W — Exg>—-M(1 —s) 97) 5.1 FExample 1
A<y (98)
- This example taken from Hovd et al. (2009). The system
A0 (99) is a double integrator, described by
A< Ms (100) A {11] B {1]
Hu+ FTzo+GTA=0 (101) 101 ~ 103
0 I —-I1 with constraints
HEEENL g
o[§] =0
0 = _
3] === [3]
§>0 (103) . .
The weight matrices used are @ = I and R = 1, whereas
o< Mv (104)  the prediction horizon N = 15 is used, resulting in 58
A—7 constraints in the MPC formulation. Maximizing the 1-
—-A >-M(1-v) (105) norm of the Lagrangian multipliers, we find that the
A—Ms maximum is achieved at x = [-9  3]T. The feasible region
se{0,1} (106) and the point where the maximum is obtained are shown in
’ Fig. 1. The corresponding value of ||A||; = 950. This value,
v€{0,1} (107)  and the location of the maximum is verified by solving the

Comparing (99), (100) and (105), we conclude that the
binary variable ¥ must be parameterized as

1
v=|1—s
1—s

We thus arrive at the final formulation

(108)

MPC problem at all vertices of the feasible region.
5.2 Example 2

This example is taken from Hovd and Braatz (2001). The
discrete-time model is given by

0.9280 0.0024 —0.0031 —0.0040
0.0415 0.9538 0.0119 0.0065
—0.0521 —-0.0464 0.8957 —0.0035
—0.0686 0.0508 0.0318 0.9346

A= (122)
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Fig. 1. Feasible region and point where the 1-norm of the
Lagrangian multipliers is maximized.

0.0000 0.3355
0.1826 0.0074

B=10.0902 —0.0093 (123)
0.0418 —0.0123
0.0000 0.0000 —0.0981 0.2687
¢= {0.0000 0.0000 0.0805 0.3271} (124)
00
D= {0 0] (125)

and the constraints are given by

Cses ] [H]susll] o

1 1

The state weight is given by @ CTC, the input
weight is R = I, and a prediction horizon N = 10
is used. This problem has 120 constraints in the MPC
formulation, and hence requires 120 binary variables in
the MILP formulation for calculating ||A]];. We find that
the maximum value of the norm is achieved at z =
[25.5724 25.3546 9.7892 —0.2448]T, and has the value
A1 = 38907. For this example, calculating the feasible
region is very computationally demanding, and the result
has therefore not been verified by checking the vertices of
the feasible region.

1
1

B |

6. NUMERICAL ISSUES

Many MPC problems are symmetric in the constraints.
In such cases, the Lagrangian multipliers at x = z will
be the same as the multipliers at x = —z. The problem
will thus have (at least) two optima. Any global optimizer
will try to discriminate between these optima, potentially
resulting in substantial computational effort for no gain.
This type of symmetry in the problem may be avoided by
adding an additional constraint to the problem - in this
work the constraint ug > 0 has been used for this purpose.

The parameter M should in theory be of little importance,
it is just required to be sufficiently large, and any variable
equal to M indicates that the value used is too small.
However, numerical inaccuracies may be introduced by
making M very large. In our (somewhat limited) expe-
rience, this inaccuracy is more likely to affect the value of
the objective function rather than the location x in state
space where the maximum is achieved. It is thus simple
to check the value of the objective function by solving the
MPC problem at x. Alternatively, one may use different
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values for M in different constraints, only increasing M for
variables whose values are constrained by a too low value of
M, and retaining a modest value for M for the remaining
variables. This approach proved effective for Example 2
above.

7. CONCLUSIONS

In this paper, procedures for calculating the maximum val-
ues of the 1-norm and the infinity-norm of the Lagrangian
multipliers of standard QP problems have been developed.
The procedures are intended for designing penalty func-
tions for soft constraints in MPC, to find the required
weights for making the constraints ezact. The calculation
procedures are formulated as MILP problems, which are
known in general to be NP-hard and thus very compu-
tationally demanding to solve. However, highly efficient
solvers for MILP problems are available, and the number
of constraints (and thus the number of integer variables in
the MILP formulation) in Example 2 illustrates that the
procedures can be applied to some problems of industrial
relevance. In this work, the MILP solver in CPLEX is used.
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Abstract: The calculation of piecewise quadratic (PWQ) Lyapunov functions is addressed,
using the linear matrix inequality (LMI) approach proposed in Johansson and Rantzer (1998)
for the stability analysis of PWL and PWA dynamics. Alternative LMI relaxations are proposed.
These relaxations are shown to be effective compared to existing relaxations. Copyright© 2011
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1. INTRODUCTION

Piecewise linear (PWL) and piecewise affine (PWA) sys-
tems appear often in practical control systems whenever
piecewise linear components are encountered. Such compo-
nents include dead-zone, saturation, relays and hysteresis
Feng (2002). Model predictive control with constraints is
also known to result in piecewise affine closed-loop dynam-
ics. In this work, we address stability verification for PWL
and PWA systems, using PWQ Lyapunov functions cal-
culated using the LMI approach introduced by Johansson
and Rantzer Johansson and Rantzer (1998); Rantzer and
Johansson (2000). This approach has since been extended
to discrete-time systems Feng (2002); Ferrari-Trecate et al.
(2002).

For systems described by PWL (or PWA) models, the
system description can be partitioned into different oper-
ating regions, with a given linear (or affine) system model
for each region. Clearly, it makes no sense to impose the
conventional stability criteria on Lyapunov function for
a given system dynamic outside the region where that
same system dynamic is valid. Still, the LMI formulations
of the stability criteria must hold globally. To amelio-
rate this problem, Johansson and Rantzer Johansson and
Rantzer (1998) introduce relaxations to the LMI formula-
tion. These relaxations are such that the LMI formulation
still ensures that the Lyapunov function stability criteria
hold within the region of validity for each system dynamic,
while relaxing the stability criteria outside that region.

The LMI relaxations introduced in Johansson and Rantzer
(1998) have also been adopted by other authors Feng
(2002); Ferrari-Trecate et al. (2002). In this work, al-
ternative relaxations are proposed, and are shown to be
effective. In addition, we illustrate how additional degrees
of freedom may be introduced in the LMI formulation by
sub-dividing the operating regions for the system dynam-
ics, which in some cases enables the calculation of PWQ
Lyapunov functions without requiring LMI relaxations.
We can therefore conclude that a polyhedral pre-treatment
of the regions of the original partition can decrease the
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conservativeness of the stability analysis based on semi-
definite programming techniques.

2. SYSTEM MODELLING

Let {X;}icr € R™ be a partitioning of the state space into
non-overlapping (possibly unbounded) polyhedral cells,
with I being the index set of the cells. The system
dynamics are given by

(1)
The index set [ is partitioned into two subsets, Iy repre-
senting the polyhedral cells containing the origin, and I
representing all other cells. It is assumed that a; =0 Vi €
Iy, which clearly is a prerequisite for the origin to be an
equilibrium point of the system. Further, when considering
PWL systems, it is obviously assumed that a; =0 Vi € 1.
Each region &; is defined by the linear inequalities

Eix>e¢; (2)
For PWL systems, this essentially completes the descrip-
tion of the system dynamics. However, for PWA systems
we will find it convenient to introduce some extra notation
to simplify the system description. This is done in the next
subsection.

Tht1 = A,z + a; forx, € X;

2.1 Simplifying the system description for PWA systems

Following Johansson and Rantzer (1998), we simplify no-
tation for the description of PWA systems by introducing
an auxiliary state, such that

x ]

_k ®)

The definition of the polyhedral cell may then be expressed
as
Ei.f > (0 with Ei = [Ez 761‘].

One may similarly express the system dynamics as linear
in this enlarged (or ’lifted’) state space. However, to be
able to use standard Lyapunov function stability criteria
on the enlarged state space, we must clearly be able to
set the auxiliary state to zero near the origin. This implies
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that what linear dynamics to use will depend not only on
which region the state is in at present, but also what region
the state transits to at the next timestep. For the origin to
be asymptotically stable, there must clearly be a positively
invariant region around the origin. The assumption that
all X ey, have linear dynamics will then also imply
that there is a positively invariant region near the origin
consisting entirely of cells with linear dynamics. A natural
preliminary step in the stability analysis will therefore
be to analyze stability for the PWL system described by
the dynamics in J;¢ 1, Xi- Assuming that this is proven
stable (possibly using the techniques described later in
this paper), a positively invariant subset of UiE 1, <G may
be extracted, using e.g. the techniques described in (ref.
Hichem???). We will assume that this preliminary analysis
has been done, and that the description of the polyhedral
cells and the index set Iy have been modified such that
Uier, i is positively invariant.

Remark. The original motivation for looking into the
stability of PWA systems came from stability analysis
for MPC controllers, where the MPC design will result
directly in Iy consisting of a single, positively invariant
cell Hovd and Olaru (2010).

Thus, (1) can be expressed as

Tht1 = flﬂf (4)
Aﬂ—[‘?f ‘ﬂ;xkﬂexj,jefl (5)
Tpt1 = fliof (6)
A= [%l %l} ; T1 € Xy, J € Do (7)

3. LMI FORMULATION OF THE LYAPUNOV
STABILITY CRITERIA

Following the development in Feng (2002), we consider
PWQ Lyapunov functions. Thus, for each region of the
state space we have

Vi(z) = 2" Pz, x € X
The closed loop system is then stable provided

(®)

=Pl 9)
Vi(z) >0 Vze X, (10)
V(ew) > Viwns) (11)

where (11) should hold for all 2y and x41 that may occur
according to the dynamics in (4 - 7). Let the index ¢
identify the region in which the state is at time k, and
the index j identify the region in which the state is at
time k + 1. All possible transitions between regions may
then be identified with a set S, where each element of S
consists of a pair (¢, j) that is consistent with the partition
of the state space and the dynamics (4 - 7).

3.1 FExpressing the stability conditions as an LMI
Equation (9) is fulfilled simply by defining P; to be a

symmetric (matrix valued) variable. The conditions (10)
and (11) will be fulfilled if the following LMIs are fulfilled:

30

P >0; Vi (12)
ATPjA, — P, <0; VY(i,j) €S (13)
where A; refers to either A;; or Ajy, as appropriate.
However, the condition (10) only has to hold for z € X,
whereas fulfilling (12) means that it is fulfilled for the
entire extended state space (i.e., for all Z). Similarly,
condition (11) only has to hold for zp € Xj;;, where
Xi; € X; is the subregion of region X; for which the
state moves to X; in the next timestep. Clearly, X;; is
a polyhedron, since both X; and X} are polyhedra and
the closed loop dynamics is piecewise affine. In contrast,
the fulfillment of (13) implies that the condition has to
hold for the entire extended state space.

3.2 Relazing the LMI conditions

Clearly, some way of relaxing the LMI conditions is de-
sirable, to reduce the conservatism resulting from taking
conditions on the Lyapunov function that must be fulfilled
only in specific regions of the state space, and converting
these conditions into LMIs that by default imply that the
conditions are fulfilled for the entire state space. To this
end, let us introduce the quadratic functions

fl(l’) = .’ETFij; fl(l‘) > 0,Vx € X; (14)
Note that f;(x) < 0 is allowed for z ¢ X;. It is then easy
to see that (10) is fulfilled, provided

Pi—Fi>O

Similarly, we introduce functions

(15)

gij(z) =27 Gz gij(x) >0,V € Xyj (16)
Then, (11) is fulfilled provided
ATPjA; — P+ G <0 (17)
Let the region X; be defined by
Ex>e; < Ez>0 (18)

where E; = [ E; —e; |. Similarly, the region X;; is defined
by E_’ijjt > 0. The relaxations proposed in Rantzer and
Johansson (2000) for continuous-time dynamics are then
given by

F,=EIUE; (19)

Gij=ELWiEyj (20)
where U; and W;; are symmetric, non-negative matrices.
It appears that the same type of relaxations have been
used for discrete-time dynamics by other authors, e.g.
Feng (2002); Ferrari-Trecate et al. (2002). It should be
clear that the power of the LMlI-based technique for
finding PWQ Lyapunov functions is strongly dependent
on effective relaxations. Motivated by failure in finding
PWQ Lyapunov functions, alternative relaxations have
been sought. These are presented in the following sections.

4. A NOVEL LMI RELAXATION FOR PWA
SYSTEMS

From (15) and (17) it is clear that we only need the
relaxations (f;(x) and g;;(x)) to be positive within specific
polytopes. Outside those polytopes the functions may be
negative, and may thereby make it easier to find a valid
solution to the LMIs. The relaxations (19) and (20) do
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fulfill these requirements, and have proven effective for
problems of modest size. However, the resulting relaxation
functions are somewhat arbitrary, and there is a possibility
that more careful specification of the functional form of the
relaxations can be beneficial.

A reasonable choice for a relaxation would seam to be a
concave quadratic function centered in a point contained
in the interior of the polytope considered. Clearly, the
quadratic function should be positive over the polytope.
Thus, a reasonable relaxation function would appear to
be

h(z) = (z — z0)TH(x — 20) + ¢ (21)
where H is a symmetric negative definite matrix and c is
a scalar that is sufficiently large to make h positive for the
entire polytope. Clearly, the relaxation function reaches its
maximum at (is 'centered on’) = xg. The function h(x)
in (21) may equivalently be expressed as

H _Hl'o — _ =T {7 = _
[xOTH ngonrc}xx [H; +C]z (22)
H 7H£ZZ0

—~ = 00
= [—xgH xngo} 0= {O c}
Thus, H can be chosen as any symmetric negative definite

matrix, provided we add the additional constraints that
h(z) > 0 at all the vertices of the polytope in question.

=7

h(z)

with
(23)

Remark: From the explanation above, it follows that it
is actually only H that should be negative definite. The
Schur complement of H is

st Heg — 2l H(H) ' Hzo =0
and thus H should be negative semi-definite. However, a
simple reformulation of (22) gives

hz)=z" [H+Cla=z" [(H+C,) +Cylz  (24)
Thus, we can 'move part of the constant c into H’, to make
H + C; 4 semi-definite. The non-negativity at the vertices

and the concavity of the relaxation function then ensures
that the relaxation is of the correct form.

5. RELAXING PWL SYSTEM STABILITY CRITERIA

For piecewise linear systems defined on polytopic conical
regions (with the vertex at the origin), we may relax
the LMI-type stability criteria without introducing the
auxiliary state. This follows since for such conical regions,
e; = 0 in 18, and the region is defined by E;x > 0. The
same LMI formulation as in (15) and (17) may therefore
be used, without introducing the auxiliary state. This has
been utilized previously in (ref. Lazar thesis?).

Remark: Actually, more general polyhedral regions may
be analyzed in the same way, provided each region can be
embedded inside (covered by) a polytopic cone with its
vertex at the origin.

5.1 A novel relaxation for PWL systems defined on
polytopic cones

In this subsection, a novel relaxation will be proposed, for
a pointed polytopic conical region with its vertex at the
origin. Such regions cannot cover an entire halfspace. Thus,
there must exist a ray r,, originating at the origin, that
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is inside the polytopic cone, such that any ray originating
at the origin which is orthogonal to 7, is fully outside the
polytopic cone. Let R, = {rp;},1 < j < n, + 1 denote a
set of mutually orthogonal rays that are also orthogonal
to T

From the halfplane description of the polytopic cone,
E;xz > 0, the extreme rays 7.; can be identified. These
are the rays where n, — 1 of the inequalities F;x > 0
are fulfilled with equality. Let R, = {re;} be the set of
extreme rays defining the polytopic conical region. Let v,,
be a point on r,,, vp; be a point on r,;, and ve; be a point
on rej. We may then define a relaxation function for the
polytopic cone as follows:

f(z)=2TFx (25)
V! Fop, >0 (26)
v Fvej > 0Vre; € Re (27)
v Fup; < 0Vry; € Ry (28)

Any F' which fulfils the above constraints define a valid
relaxation function. The constraints require F' to have one
positive eigenvalue, and n, — 1 negative eigenvalues, and
ensure that f(z) is positive for any x inside the polytopic
cone.

However, no quadratic relaxation can help for a region that
covers an entire halfspace. Even if the origin is not inside
the region, the relaxation function has to be positive along
any ray starting at the origin and entering the halfspace
region considered. Noting that any quadratic relaxation
has to be symmetric about the origin, we find that the
requirement that the relaxation function is positive within
the polytopic cone then means that the relaxation function
is positive everywhere. For a region that covers an entire
halfspace, the relaxations therefore make the stability
criteria harder to fulfill. For regions that cover an entire
halfspace (or a large part thereof), it would therefore be
desirable to be able to introduce additional degrees of
freedom in the Lyapunov function optimization. This is
addressed in the next subsection.

5.2 Sub-partitioning regions to introduce additional degrees
of freedom in the Lyapunov function design

There is no fundamental reason why the partition of
the state space used for the definition of the Lyapunov
function should be identical to the partition resulting from
the regions of validity of the different system dynamics.
While it would seem reasonable to change the Lyapunov
function where the system dynamics changes, there is
no fundamental reason not to use a finer partitioning
of the state space for Lyapunov function design than
the partition resulting from the regions for the system
dynamics. Obviously, the essence is that the Lyapunov
function is positive (except at the origin), and has to
decrease along the system trajectory in order to guarantee
stability. There are (at least) two approaches to such finer
partitioning of the state space:

(1) Partitioning based on the system dynamics, such that
all states within a new sub-partition use the same
number of timesteps to leave the original partition
and enter the same of the other regions. To illustrate,
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we may denote by Psi43 the new sub-partitioned
region which is within the original partition 1, and
stays within original partition 1 until the states after
4 timesteps enter original partition 3.

A more arbitrary approach, where the sub-partitioning
of the original partitions have no clear connection to
system dynamics.

(2)

Both approaches will be illustrated in the examples in the
next section.

6. EXAMPLES OF PWQ LYAPUNOV FUNCTIONS
USING RELAXED LMI CONDITIONS

The approach described above will next be illustrated on a
few examples. In all examples, the calculations have been
performed using Matlab and YALMIP Léfberg (2004),
with the SeDuMi optimization solver.

6.1 Example 1

Consider first the following simple one-state example,
which is included primarily to illustrate how the LMI
relaxations work. The system is open loop unstable

Trpy1 = L1lxg + ug (29)
and the input is constrained —2 < uy < 2. In Hovd et al.
(2009) this example was used to design an MPC controller,
resulting in closed loop dynamics which can be described

using three regions in the state space. The local closed loop
dynamics for each of these regions are:

Ay = 0'%11 8} for Ry = {~1.836 < a;, < 1.836}
- 1.1 =2

A=t ] for By = {1.836 < a, < 19.75}

- 112

A=Y 1] for Ry = {—19.75 < 2, < —1.836)

Using LMI approach to find a PWQ Lyapunov function,
we find that the system is stable in closed loop, although
both region 1 and region 2 have unstable local dynamics.
Simple inspection will show that the closed loop is stable
for —20 < = < 20. The LMI approach can prove stability
for nearly the same region of the state space - numerical
problems occur when including states very close to £20.

The importance of relaxing the LMI stability criteria can
be illustrated by Fig. 1. The figure shows the relaxed
and unrelaxed solutions to the Lyapunov function stability
criterion for states originating in region 1 and staying in
region 1 at the next timestep. This corresponds to states
3.487 < x < 19.75. It can be observed that although the
unrelaxed solution fulfills the criterion (11) for the relevant
part of the state space, the LMI condition (13) fails to hold
globally. In contrast, the relaxed solution fulfills (17) over
the entire state space

6.2 FExample 2

This example is a slight modification of an example in
Hovd and Braatz (2001). The system is described by
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x 10
1 T T T T
\ Relaxed solution
0.8} \ — — — Unrelaxed solution |
\
0.6 \
\
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\
02f !

-10 -5 0 5 10 15 20

Fig. 1. Relaxed and unrelaxed Lyapunov function stability
criteria for Example 1 (the LHS of (17) and (13),
respectively), for states originating in region 1 and
staying in region 1. The criteria are here evaluated
for = [z 1]7. The unrelaxed solution holds for the
required region 3.487 < z < 19.75, while the relaxed
solution holds globally.

Tht1 = Axy, + Buy,
yr = Cag
with
2 —1.45 0.35

1 0 0
0 1 0

1
0
0

A= ; B= ; C=[-102]

In Hovd and Olaru (2010) this example is used for the
design of an approximate explicit MPC controller. The
input constraints are given by —2 < u; < 2, whereas the
output constraints are —1 < y; < 1. Further information
about the MPC formulation can be found in Hovd and
Olaru (2010).

The initial MPC design results in 199 regions. Through
merging regions with identical affine dynamics, the number
of regions can be reduced to 147. After this merging, there
are 1478 transitions between regions (including ’transi-
tions’ where ¢ = j). Using the LMI approach with the
traditional LMI relaxations fails for this case. The LMI
constraint (15) fails for 86 regions and the constraint (17)
fails for 1353 transitions between regions. It would seem
that the LMI analysis is of no help for this example,
both for proving stability and for identifying regions of
the state space where the control needs to be improved,
given that the LMI conditions fail for such a high number
of regions and transitions between regions. This result
shows the limitations of the stability analysis applied. We
therefore attempt to find a PWQ Lyapunov function using
the alternative relaxation formulation. Of the 147 regions
and 1478 transitions between regions, the relaxed solution
now fails to fulfill the criteria only for 4 transitions between
regions. Closer inspection shows that these ’transitions’
actually represents the state staying in the same region,
i.e., ’transitions’ where i = j. Inspecting the four regions
in question, it turns out that each of them has a fixed
point inside the region, and thus the system is indeed
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not asymptotically stable. This happens even though the
input in within each region corresponds to linear interpola-
tion between the inputs at the vertices of the (simplicial)
region, and the input at each vertex being the optimal
input for an MPC formulation with guaranteed closed
loop stability. With the new relaxations attention is thus
effectively focused on the regions where the control was
inadequate.

Having identified four regions where the dynamics do not
fulfill the stability criteria, the MPC design is refined in
these regions. This results in a total of 155 regions and
1768 transitions between regions. With this refined MPC
design, the closed loop system is found to be stable.

6.3 Example 3.

A PWL system is defined by

Alz{Q_lkl _(lgkﬂ;xlzo
AFB _(1+181+k2)};x1<0

This system may be stable or unstable depending on the
values of the parameters ki and ko. Here, the parameter
values in Table 1 will be considered.

Table 1. Parameter sets for example 3.
Parameter set kq ko

1 1.2 -0.8

2 0.75 -0.4

3 1.0 -0.7

4 1.5 -0.98

5 0.5 -1.0

6 1.2 -1.2

7 1.5 -0.82

8 2.5 -0.8

It is easily verified by simulation that set 1-4 result
in stable dynamics, whereas sets 5-8 result in unstable
dynamics. However, we are seeking a Lyapunov function
based proof of stability. Applying the LMI techniques for
this purpose is unsuccessful, and the relaxations do not
help - as should be expected from the discussion above -
since each of the regions are half-spaces.

We therefore attempt sub-partitioning the original regions,
as proposed in Section 5.2. Both approaches work well,
proving stability for the stable cases, and failing to do so
for the unstable cases. Depending on system dynamics,
the first approach can result in a high number of sub-
partitioned regions, unless one only defines new sub-
partitions for parts of the original partition where the
state leaves the original partition after a fixed maximum
number of timesteps. For the second approach, the regions
were sub-divided such that each new region had the same
angle at its vertex at the origin. For this case some
‘trial-and-error’ was necessary in order to find how many
new sub-partitions were required to be able to prove
stability. For the stable cases, stability was proven when
sub-partitioning the original regions into 2-8 new regions,
whereas no stabilizing PW(Q Lyapunov function could be
found (as expected) for any of the unstable cases, even
after subdividing each original region into 64 subregions.
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Remark. Whereas the LMI-based approach is effective in
finding PWQ Lyapunov functions (when they exist), it is
not suitable for proving instability. There will always be
the possibility that a Lyapunov function could be found
with finer sub-partitioning of the regions, or by considering
a different class of Lyapunov functions, like e.g., the
polytopic Lyapunov functions studied in Blanchini and
Miani (2008). Shortcut methods that can prove instability
can therefore be useful. The most basic such test, would
be to check that the state cannot 'blow up’ while staying
within a single region of the state space. For PWL systems
defined on conical regions, such as in this example, a real-
valued eigenvalue A; > 1 combined with an eigenvector
that is inside the same conical region is such a simple proof
of instability. Thus, we can easily conclude that that Case
5 is unstable for this example.

6.4 Example 4.

We here consider Example 3.2 in Ahmadi and Parrilo
(2008). The system is piecewise linear and given by
Aqxy, for xZka >0

x =
k1 {Aka for x{Hmk <0

where A1 = )\eQAlc, Ay = %e%g, A > 1is a scaling factor,
A5 = {
10

an | |
m=lo )

We see that the state space is divided into four conical
regions (which pairwise share the same dynamics), along
the lines 1 — z9 = 0 and z7 + 29 0. In Ahmadi
and Parrilo (2008), this example is used to illustrate
the use of non-monotone Lyapunov functions, and it was
found that the system could be proven stable (using
both non-monotone Lyapunov functions with a "horizon’
of 2, and using unrelaxed PWQ Lyapunov functions)
for A € [1,1.221). We sub-partition the original regions
into 3 sub-regions, corresponding to parts of the original
regions for which the state leaves the region after 1, 2, or
more than 2 timesteps. The relaxations for PWL systems
are then used for the sub-partitioned system (both the
traditional and the new relaxations give the same result),
and it is found that the system can be proven stable
for A € [1,1.587). Although this quite nicely illustrates
that sub-dividing regions and relaxing the LMI criteria
are powerful tools, we do not claim that this constitutes
a fair comparison between the methods studied here and
the non-monotone Lyapunov function approach of Ahmadi
and Parrilo (2008). It is quite conceivable that the proven
region of stability in Ahmadi and Parrilo (2008) could
be increased by allowing a longer ’horizon’ over which
decrease of the Lyapunov function is imposed.

(30)
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6.5 Example 5.

A 3-state PWL system is addressed, in which the state
space is partitioned into 8 polytopic conical regions along
the coordinate system axes of the state space. The model
is given in the Appendix. With the new relaxations the
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system is proven stable, whereas no Lyapunov function APPENDIX. THE MODEL IN EXAMPLE 5.
is found using the traditional relaxations (with the same
partitioning of the state space). Testing a number of Table Al. The model used in Example 5.
examples, we find several 3-state examples for which the Region | Constraints A-matrix
new relaxations prove stability whereas the traditional x3 <0 —0.94 0.22 0.36
relaxations fail to do so. In no case have we found the 1 To <0 A = 0.48 0.12 0.18]
opposite to be true. 1 <0 0.40 0.04 0.30
x3 >0 0.62 —0.36 0.22
2 x2 <0 A; = | —0.24 —0.24 0.70
7. CONCLUSIONS 7 <0 —0.46 —0.58 —0.90]
x3 <0 —0.82 0.66 —0.22
Novel relaxations for LMI-based stability verification of 3 Ty > 0 As = | —0.50 0.68 —0.94
piecewise affine and piecewise linear systems have been 2, <0 —0.92 0.94 —0.74
proposed. A simple way of sub-dividing the original state 73 >0 052 —0.08 0.56
space partitions to obtain additional degrees of freedom 4 Ty > 0 Ay = | —0.52  0.78 —0.32
in the optimization formulation is also proposed. The idea 2, <0 —0.92 0.04 —0.46
of further subdividing the partitions has previously been 23 <0 0.82 028 0.42
proposed in Ohta and Yokohama (2010), but the procedure 5 Zy < 0 As = 050 0.64 0'301
for chosmg where to position the additional hyperplanes 21 >0 0.16 0.64 —0.14
is much simpler here. 23 >0 022 —0.80 —1.007
The usefulness of the proposed tools have been demon- 6 z2 <0 Ag=|—-086 0.74 0.80
strated by simulations. 1 >0 L —0.48 0.78 0.74 ]
x3 <0 [ 0.94 —0.64 —0.447
7 x9 >0 A; = 0.98 —0.72 —0.36
REFERENCES 21 >0 | —0.36 0.34 0.02]
A. A. Ahmadi and P. A. Parrilo. Non-monotonic lya- x3 >0 —0.32 0.68 0.58
punov functions for stability of discrete time nonlinear 8 z2 >0 Ag = 0.54 —0.90 —0.36
and switched systems. In Conference on Decision and 21 >0 L 072 0.92 —0.22 |

Control, Cancun, Mexico, 2008.

F. Blanchini and S. Miani. Set Theoretic Methods in
Control. Birkhauser, 2008.

G. Feng. Stability analysis of piecewise discrete-time linear
systems. IEEE Trans. Autom. Contr., 47:1108-1112,
2002.

G. Ferrari-Trecate, F. A. Cuzzola, D. Mignone, and
M. Morari. Analysis of discrete-time piecewise affine
and hybrid systems. Automatica, 38:2139-2146, 2002.

M. Hovd and R. D. Braatz. On the use of soft constraints
in mpc controllers for plants with inverse response. In
Preprints Dycops, pages 295-300, Jejudo Island, Korea,
June 2001.

M. Hovd and S. Olaru. Piecewise quadratic lyapunov func-
tions for stability verification of approximate explicit
mpc. In Submitted to the IEEE Multi-Conference on
Systems and Control, Yokohama, Japan, 2010.

M. Hovd, F. Scibilia, J. M. Maciejowski, and S. Olaru.
Verifying stability of approximate explicit mpc. In
Conference on Decision and Control, Shanghai, China,
20009.

M. Johansson and A. Rantzer. Computation of piecewise
quadratic lyapunov functions for hybrid systems. IEFEE
Transactions on Automatic Control, 43:555-559, 1998.

J. Lofberg.  Yalmip : A toolbox for modeling and
optimization in MATLAB. 1In Proceedings of the
CACSD Conference, Taipei, Taiwan, 2004. URL
http://control.ee.ethz.ch/ joloef/yalmip.php.

Y. Ohta and H. Yokohama. Stability analysis of uncertain
piecewise linear systems using piecewise quadratic lya-
punov functions. In IEEE Multi-Conference on Systems
and Control, pages 2112-2117, 2010.

A. Rantzer and M. Johansson. Piecewise linear quadratic
optimal control. IEEE Transactions on Automatic
Control, 45:629-637, 2000.

34



Preprints of the NIL workshop
Jan 10-15, 2011, Bratislava, Slovakia Hovd, M., Olaru, S.

Comments — Remarks

35






Preprints of the NIL workshop

Jan 10-15, 2011, Bratislava, Slovakia

Patchy approximate explicit model
predictive control

Hoai Nam Nguyen* Sorin Olaru** Morten Hovd ***

* Automatic Control Department, Supelec, 8 rue Joliot Curie, 91192
France
** Automatic Control Department, Supelec, 8 rue Joliot Curie, 91192
France
*** Engineering Cybernetics Department, Norwegian University of
Science and Technology, N-7491 Trondheim, Norway

Abstract: Multiparametric quadratic programming (MPQP) can be used to construct an off-
line solution to constrained linear model predictive control. The result is a piecewise linear
state feedback defined over polyhedral cells of the state space. However, with high dimensional
problems, coding and implementation of this solution may be very burdensome for the available
hardware, due to the high number of polyhedral cells in the state space partition. In this paper
we provide an algorithm to find an approximate solution to MPQP, which is obtained by linear
interpolation of the exact solution at the vertices of a feasible set and the solution of linear
quadratic(LQ) problem. Based on a patchy control technique, we assure robust closed loop
stability in the presence of additive measurement noise despite the presence of discontinuities
at the switch between the regions in the state space partition.

Keywords: Model predictive control, Multiparametric programming, Smooth patchy Lyapunov
function, Feasible set, Piecewise-linear Lyapunov function.

Nguyen, H. N., Olaru, S., Hovd, M.

1. INTRODUCTION

Constrained linear model predictive control(MPC) is by
now a well-known technique Mayne et al. (2000). This is
an optimal control approach, which uses the model of the
plant to predict the future evolution over a finite horizon.
At the time instant ¢, using this prediction and the current
state, an open loop optimal control problem (typically
based on quadratic programming(QP)) is solved. Then,
only the first element of the optimal control sequence
is applied to the plant. At the time instant ¢ + 1 the
whole procedure is repeated with a new state vector
supposed to be available from measurements or estimation.
The implementation of MPC technique requires powerful
on-line quadratic programming solvers, which may be
very burdensome and represented an obstacle to wider
application of MPC.

In Bemporad et al. (2002) it was shown that the con-
strained linear MPC is equivalent to a multiparametric
quadratic program (MPQP), when the state plays the role
of a vector of parameters for the optimization problem.
The solution is a piecewise affine function of the state over
a polyhedral partition of the state space and the MPC
computation effort is moved off-line Olaru and Dumur
(2005). However for high dimensional problems the explicit
solution may be very complex due to the high number of
polyhedral cells.

* This paper is based on work presented at the 2010 International
Conference on Control, Automation and Systems 2010, in KINTEX,
Gyeonggi-do, Korea. Original paper Copyright ©IEEE. This version
is intended for members of the NIL project groups.
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Several solutions have been proposed in the literature for
the complexity reduction of explicit formulations leading
to simpler polyhedral partition of the state space. In Jo-
hansen and Grancharova (2003) the state space partition
in orthogonal hypercubes has been suggested, the subop-
timal solution being computed as piecewise affine control
law which minimizes the loss in the cost function over
the hypercube cell. In the interior of each hypercube an
approximate solution is obtained based on these data. If
necessary, the hypercubes may be further partitioned into
smaller hypercubes for achieving the desired accuracy.

A different approach is described in Bemporad and Filippi
(2003) where an approximate solution to MPQP is found
by relaxing the first order Karush-Kuhn-Tucker optimal-
ity conditions by some parameter e. This represents a
tuning parameter for the complexity of the controller.
In Bemporad and Filippi (2006) the authors propose a
method, which splits the state space into simplices, the
optimal solution being computed only at the vertices of
each simplex and a linear interpolation used inside each
simplicial cell.

A variable structure linear state feedback controller, given
in terms of the controls at the vertices of the polyhedral
state constraint set, was presented in Gutman and Cwikel
(1986). In Scibilia et al. (2009), the authors decompose a
feasible set into two regions: the region where the linear
quadratic regulator is feasible and the rest of the feasible
set. The latter region is partitioned in simplices. Inside
each simplex, the approximate explicit solution is obtained
by linear interpolation of the exact solution at the vertices.
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In Rossiter and Grieder (2005) an interpolation based
control scheme was introduced, the main idea being the
use two interpolations, the first one aims at diminishing
the loss of optimality while the second one assures closed
loop stability.

In this paper, we propose an alternative approach to
compute the approximate explicit solution. The main idea
is to unite two types of control laws. The first one is defined
over a partition of the feasible set into simplicial cones
and obtained by interpolating the exact solution at the
vertices. The second one is a linear quadratic regulator,
defined over a maximal invariant region. The overall result
is a patchy control.

This paper is organized as follows. Section 2 introduces ex-
plicit MPC concepts for discrete-time linear time-invariant
systems while in Section 3 an approximate solution is
introduced. A simplicial controller is given Section 3.1 with
an associated smooth patchy Lyapunov function described
in Section 3.2. Section 3.3 is dedicated to the problem of a
constructive patchy partition for robustness. The simula-
tion results are evaluated in Section 4 before drawing the
conclusions.

2. EXPLICIT MODEL PREDICTIVE CONTROL
2.1 Model predictive control

Consider the problem of regulating to the origin of
discrete-time linear time-invariant system

z(t+1) = Az(t) + Bu(t), (1)
where ¢ > 0 denote the current time, z(t) € R" is the
state, u(t) € R™ is the input, A € R"*™ and B € R™*"™.

Both the control u(t) and the state x(t) are subject to
polytopic constraints:
u(t) e U : U ={u|Hu < K,} )
z(t) € X : X ={z|Hyx < K;}
where the matrices H,, H, and the vectors K,, K, are

assumed to be constant with K, > 0, K, > 0 such that
the origin is contained in the interior of U and X.

vt >0

Assuming that z(t) is available for measurement, a typical
MPC algorithm solves the optimization problem
Va(z) = min J(u, z(t))
u=(Ut,...,Ut+ N—1)

3)

subject to a;; = x(t) and

Uy €U, k=0,...,N -1

xt+k|t EX7 k= 1,...,N

Teynpe € O

Tiippr)e = AToyppe + Bugyr, k=0,...,N —1
where the objective function is given generally in th form
of a finite horizon quadratic cost function:

J(u7.'1:(t)) = xz+N|tht+N|t+
N-1
+ > (@ g Quegnge + ulyy Rueyr)
k=0
In this formulation, N denote the prediction horizon, @
and R are weighting matrices, ¢ > 0, R > 0. It is assumed
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that the pair (A, B) is controllable and the pair (v/@, A)
is observable. The terminal cost P and terminal set (2
are classical ingredients for stability reinforcement Mayne
et al. (2000). Practically P is obtained as a solution of
Riccati equation:

ATPA—P—-ATPB(B"PB+R)™'B"PA+Q=0 (4)

At each time instant ¢ the optimal control sequence u
is computed, and only the first element of this sequence
u(t) = uy is applied as control action to the plant. At the
next time instant, the whole procedure is repeated with
new state measurement.

2.2 Terminal set and feasible set

This section provides effective construction procedures for
the terminal set € and the feasible set X; depending on
the prediction horizon N.

It is well-known that, Q has to be an invariant region
with respect to the system dynamics in closed loop with
the linear quadratic regulator. This property assures the
feasibility at all time Mayne et al. (2000). The feedback
gain associated with this region is defined by:

K=—-(B"PB+R)"'B"PA (5)

Denoting A. = A+ BK, the terminal set is define as

O={reX : Alze X,KAlx €Ut =0,...,00} (6)
The following theorem Gilbert and Tan (1991) gives simple
conditions for finite determination of €.

Theorem 1. If the following assumptions hold: i) A. is
asymptotic stable, ii) X is bounded, iii) X has the origin
as an interior point, then € is finitely determined.

Under this assumption the constructive procedure is used
to compute the terminal set, as follows.

Procedure 1: Terminal set computation.

(1) Set t =0, H, = H,, K; = K, and X; = X
(2) Set X! = X,
(3) Compute a polytope

X7 = {z|HiAcx < K} N {z|H, KA.z < K, }
(4) Set X; as an intersection:

X, = X} nX}
(5) If X; = X} then stop and set ) = X;. Else continue
(6) Set t = t+1, go to step 2

Finite determination properties Gilbert and Tan (1991)
assure that the above procedure terminates in finite time
and leads to the terminal set in form of a polytope:

Q={z:H,x <K,}

Depending on the length of the prediction horizon N,
the feasible set is a set of states, which can be steered
to the terminal set © in IV steps. It is apparent that,
the number of constraints in the standard form of the
optimization problem (3) will increase linearly with N and
the complexity of the feasible set does not have an analytic
dependence on N, thus placing a practical limitation on
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the choice of V. The simplest way to determine the feasible
set is to reformulate MPC constraints (3) in terms of the
input sequence u and current state x(t):

Gu+Ex<W (7)

where G and E are matrices and W is a vector of suitable
dimensions. The linear inequalities (7) describe a polytope
in the space R"*™ . Then the feasible set X ¢ is obtained
as the orthogonal projection of this polytope onto the state
space.

Fig. 1. Terminal set and feasible set

2.8 Explicit solution

With a simple change of coordinates z = u + H 'FTz
quadratic problem (3) can by reformulated as
1

Vz(x) = min §ZTHZ (8)
subject to Gz < W + Sz
where the matrices G and S can be found after simple
matrix manipulation (see Bemporad et al. (2002) for
details).

The current state vector x can be viewed as a vector of pa-
rameters, the reformulated problem can be considered as a
multiparametric quadratic problem, since it is a quadratic
problem in z parameterized by x. In parametric program-
ming, the objective is to define the optimal solution z as
an explicit function of the vector of parameters x. For the
problem (8), the solution z has the following properties
Bemporad et al. (2002).

Theorem 2. Consider the problem (8). The optimal solu-
tion z (and u = z — H-'FTx) is a continuous piecewise
affine function of state x and V,(z) is a convex and con-
tinuous piecewise quadratic function. O

In the sequel any inequality constraint is said to be active
for some x if it holds with equality at the optimum.

The following theorem gives an explicit representation of
the optimal piecewise affine function of state.
Theorem 3. Consider the problem (8) and arbitrary fixed

set of active constraints. Denote G, W ans S the sub-
matrices containing the corresponding rows of G, S and

W. If the rows of G are linearly independent, the optimal
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solution and associated Lagrange multipliers are given by
the affine functions:
z=Lx+g
A=Liz+q (10)
where o o
L =H'GT"(GH'G")S,
L, = —(GH'GT)S,
g =H 'GT(GH'GTW,
g1 = —(éH_léT)W.

(11)

In addition, the critical region CR € Xy, where this
solution is optimal is described by a polyhedron set

CR={xze Xs| G(Lx +g) < W + S«, 12

Liz + g1 > 0} (12)
One can find in the literature Bemporad et al. (2002)
effective procedures for the partition of the feasible set
Xy in critical regions as in (12). These regions have zero
measure intersection and the union covers the feasible
region X;. The same reference Bemporad et al. (2002)
provides solutions for degenerate cases when the linear
independence condition is violated.

Thus, multiparametric quadratic programming algorithm
gives the solution to MPC synthesis in the form of a
piecewise affine function of state over polyhedral cells. The
necessary on-line effort is reduced to identifying the region
containing the current state and evaluate the associated
affine feedback law.

3. APPROXIMATE EXPLICIT SOLUTION

The problem of reducing on-line computation, although
addressed by MPQP, is not yet solved. In fact, for a high
dimensional problem, the number of polyhedral cells may
increase exponentially. Coding and implementation of this
solution may be prohibitive for the available hardware.

Two types of local control laws will be used in this paper
in order to approximate the exact explicit solution for (3).
The first one is the LQ controller defined over the terminal
set. The second one is a simplicial controller defined over
the rest of the feasible set. Simplicial controller is used
to steer the state to a point where the LQ controller is
applicable. The control strategy results in a hybrid closed
loop system.

8.1 Simplicial controller

Given a polytope X € R", this polytope can be decom-
posed in a sequence of simplices X ]’E each formed by n
vertices xgk), xgk), . ,a:gc) and the origin. These simplices
have following properties:

e X J’f has nonempty interior,
o Int(X§NXjp)=0ifk#1,
e U X’)? = Xy,

Denote by X®*) = (gcgk) xék) x%’“)) the square ma-
trix defined by the vertices generating X]’f. Since X}“
has nonempty interior, X*) is invertible. Let U*) =

(ugk) ugk) uglk)) be the matrix defined by the optimal
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Fig. 2. Simplicial controller and vector field

control values at these vertices. For z € X J’? consider the
following linear gain K*:

KF=y®(xk)-1 (13)
Theorem 4. The piecewise linear control u = KFz is
feasible for all z € X;.

Proof

For all x € X there exists an index k such that x € X]’E

and x can be expressed by convex combination of vertices

of X )’E: =Y " a;z¥, which is equivalent with
z=X®q

and by consequence a = (X*))7lz . a > 0and 31 | o; <

1.

For feasibility one has to ensure Vo € X7 : H,u < K, and
zt = Az + Bu € Xy.

With simple manipulations

Hyu=H,U® X"y = H,UWq
i=1 =1
and

2T = Az + Bu

=AXM)a + BUWa =Y " a(Axf + Buf)
i=1

Vi =1,n we have Az¥+Bul € Xy, it follows that 2T € X}
0O

3.2 Smooth patchy Lyapunov function

In the sequel we call C-set a compact set, containing the
origin as an interior point.

The asymptotic stability of MPC guarantees that all
solutions starting in Xy with the simplicial controller will
reach the terminal set € in finite time. Inside the set ) the
LQ controller can b used to stabilize the system (1). That
means the resulting switch-controller makes the system
globally asymptotically stable in X . Indeed the origin is
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not locally attractive for Fillipov solutions. The reason
of this is that there exist an admissible measurement
noise, which makes every point on the boundary of Q an
equilibrium point of (1). So the system (1) with above
discontinuous controller is very sensitive to measurement
noise.

Patchy control Lyapunov functions (PCLFs) are, roughly
speaking, objects consisting of several local control Lya-
punov function (CLFs) the domain of which cover R"™
and have certain weak invariance properties Bressan and
Piccoli (2007), Goebel et al. (2009).

Definition: A smooth patchy Lyapunov function for the
system (1) and the feasible set X consists of a finite
countable set () € N and a collection of functions V, and

sets g, Q:ﬁ such that:

o O, and qu are families of nonempty open subsets of
Xy such that Q@ =, QU =U,cq Q:; and QT] C Qq,

(QT] denotes closure of Q; ),
e For each ¢, V; is a smooth function defined on a

neighborhood of Q, \ Uy, such that for all z €

Qg \ UpsqQ, there exists uq, such that Vi(z) is a
Lyapunov function.

We now return to the system (1) with the feasible set X
and display a smooth patchy control Lyapunov function
for it. For this purpose we need the following:

Definition: Given a C-set F', the Minkowski functional
Up(z) of F is defined as:

Up(z) =inf{\ > 0|z € A\F} (14)
The function ¥ (z) is convex, positively homogeneous of
order one. Furthermore it represents a norm for the C-set
if and only if F' is O-symmetric Blanchini (1999).

The Minkowski functional ¥ x, defined over X for system
(1) with the simplicial controller is positive definite and
the property Wx,(z") < Wy, (x) is guaranteed by the
asymptotic stability of MPC for any x € X ;. Furthermore,
the asymptotic stability of MPC also guarantees that,
there is no state-trajectory such that Wx, (v) is constant
on this trajectory.

Let Q = {1,2}, Q2 = Q, Oy = 790, Q1 = X; \ O, and
Qll = Xy \ Q9, where v is any positive number, v < 1.
For the simplicial controller one has ¥y, as a Lyapunov
function. In the same time, by the fact that the matrix
A + BK is stable, the associated dynamic is stable. In
conclusion, there exist Lyapunov functions for each region
Q4, ¢ = 1,2 taken independently.

With these elements, we construct a hybrid patchy con-
troller for the system (1) as follows:

o If 2(t) € Q) N X}“, then u(t) = K*x(t),
o If z(t) € {Q1 NQs ﬂX]’?, and u(t — 1) # Kz(t — 1)
then u(t) = K*z(t) else u(t) = Kz(t),
o If 2(t) € Oy, then u(t) = Kx(t)
It is clear that a switching from the simplicial controller

to the LQ controller can occur when z € €y, while a
switch from the LQ controller to the simplicial controller
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can occur when x € Qll This hysteresis-type controller
prevents chattering between two controllers and lead the
origin of the closed-loop system a global asymptotically
stable, robust to measurement noise.

3.8 Constructive patchy partition for robustness

This section addresses the problem of finding a suitable
~ for guaranteeing robustness in the presence of measure-
ment noise .

Consider the following discrete-time linear time-invariant
system

z(t +1) = Az(t) + Bu(t) + w(t) (15)
where w is a disturbance. Assume that the disturbance
is persistent, additive and belong to a bounded set W.
Assume also that the set W is a C-set. It is well known that
if K is a linear matrix gain such that matrix A, = A+ BK
is strictly stable, then the trajectory of the system

z(t+1) = Acx(t) + w(t) (16)
will converge to a minimal robustly positively invari-

ant(mRPI) set F(see Bertsekas and Rhodes (1971) for
details).

If the mRPI set F,, is contained in €2, then there exists
an unique, non-empty maximal robustly positively invari-
ant(MRPI) set Ow. This set O is a subset of the terminal
set 2 as a consequence of the fact that € is positively
invariant for the disturbance free dynamic.

The robust invariance property of the set O, assures that,
once the trajectory of the system enters O, it will remain
inside in this set and converge to the mRPI F,. Hence for
the hybrid patchy controller one can choose the scaling
factor v < 1 such that QIQ = vQ C Oy or directly

Qy = Oe.

Below, we present a constructive procedure for computing
the MRPI set O.

Procedure 2: MRPI set computation.
Sett=0 H,=H,, K; = K, and X; = X,
Set th = Xt7
Set D, = X; ©W and D, = U & KW, where &
denotes the Pontryagin difference,
Compute a polytope
X2 ={z:|HgppAx < Kgo})N{z: |HypKAcx < Kg}
where Hg,, K4, correspond to the H-representation
of D, and Hyg,, K4, give the H-representation of D,,
Set X; as an intersection:

X, =X} nXx?
If X; = X} then stop and set O, = X; else continue
Set t =t + 1 and go to step 2.

4. EXAMPLE
Consider the following discrete-time linear time-invariant
system:
e+ )= () ey (L)) a7
01 0.3
and the MPC problem with weighting matrices @ = I
and R = 1. The constraints are —10 < z(¢t) < 10,
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—5 < a9(t) <5and —1 < u(t) < 1. The prediction horizon
is N =13.

Figure 3 shows the state space partition and approximate
state trajectory of the system considered in the example,
using the patchy approximate explicit model predictive
control method. The number of regions is n, = 19. Note
that switch occurs when z(t) is strictly inside Q5.

Fig. 3. State space partition and patchy approximate state
trajectory. Number of regions n, = 19. Switch occurs
when z(¢) is strictly inside Q5

In comparison with this low complexity solution the Figure
4 shows the state space partition and approximate state
trajectory of the system, using the method in Scibilia et al.
(2009) thus showing the effectiveness of the complexity
reduction (the number of regions is n, = 25, and was
shown to be one of the best solution available in the
literature). The price to be paid by the gain in complexity
can be found in the performance deterioration. Indeed, in

Fig. 4. State space partition and approximate state tra-
jectory via Delaunay tessellation. Number of regions
n, =25

order to perform a complete comparison of complexity vs.
closed loop performance we present in Figure 5 the state
space partition and state trajectory of the system, using
the explicit model predictive control method. The number
of regions in this case is n, = 129 and is the exact solution
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corresponding to the optimal closed loop MPC trajectory.

Fig. 5. State space partition and state trajectory via
explicit model predictive control. Number of regions
np = 129

With these three control laws we present in Figure 6 the
results of the time-domain simulation. The three curves
correspond to the explicit MPC method, the patchy ap-
proximate explicit MPC method and the method based
on Delaunay tesselation Scibilia et al. (2009) respectively.
Note that in the case of the patchy approximate explicit
MPC, the control law is discontinuous but we do detain a
proof of closed loop stability. In the case of the approxi-
mate explicit MPC via Delaunay tessellation, the control
law is continuous but there is no a priori guarantee of
stability, this being achieved by adding more vertices and
subsequently increasing the complexity of the state space
partition, or, alternatively, by a posteriori analysis of the
resulting closed loop piecewise affine dynamic Hovd and
Olaru (2010).

——Position - Explicit
——Position - Patchy
= iti 1 12)

—— Velocity - Explicit

—— Control value - Explicit
—— Control value - Patchy
— Control value - Delaunay

0.5

0.5

Fig. 6. State and control trajectories of the system con-
sidered in the example. The brown one is obtained
by using the explicit MPC, the blue one is obtained
by using the patchy approximate explicit MPC and
the green one is obtained by using the approximate
explicit MPC with Delaunay tessellation
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5. CONCLUSION

This paper presented an alternative approach to compute
an approximate solution for MPC. Based on the patchy
technique, this approach united two types of controller:
the simplicial and the LQ.

We point out the trade of between the complexity of
the state space partition corresponding to the piecewise
affine control laws and the closed loop performances. The
explicit MPC controller is the reference from the perfor-
mance point of view but very often turns to be impossi-
bly complex for an effective on-line implementation. The
approximate solution based on the interpolation between
the feasible frontier and the frontier of the unconstrained
LQ region provides a good compromise between the com-
plexity and performance deterioration, these being related
principally to the global continuity of the control law.
By pushing the simplification to the ultimate bounds, we
proposed an approximate solution with virtually simplest
piecewise affine structure. It is worth noticing that the
stability guarantee associated with this control law despite
the presence of discontinuity, this same discontinuity being
at the origin of the possible loss of performances in closed
loop.

The simulation results show the effectiveness of the pro-
posed methods.
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Abstract: Piecewise affine (PWA) feedback control laws represent an important class of
controller for linear systems subject to linear constraints, with explicit Model Predictive Control
approaches being probably the most popular techniques to obtain such control laws. These
controllers are usually defined within a polyhedral set of initial states called the feasible set.
In the presence of model mismatch, when the controller designed using the nominal model is
applied to the real plant, the feasible set may lose its invariance property, resulting violation of
constraints. Since the controller is only designed over the feasible set, there is also the technical
problem that the control action is undefined if the state moves outside of the feasible set.
This work proposes a tool to analyze how uncertainty in the model affects the piecewise affine
control law computed using a nominal model. Given the linear system describing the plant and
the piecewise affine control law, the algorithm that is presented considers a polytopic model
uncertainty defined by the user and constructs the maximal robust feasible set, i.e. the largest
subset of the feasible set which is guaranteed to be feasible for any model in the family of models
described by the polytopic uncertainty.

Keywords: Polytopic model uncertainty, LTI systems, constraints, piecewise affine controllers.

1. INTRODUCTION

The concept of invariant sets has been shown to play
an important role in the control and analysis of con-
strained systems (Blanchini (1999), Kerrigan and Ma-
ciejowski (2000), Gilbert and Tan (1991)). Given an au-
tonomous dynamic system, a subset of the state space is
said to be positively invariant if it has the property that, if
it contains the system state at some time, then it will also
contain it at all future times. The presence of constraints
on the state variables defines an admissible set in the state
space, i.e., the set of states that satisfies the constraints at
the present time. Due to the system dynamics, in general,
not all the trajectories originating from admissible initial
states will remain in such a set. Conversely, for any initial
condition which belongs to a positively invariant subset of
the admissible domain, constraint violations are avoided
at future times.

Such characterizations have relevant control applications.
Consider the discrete-time linear time-invariant system

z(t+1) = Az (t) + Bu(t) (1)

* This work is a revised version of Scibilia et al. (2009a) (Copyright
© 2009 IEEE) and is, to a large extent, extracted from Scibilia
(2010). This version is intended for members of the NIL project
groups.
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y(t)=Cx(t), (2)

and a linear state feedback control law that regulates the
system to the origin

u(t) = Kz (t), (3)

where z € R” is the state vector, y € R™ is the output
vector and v € R" is the input vector, A € R™ ™,
B € R*™" C € R™*" K is a constant matrix gain.
Suppose that it is required that the closed-loop system
satisfies the output and input constraints

Umin S u (t) S Umaz (4)
Ymin <Y (t) < Ymaz> (5)

for all time instants ¢ > 0, where Ymin, Ymaz and Umin,
Umaz are constant vectors of suitable dimension. The
closed-loop system represents an autonomous system, and
the constraints can be easily rewritten as constraints on
the state variables, giving the admissible domain in the
state space. Then, starting from any initial condition inside
a positively invariant subset of the admissible domain will
guarantee convergence to the origin without violation of
the constraints.

Among the families of positively invariant sets, the poly-
hedral sets are of particular importance because of their
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flexibility and the fact that they are often natural ex-
pressions of physical constraints. The analysis of feasible
positively invariant sets for linear autonomous systems was
considered in Gilbert and Tan (1991), where the authors
provide a systematic way to construct polyhedral invariant
sets.

The concept of invariant sets extends naturally when a
control input is present: a set is said control invariant
if, for any initial state in the set, it is possible to keep
the trajectory inside the set by means of an admissible
feedback control law. Invariant sets are central in Model
Predictive Control (MPC), the predominant control ap-
proach for systems subject to constraints. When linear
models and linear constraints are considered, the stabil-
ity of the nominal closed-loop system can be guaranteed
by imposing positively invariant terminal set constraints
(Mayne et al. (2000)). The constrained optimization in
the MPC problem also characterizes the relative maximal
feasible control invariant set (feasible set for short), i.e. the
largest set of initial conditions such that the objective of
the control is obtained without violating the constraints.

Posing the MPC problem as a (multi-)parametric op-
timization problem, the controller can be given as an
explicitly defined continuous PWA function of the state
over the feasible set (Bemporad et al. (2002), Tgndel
et al. (2003)). Many solutions have also been proposed to
obtain PWA controllers as approximations of the optimal
explicit MPC controller when this is impractical (Scibilia
et al. (2009b), Bemporad and Filippi (2003), Rossiter and
Grieder (2005), Johansen and Grancharova (2003)). This
explains the importance of PWA feedback state laws in the
control of constrained linear systems. Indeed, in the fol-
lowing we will assume that the PWA controller considered
is the result of some explicit MPC approach, since this is
probably the most common way to obtain such controllers.
Linear models always involve approximations since all real
plants are, to some extent, nonlinear, time-varying and
distributed (Ikonen and Najim (2002), van den Boom
and Haverkamp (2000)). Thus, any controller obtained by
model-based design has to deal with the inherent model
uncertainty. Model errors can also be introduced when the
available model is of prohibitive order for real-time control
and model reduction techniques are adopted to obtain a
suitable low order model (Hovland et al. (2008), Johansen
(2003)). Naturally, the ultimate goal of the control is to
meet the performance requirements when implemented in
the real plant. In order to meet such a goal, the control
law should guarantee acceptable performance not only for
the nominal plant model but also for a family of models
which includes, by assumption, the real plant.

A popular paradigm used to cope with model uncertainty
is polytopic model uncertainty. Polytopic model uncer-
tainty constitutes a flexible and powerful tool to describe
families of models and therefore also model uncertainties,
and has been studied for many years (Boyd et al. (1994),
van den Boom and Haverkamp (2000)). Robustness to
model uncertainties in the MPC context has attracted
great attention in the literature (Mayne et al. (2000)).
An exhaustive review is out of the scope of this paper,
it is instead interesting to focus on some relevant pre-
vious work. Polytopic uncertainties have been taken ex-
plicitly into consideration in the control design, result-
ing in robust MPC formulations where the constrained
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optimization problem is modified to a min-max problem
which minimizes the worst-case value of the cost function,
where the worst-case is taken over the set of uncertain
models (Kothare et al. (1996), Kouvaritakis et al. (2000),
Cuzzola et al. (2002), Mayne et al. (2000)). The same
min-max approach has also been considered in explicit
MPC (de la Pefia et al. (2004), Grieder et al. (2003), Cy-
chowski et al. (2005)). However, the solutions obtained are
in general rather complex and conservative. In Pluymers
et al. (2005a) a simpler and less conservative approach
was proposed. The nominal MPC formulation is used, and
robustness is defined in terms of satisfaction of input and
output constraints for all possible uncertainty realization.
An explicit implementation based on this approach was
proposed in Rossiter et al. (2005).

Polytopic uncertainties are also useful in performance
analysis of nominal controller with respect to possible
model uncertainties. The work in Pluymers et al. (2005b)
considers linear systems controlled by linear feedback con-
trollers and subject to linear state and input constraints,
and proposes an algorithm for constructing the largest set
of initial condition which is guaranteed to be positively
invariant for all possible models in a given polytopic un-
certainty set.

This work proposes a tool to analyze how uncertainty on
the model affects explicit MPC solutions computed using
nominal models. In fact, it has been shown that MPC ap-
proaches possess a remarkable level of inherent robustness,
and stability and good performance are maintained for suf-
ficiently small uncertainties (Nicolao et al. (1996), Mayne
et al. (2000)). However, when constrains are present, it
is also necessary to ensure that the uncertainty does not
cause any violation of constraints. Given a nominal linear
system describing the plant and a PWA feedback control
law designed accordingly, the algorithm that is presented
considers a polytopic model uncertainty defined by the
user and constructs the mazimal robust feasible set . This
is the largest subset of the nominal feasible set which is
guaranteed to generate feasible state trajectories for any
model in the family of models described by the polytopic
uncertainty. Therefore, for any initial condition within
the maximal robust feasible set, the closed-loop system
is guaranteed to be feasibly stable.

This can be useful, for example, in the case of control
systems for plants which are time-varying due to wear, and
subject to state and input constraints. In this case, design-
ing a controller which accounts explicitly for the model
mismatch may be unnecessarily conservative, decreasing
the performance. Instead, a control design based on the
nominal model may represent a better choice, resorting
to the intrinsic robustness of the nominal controller to
deal with the slowly progressive plant variation. Then, the
results here presented can be used to investigate whether
the constraints may be violated over time.

2. BASIC NOTIONS
2.1 Polytopic Uncertainty

Consider a linear system of the form (1). Model uncer-
tainty can be expressed by saying that

1 This notation may be in contrast with some work in the literature
where a robust feasible set results from using a robust MPC design.



Preprints of the NIL workshop
Jan 10-15, 2011, Bratislava, Slovakia

Scibilia., F., Bitmead, R. R., Olaru, S., Hovd, M.

[A]B] € M, (6)

where M is a polytope in the parameter space defined by
its vertices

{[A<1>|B<1>} {A<L>|B<L>] } (7)

L is the number of vertices, as

M 2 conv ({ [A<1>|B<1>} [A<L>|B<L>] }) .8

The function conv () refers to the convex hull.
This is equivalent to say that there exist L non-negative

coefficients \;, [ =1, ..., L, ZZL:1 A; = 1, such that

[A|B] = ZL: A [A<”|B(l)} . (9)
=1

The case L = 1 corresponds to the case of no model
uncertainty.

Polytopic model uncertainty is a flexible tool to describe
uncertainties. Consider for example A € R**! and B = 0.
If the nominal value A = a,, is known to describe the real
value, a,, with an accuracy ¢: a, — ¢ < a, < a, + €, then
M = conv ({a, —€,a, +€}).

2.2 Definitions

Consider the polyhedral convex sets Y C R" and ) C R™
given as

U={ueR"|D,u<d,} (10)
Y={yeR"D,y<d,}. (11)

The input and output constraints are of the form
u(t) eld (12)
y(t) €V, (13)

for all ¢ > 0. We will assume also that the origin is an
interior point of the sets U and ).
Note that the constraints (4, 5) are special cases of (12-13).

Definition 1. (Feasible positive invariance) A positively
invariant set S for a system of the form (1-2) in closed-
loop with a particular feedback control law u(t) = ®(z(t))
is termed feasible with respect to constraints (12-13) if

Va(0) € S:u(t) eU, y(t) e Y fort >0 (14)

Definition 2. (Robustly feasible positive invariance) Given
a positively invariant set S for a system of the form (1-
2) in closed-loop with a particular feedback control law,
u(t) = ®(x(t)), feasible with respect to constraints (12-
13), a subset Sg C S is said to be robustly feasible for the
family of dynamics in an uncertainty set of form (8) if

vx(0) € Sk :u(t) €U, y(t) € Y for t > 0, V[A|B] € M(15)

The set Sg is maximal if it also contains all the other
robustly feasible sets.

Note that Definition 2 implies that for all z(0) € Sg C S,
the state evolution z(t), for all ¢ > 0, is contained within
S for any time invariant [A|B] € M.
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3. PROBLEM FORMULATION

Consider the problem of regulating to the origin a plant
with a given nominal model of the form (1-2), such that
constraints like (12-13) are satisfied. Assuming that the
state is available for measurement, the regulation problem
is solved by the finite horizon MPC

N—1
min {J(u,x(t)) = llenllp + D =kl + ||Uk||2R} (16)
k=0
st. xo =z (1),

Tht1 = Az + Buy,

yr = Cxy, k=0,1,..,N

e €, k=1,2,...N (17)

up €U, k=0,1,..,N—1

TN € Q)

where: ||:UH?Q = 27Qux; x;, denotes the predicted state
vector at time ¢ + k obtained by applying the k first
elements of the input sequence u £ [ug, ..., ux_1]; N is the
prediction horizon; @ = 0 (positive semidefinite) and R >
0 (positive definite) are symmetric matrices corresponding
to weights on state and input; P is the terminal cost
matrix and zy € ) the terminal constraint, which are
defined to guarantee stability (Mayne et al. (2000)). The
matrix P > 0 is the solution of the algebraic Riccati
equation resulting from the corresponding unconstrained
LQR problem. The terminal set €2 is chosen to be feasible
and positively invariant for the closed-loop system with
this LQR.

The MPC will regulate the system to the origin for all the
initial conditions contained in the feasible set

Xr = {z € R"|3 u satisfying (17)}. (18)
Note that Xr is a convex polyhedron due to the nature
of the constraints. The feasible set is positively invariant
with respect to the closed-loop system, i.e. for any initial
state contained in the feasible set, the state evolution of
the closed-loop system is also contained in the feasible set
for all future times.

There are two ways to implement the constrained opti-
mization problem (16)-(17). The first is to formulate the
MPC as a quadratic program (QP) and solve it online at
each sampling time. Only the first element of the optimal
control sequence is applied to the system, and at the next
time step, the computation is repeated starting from the
new state and over the shifted horizon. The second way
is to formulate the MPC as a multi-parametric QP (mp-
QP) which can be solved offline. In this case, the optimal
control is given as an explicitly defined continuous piece-
wise affine (PWA) function depending on the current state,
and defined over Xr. The online computation reduces to
the simple evaluation of the PWA function. For the cases
where the explicit optimal PWA controller is so complex as
to be impractical, several approaches have been proposed
to obtain approximate continuous PWA controllers. One
of such approaches is presented in Scibilia et al. (2009b),
where also details about how to obtain the QP and the
mp-QP formulations can be found.

The following considers a continuous PWA feedback con-
trol law

u(x) = Ljxz +g;, Vo e CRy, (19)
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defined over the partition of the feasible set
Xp= |J CR

j=1l...n,

(20)

where P, = {CRy,...,CR,_} is the collection of polytopic
disjoint regions into which X'z is partitioned.

The controller (19) can represent either the optimal MPC
solution or any suitable approximation thereof.

Apart from the natural assumption that the uncertainty
set M contains both the nominal model and the real
model, we will make the following assumptions.

A1l Assume that there exists a subset X}, C Xz contain-
ing the origin, in which the controller (19) asymptot-
ically stabilizes the system (1) for any time-invariant
[A|B] € M.

A2 Assume that for all initial states zo € X, for any
[A|B] € M, if the closed-loop trajectory remains
inside Ap for all future time, then it converges to
the origin asymptotically.

Then, the problem tackled is as follows:

Given a controller of the form (19) computed for a
nominal system of the form (1-2). Given an uncer-
tainty set M of the form (6). Find the mazimal robust
feasible set, i.e. the set of initial conditions Xrr C Xp
such that for any possible time-invariant [A|B] € M,
the closed-loop system remains feasible at all times.

Assumption Al guarantees that Xpgr will not be an
empty set. This assumption is easy to confirm, e.g. the
results in Pluymers et al. (2005b) can be used to find a
robust positively invariant polyhedral set for the closed-
loop system with the LQR.

Assumption A2 is needed to exclude that some system
dynamics in the uncertainty set can lead to limit cycles or
chaotic behavior in the feasible set. This assumption can
be checked by means of a radially unbounded Lyapunov
function (possibly dependent on the dynamics). Finding
such a function may be difficult. A more immediate, but
also conservative, approach is to check that in each region
CR; € P, the following inequality holds for all the vertices
[ADBD] of M
1B g,

1= [AD + BOL]

2| > Yz € CR;. (21)

||| is a norm or the corresponding induced (matrix) norm,
depending on the argument. Due to convexity, (21) needs
to be checked only on the vertices of each C'R;.
Proposition 3. If condition (21) is satisfied for all regions
CR; € P, then the closed-loop evolutions satisfy

l@)] > [l=( + | Va(t) € X\ {0} (22)

for any system dynamics in the uncertainty set M.

Proof. Inside each region CR; € P,, the closed-loop
system is an affine system of the form

z(t+1)=D;2(t) + ¢; (23)

where ®; = A+ BL; and ¢; = Bg;. Then, using (23) in
(22) the inequality can be written as

@I > 1®52() + &4 (24)
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The triangle inequality implies that

1®52(8) + @51l < [Pz + llesll (25)
Thus, requiring that
[e@)1 > [®;2()] + [l (26)
implies that also (24) is satisfied.
By a property of the induced norm it is
[@2@)]] < [[@;l[[l@)] ¥ 2(t) (27)
Thus, if
2@ > 125 [l + [l (28)

is satisfied then also (24) is satisfied. So it can be finally
seen that if the inequality

K2l

@l > — ==
1— @]

(29)

holds, then [|z(¢)|| > |lz(t + 1)||-
4. ALGORITHM

This approach follows a simple idea: remove from the
feasible set all the initial states which, for any of the
uncertain dynamics, lead to an infeasible closed-loop tra-
jectory. Uncertain dynamics here means that the system
is described by some time-invariant dynamics contained
in the uncertainty set (8). Due to linearity, we need to
consider only the vertices of the uncertainty set, which
corresponds to considering the worst case dynamics. If the
feasible set is robust for the worst case system dynamics,
then it will be robust for all the system dynamics in the
uncertainty set.

The complication with control laws of the form (19) is that
the evolution of the closed-loop system changes depending
on where the current state is in the feasible set.

We can now consider how the algorithm explores the
feasible set by searching and removing all the initial states
that may lead to infeasibility. For each vertex [A(i) |B (i)] in
the uncertainty set M, the algorithm works in two phases.

In the first phase, each region CR; € P, forming the
partition (20) is moved one time step forward, according
to the control law associated with the region, to compute
the next time-step region. The next time-step region is
defined as follows.

Definition 4. (Successor set) The successor set of all states
which can be reached in one time step from R;, given
system dynamics [A|B], is defined as

suce (R;, [A|B]) =

{zt € R"|a" = (A+ BL;)z + Bg;, v € CR;},
Remark 5. The successor region can be computed simply

by applying the control at the vertices of the region and
taking the convex hull of the next time-step vertices.

(30)

This phase allows the identification of all the (sub)regions
in Xz that in one time step would lead to infeasibility
(Fig. 1). It allows also the formation of a map of reach-
ability, i.e. for each region CR; € P, to identify all the
regions in P, containing states from which it is possible
to reach the current region in one time step.
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Nominal Feasible Set
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Fig. 1. An example of nominal feasible set partitioned in
regions C'R;. In the close-up on the left, the next time-
step region is computed. In the close-up on the right
the subregion of the feasible set leading to infeasibility
is identified.

Propagation of the infeasibility

[ States non robustly feasible

Fig. 2. The subregion not robustly feasible identified in
Fig. 1 is propagated backwards in the feasible set,
finding all the initial states which would lead to
infeasibility.

Certainly, all the states in the (sub)regions that in one time
step would lead to infeasibility have to be removed from
the feasible set. However, this is clearly not enough, also
all the initial states whose closed-loop trajectory moves
through these (sub)regions need to be removed. This is
done in the second phase of the algorithm, with a mecha-
nism of propagation based on the following definition.
Definition 6. (Predecessor set) Given a region S C CR; €
Py, a region CRy, € P, (CR; and CR;, may coincide)
and system dynamics [A|B], all the states in CRy for
which the next time-step state is in S define the set (the
“predecessor” states)

pred (S,CRy, [A|B]) =

{¢ € CRy|(A+ BLy) x + Bgy € S} (31)
Remark 7. S and C Ry, can be represented as
S = {JZ € R"|Dsx < ds},
(32)

CRy = {33 ER" Dy w < dCRk} .

Then, we can compute the predecessor set as the intersec-
tion of a finite number of half-spaces

pred (S, CRy, [A|B]) = {2 € R"|Dprea < dprea} »
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where

D

d
— CR
Dpred* |:DS(A+)€BL]€

CRy,

ds — DsBgy,

R

Using definition 6, all the infeasible (sub)regions in Xr
identified during the first phase of the algorithm are
propagated backwards in the feasible set, according to the
map of reachability (Fig. 2).

The procedure based on these two phases can be formal-
ized as in the following algorithm. Initially the maximal
robust feasible set is initialized as the nominal feasible set.
Then, for each vertex of the polytopic uncertainty set the
two phases are iterated in sequence.

Algorithm:

Input: the nominal feasible set Xp; the nominal PWA
controller and the corresponding feasible set partition P,,;
the uncertainty set M.

Output: The maximal robust feasible set Xpr C Xp.

1. Initialize the robust feasible set as Xpr = XF;
2. For each [A®), BW] of M do
A. For each CR; € P, do
compute S; ; = succ (Rj N Xrg, [A(i) \B(i)} ), the
successor region for the remaining points in each
region CR; of the n, such regions comprising Xr;
define Z; j = S; j — Xrr N S;; and the union of
all these sets Z; = | i Zigs which represents the
set of infeasible states reachable in one step from
any point in Xpg for this [A®)|BO];
build the function rch; (CR;), that gives all the
regions containing states from which it is possible
to reach C'R; in one time step;
. For each CR, € P, do
compute P;, = pred (Zi, CR,, [A(i)|B(i)D N
XrR;
define P; = |, P;,», the admissible predecessor
set of Z;;
define P7¢" = rch; (P;) the set of all the regions
containing states which in one time step can reach
Pi;
replace Xpr = Xrg — Pi;
repeat
For each CRy, € Pr" do
compute P; , = pred (Pi,Rk, [A(i)|B(i)]) N
XFR;
replace P; = J, P x and Preh = rchy (P;);
replace Xpgr = Xpr — P;
until P; = 0

In general, Xrg is not robustly positively invariant. The
set Xrr has the property of containing all and only the
states in Xr which, when used as initial conditions, are
guaranteed to have feasible closed-loop trajectories for any
possible time-invariant dynamics in the uncertainty set.
An initial state x which is not in Xrr does not possess a
feasible closed-loop trajectory for all the possible system
dynamics. However, this does not mean that x cannot be
part of the feasible closed-loop trajectory starting from
some state in Xpp. (This is discussed further in Section
5).

On the other hand, requiring the positive invariance prop-
erty of Xrr would have been too conservative and un-
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necessary. In fact, it follows that any set with guaranteed
positive invariance despite model uncertainty is a subset
of Xrgr. This would unnecessarily limit the possible initial
conditions, since we are only interested in guaranteeing
that any closed-loop trajectory stays in the feasible set
X despite model uncertainty. Moreover, the algorithm
for constructing such a positively invariant set would be
much more computationally complex than that presented
here.

As can also be seen from the numerical examples in Section
5, in general Xpp is not a convex set, though it can be
expressed as a finite union of polytopes. This is expected
since the piecewise affine control law is a nonlinear con-
troller.

Correctness and convergence of the algorithm are proven
by the following theorems.

Theorem 8. The robust feasible set Xpr C Xz contains all
and only the initial states such that, for any [A|B] € M,
the closed-loop trajectory is feasible.

Proof. To prove the theorem, we show first that if a state
x € Xr has a closed-loop trajectory that moves outside
the feasible set for some [A|B] € M, then z ¢ Xpg. Since
[A|B] are inside the polytopic uncertainty set, they can be
expressed as a convex linear combination of the vertices of
M as in (9). Thus, there is at least a vertex [A(i)\B(i)],
1 € {1,...,L}, such that, when used as system dynamics,
causes the trajectory starting from x to exit the feasible
set, which means that x cannot be in Xrgr because it is
removed by the algorithm during iteration ¢ at step 2.

It remains to prove that if a state x € Xp has feasible
closed-loop trajectories for all [A|B] € M, then z €
Xrgr. Suppose by contradiction that © ¢ Xpg. Then
there exist some vertex of M such that the closed-loop
trajectory exits the feasible set, which contradicts the
assumption that the closed-loop trajectory is feasible for
all the dynamics in M. Thus x € Xrp.

Theorem 9. Given the assumptions in Section 3 hold, the
algorithm will terminate in a finite number of iterations
providing a non-empty robust feasible set Xpr C Xp.

Proof. The algorithm iterates the two phases A and B
for L times, where L is a finite number. Thus, we have
to prove that phases A and B execute in finite time.
Since Xr is assumed partitioned into a finite number
of polytopes, it is immediate to see that phase A is
executed in finite time, and that at each iteration the
set of infeasible states Z; is described as the union of a
finite number of polytopic regions. During phase B, Z; is
propagated backwards in X' according to definition 6. P;
is initialized as the admissible predecessor set of Z;, and
then iteratively updated in the repeat-until loop within
the phase B. Since Z; is the union of a finite number
of polytopes, P; will also have this property for all the
iterations. At each iteration, the states comprising P; are
removed from the current Xrr, and once removed they
are not considered again in the future iterations. Thus,
since Xpg is bounded, eventually P; will be an empty set
comporting the termination of phase B.

Assumption Al guarantees that there exist a non-empty
region, containing the origin, that will never be in Z;, thus
Xrpr will not be empty, and since at all iterations P; is
the union of a finite number of polytopes, Xrr will be
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represented as union of polytopic regions.
Assumption A2 guarantees that for any initial state x €
Xrg, for any time-invariant [A|B] € M, the closed-loop
system is (feasibly) asymptotically stable.

5. NUMERICAL ILLUSTRATIONS

This section provides examples in order to illustrate the
results presented in the previous sections. Here an ex-
ample is also used to discuss how the presented analysis
approach can be related to existing robust control design
approaches.

5.1 Robust Feasibility for Optimal Explicit MPC

Consider the double integrator system with input and
state constraints. The model of the double integrator is
one of the most important in control applications, repre-
senting single-degree-of-freedom translational or rotational
motion. Thus it can be used to model for instance low-
friction, free rigid-body motion, such as single-axis space-
craft rotation and rotary crane motion (Rao and Bernstein
(2001)).

The double integrator is given by the continuous-time
system

& = Ax + Bu (33)
where € R?, y =z, u € R,
01 0
A:[OO},B:[l/m] (34)

The state components x1 and x5 can represent for instance
the position and velocity, respectively, of a body having
mass m. Considering a mass m = 1, and discretizing with
sampling time 0.3 we obtain the following discrete-time
double integrator system matrices

10.3 }

[i) o]

The system is subject to the input constraints —1 < u < 1,
and to the velocity constraints —3 < x5 < 3.

We consider the uncertainty set M defined by the follow-
ing vertices

0.04

0.3 (35)

10.3 0.06

AL [O 1 ] , B — {0.37} , (36)
10.3 0.04

A® = {0 1 ] B® = {0.25}' (37)

which correspond to the mass being known with an uncer-
tainty of € = 0.2, i.e. the real mass value is m =1+ ¢.

Consider a PWA state feedback controller which represents
the optimal solution of the MPC problem (16-17). The
weight matrices are chosen as Q = I, R = 1 and the
horizon is N = 5.

Fig. 3 shows the nominal feasible set, partitioned into 161
regions, and the portion of the nominal feasible set which
is robustly feasible for the uncertainty considered. An
initial state in the maximal robust feasible set is shown to
generate feasible trajectories for different system dynamics
within the uncertainty set. Contrarily, an initial state not
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Fig. 3. The upper graph shows the nominal feasible set and
its partition for the optimal explicit MPC. The graph
below shows the maximal robust feasible set within
the feasible set. The feasible state trajectories for
different system dynamics in the uncertainty set (blue
solid lines) all start from initial position/speed xg =

[—8 1.2]". The infeasible state trajectory (red dot
line) starts from initial position/speed zo = [—8 2]
and is given by the system dynamics [A(1)|B(1)].

in the maximal robust feasible set is shown to originate an
infeasible trajectory: when the trajectory exits the feasible
set, the control input is undefined.

Remark 10. Some of the feasible trajectories originating
inside Xrr may contain states which are not in the set
Xrgr (but still in Xp). This at first may seem nonsense,
but it is perfectly reasonable if one considers that the
real system is assumed uncertain but still time invariant:
a state & ¢ Xppr belonging to the closed-loop trajectory

starting from x € Xpp for certain system dynamics [A\B}
means that T is a robustly feasible initial condition for a
part of the uncertainty set including [A@}, but this is

not true for all the possible system dynamics and thus x
cannot be included in the set of allowed initial condition

XrR.
5.2 Robust Feasibility for Approxzimate Explicit MPC

Consider the same regulation problem of the previous sec-
tion, and a PWA state feedback controller which represents
the approximate MPC solution computed according to the
results in Scibilia et al. (2009b). This PWA controller is
optimal for the portion of the feasible set where constraints
are not active, on the remaining part of the feasible set the
optimal explicit MPC solution is replaced by an approx-
imation based on Delaunay tessellations and computed
from a finite number of samples of the exact solution.
Finer tessellations can be obtained so as to achieve desired
tolerance with the cost function approximation error. Note
that for this simple example no extra samples have been
introduced since both stability and good performance can
be easily proven by post processing the simplest PWA
solution.
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Fig. 4. The upper graph shows the nominal feasible set
and its partition for the approximate explicit MPC.
The graph below shows the maximal robust feasible
set within the nominal feasible set (emphasized in the
close-up) for a mass uncertainty € = 0.2. The feasible
state trajectories for different system dynamics in
the uncertainty set (blue solid lines) all start from
initial position/speed 2o = [~8 1.2]". The infeasible
state trajectory (red dot line) starts from initial
position/speed [9.52 — 2.7]T and is given by
the system dynamics [A(1)|B(1)].

Fig. 4 presents the feasible set with its partition into
41 regions and the maximal robust feasible set. As can
be noted from the close-up, only a minimal part of the
nominal feasible set is removed, almost the entire feasible
set remains feasible under the uncertainty considered.

It is interesting to note from the simulations that for the
case of the double integrator, the closed-loop system with
the approximate explicit MPC is characterized by more
robust feasibility to model uncertainty than the closed-
loop system with the optimal MPC. This can also be
seen from Fig. 5, where the mass uncertainty ¢ = 0.5 is
considered.

5.8 Relation to Existing Robust MPC Approaches

The approach proposed in this work represents a tool to
analyze the feasibility robustness of nominal explicit MPC
approaches (or in general, PWA feedback control laws)
with respect to model uncertainty. This section discusses
how this relates to a robust MPC design instead, illustrat-
ing it by a simple example.

The robust MPC design considered is the one presented in
Pluymers et al. (2005a) (Rossiter et al. (2005)), which is
based on a nominal MPC formulation where robustness
is defined in terms of satisfaction of input and output
constraints for all possible uncertainty realization. Given
the connection with the nominal MPC design, it is rea-
sonable to believe that this approach represents a better
comparison than other robust MPC approaches based on
min-max optimization problems.

The robust MPC can be summarized as follows. At each
time step, the algorithm minimizes a cost function like
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Fig. 5. The upper graph shows the nominal feasible set and
its partition for the approximate explicit MPC. The
graph below shows the maximal robust feasible set
within the nominal feasible set for a mass uncertainty
e = 0.5. The state trajectories for different system
dynamics in the uncertainty set all start from initial
position/speed 29 = [9 — 2.5]". Since z( is outside
the robust feasible set, only for some of the system dy-
namics the trajectories are feasible (blue solid lines).
There are system dynamics in the uncertainty set
which lead to infeasible trajectories (red dot line).

(16), where the nominal model is used for the future
predictions along the horizon. The minimization is subject
to constraints like (12-13) which, for robust constraints
handling, are applied to all possible predictions according
to the following k-step ahead prediction

k=1 k—1

Z H AlBjUj

§=01=j+1

k—1
Tp = H A;xo + (38)
=0

where [A;, B;] € M. A terminal constraint is imposed,
where the (robust) terminal set is chosen as the largest
set of initial condition which is guaranteed to be posi-
tively invariant for all possible models in M, assuming the
nominal LQR as controller (Pluymers et al. (2005b)). The
resulting optimization problem remarkably remains a QP,
even if, with respect to the QP resulting from the nominal
MPC, more complexity in terms of number of constraints is
needed in order to achieve robustness. A multi-parametric
QP solution to this robust MPC is proposed in Rossiter
et al. (2005). For more details the reader is referred to
Pluymers et al. (2005a) and Rossiter et al. (2005).

Note that this robust MPC design is able to deal with lin-
ear parameter varying (LPV) systems, while the approach
presented here considers uncertain linear parameter invari-
ant systems.

Consider the simple example used in Pluymers et al.
(2005a) which has polytopic uncertainty set defined by

10.1 0

AW = {0 1 ] BW = {1} (39)
10.2 0

A = [0 1 } , B® = [1.5} : (40)
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Fig. 6. The upper graph shows the feasible set for the
nominal MPC (yellow) and the feasible set for the
robust MPC (magenta) with depicted in its interior
the robust terminal set. The graph below shows
the feasible set for the nominal MPC (yellow), the
maximal robust feasible set (green) and the nominal
terminal set. In both graphs, several state trajectories
are plotted starting all from the initial state zg =

[8 — 5], for the same different system dynamics.

and the nominal model defined as

1 1
A= 5(A<1> +A®), B= §(B<1> +B®).  (41)
The system is subject to the input constraint —1 < u <1,
and to the state constraints [-10 — 10]7 < z < [10 10]7.
For this system, the robust MPC and the nominal MPC
are formulated both with weight matrices chosen as

1 0

0 0.01 (42)

o-|
and horizon N = 3.
Fig. 6 illustrates the feasible set resulting from the robust
MPC. The same figure also shows the portion of the
nominal feasible set which is robustly feasible with the
nominal MPC. Both robust and nominal MPC give the
same performance, as it can be qualitatively seen from
the closed-loop trajectories obtained for the same set of
different time-invarying dynamics.

It is not hard to identify regions of initial states for which
the nominal MPC would not be sufficient, while instead
the robust MPC would be. However, it is also immediate to
identify considerably larger regions of initial states which
would be satisfactorily controlled by the nominal MPC
and which are instead excluded by the feasible set with
the robust MPC. Then, assuming that the set of initial
conditions of interest is within the maximal robust feasible
set from the nominal MPC, the analysis method presented
in this paper can be used to decide that the nominal
controller is enough and therefore there is no need for
the supplementary complexity associated with the robust
control design. Of course, this does not exclude a number
of cases where the robust design is instead necessary.

], R=3.
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The analysis tool presented in this paper may be useful,
for example, in the practical case of a crane which has to
move objects whose weight may be within a given range,
satisfying constraints on position and speed. Reasonably,
the parameters of the crane model can be expected to
change for each possible weight (cf. Section 5.1). However,
once the object has been fixed, from the point of view of
the controller the model remains time invariant for the
whole operation (until a new object is considered). In
this case, a controller design based on a nominal model
(for example one which considers the average weight) may
be considered satisfactory, after the associated maximal
robust feasible set has guaranteed that constraints will not
be violated for any possible weight.

6. CONCLUSIONS

This work has proposed a tool for analyzing how uncer-
tainty in the real plant affects the nominal PWA feed-
back law, thereby providing the maximal subset of the
state space which contains safe initial conditions under
the model uncertainty considered. The maximal robust
feasible set thus obtained is, in general, non-convex. It
is not required to be robustly positive invariant, and is
computed in finite time. Moreover, any subset, and thus
any convex subset, still preserves the property of being
robustly feasible.

This result may be used to decide whether or not a nominal
design can be used without resorting to a more complex
robust design. On the other hand, it can also be seen
as an enabling technology for several future approaches
to the problem of enhancing the robustness of (approxi-
mate) explicit MPC solutions towards model uncertainty.
If the maximal robust feasible set does not cover the
portion of state space of interest, the next step could be
to consider just the regions that do not satisfy the robust
feasibility condition, and search for suitable controllers for
those regions. One approach could be to define and solve
a new explicit MPC problem for each infeasible region,
with proper constraints ensuring robust feasibility, and the
maximal robust feasible set as the new terminal set.
Assumption A2 is needed to exclude the possibility of
limit cycles or chaotic behavior of the uncertain system
in closed-loop with the controller, originally designed for
the nominal system. The assumption is easy to check, but
rather conservative. Future research can be directed to
reduce this conservativeness.

An interesting future work would be the extension to
LPV systems. This could be achieved propagating back
the infeasible regions from the phase A of the algorithm
for all the possible uncertain realizations in the polytopic
uncertainty set. This however would reasonably result in
heavier computational loads.

The inclusion of robustness with respect to disturbances
represents another future work of interest.
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Abstract: This paper considers the problem of computing inner approximations for the
feasible set for linear Model Predictive Control (MPC) techniques. An alternative approach
for computing the feasible set is presented, based on set relations instead of the conventional
orthogonal projection. The approach can be implemented incrementally on the length of
the prediction horizon. This is exploited to design an algorithm to compute suitable inner
approximations. Such approximations are characterized by simpler representations and preserve
the essential properties of the feasible set such as convexity, positive invariance and inclusion
of the set of expected initial states. This is important when in order to avoid the online
optimization, the optimal MPC solution is precomputed offline in an explicit form as a piecewise
affine state feedback control law over the feasible set. Particularly in the context of finding
simpler suboptimal explicit solutions the complexity of the feasible set plays a decisive role.
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1. INTRODUCTION

Within the theoretical framework for MPC, a key role is
played by the so-called feasible set, i.e. the largest subset
of the state space such that there exists a control action
satisfying all the constraints. The feasible set is closely
related to the prediction horizon considered. Generally
longer horizons result in larger feasible sets, but this is at
the cost of a larger MPC optimization problem. Provided
that the MPC optimization problem is formulated so that
closed-loop stability is ensured (Mayne et al. (2000)),
an optimal control action is guaranteed to exist at each
sampling time, for any initial state chosen in the feasible
set. This also means that when explicit MPC formulations
(Bemporad et al. (2002), Tgndel et al. (2003)) are em-
ployed, the feasible set is the domain where the optimal
piecewise affine control function is defined. A well-known
problem in the explicit MPC area is that finding and
deploying the optimal explicit solution may be imprac-
tical in several relevant situations. This problem has been
extensively tackled by the research community, which has
proposed many approaches to approximate explicit MPC.
The availability of the feasible set and furthermore its
shape description play key roles in the effectiveness of
many of these approaches, particularly for the ones based
on feasible set discretizations (Scibilia et al. (2009) and
Scibilia et al. (2010a), Nam et al. (2010), Bemporad and
Filippi (2006), Johansen and Grancharova (2003), Jones

* This work is a revised version of Scibilia et al. (2010b) (Copyright
(© 2010 Elsevier Ltd) and is, to a large extent, extracted from Scibilia
(2010). This version is intended for members of the NIL project
groups.
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and Morari (2009)).

The feasible set is completely described by the linear con-
straints involved in the MPC optimization problem, which
places it in the specific class of convex sets called polyhedra
(more precisely, polytopes). The standard approach to
compute the feasible set uses an important operation in
polyhedral set theory, the orthogonal projection (Burger
et al. (1996), Jones et al. (2004), Mount (2002)). However,
the orthogonal projection often turns out to be a compu-
tationally demanding operation in high spatial dimensions
(Jones et al. (2008)). This is the case, for example, when
the feasible set is computed for MPC with long prediction
horizons.

Convezity is an important characteristic of the feasible
set. Another crucial feasible set property in the MPC
context is the positive invariance with respect to the
closed-loop system, i.e. for any initial state contained in
the feasible set, the state evolution of the closed-loop
system is also contained in the feasible set for all future
times. In general, polyhedral sets represent an important
family of candidate positively invariant sets and have been
particularly successful in the solution of many control
engineering problems thanks to their flexibility (Blanchini
(1999), Kerrigan and Maciejowski (2000), Gilbert and Tan
(1991)). However, the appurtenant disadvantage of this
flexibility is the complexity of representation which may be
extremely high since it is not fixed by the space dimension
considered (Blanchini and Miani (2008)).

Approximating polytopes by simpler sets is a well-known
problem in many research areas related to optimization,
system identification and control. With any simpler repre-
sentation a certain loss of information is associated in prin-
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ciple. Thus, in general, the ideal solution is always a right
balance between simplicity and accuracy (Dabbene et al.
(2003), Bronstein (2008), Gritzmann and Klee (1994b)).
However, when approximation approaches of polytopes are
considered for feasible set approximation, while convexity
is easily maintained by the family of sets we are dealing
with, positive invariance is generally lost. Furthermore, at
the design stage, one of the requirements of the controller
is that it has to be able to regulate the system for a
given set of initial states representing the expected initial
operation conditions. Assuming that the MPC fulfills the
design specifications, this set, here called the operating
set, is contained within the feasible set. To maintain the
effectiveness of the MPC, an additional issue is then that
the approximation does not result in a loss of information
which will prevent the MPC from performing acceptably
for states in the operating set.

This paper proposes two contributions: first it suggests an
alternative approach for computing the feasible set which
uses set relations instead of orthogonal projection. Set rela-
tions of similar nature have also been used in Kolmanovsky
and Gilbert (1995). The proposed approach can be im-
plemented incrementally over the length of the horizon,
and proves to be computationally less demanding than
the standard approach. Thereafter, the main contribution
is proposed. A solution to the problem of finding (inner)
approximations of the feasible set which are characterized
by simpler representations and which preserves convexity,
positive invariance and inclusion of the operating set is
presented. The approach is based on the introduction of
certain conditions which extend existing approaches for
the computation of polytope approximations.

2. PRELIMINARIES

Consider the following discrete-time linear time-invariant
system:

(1)

where x € R” is the state vector, 4 € R" is the control
input, A € R"™" B € R™ ", and the pair (A, B) is
stabilizable. Full state measurement and no disturbances
or model uncertainty are assumed.

The system is subject to the following state and input
constraints:

x(t+1) = Az(t) + Bu(t)

z(t) e X CR"
u(t) ed CR"

(2)
3)

for all future times. The sets X, U are convex polyhedral
sets with the origin being an interior point for both sets.
Bounded polyhedral sets, i.e. polytopes, are the family of
sets principally considered in this work. A polytope P can
be expressed as the intersection of a finite number of half-
spaces (which gives its facet lattice) referred as the H-
representation of P. Equivalently, P can be represented as
the convex hull of its vertices V = {v(l), - U("V)} referred
as the V-representation of P: P = conv (V). A vertex (half-
space) of a polytope is said to be redundant if its omission
from the V-representation (H-representation) does not
change the shape of the polytope. A V-representation
(H-representation) is minimal if there are no redundant
vertices (half-spaces). Any polytope has a unique minimal
V-representation (H-representation) (Blanchini and Miani
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(2008)).
The orthogonal projection of a polytope P C R™ x R?

onto R™ (the first n coordinates) is defined as
IL,(P) = {z e R"3z e RY, [27 2T] e P} (4)

The Minkowski sum of two polytopes P and Q is defined

(5)

The erosion (or Pontryagin difference) of two polytopes P
and @ is defined as

PoQ={z|z+qeP, Vge Q}.

PaQ={zx=p+qlpeP, qe Q}.

(6)
The set difference of two polytopes P and Q is defined as
P\Q={z|zeP,x¢ Q}. (7)

More details and algorithmic implementations can be
found for example in Mount (2002), Blanchini and Miani
(2008), Gritzmann and Klee (1994a) and Kvasnica et al.
(2006).

The problem of regulating the system (1) to the origin,
such that constraints like (2-3) are satisfied, is solved by
the finite horizon MPC

N-1
m&n {J (w,z(t)) = 25 Pey + Z 1 Quy + ugRuk} (8)
k=0
st. xg =z (1), (a)
Tr41 = Az + Bug, k=0,1,.... N — 1, (b)
z, € X, k=1,2,.,N—1, (¢) (9)
wp €U, k=0,1,...N — 1, (d)
TN € 97 (e)

where zp denotes the predicted state vector at time ¢t + k
obtained by applying the k first elements of the input
sequence u = [ug,...,uy_1]; N is the prediction horizon;
Q@ = 0 (positive semidefinite) and R > 0 (positive definite)
are symmetric matrices corresponding to weights on state
and input; P is the terminal cost matrix and zy €
the terminal constraint, which are defined to guarantee
stability. The matrix P > 0 is the solution of the algebraic
Riccati equation resulting from the corresponding uncon-
strained LQR problem. The terminal set €2 is chosen to be
feasible and positively invariant for the closed-loop system
with this LQR (Mayne et al. (2000)).

It is assumed that the MPC (8)-(9) is designed to regulate
the system for a given set of initial states which represents
the expected initial operating conditions (the operating
set). Without any particular restriction, the operating set
can be considered to be a polytope, which is here indicated
as X,.

3. THE FEASIBLE SET

The MPC regulates the state to the origin for all the initial
conditions contained in the feasible set. The feasible set is
defined as

Xr = {z € R"| 3 u satisfying (9)} (10)
and can be interpreted as the maximal controlled invariant
set by means of the MPC with prediction horizon N and
terminal set €.
When explicit solutions are considered, the feasible set is
the domain where the piecewise affine controller is defined.
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3.1 Computing the Feasible Set: Standard Approach

The feasible set can be completely characterized by the
constraints involved in the optimization problem. The
constraints (9) can be expressed in terms of the input
sequence u and the initial state z(t):

Gu— Fz(t) <w (11)

where G and E are matrices and w a vector of suitable
dimensions (see for example Scibilia et al. (2009) for
details). The linear inequalities (11) define a polytope in
the space RN

{[x(t)T T

u
Then, the feasible set X is given as orthogonal projection
of Q onto the state coordinates

Xp =11, (Q)

1" e RN | Gu - Eat) < w} (12)

(13)

With this approach the computation of the feasible set
relies essentially on the efficiency of projection algorithms.
However, the orthogonal projection is intrinsically a com-
putationally demanding operation (NP-hard), becoming
increasingly prohibitive as the dimension of the project-
ing polytope increases (Tiwary (2008a)). This affects the
computation of feasible sets for MPC, especially when long
prediction horizons are considered.

3.2 Computing the Feasible Set: Alternative Approach

This section considers a different approach for computing
the feasible set, which will be also useful for the results in
the following sections and provides an alternative for the
case of long prediction horizons.

Consider the optimization problem (8) subject to the
constraints (9- a, b, d, e), i.e. ignoring the state constraints
e X, k=1,2,...,N — 1.

For this relaxed optimization problem, indicate with X'w
the corresponding relaxed feasible set.

Note that the only constraints on the state are the equality
constraints (9- a, b), and the terminal constraint (9- e): the
terminal state must be contained in the terminal set.
Using the equality constraints, the terminal state equation
can be written as:

xn = ANz(t) + Bu (14)

where AN is the N-matrix-power of A and B =
[ANle AN=2p B].

Equation (14) suggests the existence of a relation in terms
of the sets involved in the relaxed MPC optimization
problem considered. Set relations of similar nature have
been also used in Kolmanovsky and Gilbert (1995) in the
context of finding admissible sets for discrete-time systems
subject to bounded input disturbances.

Before formally stating the set relation, we need to intro-
duce the set of admissible input sequences:

UN) ={ueR™Y |u;el,j=0,..,N—1}. (15)

Theorem 1. Consider the optimization problem (8) sub-
ject to the constraints (9-a, b, d, e). Then the terminal
set, €2, the corresponding feasible set, Xz, and the set of
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admissible sequence input, V), satisfy the following set
relation

Q= ANXp o B(—UM)) (16)

where AV : R" — R™ and B :~R’”N — R"™ represent linear
maps applied respectively to Xr and to UV,

Proof. According to (10), the relaxed feasible set can be
written as:

Xp = {x eER"PueU™ : ANz +Bue Q} (17)

Using the linear maps AN and B we can define the sets:

AN Xy = {xe ER"|z. = ANz, v € ?‘?F} (18)
Bu®™ = {Iu eR"|x, = Bu,u e U(N)} (19)

From (17) we can write the equivalence:
AN Xy = {xe\ﬂxu e BUM .z, 4z, € Q} (20)

which subsequently implies that X is the collection of all
the states that can be obtained as a combination of points
in Q and B(—U™M)). This leads to the equivalence:

Q:{xgﬂ zo — x4 € AN Xp, VmueBu(N)} (21)

By the definition of the erosion operator, (21) corresponds
to (16).

In the following we assume that the matrix A of (1) is
invertible. Notice that zero eigenvalues of A mean that
there are modes which are pure delays of the inputs.
This is clear by taking the Jordan form of A, which also
gives linearly transformed constraint sets X’ and U’ (the
constraints on the state corresponding to delayed inputs
must then be compatible with ¢4’). Then, the assumption
is motivated by considering that the Jordan blocks of
A with zero eigenvalue can then be excluded, meaning
that constraints involving linear combinations of past
inputs and current states corresponding to the remaining
Jordan blocks are not allowed. However, we also note that
the assumption is always satisfied by discretized (finite
dimensional) continuous-time systems.

Therefore, by (16) the relaxed feasible set can be computed
as:

By 1= (a) 7 [0 B(-u™)] (22)
Note that the computation of the feasible set via the
formula (22) basically costs a Minkowski sum in R", given
the polytopes € and U/N)| which is an operation that can
be done in polynomial time (Gritzmann and Sturmfels
(1993)). This is generally more convenient than using (13)

which requires handling polytopes in higher dimensions,
Rn+rN.

Inspecting (16), an incremental approach for computing

X can be derived, which with a simple modification is
extendable for also computing Xp.
Let us explicitly express the dependence of the feasible set

from the length of the horizon as X I(,k), which indicates
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the feasible set for a horizon of length k. According to
this notation, the feasible set we are interested in is Xp =
xN.

For the case k = 1, relation (16) becomes

0= a%" o B(-u) (23)
which leads to the set ! of all the initial states that in one
time-step move inside €2

X = (A7 Qe B(-U)) (24)

At this point, introducing the constraint on the state is

straightforward, and thus the feasible set Xl(pl) is simply

)

computed from X l(wl as

xM=xMnx (25)

The feasible set X 1(,2) is determined by X }J) considering an
analogous relations to (23):

XM = Ax? e B(-u) (26)
which gives
XD =4 |2 e B(-u) (27)

and thus also X }2) can be determined analogously to (25).
In general, the feasible set with horizon k can be computed
in this incremental fashion from the feasible set with hori-
zon k — 1. This leads to Algorithm 1 for computing the
feasible set for the MPC (8-9).

Algorithm 1. : Feasible set

Input: the system state and input matrices A and B; the
terminal set 2; the state and input constraints sets X and
U; the length of the horizon N.

Output: the feasible set Xp.

1. Initialize the set 7 = Q.

2. For k=1to N~d]?
Compute X} )= AT @ B(-U));
Compute Xl(wk) = i’l(pk) Nn&;
Set T = X}’“)

3. Set Xp = X

In addition to giving the possibility to include the state
constraints, the advantage of the incremental approach is
that it avoids the necessity of handling the polytope /(V)
which, especially for long horizons, may be undesirable.

4. APPROXIMATION OF FEASIBLE SETS

The feasible set is represented by a polytope in the state
space. The problem of finding polytope approximations
by means of simpler convex bodies arises in many research
areas related to optimization, system identification and
control. In general, the solution is a balance between the
simplicity of the representation and the accuracy of the
approximation, where the accuracy can be measured using
different metrics, depending on the particular approach

I This set is also called the one-step controllability set to Q (Blan-
chini (1994)).
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used to solve the problem. An example is the work in
Dabbene et al. (2003), where the authors provide algo-
rithms for computing inner approximations in terms of
the largest ellipsoids inscribed. However, more often it
is required that the approximating convex body is itself
a polytope. In this direction, different approaches have
been proposed in the literature, and reference is made to
Bronstein (2008) and Gritzmann and Klee (1994b) (and
references therein) for surveys on the subject.

The common representation complexity indexes of a poly-
tope are the number of half-spaces (or facets) for the
‘H-representation, and the number of vertices for the V-
representation. Since a polytope is characterized by unique
minimal H- and V-representations, any lower complexity
representation must correspond either to an inner or to an
outer approximation of the polytope.

In this section, the scope is to approximate the feasible
set by means of a simpler polytope. Since the feasible set
corresponds to the maximal feasible controlled invariant
set by means of the MPC, no feasible outer approximations
can exist, and therefore attention is restricted only to the
search for inner approximations. Note that the task is more
involved than finding simpler representations maintaining
a prescribed accuracy in the approximation. For control
purposes it is of prime importance that the approximating
polytope preserves the positive invariance property and
contains the operating set.

A natural approach for computing inner approximations
is based on the fact that, for any polytope, the omission
of any of the vertices from the V-representation changes
the polytope by reducing it 2. Typically (but not necessar-
ily), the approximations thus obtained also result in lower
complexity H-representations, as will be discussed later.
Furthermore, several situations can be recognized where a
simpler feasible set characterized by fewer vertices would
provide immediate improvements. This is the case for ex-
ample in approaches to explicit MPC such as Scibilia et al.
(2009), Hovd et al. (2009), Nam et al. (2010) and Jones and
Morari (2009), in approaches to multi-parametric convex
programming such as Bemporad and Filippi (2006)), or
also in control approaches as Gutman and Cwikel (1986),
where the solution depends strictly on the complexity of
the feasible set in terms of the number of vertices.
Therefore, interest is focused on finding appropriate in-
ner approximations characterized by a reduced number of
vertices.

An algorithm for computing inner approximations of poly-
topes based on the removal of vertices is proposed in
Reisner et al. (2001) (in Lopez and Reisner (2002) if only
3D polytopes are considered). The fundamental result is
the following.

Proposition 2. Given a polytope P C R" characterized
by ny vertices Vp = {v(l),...,v("")}, P = conv(Vp),
there exists a vertex v € Vp such that the polytope
Q = conv(Vp \ {v}) satisfies
vol(P) — vol(Q)

vol(P)

_n+1
< a(n)n, "',

(28)

The factor «(n) is a constant depending only on the space
dimension (details about how to estimate this constant can

2 Dually, the omission of any of the half-spaces from the H-
representation changes the polytope by enlarging it.
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be found in Reisner et al. (2001) and Lopez and Reisner
(2002)).

This result is the best possible in general, for the depen-
dence on the numbers of vertices of the approximating
polytope.

The main idea of the algorithm is thus the consecutive
removal of the chosen vertices. Taking an appropriate num-
ber k < ny, it can be identified a successive minimizing
choice of vertices of P, i.e. a sequence {v(“), s v(’"”v*k)}
of different vertices in Vp such that forallt =1,...,ny —k

vol (conv ( Vp \ 'I)(Tl),“.,«v(ri—l) )7

vol (conv (Vp \ 0(7'1)7,_.77)(7&)})) (29)

is minimal over all choices of v(") € Vp\{v("“l), o= }
The polytope

Q = conv(Vp \ {v(”), ...,U(T”V"C)}), (30)
characterized by k vertices, is an inner approximation of P.
The accuracy of the approximation obtained is measured
by the difference of volume between P and Q and, in
general, it is the best possible obtainable by any polytope
with k vertices (up to the dimension dependent constants
involved).

More details about the implementation of the algorithm
can be found in Reisner et al. (2001) and Lopez and
Reisner (2002).

The following presents an approach to extend algorithms
like the one found in Reisner et al. (2001) in order to meet
the primary objective of maintaining the fundamental
properties of the feasible set.

Given a vertex v of P, indicate with adj(v) all the vertices
adjacent to v, i.e. all the vertices of P which share a facet
with v.

Proposition 3. The region excluded from P when the
vertex v is omitted from its V-representation is given by

L, = conv ({v,adj(v)}) \ conv ({adj(v)}). (31)

Proof. Naturally, £, is characterized only by the facets
of P incident in v. These facets comprise a region given
by the convex hull of v and all its adjacent vertices.
Since the adjacent vertices of v still remain vertices of P,
the prospective region identified solely by these vertices
needs to be removed from the description of L£,. The
remaining vertices of P, i.e. the vertices of the polytope
P\ conv ({v,adj(v)}), are not affected by the omission of
.

In general, £, is non-convex, but can be represented as a
finite collection of polytopes.

Let us now consider the polytope P as our feasible set
Xp, i.e. P = Xp. Since the convexity property is simply
maintained by removing a vertex, attention is turned to
the problems of how to preserve positive invariance and
how to maintain the states comprising the operating set.

4.1 Preserving Positive Invariance
The difficulty in preserving positive invariance comes from

the fact that we have to take into consideration the
nonlinear dynamics of the closed-loop system with the
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MPC.
The next time-step feasible set X ;’ is defined as follows

Xt = {aT|z" = Az + Buj, z € Xp} (32)

where ug is the first element of the MPC optimal control
sequence at x.

The asymptotic (exponential) stability of the MPC guar-
antees that X I}" C Xr and that X I:f is positively invariant
for the closed-loop system. We can now define the set
Xy = Xp \ X7, which has the interesting property to
contain only points of the feasible set that are exclusively
initial states of state evolutions starting inside the feasible
set. In other words, considering any possible state evolu-
tion in X, each state in X can only be a starting point
of it.

Theorem 4. Any inner approximation of the feasible set
obtained as convex hull of vertices inside Xys, such that
also all the facets are inside X,s, preserves the positive
invariance.

Proof. Consider a set of points Vs inside Xy, such that
conv(Vjs) has all the facets within X. It follows that
X C conv(Vyy). Therefore, for any starting point inside
such a polytope, the state evolution either moves in one
step inside X% or is already inside X7, which shows
positively invariance of conv(Vy/).

The property of positive invariance could then be pre-
served if for every vertex v(” removed from Xp, the
condition £, C X is satisfied. In fact, this ensures that
the remaining vertices satisfy the requirements of Theorem
4.

However, because of the set X ;5 , computing the set X in
general involves a substantial computational effort, which
drastically reduces the applicability of the approach. In-
deed, note from (32) that the definition of the next time-
step feasible set implies the knowledge of the optimal
input for the states in the feasible set. In particular, since
the feasible set is a convex set, only the knowledge of
the optimal control input on the border of X is needed
for the computation of the next time-step feasible set.
Nevertheless, this still comports a computational burden
which may compromise the effectiveness of the overall
approach. A further undesirable aspect of using the next
time-step feasible set is that X’ ij is, in general, non-convex
(Blanchini (1994))(Fig. 2). This results in more difficulties
in the computation of Xy as the intersection between non-
convex sets is more involved than the intersection between
polytopes, even if the possible resulting non-convex set can
still be expressed as a collection of polytopes.

This issue can be easily overcome considering the following
relation

Xt catN Y coap (33)

Note that X }N‘” is easily available using an incremental
procedure such as Algorithm 1 for computing the feasible
set. Moreover it is always convex and it is positively invari-
ant for the closed-loop system. Then, the proposed solution

is to use XI(,N_l) in place of X;‘ . The conservativeness
introduced is not severe for the purpose here considered,
Xr(N — 1) being a tight outer approximation of X

(Blanchini (1994)). Defining the set Xy = Xr \ X}N_l),
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the property of positive invariance is preserved if for every
vertex v(") removed from Xp, the following condition is
satisfied

Ly C Xy (34)
In fact, condition (34) ensures that the remaining vertices
satisfy the requirements of Theorem 4, whose results are
valid if Xr is considered instead of X . Note that checking

condition (34) is equivalent to checking £, ﬂX}Nﬁl) = 0.

4.2 The Operating Set Condition

The goal of algorithms like the one developed in Reisner
et al. (2001) is to find the polytope Q characterized by k
vertices that best approximate the polytope P (character-
ized by ny > k vertices). The accuracy of the approxima-
tion is given by the difference of volume between P and
Q. The introduction of condition (34) (invariance) changes
the degrees of freedom in the minimization of the difference
of volume. Generally, not all the vertices in the successive
minimizing choice of vertices of P satisfy the necessary
condition (34) and, therefore, not all can be removed.
When the focus is on feasible sets, the loss of volume may
not necessarily be a critical issue in itself, since practically
it would be more of interest that the approximating feasi-
ble set still contains the operating set X,. This objective
can be achieved simply by checking that every time a ver-
tex v(") is removed from X, the corresponding excluded
region does not comprise any part of the operating set,

X, N Ly = 0. (35)

If a certain vertex does not satisfy (35), then it is not
removed and the next vertex is considered.

4.3 Removing Vertices

Suppose that the interest is to remove as many vertices as
possible as long as conditions (34) (invariance) and (35)
(operating set inclusion) are satisfied. This can be done
iteratively: at each iteration, among all the current vertices
which makes (34) and (35) satisfied, remove the one that
results in the lowest loss in terms of volume.

Note that for any vertex v("), conditions (34) and (35) and
the volume loss can be evaluated locally, i.e. only v(") and
adj(v(") are involved in the computation of £, as can
be seen from Proposition 3.

An efficient way to implement the algorithm is to use
structures similar to pointers. Given the list of vertices
Vx, characterizing the feasible set, where each element on
the list is identified by the position number, two structures
can be defined:

1) Index, a list containing numbers referring to vertices
in Vi, (list of pointers).

2) Adj, a structure containing the adjacency informa-
tion. Adj(Index(i)) gives the list of pointers to the
vertices in Vy, adjacent to the vertex with pointer
Index(i).

Then the operation of removing a vertex v(") € Vi,
with pointer, say, Index(¢), can be done removing the i-th
element from Index, after having removed the Index(i)-
th element from Adj and updated the elements Adj(j),
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for all j € Adj(Index(i)). The update is done as fol-
lows. Each vertex j is also vertex of the polytope R =
conv(Adj(Index(i))), then for each list Adj(j) the refer-
ence Index(i) is removed and the adjacencies resulting
from R are added.

The advantage of using the pointer structures is to allow
each iteration to simply update only the data affected by
the current vertex removal.

4.4 Discussion on the Complexity Indexes

In general, the number of half-spaces may be much higher
than the number of vertices, and vice versa. Thus, a
natural question would be how will the reduction of the
complexity in the V-representation affect the complexity
in the H-representation. While in 2 and 3 dimensions
there exist simple relations between the two complexity
indexes, in higher dimension analytical relations are very
difficult to define (Matousek (2002)). Thus, giving an exact
answer to the question is a hard problem. However, a
well-known achievement in the theory of convex polytopes
allows giving an answer in terms of upper bounds: a
polytope in the n-dimensional space with ny vertices
has at most 2(L:/V2 j) half-spaces. Thus, for a fixed space

dimension n the number of half-spaces has an order of

magnitude of nln/2) (“upper bound” theorem Matousek
(2002)). The upper bound theorem refers to worst case
scenarios. Certainly, not all polytopes exhibit this extreme
behavior, for example it is known that if n, points are
chosen uniformly at random in the unit n-dimensional ball,
then the expected number of half-spaces of their convex
hull is only of order of magnitude of n,, (Matousek (2002)).
Thus, even if there exist cases where the omission of a
vertex causes an increase in the number of half-spaces, it
is reasonable to expect that typically a certain reduction
of complexity in terms of number of vertices also provides
a fairly relevant reduction of the complexity in terms of
number of half-spaces, in the sense that the upper bound
on the number of half-spaces decreases.

5. DISCUSSION ON COMPUTATIONAL
COMPLEXITY

Both Algorithm 1 for computing feasible sets and the ap-
proach proposed in Section 4 for computing simplifications
of feasible sets are based on basic geometric operations on
polytopes: Minkowski sum, intersection, convex hull and
volume computation. Therefore, it is interesting to discuss
some aspects connected with the computational complex-
ity of these operations so to provide with additional insight
into the algorithmic behavior of the approaches presented.
It should be noted, though, that the scope of this section
is not to give a comprehensive discussion on the computa-
tional complexity of each operation.

Every polytope admits two equivalent representation
forms: the V-representation (using vertices) and the -
representation (using half-spaces). For polytopes, the rep-
resentation conversion from #H- to V-representation (ver-
tex enumeration) and the conversion from V- to H-
representation (facet enumeration or convex hull compu-
tation) are computationally equivalent and, in general,
are difficult operations (NP-hard). The computational
complexity increases fast with the number of half-spaces
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and/or the number of vertices involved (Khachiyan et al.
(2008), Fukuda (2004)).

Often, operations on polytopes that are easy to perform
in one representation become difficult if the polytopes
are instead in the other representation. The Minkowski
sum of two polytopes is a computationally easy opera-
tion (polynomial time) when the two polytopes are in V-
representation while becomes a difficult operation (NP-
hard) when they are in H-representation (Gritzmann and
Sturmfels (1993), Tiwary (2008b)). This means that the
known Minkowski sum algorithms operating on polytopes
in the H-representation show a computational complexity
which increases fast with the number of half-spaces of the
operands.

On the other hand, the intersection of two polytopes given
in the H-representation is an easy operation while becomes
a difficult operation (NP-hard) with polytopes in the V-
representation (Tiwary (2008b)).

Resorting to a representation conversion is often not a
solution to reduce complexity since the operation is itself
hard.

Let us consider Algorithm 1. At each iteration the
computational complexity is basically determined by a
Minkowski sum and an intersection operation. Let us as-
sume that the interest is to obtain a feasible set in the V-
representation (which here may be motivated by the pro-
cedure for computing simplified feasible sets discussed in
Section 4). Therefore, the computational complexity of Al-
gorithm 1 would increase fast with the number of vertices
considered due to the intersection operation. Note that if
the interest is in a feasible set in the H-representation, then
the Minkowski sum would be computationally costly. This
suggests that computing the feasible set is intrinsically a
hard problem. Given that polytopes, in general, are far
more complex in terms of number of vertices and facets
in higher dimensions, it is reasonable to expect that the
computational complexity for computing the feasible set
increases fast with the dimension of the state space, n.
The computational advantage of the proposed approach
in respect to the traditional one is that at each iteration
the operands are polytopes of dimension n. Instead, the
traditional approach requires the projection of a polytope
of dimension n+ Nr which is easily a prohibitive operation
even for small n since the polytope dimension depends
also from the horizon length N and the input dimension
r. Also, when the standard approach is implemented in-
crementally on the horizon length, at each iteration the
projection of a polytope of dimension n + r is required,
which may still be prohibitive.

Analogous considerations can be made for the approach
proposed in Section 4 for computing simplifications of
feasible sets. Assume that the interest is to remove as many
vertices as possible as long as conditions (34) (invariance)
and (35) (operating set inclusion) are satisfied (cf. Section
4.3). The algorithm requires initially the computation of
the volume loss associated with each vertex removal. The
polytope volume computation, either in the V- or the
‘H-representation, is not a difficult operation (polynomial
time) (Gritzmann and Klee (1994a)). Then, at each iter-
ation the intersection operation is used to check the con-
ditions (34) and (35): the conditions are first inspected on
the vertex which currently means the lowest loss of volume,
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continuing with the vertex causing the second lowest loss
if the former does not satisfy the conditions, and so on
until a suitable vertex is identified for removal (or none, in
which case the algorithm terminates). The use of pointer
structures allows easily updating just the volumes affected
by the current vertex removal. At each iteration the in-
tersections are the most expensive operations to perform,
and although they are done on relatively simple polytopes,
these may require relevant computation especially when
n increases (since this typically means high number of
vertices with a complex map of adjacency). Note, however,
that here the operation may be implemented in a more
efficient way since it is not needed to actually compute
the intersection polytope, but rather to decide whether
the two polytope operands intersect or not.

6. NUMERICAL ILLUSTRATIONS
6.1 Feasible Set Computation

The computation time efficiency of the proposed approach
based on set relations (SR) has been compared with the
standard approach based on projection (P) in Matlab
by using the Multi-Parametric Toolbox (MPT)? (Kvas-
nica et al. (2006)). Both the algorithms have been im-
plemented incrementally on the horizon length. The in-
cremental implementation is inherent in the set relation-
based approach, while for the traditional projection-based
approach it may speed up the calculation in many situa-
tions.

Extensive simulations have been carried out on several
random systems for different state (n) and input (r) di-
mensions. The common MPC settings used are: Q = I
and R = I where I represents the identity matrix; state
constraints —10 * 1 < x < 10 % 1, input constraints
—1 < u < 1, where 1 is a suitably dimensioned vector
with all elements equal to 1.

Table 1 reports some of the results obtained during the
simulations to give a picture of the typical performance
from both approaches. In general the proposed approach
has performed significantly more efficiently than the stan-
dard approach. Furthermore, the projection approach led
several times to unsatisfactory results such as no result
after one hour of computation or numerical errors.

It must be noted that the proposed approach also led to
numerical errors, though in a considerably lower number
of cases than the projection approach. It is reasonable to
believe that most of the numerical issues faced could be
removed by a careful re-implementation of the approach.

6.2 Feasible Set Approzimation

The goal of the algorithm here is to reduce the complexity
in terms of number of vertices (ny) as much as possible
while satisfying conditions (34) and (35) (as discussed in
Section 4.3).

Consider the double integrator system represented by the
continuous-time linear system

&= Az + Bu (36)

3 MPT for Matlab offers several algorithms for computing the pro-
jection of a polytope (vertex enumeration/convex hull-based method,
Fourier-Motzkin elimination, iterative hull, block elimination, equal-
ity set projection). In the simulations, the MPT projection function
has been set to automatically select the best method.
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Table 1. Set relation-based approach vs.
projection-based approach. Time computation
measured in seconds. § indicates no result af-
ter 1 hour computation. { indicates simulation
terminated by Matlab errors.

Rand. sys. N=5 N=7 N=10
(n,r) SR—P SR—-P SR—-P
3,1) 0.14 —0.40 0.55 —2.70 2.01 —19.33

0.20 — 0.52 0.26 — 0.30 1.91 —1.72
(3,2) 0.73 — 5.53 4.92 —12.10 3.72 — 19.06
4.18 — 12.72 2.20 — 4.79 9.21 — 96.64
(4,1) 4.76 —25.63  21.30 — 32.67 59.21 —
8.82 —45.81 6.89 —15.81  26.61 — 475.24
(4,2) 34.85 — 291.7 121.5 — ¢ 47.09 — 1067
38.59 — 88.10 147.4 — ¢ 998.09 — 1

where = € R?, u € R,

[ai]. e[

The problem formulation includes a state constraint —3 <
z9 < 3 and an input constraint —1 < u < 1.

The state components z; and x can represent, for ex-
ample, the position and velocity, respectively, of a body
having mass 1.

In Table 2 the discrete counterpart of system (36) is
considered for several sampling times. For faster sampling
times in general the polyhedral borders of the feasible
sets approximate ellipsoidal shapes, which therefore imply
complex V-representations. Many of the vertices can be
removed with a minimal loss in terms of volume. Moreover,
faster sampling time means generally a more complex
explicit MPC solution, which more likely may require the
use of simpler feasible sets to use in approximate explicit
MPC approaches. In the table, ny indicates the number
of vertices of the feasible set, 1y, indicates the number of
vertices of the approximate feasible set.

01
00

0

1 (37)

Fig. 1, 2 and 3 graphically illustrate the idea for sampling
time 0.3 and N = 10. As operating set we assume that
the system has to operate in a range of positions —10 <
x1 < 10, for any feasible zo (Fig. 1). Analogously chosen
operating sets have been used for the results in Table 2.
Note that the feasible set, characterized by 24 vertices, is
approximated by a less complex feasible set characterized
by 10 vertices (Fig. 3). The loss of volume introduced by
the approximate feasible set is less than 3%.

To compute the set X ;: in Fig. 2, the explicit solution of
the MPC is obtained and then each region comprising the
feasible set is propagated one step forward.

Table 2. Complexity reduction by approximate
feasible sets.

Samp. time N=7 N=10
seconds ny - iy - loss%  ny - iy - loss%
0.3 18 - 6 - 0.04% 24 - 10 - 0.03%
0.1 34-12-0.01% 28 - 8- 0.01%
0.01 56 - 30 - 0.00% 66 - 34 - 0.00%

Extensive simulations have been carried out on several
random systems for different state (n) and input (r) di-
mensions. The common MPC settings used are: horizon
N =5, Q = I and R = I, state constraints —20 x
1 <2x<20x%1, input constraints —1 < u < 1.
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Fig. 1. The largest polytope is the feasible set X'z (green).
The set marked with the wide dashed line represents

the operating set (red), contained in the feasible set.

Fig. 2. The largest polytope represents the feasible set

Xrp (green). The set marked with wide dashed line
represents the set X }Nﬁl) (red and yellow), which
corresponds with the feasible set for an horizon length
N — 1. The internal regions (in yellow) marked with
thin lines comprise the next time-step feasible set X’ I,f .
Note that X7 C X}Nﬁl) C X and that X% is non-
convex.

Fig. 3. The largest polytope represents the feasible set
Xr. The internal set marked with wide solid line
represents the reduced feasible set.

Table 3 lists some of the results obtained in the simula-
tions. As expected from the discussion in Section 4.4, in
most of the cases the reduction in the number of vertices
also led to a reduction in the number of half-spaces. How-
ever, a few cases where this did not happen are reported
to illustrate that the upper bound theorem guarantees
only that a reduction of vertices will not cause an extreme
increase in the number of half-space.

In some cases the algorithmic implementation of the ap-
proach faced numerical errors, particularly with high di-
mensional feasible sets. It must be said that, apart from
the use of pointers to make computations more efficient,
no particular emphasis has been put in coding an efficient
implementation of the approach. The scope here was pri-
marily to provide evidence of its effectiveness. Careful re-
implementation of the approach would reasonably remove
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Fig. 4. The upper graph shows the feasible set in the 3-
dimensional state space for a system in Table 3. The
graph below shows the corresponding approximate
feasible set.

most of the numerical issues and improve the computa-
tional performance.

Table 3. Feasible set vs approximate feasi-
ble set for several random systems. The case
marked with (*) is illustrated in Fig. 4.

Rand. sys. Feasible set ~ Approximate feasible set
(n,1) ny —ny Ay — Ay
3,1 28— 16 16— 10

58 — 56 35 — 46

*)y  82-78 54 — 64

(3,2) 74 — 44 41— 38
64 — 34 25 — 28

52 — 28 30 —29

(4,1) 124 — 38 87 — 57
116 — 58 92 — 56

108 — 34 84 — 40

7. CONCLUSIONS

The paper has presented an alternative approach for com-
puting feasible sets when MPC techniques are used. The
proposed approach uses set relations instead of the conven-
tional projection, which then unfolds to a procedure based
on Minkowski sum and intersection routines. This proves
to be computationally more efficient and algorithmically
more robust than using projection routines, particularly
when high dimensional polytopic sets are involved (i.e. for
long prediction horizons, high dimensional state and/or
input).

However, some numerical issue suggested the need of fu-
ture work to improve the algorithmic robustness of the
routines for the needed polytopic operations.

When the feasible set is characterized by a critical com-
plexity of representation in terms of number of vertices,
an approach to compute a simplified feasible set with a
reduced number of vertices has been given. The approach
is based on the introduction of certain conditions which
extend existing approaches for the computation of poly-
tope approximations, so that the approximating polytope
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maintains all the fundamental properties of the feasible set
required for MPC applications like positive invariance and
inclusion of the set of expected operating conditions.

Preserving the positive invariance property in the feasible
set approximation is crucial. This issue is inherently dif-
ficult to handle since it is concerned with the nonlinear
dynamics of the closed-loop system. The proposed ap-
proach typically allows a considerable decrease in the V-
representation complexity by removing most of the vertices
needed to deal with feasible set borders which approx-
imate ellipsoids (according to the operating set consid-
ered). However, this approach does not allow to consider
possible even simpler feasible set approximations which,
while including the operating set, may have borders within

X }Nﬁl). A potential future research direction could be
to search for different approaches which would give more
flexibility. One could for example look at solutions which
use level surfaces of Lyapunov functions (Alessio et al.
(2006)) to find different vertices than the original ones
from the feasible set.

The conditions introduced constrain the goal of minimiz-
ing the loss of volume in the approximation. Finding suit-
able approximating polytopes characterized by the mini-
mum loss of volume is a well known problem. Requiring
that the approximation minimizes the loss of volume while
satisfying conditions related to system dynamics remains
challenge. Here the minimization of the loss of volume was
not considered critical, since in the context of the present
work the interest often is to preserve given crucial parts
of the feasible set, which can be done via the operating
set condition. In fact, the algorithm proposed tends to
minimize the loss of volume in the sense that at each iter-
ation the suitable vertex which results in the lowest loss of
volume in the current approximating polytope is removed.
Pointer structures were used to enhance the implemen-
tation efficiency, though it may be further improved by
a careful re-implementation of the approach. Simulations
proved the effectiveness of the results presented.
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Abstract

A new approach is proposed for the diagnosis of poor control loop performance due to model
plant mismatch (MPM) in the internal model control framework. A new quantity G,/G,
termed as the Plant Model Ratio (PMR) in the frequency domain is introduced as a measure
of model plant mismatch. It is shown that there exists a unique signature in PMR for
each combination of mismatch in model parameters, which is the key step in the proposed
method. A method to estimate PMR from routine operating data is provided. Theoretical
and practical aspects of the mapping between the type of MPM and the proposed PMR are
presented. Simulation studies are carried out to demonstrate the effectiveness of the proposed

method.

Keywords: process control, instrumentation, simulation, time-delay estimation, Hilbert

transform relation

1. INTRODUCTION

Monitoring and assessment of controller performance
has evoked considerable interest to academicians and
practitioners in the area of process control and mon-
itoring for two decades now. The incentive in finding
solutions to associated problems is immense since poor
performance affects product quality, plant economy and
safety. In addition, there is a constant drive to improve
the performance of existing control schemes and to op-
timize the overall plant performance. However, one can
note that controllers often fail to operate according to
their design specifications and, in many cases, they even
increase the process variability, as was reported by Ender
(1993). Most modern industrial plants have hundreds or
even thousands of automatic control loops. These loops
can be simple proportional-integral-derivative (PID) or
more sophisticated model based linear and non-linear
control loops. It has been reported that as many as 60%
of all industrial controllers have performance problems
Ender (1993). Having an automated means of detecting
when a loop is not performing well and then diagnos-
ing the root cause plays a vital role in addressing the
problems mentioned at the outset of this paper.

Bialkowski (1993) and Kozub and Garcia (1993) pointed
out in their work that the major causes of poor control
loop performance are (i) improper controller tuning (i)
poor hardware (sensors, actuators) maintenance (%ii)
valve stiction (iv) model plant mismatch (MPM) (v)

* This paper is based on the article published in Industrial
and Engineering Chemistry Research, 2010, 65 (2), pp 660-674.
Copyright (© 2010 Elsevier Ltd. This version is intended for
members of the NIL project groups.
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stochastic disturbances. Hagglund (1999) developed a
procedure for the automatic detection of sluggish control
loops obtained from conservatively tuned controllers.
Sensor fault detection and isolation in the process con-
trol community (also known as sensor validation) has
also been an active area of research Dunia et al. (1996);
Gertler et al. (2000); Tong and Crowe (1995); Deckert
et al. (1977). A detai