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Honek, M., Csambál, J., Wojnar, S., Šimončič, P. Rohal’-Ilkiv, B. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119

Design of MPC Controller Using ACADO Toolkit
Kopačka, M., Saerens, B., Ferreau, H. J., Houska, B., Diehl, M., Rohal’-Ilkiv, B. . . . . . . . . . . . . . . . . . . . . . . . 125

Model Predictive Controller of the Air/Fuel Ratio in ACADO toolkit
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Regularized Nonlinear Moving Horizon Observer -
Theory and application to automotive friction

estimation

Sui Dan and Tor A. Johansen

Department of Engineering Cybernetics, Norwegian University of Science
and Technology, Trondheim, Norway.

Abstract: A constrained moving horizon observer is described and analysed for nonlinear discrete-time
systems. The algorithm is proved to converge exponentiallyunder a detectability assumption and the
data being persistently exciting. However, in many practical estimation problems, such as combined
state and parameter estimation, the data may not be persistently exciting. The algorithm therefore has
regularization mechanisms to ensure robustness and graceful degradation of performance in time periods
when the data are not exciting. This includes the use of a priori estimates in the moving horizon cost
function, and the use of thresholded singular value decomposition to avoid ill-conditioned or ill-posed
inversion of the associated nonlinear algebraic equationsthat define the moving horizon state estimate.
The latter regularization relies on monitoring of the rank of an estimate of a Hessian-like matrix and
conditions for exponential convergence are given. The method is in particular useful with augmented
state space models corresponding to mixed state and parameter estimation problems, or dynamics that
are not asymptotically stable, as illustrated with simulation examples. The main example considers wheel
slip estimation for automotive applications using nonlinearly overparameterized tyre friction models
where persistence of excitation does not hold.

1. INTRODUCTION

The state estimation problem of nonlinear discrete-time sys-
tems is investigated. A least-squares optimal state estimation
problem can be formulated by minimizing a properly weighted
least-squares criterion defined on the full data history horizon,
subject to the nonlinear model equations, Moraal and Grizzle
(1995b), Rao et al. (2003). This is, however, impractical as
infinite memory and processing will be needed as the amount of
data grows unbounded with time. Alternatively, a well known
sub-optimal estimator is given by an Extended Kalman Fil-
ter (EKF) which approximates this least-squares problem and
defines a finite memory recursive algorithm suited for real-
time implementation, where only the last measurement is used
to update the state estimate, based on the past history being
approximately summarized by estimates of the state and the
error covariance matrix, Gelb (2002). Unfortunately, the EKF
is based on various stochastic assumptions on noise and dis-
turbances that are rarely met in practice, and in combination
with nonlinearities and model uncertainty, this may lead toun-
acceptable performance of the EKF. A possible better use of the
dynamic model and past history when updating the state esti-
mate is made by a Moving Horizon State Estimator (MHE) that
makes use of a finite memory moving window of both current
and historical measurement data in the least-squares criterion,
possibly in addition to a state estimate and covariance matrix
estimate to set the initial conditions at the beginning of the data
window, see Rao et al. (2003), Moraal and Grizzle (1995b),
Alessandri et al. (1999), Alessandri et al. (2008) for different
formulation relying on somewhat different assumptions. Such
an MHE can also be considered a sub-optimal approximation
to an estimator that uses the full history of past data, and some
empirical studies, Haseltine and Rawlings (2005) show thatthe
MHE can perform better than the EKF in terms of accuracy and

robustness. It should also be mentioned that other variations
of the Kalman filter, such as particle filters and the unscented
Kalman filter, also show great promise for nonlinear state es-
timation Rawlings and Bakshi (2006), Kandepu et al. (2008),
Bølviken et al. (2001).

A direct approach to the deterministic discrete-time nonlinear
MHE problem is to view the problem as one of inverting a
sequence of nonlinear algebraic equations defined from the
state update and measurement equations, and some moving
time horizon. In principle, this approach avoids the use of a
covariance matrix estimate, or any other historical information
beyond the data window and a priori state estimate, and leads
to a conceptually simple problem formulation and tuning pa-
rameters. Such discrete-time observers are formulated in the
context of numerical nonlinear optimization and analyzed with
respect to stability in Moraal and Grizzle (1995b), Alessandri
et al. (2008). Some earlier contributions based on similar ideas
are given in Glad (1983), Zimmer (1994), while Biyik and
Arcak (2006) provides results on how to use a continuous time
model in the discrete time design. As pointed out in Grossman
(1999), the dead beat type of design philosophy (Moraal and
Grizzle (1995b)) does not explicitly take into account robust-
ness to noise, and some modifications are required as proposed
in Grossman (1999). It should be mentioned that common to
all methods is the use of numerical methods subject to the
underlying assumption that local minima and multiple solutions
may restrict convergence properties to be only local.

Uniform observability (in some form, see also Raff et al.
(2005), Alamir (1999)) is assumed for stability or convergence
proofs in the above mentioned references, including the EKF,
Reif et al. (1998), Reif and Unbehauen (1999). Uniform observ-
ability means that the system and data are such that the problem
of inverting the nonlinear algebraic equations is well-posed in
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the sense of Tikhonov and Arsenin (1977), i.e. that the state
estimate solution exists, is unique and depends continuously
on the measurement data. In the context of optimization this
is commonly referred to as stability of the solution, that can be
guaranteed under certain regularity and rank conditions, Fiacco
(1983). This robustness is essential in any practical application
since otherwise the estimates will be impossible to compute,
and will be divergent or highly sensitive to imperfections such
as numerical round-off errors, quantization and measurement
noise. However, uniform observability is a restrictive assump-
tion that is likely not to hold in certain interesting and important
state estimation applications. This is in particular true for com-
bined state and parameter estimation problems where the state
space model is augmented with the unknown parameters, Gelb
(2002), and convergence of the parameter estimates will depend
on the information contents in the data, typically formulated as
a condition for persistently exciting (PE) input data appearing
in adaptive control and estimation, e.g. Krstic et al. (1995), or
boundedness of the EKF covariance matrix estimate, Reif et al.
(1998), Reif and Unbehauen (1999). In many practical applica-
tions the data will be sufficiently exciting for significant periods
of time, but may in some time intervals contain insufficient ex-
citation and information. It should also be noted that with some
exceptions (e.g. Panteley et al. (2001), Sedoglavic (2002)), both
uniform observability and PE conditions are difficult to verify
a priori.

In this paper we consider strongly detectable systems Moraal
and Grizzle (1995a), and the objective and novel contribution
of the present work is to provide and study an MHE method
based on Alessandri et al. (2008) and others with alternative
weighting and regularization to achieve satisfactory practical
performance also when the condition of uniform observability
is violated due to temporarily lack of persistence of excita-
tion, or the system not being observable. The relaxation to
detectability was envisioned in Alessandri et al. (2008), al-
though no proofs of the convergence were given. Following
the spirit of Moraal and Grizzle (1995a) we introduce practical
regularization mechanisms that monitor and estimate the infor-
mation contents and degree of excitation in the data, and take
corresponding action by adaptively weighting the measured
data and a priori estimates from the dynamic model. Although
the MHE formulation based on Alessandri et al. (2008) does
not rely on an explicit uncertainty estimate in terms of a co-
variance matrix estimate (unlike formulations that may apply
an arrival cost estimate, Rao et al. (2003)), the monitoringof
persistent excitation in the moving horizon nonlinear observer
relies on a related Hessian matrix estimate. This makes the
approach similar in spirit to well known modifications of the
EKF and Recursive Least Squares estimation methods that rely
on monitoring and resetting of the covariance matrix estimate,
directional forgetting and using singular value decomposition
for numerically robust matrix inversion. Preliminary results are
presented in Sui and Johansen (2010b), and further results on
pre-filtering using EKF in combination with the MHE strategy
and other examples are given in Poloni et al. (2010).

The outline of the paper is as follows: After the introduc-
tion, a description of the nonlinear moving horizon estimation
problem and the relevant assumptions are given in Section 2,
together with an analysis of its convergence under strong ob-
servability and with informative data. Section 4 extends the ob-
server to have graceful degradation and practical performacne
also for the case when the data are not informative and other

assumptions are violated, which is followed by two numerical
examples presented in Section 4. Final discussion and conclu-
sions are given in Section 5.

The following notation and nomenclature is used. For a vector
x ∈Rn, let ||x|| =

√
xTx denote the Euclidean norm. Recall that

the induced matrix norm||M|| equals the largest singular value
of M. For two vectorsx ∈ Rn andy∈ Rm we let col(x,y) denote
the column vector inRn+m wherex and y are stacked into a
single column. The Moore-Penrose pseudo-inverse Golub and
van Loan (1983) of a matrixM is denotedM+ and we recall that
for a matrixM of full rank it is given byM+ = (MTM)−1MT

while in general it is defined asM+ = VS+UT whereM =
USVT is a singular value decomposition whereS is a diago-
nal matrix with the singular valuesσ1, ...,σn on the diagonal,
andS+ is the diagonal matrixS= diag(1/σ1, ....,1/σr ,0, ...,0)
wherer ≤ n of the singular values are non-zero. The compo-
sition of two functionsf andg is written f ◦ g(x) = f (g(x)).
Finally, a functionϕ : R+ → R is called aK-function if ϕ(0) = 0
and it is strictly increasing.

2. NONLINEAR MHE PROBLEM FORMULATION

Consider the following discrete-time nonlinear system:
xt+1 = f (xt ,ut) (1a)

yt = h(xt ,ut), (1b)
wherext ∈ X ⊆ Rnx, ut ∈ U ⊆ Rnu andyt ∈ Rny are respectively
the state, input and measurement vectors, andt is the discrete
time index. The setsX andU are assumed to be convex and
compact. TheN + 1 consecutive measurements of outputs and
inputs until timet are denoted asYt = col(yt−N,yt−N+1, · · · ,yt)
andUt = col(ut−N,ut−N+1, · · · ,ut). To expressYt as a function
of xt−N andUt , denotef ut (xt) = f (xt ,ut) andhut (xt) = h(xt ,ut),
and note from (1b) that the following algebraic map can be
formulated, Moraal and Grizzle (1995b):

Yt = H(xt−N,Ut)

= Ht(xt−N)

=




hut−N(xt−N)
hut−N+1 ◦ f ut−N(xt−N)

...
hut ◦ f ut−1 ◦ · · · ◦ f ut−N(xt−N)


 . (2)

Definition 1. Moraal and Grizzle (1995b) The system (1) is
N-observableif there exists aK-function ϕ such that for all
x1,x2 ∈ X there exists a feasibleUt ∈ UN+1 such that

ϕ(||x1 − x2||2) ≤ ||H(x1,Ut)−H(x2,Ut)||2.
Definition 2a. The inputUt ∈ UN+1 is said to beN-excitingfor
theN-observable system (1) at timet if there exists aK-function
ϕt that for allx1,x2 ∈ X satisfies

ϕt(||x1 − x2||2) ≤ ||H(x1,Ut)−H(x2,Ut)||2.

From Proposition 2.4.7 in Abraham et al. (1983), we have
H(x1,Ut)−H(x2,Ut) = Φt (x1,x2)(x1 − x2), (3)

where

Φt(x1,x2) =

∫ 1

0

∂
∂x

H((1− s)x2+ sx1,Ut)ds. (4)

Like in the linear case, an observability rank condition canbe
formulated (see also Moraal and Grizzle (1995b), Alessandri
et al. (2008), Fiacco (1983) and others for similar results):
Lemma 1.If X andU are compact and convex sets, the func-
tions f andh are twice differentiable onX×U and the Jacobian
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matrix ∂H
∂x (x,Ut) has full rank (equal tonx) for all x ∈ X and

someUt ∈UN+1, then the system isN-observable and the input
Ut is N-exciting for the system (1) at timet.

Proof. Due to the observability rank condition being satisfied,
ΦT

t (·)Φt(·) > 0 and the system of nonlinear algebraic equations
(3) can be inverted as follows:

x1 − x2 = Φ+
t (x1,x2)

(
H(x1,Ut)−H(x2,Ut)

)
,

⇒ 1

π2
t (x1,x2)

‖x1 − x2‖2 ≤ ‖H(x1,Ut)−H(x2,Ut)
∥∥2

,

whereπt(x1,x2) = ‖Φ+
t (x1,x2)‖. This proves that the condi-

tions in Definitions 1 and 2a hold withϕ(s) = s/p2 where
p = supx1,x2∈X,Ut∈UN+1 ||Φ+

t (x1,x2)|| is bounded due tof and
h are twice differentiable on the compact setX×U. 2

Define theN-information vector at timet as

It = col(yt−N, . . . ,yt ,ut−N, . . . ,ut).

When a system is notN-observable, it is not possible to recon-
struct exactly all the state components from theN-information
vector. However, in some cases one may be able to reconstruct
exactly at least some components, based on theN-information
vector, and the remaining components can be reconstructed
asymptotically. This corresponds to the notion of detectability,
where we suppose there exists a coordinate transformT : X →
D ⊆ Rnx, whereD is the convex hull ofT(X):

d = col(ξ ,z) = T(x) (5)
such that the following dynamics are equivalent to (1) for any
initial condition inX and inputs inU,

ξt+1 = F1(ξt ,zt ,ut) (6a)
zt+1 = F2(zt ,ut) (6b)

yt = g(zt ,ut). (6c)
This transform effectively partitions the statex into an ob-
servable statez and an unobservable stateξ . The following
strong detectability definition is taken from Moraal and Grizzle
(1995a):

Definition 3. The system (1) isstrongly N-detectableif
(1) there exists a coordinate transformT : X → D that brings
the system in the form (6);
(2) the sub-system (6b)-(6c) isN-observable;
(3) the sub-system (6a) has uniformly contractive dynamics,
i.e. there exists a constantL1 < 1 such that for all col(ξ1,z) ∈
D,col(ξ2,z) ∈ D andu ∈ U, the functionF1 satisfies

||F1(ξ1,z,u)−F1(ξ2,z,u)||′ ≤ L1||ξ1 − ξ2||′. (7)
with a suitable norm|| · ||′.
It is remarked that since there is considerable freedom in the
choice of transformT and the norm|| · ||′, the contractivity
assumption in part 3 of the definition is not very restrictive. For
linear systems, it is equivalent to the conventional detectability
definition with ||x||′ =

√
xTPx for P = PT > 0.

Definition 2b. The inputUt is said to beN-exciting for a
strongly N-detectable system (1) at timet if it is N-exciting
for the sub-system (6b)-(6c) at timet.

The concept ofN-exciting input imposes requirements that may
be difficult to assess a priori. In section 3 we will study howN-
excitation can be monitored online, and used in modifications
to the basic MHE when this requirement is violated because

the input data are notN-exciting at all times. If the inputUt
is notN-exciting at certain points in time, the state estimation
inversion problem (Moraal and Grizzle (1995b)) will be ill-
posed (the solution does not exist, is not unique, or does not
depend continuously on the data) or ill-conditioned (the unique
solution is unaccepably sensitive to perturbations of the data),
and particular consideration is required to achieve a robust
estimator. Such modifications are generally known as regular-
ization methods, see Tikhonov and Arsenin (1977). A common
method, Tikhonov and Arsenin (1977), is to augment the cost
function with a penalty on deviation from a priori information
and makes the estimated solution degrade gracefully whenUt is
notN-exciting.1 We utilize an explicit regularization approach
that weights open loop predictions made with the underlying
model (1) similar to Alessandri et al. (2008). This will have
similar filtering effect as reducing the feedback gain of a stan-
dard nonlinear observer or detuning the gain of an EKF through
online tuning of the process noise covariance matrix. Further
regularization will be motivated later, and introduced in section
3.

A convergent estimator is pursued by the following constrained,
weighted, and regularized least-squares criterion

J(x̂t−N,t , x̄t−N, It) = ‖Wt(Yt −Ht(x̂t−N,t ))‖2

+ ‖Mt(x̂t−N,t − x̄t−N)‖2 (8a)
s.t. x̂t−N,t ∈ X, (8b)

with Mt andWt being time-varying weight matrices. LetJo
t =

minx̂t−N,t J(x̂t−N,t , x̄t−N, It) subject to (10)-(8b), let ˆxo
t−N,t be the

associated optimal estimate, and the estimation error is defined
as

et−N = xt−N − x̂o
t−N,t . (9)

The state estimates on the remainder of the horizon are given
by

x̂i+1,t = f (x̂i,t ,ui), i = t −N, . . . , t −1 (10)

It is assumed that an a priori estimator is determined as

x̄t−N = f (x̂o
t−N−1,t−1,ut−N−1). (11)

This formulation is a slight extension of Alessandri et al. (2008)
with some additional flexibility provided by the time-varying
weighting matricesWt and Mt , which will be exploited in
section 3. The conditionWT

t Wt > 0 may not be sufficient for
uniqueness of a solution when the input is notN-exciting. How-
ever, the conditionMT

t Mt > 0 is generally sufficient to guaran-
tee that the problem has a unique solution ˆxo

t−N,t . This means
that the second term of (8a) can be viewed as a regularization
term and the matrixMt containing regularization parameters.

We remark that the formulation does not account for model er-
ror or disturbances (or process noise) since in (8a) the dynamic
model is assumed to hold perfectly in the predictions. This can
easily be relaxed by introducing additional error variables to be
optimized, like in Rao et al. (2003).

We first study the convergence of the MHE for the case when
the input is assumed to beN-informative at all time, since this
will help us understand and handle cases when this does not
hold, too.

1 Alternative regularization methods exist, and one implicit regularization
method is to rely on the regularizing effect of an iterative approach that
converges to a solution only asymptotically ast → ∞ (and not converges
to a solution at each individual timet), see e.g. Tautenhahn (1994). Hence,
a regularizing effect is also achieved with the iterative sub-optimal variants
described in Moraal and Grizzle (1995b); Alessandri et al. (2008).
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The following are assumed throughout this paper:

(A1) The setU is compact and convex, and the output sequence
{yt} and the input sequence{ut} are bounded.
(A2) For any col(ξ1,z1) ∈ T(X) and col(ξ2,z2) ∈ T(X), then
col(ξ1,z2) ∈ T(X).
(A3) The convex and compact setX is controlled invariant,i.e.
f (xt ,ut) ∈ X for all xt ∈ X and the controlut for all t ≥ 0.
(A4) The initial statex0 ∈ X, andx̄0 ∈ X.
(A5) The functionsf andh are twice differentiable onX×U,
and the functionsF1,F2 andg are twice differentiable onD×U.
(A6) T(x) is continuously differentiable and bounded away
from singularity for allx ∈ X such thatT−1(x) is well defined.
(A7) The system (1) is stronglyN-detectable and the inputUt
is N-exciting for all timet ≥ 0.

In the stability analysis we will need to make use of the coor-
dinate transform (5) into observable and unobservable states,
although we emphasize that knowledge of this transform is not
needed for the implementation of the observer. To expressYt as
a function ofzt−N andUt (note that it does not depend on the
unobservable states), the following algebraic mapping canbe
formulated similar to the mappingH:

Yt = G(zt−N,Ut)

= Gt(zt−N)

= col(gut−N(zt−N), · · · ,gut ◦Fut−1
2 ◦ · · · ◦Fut−N

2 (zt−N)). (12)

First, we establish lower and upper bounds on the optimal cost
functionJo

t :

Lemma 2.Let

Φo
t (zt−N, ẑo

t−N,t ) =

∫ 1

0

∂
∂z

G((1− s)zt−N + sẑo
t−N,t ,Ut)ds,

pz,t = pt(zt−N, ẑo
t−N,t ) = ‖(WtΦo

t (zt−N, ẑo
t−N,t ))

+‖

Then for allxt−N, x̂o
t−N,t ∈ X

Jo
t ≥ 1/p2

z,t‖zt−N − ẑo
t−N,t‖2 (13)

Proof. Using the fact that the system (1) can be transformed
using (5), there existdt−N = T(xt−N), d̂o

t−N,t = T(x̂o
t−N,t ) and

d̄t−N = T(x̄t−N) such that in the new coordinates, the system is
in the form of (6a)-(6c). Note that the least squares term on the
right-hand side of expression (8a) in the new coordinationscan
be rewritten as

‖Wt(Yt −Gt(ẑ
o
t−N,t ))‖2 = ‖Wt(Gt(zt−N)−Gt(ẑ

o
t−N,t ))‖2.

From arguments similar to Lemma 1, it is clear thatWt can
be chosen such thatp2

z,t is uniformly bounded by any chosen
positive number, and

‖Wt(Yt −G(ẑo
t−N,t ,Ut))‖2 ≥ 1/p2

z,t‖zt−N − ẑo
t−N,t‖2. (14)

Taking zero as the lower bound on the second term of (8a) we
get (13).2

Lemma 3.Let

L2 = max
d∈D,u∈U

||∂F1

∂z
(ξ ,z,u)||,

L3 = max
x∈X,u∈U

||∂ f
∂x

(x,u)||,

kT = max
x∈X

||∂T
∂x

(x)||,

kT−1 = max
x∈X

||∂T−1

∂x
(x)||,

kM = sup
t

||Mt ||

Then for allxt−N, x̄t−N, x̂o
t−N,t ∈ X

Jo
t ≤ k2

ML2
3k2

T−1(||ξt−N−1 − ξ̂ o
t−N−1,t−1||2

+||zt−N−1 − ẑo
t−N−1,t−1||2) (15)

Proof. First, we remark that the Lipschitz-like constants are
well defined due to (A5) and (A6) and the compactness ofX
andU. Since (A3) and (A4) hold,xt−N is a feasible solution
of the MHE problem (8). From the optimality of ˆxo

t−N,t , we
have Jo

t ≤ J(xt−N, x̄t−N, It). It is easy to see that‖Wt(Yt −
H(xt−N,Ut))‖2 = ‖Wt(Yt −G(zt−N,Ut))‖2 = 0, and

||Mt(xt−N − x̄t−N)||2 ≤ k2
M||xt−N − x̄t−N||2

≤ k2
ML2

3||xt−N−1 − x̂o
t−N−1,t−1||2

≤ k2
ML2

3k2
T−1(||ξt−N−1 − ξ̂ o

t−N−1,t−1||2

+||zt−N−1 − ẑo
t−N−1,t−1||2).

and the result follows.2
Theorem 1.Let

qz,t = kML3kT−1 pz,t ,

q2
z = min

(
µ

2(1+ µ)
,

γ(1−L2
1)

2(1+ µ)

)
,

µ =
1−L2

1

3L1L2
,

γ =
1−L1

3L2
2(1+2L2

1)
.

By choosing appropriate weight matricesWt andMt , thenqz,t ≤
q̄z and the observer error dynamics is uniformly exponentially
stable for anyx0, x̄0 ∈ X.

Proof. From the lower and upper bounds in Lemmas 2 and 3,
and the inequality

√
||ξ ||2 + ||z||2 ≤ ||ξ ||+ ||z||, we have for all

xt−N, x̂o
t−N,t ∈ X that

‖zt−N − ẑo
t−N,t‖ ≤ qz,t‖zt−N−1 − ẑo

t−N−1,t−1‖
+qz,t ||ξt−N−1 − ξ̂ o

t−N−1,t−1||. (16)
SinceX is positively invariant, then ¯xt−N ∈ X, and x̄t−N is
a feasible solution. From (A2), we know col(ξ̄t−N, ẑo

t−N,t ) is
also a feasible solution. Considering the cost function of the
MHE problem (8), it is clear that col(ξ̄t−N, ẑo

t−N,t ) is also an
optimal solution, since the first term does not depend on the
unobservable states and the second term is zero, i.e.ξ̂ o

t−N,t =

ξ̄t−N. Then from (A7),

||ξt−N − ξ̂ o
t−N,t‖ ≤ L1‖ξt−N−1 − ξ̂ o

t−N−1,t−1‖
+L2‖zt−N−1 − ẑo

t−N−1,t−1‖. (17)
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Let s1,t = ‖zt−N − ẑo
t−N,t‖, and s2,t = ‖ξt−N − ξ̂ o

t−N,t‖. Then
combining (16) and (17) gives(

s1,t
s2,t

)
≤

(
qz,t , qz,t
L2, L1

)(
s1,t−1
s2,t−1

)
. (18)

Sincesi,t ≥ 0, it follows thatsi,t ≤ si,t , i = 1,2, where we define
the 2nd order linear time-varying system(

s1,t
s2,t

)
=

(
qz,t , qz,t
L2, L1

)(
s1,t−1
s2,t−1

)
,

(
s1,0
s2,0

)
=

(
s1,0
s2,0

)
.

Consider a Lyapunov function candidateV(s1,s2) = s2
1 + γs2

2
with γ > 0. It follows that

V(s1,t ,s2,t)−V(s1,t−1,s2,t−1)

= −(1−q2
z,t − γL2

2)s
2
1,t−1 − (γ −q2

z,t − γL2
1)s

2
2,t−1

+2(q2
z,t + γL1L2)s1,t−1s2,t−1.

According to Young’s inequality, for anyµ > 0,

V(s1,t ,s2,t)−V(s1,t−1,s2,t−1)

≤ −(1−q2
z,t − γL2

2)s
2
1,t−1 − (γ −q2

z,t − γL2
1)s

2
2,t−1

+(q2
z,t + γL1L2)/µs2

1,t−1 +(q2
z,t + γL1L2)µs2

2,t−1

≤ −δ1s2
1,t−1 − δ2s2

2,t−1.

where

δ1 = 1− (1+1/µ)q2
z,t − γ

(
L2

2 +L1L2/µ
)

(19)

δ2 = γ(1−L2
1)− (1+ µ)q2

z,t − γL1L2µ (20)

First, chooseµ such thatL1L2µ = 1
3(1−L2

1). Then the first term
of δ2 dominates its third term by a factor 3, and

µ =
1−L2

1

3L1L2
> 0. (21)

Second, chooseγ such thatγ(L1L2/µ +L2
2) = 1

3, which leads to
the first term ofδ1 dominating its third term by a factor 3, and

γ =
1−L2

1

3L2
2(1+2L2

1)
> 0. (22)

Third, sinceqz,t is chosen such that the first terms of bothδ1
andδ2 dominate their second terms by a factor 2, respectively,
and we have

(1+1/µ)q2
z,t ≤ 1

2
⇒ q2

z,t ≤ µ
2(1+ µ)

,

(1+ µ)q2
z,t/γ ≤ 1

2
(1−L2

1) ⇒ q2
z,t ≤ γ(1−L2

1)

2(1+ µ)
,

such thatδ1 > 0 andδ2 > 0. There always exists a matrixMt
with some sufficiently smallkM and a matrixWt for some suffi-
ciently smallpz,t such thatqz,t ≤ q̄z such thatδ1 > 0 andδ2 > 0,
and the 2nd order LTV system is uniformly exponentially stable
for the given initial conditions. Sincesi,t ≤ si,t and (A6) holds,
the error dynamics is also uniformly exponentially stable for
anyx0, x̄0 ∈ X. 2

Assumption (A2) is used in the proof to ensure that a feasible
solution x̄t−N remains feasible in the transformed coordinates
when the observable states are replaced by their optimal values.
This assumption is trivially satisfied for anyN-observable sys-
tem. For systems that are notN-observable, butN-detectable, it
will still hold trivially in many cases as illustrated in Example 1
later. Like many other assumptions in this paper, such as (A7),
it will not be trivial to verify unlessT is known. However,
Theorem 1 remains of value in such cases since it provides a

qualitative understanding of the method. Hence, the theorypro-
vides a guideline, rather than replacement, for practical tuning
as illustrated in the examples.

If the data are notN-exciting, the second term of the observer
cost function dominates and the observer degenerates to an
open loop observer for the state combinations that are not
excited, providedMt has full column rank in the sub-space
corresponding to the linear combination of states not being
excited. WithMT

t Mt > 0 this is trivially satisfied. This may
be a satisfactory solution if the system has open loop asymp-
totically stable dynamics within the region of operation, since
the observer may still converge and give accurate estimates. In
practise, the accuracy will then depend entirely on the accuracy
of the model. If the system is not open loop asymptotically
stable, and in particular if there are significant model errors,
this approach may not be satisfactory since errors will be al-
lowed to accumulate without the presence of feedback from
measurements. This will be the case in a mixed parameter and
state estimation problem with the state spacex = col(χ ,θ )
corresponds to the system stateχ and the unknown parameters
θ and the augmented dynamics

χt+1 = f (χt ,θt ,ut) (23)
θt+1 = θt (24)

yt = h(χt ,θt) (25)
Regardless of the system dynamicsf , the augmented parameter
dynamicsθt+1 = θt are not asymptotically stable and estimates
may drift off due to integrated errors (see Example 1 later).In
the next section we introduce further methods for weighting
and regularization that degrade gracefully when data are not N-
exciting, which are particularly useful when the system is not
asymptotically stable and there are model errors, as in the case
with mixed state and parameter estimation.

3. ADAPTIVE WEIGHTING AND REGULARIZATION
WITHOUT PERSISTENCE OF EXCITATION

In order to implement excitation-sensitive regularization, it
is essential to be able to monitor if the data areN-exciting
or not. ForN-observable systems, the conditionpz,t ≤ α ≤
q̄z/(kML3kT−1) will depend on the existence of a (not too small)
ε > 0 such that

ΦT
t (xt−N, x̂o

t−N,t )Φt (xt−N, x̂o
t−N,t ) ≥ εI > 0 (26)

for all t ≥ 0, where

Φt(x1,x2) =

∫ 1

0

∂
∂x

H((1− s)x1+ sx2,Ut)ds (27)

This condition comes from the requirement ofUt being N-
exciting at allt and is similar to a PE condition. Unfortunately,
sinceΦt(xt−N, x̂o

t−N,t ) depends on the unknownxt−N we cannot
computept(xt−N, x̂o

t−N,t ) = ‖(WtΦt(xt−N, x̂o
t−N,t ))

+‖ exactly at
any point in time to monitor ifUt is N-exciting. Instead, we
have to rely on some approximation or estimate ofpt(·). If it is
assumed that||et−N|| is small, then

Φt(xt−N, x̂o
t−N,t ) ≈ Φt(x̂

o
t−N,t , x̂

o
t−N,t ) =

∂H
∂x

(x̂o
t−N,t ,Ut)

and we can use ˆpt(x̂o
t−N,t ) = ‖( ∂HT

∂x (x̂o
t−N,t ,Ut)

∂H
∂x (x̂o

t−N,t ,Ut))
+

∂HT

∂x (x̂o
t−N,t ,Ut)W+

t ‖ to approximatept(xt−N, x̂o
t−N,t ). Consider

a singular value decomposition (SVD), Golub and van Loan
(1983)

∂H
∂x

(x̂o
t−N,t ,Ut) = UtStV

T
t . (28)
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Any singular value (diagonal element of the matrixSt ) that is
zero or close to zero indicates that a component is unobservable
or the input is notN-exciting. Moreover, the corresponding
row of theVt matrix will indicate which components cannot
be estimated. The Jacobian has the structural property thatits
rank will be no larger than dim(z) = nz ≤ nx, due to certain
components being unobservable. In addition, its rank can be
reduced by data being notN-exciting as discussed in Lemma 1.
The N-excitation of data may therefore be monitored through
the robust computation of the rank of the Jacobian matrix using
the SVD, Golub and van Loan (1983).

In general, we do not want to make the estimation of the
unobservable or unexcited components depend on the measured
data. This is effectively achieved by utilizing the SVD in
order to compute a ”robust pseudo-inverse” where the inverse
of small singular values is set to zero rather than let grow
unbounded.

We know that convergence depends onWt being chosen such
that pz,t is bounded by a sufficiently small number. To pursue
this objective, one may chooseWt such that, whenever possible,

‖(WtΦt(x̂
o
t−N,t , x̂

o
t−N,t ))

+‖ = α, (29)
whereα > 0 is a sufficiently small scalar. In order to give zero
weight on data for components that are either unobservable or
unexcited, we modify this ideal design equation into the more
practical and realistic design objective

‖(WtUtSt,δVT
t )+‖ =

{
α, if ||St || ≥ δ
0, otherwise (30)

where the thresholded pseudo-inverseS+
t,δ = diag(1/σt,1, ...,

1/σt,`,0, ...,0) whereσ1, ..., σ` are the singular values larger
than someδ > 0 and the zeros correspond to small singular
values whose inverse is set to zero, Golub and van Loan (1983).
This leads to

Wt = (1/α)VtS
+
t,δUT

t (31)

satisfying
‖(WtΦt(x̂

o
t−N,t , x̂

o
t−N,t ))

+‖ ≤ α. (32)
HereMt is chosen as

Mt = β Inx, (33)
whereβ ≥ 0 is a scalar.The following result shows that theWt
defined in (32) satisfies the conditions of Theorem 1 locally.
Theorem 2.If Wt is chosen according to (31) withδ being
sufficiently small and 0< α < q̄z/(L3kT−1kTβ ), then Wt is
bounded and the observer error dynamics is locally uniformly
exponentially stable.

Proof. Boundedness ofWt follows directly fromα,δ > 0. Since
δ is sufficiently small and the data areN-exciting, we assume
without loss of generality that the matrixWtΦo

t (zt−N, ẑo
t−N,t ) has

full rank. Using similar arguments as Lemma 1, it is easy to
show that (14) in the proof of Theorem 1 is still valid.

Y−H(x̂o
t−N,t ,Ut) = Φt(xt−N, x̂o

t−N,t )(xt−N − x̂o
t−N,t),

Y−G(ẑo
t−N,t ,Ut) = Φo

t (zt−N, ẑo
t−N,t )(zt−N − ẑo

t−N,t).

To simplify the notation, letΦx,t = Φt(xt−N, x̂o
t−N,t ) andΦz,t =

Φo
t (zt−N, ẑo

t−N,t ). SinceY−H(x̂o
t−N,t ,Ut) = Y−G(ẑo

t−N,t ,Ut),

Φz,t(zt−N − ẑo
t−N,t ) = Φx,t (xt−N − x̂o

t−N,t).

It is known that
dt−N − d̂o

t−N,t = Γt(xt−N − x̂o
t−N,t),

whereΓt =
∫ 1

0
∂
∂xT((1−s)xt−N + ŝ̂xo

t−N,t )ds. Together withz=

ηd, whereη = [0nz×(nx−nz), Inz×nz], we have

Φz,tη(dt−N − d̂o
t−N,t) = Φx,tΓ−1

t (dt−N − d̂o
t−N,t).

It follows that

WtΦz,tη = WtΦx,tΓ−1
t

⇒(WtΦz,t )
+ = ηΓt(WtΦx,t )

+

⇒||(WtΦz,t )
+|| ≤ ||η || · ||Γt || · ||VtS

+
t,δUT

t W+
t ||. (34)

It is known that||η || = 1 and||Γt || ≤ kT , then from (32)

pz,t = ||(WtΦz,t)
+|| ≤ kT ||VtS

+
t,δUT

t W+
t || ≤ kTα.

From Theorem 1, to obtain conditions on the Lyapunov func-
tion,qz,t = kT−1βL3pz,t ≤ q̄z. Therefore, the convergence condi-
tion is implied byα < q̄z/(L3kT−1kTβ ). Note that (34) and the
following arguments only holds for||et || in a neighborhood of
the origin, therefore only local exponential convergence results.
2

The tuning parameters with this adaptive choice ofWt andMt
are the non-negative scalarsα, δ and β . It is worthwhile to
notice that since they are scalars, a successful tuning of the
observer will depend on appropriate scaling of the variables and
model equations.

When the data are not consideredN-exciting at some time
instant, thenδ should be tuned such that the corresponding
singular values ofΦt(·) will be less thanδ such thatWt defined
by (31) will not have full rank. The means that the error in
the corresponding state combinations will not be penalizedby
the first term in the criterion, and due to the second term the
estimates will be propagated by the open loop model dynamics.
In case of augmented parameter statesθt+1 = θt this means
that they are essentially frozen at their value from the previous
sample.

Both β ≥ 0 andδ ≥ 0 could be considered as regularization
parameters that must be chosen carefully in order to tune the
practical performance of the observer. In the ideal case with a
perfect model, no noise, no disturbances andN-exciting data at
all sampling instant one could chooseδ = β = 0. As a practical
tuning guideline we propose to first chooseβ > 0 in order to
achieve acceptable filtering and performance with typical noise
and disturbance levels for typical cases when the data areN-
exciting. Second,δ > 0 is chosen in order to achieve acceptable
performance also in operating conditions when the data are not
N-exciting.

4. EXAMPLES

4.1 Example 1 - mixed state and parameter estimation

Consider the following nonlinear system

ẋ1 = −2x1 + x2 (35a)
ẋ2 = −x2 + x3(u−w) (35b)
ẋ3 = 0 (35c)
y = x2 + v. (35d)

One may think ofx3 as a parameter representing an unknown
gain on the input, where the third state equation is an augmenta-
tion for the purpose of estimating this parameter. It is clear that
x1 is not observable, but corresponds to a stable sub-system.
It is also clear that the observability ofx3 will depend on the
excitationu, while x2 is generally observable.

The same observability and detectability properties hold for the
discretized system with sampling intervalt f = 0.1. Whenu = 0
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for all time, the rank of∂H
∂x (x̂o

t−N,t ,Ut) is 1. Whenu is white

noise, the rank of∂H
∂x (x̂o

t−N,t ,Ut) is 2 almost always.

In this simulation example we chooseN = 2 such that the
moving window has lengthN+1 = 3. The base case is defined
as follows. We use the adaptive weighting law (31) withα = 1,
δ = 0.1. Measurement noise, with independent uniformly dis-
tributedv ∈ [−0.5,0.5], is added to the base case. The input is
chosen with periods without informative data as follows: Dur-
ing 0≤ t < 30t f , u = 0. During 30t f ≤ t < 60t f , u is discrete-
time white noise. During 60t f ≤ t ≤ 120t f , u = 0. In the simu-
lation, true system has an input disturbance withw = 0.15, and
the model used in the MHE observer has no explicit knowledge
of the input disturbance. In the following figures, true states
are shown in solid line; estimated states of proposed work are
shown in dash-dot line; estimated states using the alternative
setting with fixedWt are shown in dash line. The following
initial conditions are used:x0 = [4,−7,2], x̄0 = [3,−5.9,−1].

• Case 1: Default settings are used for the proposed work;
for the alternative method, chooseWt = 4I andβ = 1. The
simulation result is shown in Figure 1.

• Case 2: Chooseβi = 0, i = 0,1,2 for the proposed work;
for the alternative method, chooseWt = I andβ = 0. The
simulation result is shown in Figure 2.

• Case 3: The measurements are generated using the true
system while the model in the observer differs by adding
10% error on all model parameters. Chooseα = 0.03,
βi = 0.01 andδ = 0.2 for the proposed work; for the
method of work (Alessandri et al. (2008)), chooseWt = 4I
andβ = 1. The simulation result is shown in Figure 3.

The example shows that the adaptive weighting with the thresh-
olded singular value inversion effectively freezes the unexcited
parameter estimate and thereby avoids the parameter estimate
drift that otherwise may result due to unmatched model error
(input disturbance) when there are no excitations. This is due to
the estimator degrading to integrated in an open loop fashion
the parameter model̇θ = 0 in this case. Additional regular-
ization is achieved byβ > 0 since otherwise the parameter
estimation will be mainly dominated by noise, as shown by case
2.

4.2 Example 2 - Wheel slip and tyre-road friction estimation

An anti-lock brake system (ABS) controls the slip of each
wheel of a vehicle to prevent it from locking such that a
high friction is achieved and steerability is maintained during
hard braking. ABS brakes are characterized by robust adaptive
behavior with respect to highly uncertain tyre characteristics
and fast changing road surface properties and they have been
commercially available in cars for 30 years (Burckhardt (1993);
SAE (1992)).

Since the vehicle forces transferred from the tires to the road
determine the vehicle motion, accurate information about road
surface properties (dry, wet, snow, ice, etc.) has a significant
importance in ABS and other automotive active safety systems.
However, such forces and road surface properties are usually
difficult to measure, since sensors are too complex and expen-
sive for use in production cars. Therefore, it is necessary to
estimate them from the computed or measurable signals such
as angular wheel speed and the torque acting on the wheel’s
axis. In order to take advantage of a friction model to estimate
the longitudinal wheel slips and speed for use in a wheel slip

control system, one should also estimate one or more parame-
ters of the friction model Johansen et al. (2003); Alvarez etal.
(2005).

Consider the longitudinal dynamics corresponding to one wheel
and 1/4 of a vehicle mass (quarter-car model). The wheel slip
dynamics are important in the control algorithm of an anti-
lock brake systems (ABS), Burckhardt (1993); Johansen et al.
(2003)

v̇ = − 1
m

Fzµ1(λ ), (36a)

λ̇ = −1
v

(
1
m

(1− λ )+
r2

J

)
Fzµ1(λ )+

1
v

r
J

Tb, (36b)

y =
v(1− λ )

r
, (36c)

wherev is the longitudinal speed,λ = (v− ωr)/v is longitu-
dinal tyre slip,Tb is torque acting on wheel axis,Fz = mg is
the vertical force,µ1 is the friction coefficient, andy is the
angular wheel speed measurement. This application requires a
combined state and parameter estimator since only the angular
wheel speedy= ω is measured, such that bothλ andv needs to
be estimated togehter with parameters of the tire-road friction
model that defines the friction coefficientµ1. The parameters
used in the paper are given in Table 1.

Para. Description Value Unit
m Quarter vehicle mass. 325 kg
J Moment of inertia of the wheel. 1 kgm2

r Wheel radius. 0.345 m
g Acceleration of gravity. 9.81 m/s2

Fz Vertical force. 3188 kgm2/s2

v Longitudinal speed. m/s
ω Angular speed. rad/s
λ Longitudinal tyre slip. m/s
Tb Torque acting on wheel axis. Nm
Fx Friction force between wheel and road. N

Table 1. Model vaiables. The numeric values are
nominal values used in the simulation case study.

In the example the friction coefficientµ1(λ ) is a nonlinear
function of the longitudinal slipλ with

µ1(λ ) = θ sin(C(arctanBλ −E(Bλ −arctan(Bλ )))). (37)
and the parametersB,C,E andθ characterize the tire and the
road surface. Typical values of parametersB,C,E and θ are
given by Matuško et al. (2003)

Dry asphalt:B = 10.38, C = 1.65, E = 0.65663, θ = 1

Snow: B = 14.395, C = 0.9, E = −6.439, θ = 0.3

The longitudinal slipλ = (v− ωr)/v describes the normalized
difference between the vehicle’s longitudinal velocityv and the
speed of the wheel perimeterωr. The slip value ofλ = 0(v =
ωr) characterizes the free motion of the wheel where no friction
forceFx is exerted. If the slip attains the valueλ = 1 then the
wheel is locked (ω = 0). The typical friction curvesµ(λ ) are
shown in Figure 4. The friction coefficientµ is generally a
differentiable function with the propertyµ(0)= 0 andµ(λ )> 0
for λ > 0. Figure 4 shows howµ increases with slipλ up to
some value, where it attains its maximum value. For higher
slip values, the friction coefficient will decrease to a minimum
value where the wheel is locked and only the sliding friction
will act on the wheel. The dependence of friction on the road
condition is also exemplified in Figure 4. For wet or icy roads,
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Fig. 1. Simulation results of example 1, case 1.
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Fig. 2. Simulation results of example 1, case 2.
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Fig. 3. Simulation results of example 1, case 3.

Preprints of the NIL workshop
Jan 10–15, 2011, Bratislava, Slovakia Dan, S., Johansen, T. A.

12



0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Snow

Dry

Fig. 4. Typical friction curvesµ1(λ ).

the maximum friction is small and the right part of the curve is
typically flatter.

We consider the tyre/road maximum friction coefficientθ as an
augmented state. We get the augmented wheel slip dynamics

v̇ = − 1
m

Fzµ(λ ,θ ), (38a)

λ̇ = −1
v

(
1
m

(1− λ )+
r2

J

)
Fzµ(λ ,θ )+

1
v

r
J

Tb, (38b)

θ̇ = 0. (38c)
In general, some reasonable constraints of parameters should
be added into the MHE problem. Here the constraints are given
as below:

v(t) ≥ 1.0, 0 ≤ λ (t) ≤ 1, 0 ≤ θ (t) ≤ 1.

and the system is discretized using the standard Euler method.
We remark that the lower bound onv(t) is conventional, since
the ABS application will handle low speed as an exception
where controllability is lost due to the singularity atv = 0
Johansen et al. (2003). In the example we choose the initial
conditionsv(0) = 20,λ (0) = 0.01, and the true valuesθ ,B,C
and E are given according to the different scenarios for dry
asphalt and snow. In the simulation, choose the initial a priori
estimates ¯v(0) = 19, λ̄(0) = 0, θ̄ (0) = 0.6, B̄(0) = 12, C̄(0) =
1.3 and Ē(0) = 0. The horizon is chosen asN = 10. The
sampling intervalt f = 0.01 s, and Gaussian white noise with
variance 0.2 rad/s is applied to the measurements. We choose
α = 0.01 andβi = 1, andWt is chosen according to (31) with
δ = 0.1.

• Case 1, for dry asphalt, the simulation result is shown in
Figure 5.

• Case 2, for snow, the simulation result is shown in Figure
6.

We observe that although the estimate of the single parameter
θ converges to an accurate estimate, the observer still failsin
estimating the velocity and wheel slip in Case 2 due to the
inaccurate fixed values of̄B, C̄ andĒ used in the model. Hence,
there is a potential benefit of estimating alsoB,C andE.

Next, it is assumed that the parametersB,C,E,θ are unknown.
With this parameterization one has to expect that the model
will be over-parameterized such that the persistence of excita-

tion condition (and uniform observability) will not hold. This
challenging parameterization is chosen in order to illustrate
the power of the proposed method, and in particular that the
algorithm will accurately detect the excitation level of the data
at any time and adapt the weights accordingly when usingWt
defined by (31). Therefore, the proposed MHE algorithm is ap-
plied to the combined state and parameter estimation problem.
Considering the parametersθ ,E,C,B as augmented states, the
statesB,C,E,θ are added,

Ḃ = 0, Ċ = 0, Ė = 0, θ̇ = 0. (39)

The constraints on the states are given as

1 ≤v(t) ≤ 30,
0 ≤λ (t) ≤ 1,

0 ≤θ (t) ≤ 1,

9 ≤B(t) ≤ 15.5,

0 ≤C(t) ≤ 3,

−7.5 ≤E(t) ≤ 2.

Here we chooseα = 0.01 andβ = 1.Wt is chosen withδ = 0.8.

• Case 3, for dry asphalt, the simulation result is shown in
Figure 7.

• Case 4, for snow, the simulation result is shown in Figure
8.

In the figures, the true states are shown in solid lines and esti-
mated states are shown in dash lines. It is interesting to observe
that the estimation is robust and that the SVD thresholding
effectively prevents the estimates of (B,C,E) from drifting and
becoming highly incorrect when there is not much excitationor
they are poorly observable. There are slightly more excitations
in the dry asphalt case (stronger braking and higher wheel slips)
and the adaptive weighting makes more attempts to estimate
the parametersC and E in this case, compared to the show
scenario. The parameterB is in both cases not excited, while
good estimates of the most important vairiablesλ and θ are
achieved in both scenarios. Further results and discussions are
given in Sui and Johansen (2010a).

5. DISCUSSION AND CONCLUSIONS

Theoretical and practical properties of a regularized nonlinear
moving horizon observer were demonstrated in this paper.
Although no convergence problems due to local minima were
encountered in the simulation example in this paper, it is
important to have in mind that the method will rely on a
sufficiently accurate guess of the initial a priori estimatein
cases when sub-optimal local minima exist.

The main feature of the proposed method is systematic handling
of nonlinear systems that are neither uniformly observable, nor
persistently excited, and may not be asymptotically stable. This
is a typical situation with mixed parameter and state estimation
with an augmented state space model. With the exception of the
preliminary results in Sui and Johansen (2010b); Moraal and
Grizzle (1995a), this is to the best of the authors knowledge, an
important issue not studied in depth in any other nonlinear mov-
ing horizon observer. The examples show that the method can
be successfully tuned and applied in challenging cases whenthe
uniform observability and persistence of excitation conditions
are not fulfilled, even with a highly over-parameterized model,
without the need for careful a priori analysis of observability
and persistence of excitation conditions. By proper scaling and
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Fig. 5. Example 2: Simulation results of case 1, dry asphalt,one unknown parameter.
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Fig. 6. Example 2: Simulation results of case 2, snow, one unknown parameter.
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Fig. 7. Example 2: Simulation results of case 3, with dry asphalt road conditions and 4 unknown parameters.
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Fig. 8. Example 2: Simulation results of case 4, with snow road conditions and 4 unknown parameters.
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tuning, the algorithm can automatically adapt to the level of
excitation.
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design to design penalty functions for exact soft constraints, thus ensuring that the constraints
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1. INTRODUCTION

Model Predictive Control (MPC) has been a remarkable
industrial success, with thousands of installations world-
wide (Qin and Badgwell (2003)). A distinguishing fea-
ture of MPC controllers is the relative ease with which
constraints in both states/outputs and inputs are han-
dled. Nevertheless, such constraints may introduce many
complexities that an industrial MPC controller need to
address. There has been particular focus on the effect of
hard output constraints on stability (Zafiriou and Marchal
(1991); de Olivieira and Biegler (1994)) as well at the use of
soft constraint formulations to ensure a feasible optimiza-
tion problem, see (Scokaert and Rawlings (1999); Vada
(2000); Hovd and Braatz (2001)) and references therein.

A fairly typical MPC formulation may be expressed as

min
u0,u1,··· ,uN−1

N−1∑

k=0

(
uT

k Ruk + xT
k Qxk

)
(1)

+xT
NQfxN

s.t. Gkxk + Hkuk ≤ bk, k ∈ [0, . . . , N ] (2)

xk+1 = Axk + Buk, x0 = given (3)

Q ≽ 0, Qf ≽ 0 R ≻ 0 (4)

It is now fairly well known how ensure that this problem
corresponds to a constrained infinite horizon problem,
details may be found in e.g. (Rossiter (2003)).

For compactness of notation, we will in the following
assume that the future states are eliminated from the
MPC constraints, and that the resulting MPC problem
is expressed as:

min
u

(
0.5uT Hu + xT

0 Fu
)

(5)

x0 = given

Gu ≤ W + Ex0 (6)

⋆ This paper is based on work submitted to the 2011 IFAC World
Congress. The present version is intended for members of the NIL
project groups.

where u =
[
uT

0 , uT
1 , · · · , uT

N−1

]T
.

The MPC formulation shown above is a socalled hard
constrained problem. There may be initial states x0 for
which there exists no input sequence {uk} for which the
constraints are fulfilled. In such a situation the optimiza-
tion solver will find no solution, and what input to apply
to the plant will not be defined. This is in general consid-
ered unacceptable in industrial practice. Practical MPC
implementations therefore include some way of relaxing
the constraints to ensure that the optimization problem is
always feasible and the input to the plant is always well
defined. There are several ways of doing this (Scokaert and
Rawlings (1999)), one of the simplest and most common
is to use soft constraints. When using soft constraints,
the MPC formulation includes a variable in the constraint
equations which allows relaxing (some of) the constraints,
while the optimization cost function includes terms which
penalize the constraint violation. Thus, with a soft con-
straint formulation, (1) is replaced by

min
u0,u1,··· ,uN−1,ϵ

N−1∑

k=0

(
uT

k Ruk + xT
k Qxk

)
(7)

+xT
NQfxN + g(ϵ)

whereas the constraint equations (2) are modified as
follows

Gkxk + Hkuk ≤ bk + ϵk, k ∈ [0, . . . , N ] (8)

ϵk ≥ 0

Remark: Naturally, we will soften constraints only if
this is physically meaningful and safe to do so. Input
constraints are typically hard constraints given by the
physics of the process, and it would then be absurd to
soften such constraints. However, many state/output con-
straints represent operational desirables (product quality
specifications, comfort of operators, etc.), and violating
such constraints for some period may be acceptable.

The penalty function g(ϵ) is typically given by

g(ϵ) = cT
ϵ ϵ + ϵT Qϵϵ (9)
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A desirable property of the penalty function g is that it
should ensure exact soft constraints, i.e., that the (hard)
constraints will be fulfilled whenever this is possible.
Only the linear terms in the penalty function determines
whether the soft constraints are exact. The quadratic term
should ensures that modified QP problem is a standard
QP, but is otherwise held to be of less importance. Typ-
ically, the elements of Qϵ are therefore small, although
one with some more careful choice of Qϵ may influence
the tradeoff between constraint violations in different vari-
ables. This issue will not be pursued any further here.
Ensuring that the soft constraints are exact is considered
to be of primary importance, and we will therefore focus
on the linear term in the penalty function in this paper.

A sufficiently high weight on the linear term in the penalty
function will ensure that the soft constraints are exact.
However, too high weight is generally not desirable, since
that may lead to unnecessarily violent control action
should the plant for some reason be outside of the (hard
constrained) feasible region.

In the next section, we will briefly state existing criteria for
ensuring the soft constraints are exact, and explain why
this has generally been considered an intractable problem.
In subsequent sections we will detail how to use multi-level
programming to ensure that the soft constraints are exact.
The resulting optimization problems will be mixed-integer
linear programs (MI(L)P’s). MILPs are non-convex, but
very efficient solvers exist for this class of optimization
problems, making it possible to solve problems of non-
trivial size.

2. EXACT PENALTY FUNCTIONS IN MPC

Denote the cost function of the optimization problem, as
shown in (1), by fh(u, x0). The cost function for the soft
constrained MPC in (7) is similarly denoted fs(u, x0, ϵ) =
fh(u, x0)+g(ϵ). We will here only consider the linear term
in g(ϵ), as it is this term that determines whether the soft
constraints are exact. We will assume that this linear term
in g(ϵ) can be expressed in terms of an Lp norm of ϵ. For
a vector a, the Lp-norm of a, denoted ∥a∥p, is given by

∥a∥p =

(∑

i

|ai|p
)1/p

(10)

In MPC, L1-norm and L∞-norm penalty functions are
frequently used. The L1-norm is the sum of the absolute
values of the vector elements (and the slack variables in
the MPC criterion are non-negative), whereas the L∞-
norm is the magnitude of the maximum vector element.
These vector norms are therefore easily included in the
function g(ϵ). The L2-norm is the conventional Euclidian
vector length. However, this is not commonly used for
(exact) penalty functions, since the linear term in the
penalty function then is not a linear function of the vector
elements.

The L1-norm penalty function increases the number of
decision variables in the optimization problem by the
number of constraints that are relaxed. In contrast, the
L∞-norm penalty function only increases the number of
decision variables in the optimization problem by 1 - since

the same slack variable can be used for all relaxed con-
straints. For this reason, L∞-norm penalty functions are
often preferred, although it is shown in (Rao et al. (1998))
that the addition of the L1-norm optimization variables
can be handled at virtually no additional computational
cost if problem structure is utilized in the QP solver. On
the other hand, the L∞-norm can result in unexpected
behaviour and poor performance if it is used to soften an
output constraint for which there is an inverse response.
In (Hovd and Braatz (2001)) it was shown how to mini-
mize this problem by using time-dependent weights in the
optimization criterion.

For a L1-norm penalty function the linear term in g(ϵ)
takes the form

gl,1(ϵ) = k [ 1 · · · 1 ]




ϵ1
...

ϵm


 (11)

where k is a scalar and m is the number of constraints
that are relaxed. For an L∞-norm penalty function only
a single slack variable is required, and the linear term in
g(ϵ) therefore simplifies to

gl,∞(ϵ) = kϵ (12)

In standard optimization textbooks (e.g., Fletcher (1987))
we find conditions for ensuring that the soft constraints
are exact. A Lp norm penalty function ensures that the
soft constraints are exact, provided that the weight k on
the linear term of the penalty function is larger than the
maximal value of the dual norm of the Lagrangian multi-
pliers of the corresponding hard-constrained optimization
problem. The dual norm of an Lp norm is denoted by an
index pd, such that

1

p
+

1

pd
= 1 (13)

Thus, the dual norm of the L1-norm is the L∞-norm, and
vice versa, whereas the L2-norm is its own dual.

This means that if we use an L∞-norm penalty function
and want to ensure that the soft constraints are exact,
we must find the maximal value over the entire feasible
region for the L1-norm of the Lagrangian multipliers
of the hard constrained problem. This is a non-convex
optimization problem which in general has been considered
intractable. In the next section we will briefly introduce
multi-level programming, which we will use to reformulate
the optimization of the norm of the Lagrangian multipliers
into an MI(L)P problem.

3. MULTI-LEVEL PROGRAMMING

Multi-level programming is the generalization of the more
common bi-level programming, where the constraints of
the main optimization problem involve the solution of
another (lower level) optimization problem.
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min
y

VU (y, z) (14)

subjectto GUI(y, z) ≤ 0

GUE(y, z) = 0

z = arg min
z

VL(y, z)

subjectto GLI(y, z) ≤ 0

GLE(y, z) = 0

Bi-level programming has been addressed since the 1970’s,
and the survey (Colson et al. (2005)) lists several con-
tributions in the control area going back to the early
1980’s, but due to the inherent difficulty of these prob-
lem formulations, they have been used rather sporadically
since. However, with increasing availability of computing
power, interest in these problems is returning (e.g., Kookos
and Perkins (2003), Hovd and Kookos (2005), Jones and
Morari (2009), Manum et al. (2009)).

3.1 Replacing lower-level problem with KKT conditions

In this paper, the lower-level optimization problem con-
sidered will be an MPC problem. These problems can be
assumed to be convex and regular, admitting a unique
optimal solution for everywhere in the feasible region for
the problem. The lower-level optimization problem can
therefore be replaced by its Karush-Kuhn-Tucker condi-
tions (KKT), resulting in

min
y,z,λ,ν

VU (y, z) (15)

subjectto GUI(y, z) ≤ 0 (16)

GUE(y, z) = 0 (17)

λ ≥ 0 (18)

GLI(y, z) ≤ 0 (19)

GLE(y, z) = 0 (20)

λ × GL(y, z) = 0 (21)

∇zL(y, z, λ, ν) = 0 (22)

where the × symbol indicate that element k of the vector λ
of Lagrangian multipliers multiply constraint equation k in
the original lower-level constraints. L(y, z, λ) = VL(y, z)+
λT GLI(y, z) + νT GLE(y, z) is the Lagrangian function of
the lower-level problem. Notice that there are no non-
negativity constraints for the Lagrangian multipliers ν for
the equality constraints.

3.2 Reformulating KKT conditions using binary variables

We apply the technique proposed by (Fortuny-Amat and
McCarl (1981)) to reformulate the non-convex complemen-
tarity conditions 21 using binary variables s:

min
y,z,λ,s,ν

VU (y, z) (23)

subjectto GUI(y, z) ≤ 0 (24)

GUE(y, z) = 0 (25)

λ ≥ 0 (26)

λ ≤ Ms (27)

GLI(y, z) ≤ 0 (28)

GLE(y, z) = 0 (29)

GLI(y, z) ≥ −M(1 − s) (30)

∇zL(y, z, λ, ν) = 0 (31)

s ∈ {0, 1} (32)

where M is some sufficiently large scalar. The following
section will detail how this solution approach can be used
to maximize the norm of the Lagrangian multipliers, which
is needed in MPC for the design of exact soft constraints.

4. MAXIMIZING THE NORM OF THE
LAGRANGIAN MULTIPLIER VECTOR

We will here apply the techniques of the preceding section
to the hard-constrained MPC problem in (1) - (3), to find
the norm of the Lagrangian multiplier vector. First, the
problem of maximizing the L1-norm, required for making
soft constraints exact for a penalty function using the L∞
norm, is addressed. Thereafter, maximization of the L∞-
norm is addressed.

4.1 Maximizing the L1-norm

Maximizing the L1-norm of the Lagrangian multiplier
vector for (5) - (6) can be done by solving

max
x0

1T λ (33)

subject to

u = arg min
u

(
0.5uT Hu + xT

0 Fu
)

(34)

subject to Gu ≤ W + Ex0 (35)

where 1 denotes a column vector of ones. In a slight
contrast to ordinary bilevel programming, we see that the
upper-level criterion here does not become well defined
until the lower level optimization problem is replaced by its
KKT conditions - only then do the Lagrangian multipliers
appear explicitly in the problem.

max
x0

1T λ (36)

subject to

λ ≥ 0 (37)

λ ≤ Ms (38)

Gu − W − Ex0 ≤ 0 (39)

Gu − W − Ex0 ≥ −M(1 − s) (40)

Hu + FT x0 + GT λ = 0 (41)

s ∈ {0, 1} (42)

Constraints (39) are the constraints of the original MPC
problem. The presence of these constraints mean that we
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do not have to calculate the feasible region explicitly.
This is a major advantage, since the projection operation
involved in calculating the feasible region can be com-
putationally very demanding for large systems. However,
although the KKT conditions for the MPC problem (the
lower-level problem) uniquely determine the optimal u,
they do not uniquely determine the Lagrangian multipliers
λ. The direct inclusion of λ as free variables in the max-
imization will therefore result in unnecessarily large λ’s -
bounded only by M in (38). We are instead after small
λ’s that fulfill the KKT conditions for the MPC problem.
To this end, we insert an additional minimization in the
formulation above:

max
x0,u,s

1T λ (43)

subject to

Gu − W − Ex0 ≥ −M(1 − s) (44)

Gu − W − Ex0 ≤ 0 (45)

min
λ

0.5λT λ (46)

subject to

λ ≥ 0 (47)

λ ≤ Ms (48)

Hu + FT x0 + GT λ = 0 (49)

s ∈ {0, 1} (50)

Proceeding as before with replacing the lower-level opti-
mization problem with its KKT condition, and expressing
the complementarity conditions as binary variables, we
arrive at

max
x0,λ,u,s,δ,µ,ν

1T λ (51)

subject to

Gu − W − Ex0 ≥ −M(1 − s) (52)

Gu − W − Ex0 ≤ 0 (53)

λ ≤ Ms (54)

λ ≥ 0 (55)

Hu + FT x0 + GT λ = 0 (56)

λ + [ −I I ] δ + Gµ = 0 (57)

δ ≥ 0 (58)

δ ≤ Mν (59)[
−λ

λ − Ms

]
≥ −M(1 − ν) (60)

s ∈ {0, 1} (61)

ν ∈ {0, 1} (62)

Comparing (54), (55) and (60), we observe that for these
constraints to be consistent we need

ν =

[
1 − s
1 − s

]
(63)

Thus, the final formulation becomes

max
x0,λ,u,s,δ,µ

1T λ (64)

subject to

Gu − W − Ex0 ≤ 0 (65)

Gu − W − Ex0 ≥ −M(1 − s) (66)

λ ≥ 0 (67)

λ ≤ Ms (68)

Hu + FT x0 + GT λ = 0 (69)

λ + [ −I I ] δ + Gµ = 0 (70)

δ ≥ 0 (71)

δ ≤ M

[
1 − s
1 − s

]
(72)

s ∈ {0, 1} (73)

We observe that we have retained the complementarity
conditions for the MPC problem. The final formulation
therefore retains the optimal solution to the MPC prob-
lem, with the additional constraint that the Lagrangian
multipliers found minimize the 2-norm among the La-
grangian multipliers that satisfy the KKT conditions for
the MPC problem. The overall optimization formulation
maximizes the corresponding 1-norm over the feasible re-
gion.

4.2 Maximizing the L∞-norm

Finding the maximum of the L∞-norm of the Lagrangian
multipliers requires solving

max
x0

γ (74)

subject to

λ ≤ γ (75)

min
u

0.5uT Hu + xT
0 Fu (76)

subject to

Gu ≤ W + Ex0 (77)

Replacing the lower optimization problem with its KKT
conditions, we obtain

max
x0,γ,λ,u,s

γ (78)

subject to

λ ≤ γ (79)

λ ≥ 0 (80)

λ ≤ Ms (81)

Gu − W − Ex0 ≤ 0 (82)

Gu − W − Ex0 ≥ −M(1 − s) (83)

Hu + FT x0 + GT λ = 0 (84)

s ∈ {0, 1} (85)

However, as above we note that the Lagrangian multipliers
are not uniquely determined by the KKT conditions for the
lower optimization problem, and the γ we are after is the
smallest γ for which there exists Lagrangian multipliers λ
fulfilling the KKT conditions. Therefore, we again insert
a lower-level optimization:
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max
x0,u,s

γ (86)

subject to

Gu − W − Ex0 ≤ 0 (87)

Gu − W − Ex0 ≥ −M(1 − s) (88)

min
γ,λ

0.5γ2 (89)

subject to

λ ≤ γ (90)

λ ≥ 0 (91)

λ ≤ Ms (92)

Hu + FT x0 + GT λ = 0 (93)

s ∈ {0, 1} (94)

Note that although the optimum of the inserted lower-
level optimization problem does not necessarily uniquely
define the optimal value of the λ’s, it does uniquely define
the optimal value of γ, which we are after. Replacing the
lower-level optimization problem with the corresponding
KKT-conditions, and expressing the the complementarity
conditions with binary variables, we obtain

max
x0,γ,λ,u,s,δ,µ,ν

γ (95)

subject to

Gu − W − Ex0 ≤ 0 (96)

Gu − W − Ex0 ≥ −M(1 − s) (97)

λ ≤ γ (98)

λ ≥ 0 (99)

λ ≤ Ms (100)

Hu + FT x0 + GT λ = 0 (101)[
0
γ

]
+

[
I −I I

−1T 0 0

]
δ (102)

+

[
G
0

]
µ = 0

δ ≥ 0 (103)

δ ≤ Mν (104)
[

λ − γ
−λ

λ − Ms

]
≥ −M(1 − ν) (105)

s ∈ {0, 1} (106)

ν ∈ {0, 1} (107)

Comparing (99), (100) and (105), we conclude that the
binary variable ν must be parameterized as

ν =

[
ν1

1 − s
1 − s

]
(108)

We thus arrive at the final formulation

max
x0,γ,λ,u,s,δ,µ,ν1

γ (109)

subject to

Gu − W − Ex0 ≤ 0 (110)

Gu − W − Ex0 ≥ −M(1 − s) (111)

λ ≤ γ (112)

λ ≥ 0 (113)

λ ≤ Ms (114)

λ − γ ≥ −M(1 − ν1) (115)

Hu + FT x0 + GT λ = 0 (116)[
0
γ

]
+

[
I −I I

−1T 0 0

]
δ (117)

+

[
G
0

]
µ = 0

δ ≥ 0 (118)

δ ≤ M

[
ν1

1 − s
1 − s

]
(119)

s ∈ {0, 1} (120)

ν1 ∈ {0, 1} (121)

5. EXAMPLES

The proposed procedure will next be illustrated on two
examples.

5.1 Example 1

This example taken from Hovd et al. (2009). The system
is a double integrator, described by

A =

[
1 1
0 1

]
B =

[
1

0.3

]

with constraints

−1 ≤ uk ≤ 1[
−5
−5

]
≤ xk ≤

[
5
5

]

The weight matrices used are Q = I and R = 1, whereas
the prediction horizon N = 15 is used, resulting in 58
constraints in the MPC formulation. Maximizing the 1-
norm of the Lagrangian multipliers, we find that the
maximum is achieved at x = [−9 3]T . The feasible region
and the point where the maximum is obtained are shown in
Fig. 1. The corresponding value of ∥λ∥1 = 950. This value,
and the location of the maximum is verified by solving the
MPC problem at all vertices of the feasible region.

5.2 Example 2

This example is taken from Hovd and Braatz (2001). The
discrete-time model is given by

A =




0.9280 0.0024 −0.0031 −0.0040
0.0415 0.9538 0.0119 0.0065

−0.0521 −0.0464 0.8957 −0.0035
−0.0686 0.0508 0.0318 0.9346


 (122)
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Fig. 1. Feasible region and point where the 1-norm of the
Lagrangian multipliers is maximized.

B =




0.0000 0.3355
0.1826 0.0074
0.0902 −0.0093
0.0418 −0.0123


 (123)

C =

[
0.0000 0.0000 −0.0981 0.2687
0.0000 0.0000 0.0805 0.3271

]
(124)

D =

[
0 0
0 0

]
(125)

and the constraints are given by[
−1
−1

]
≤ Cx ≤

[
1
1

]
;

[
−1
−1

]
≤ u ≤

[
1
1

]
(126)

The state weight is given by Q = CT C, the input
weight is R = I, and a prediction horizon N = 10
is used. This problem has 120 constraints in the MPC
formulation, and hence requires 120 binary variables in
the MILP formulation for calculating ∥λ∥1. We find that
the maximum value of the norm is achieved at x =
[ 25.5724 25.3546 9.7892 −0.2448 ]

T
, and has the value

∥λ∥1 = 38907. For this example, calculating the feasible
region is very computationally demanding, and the result
has therefore not been verified by checking the vertices of
the feasible region.

6. NUMERICAL ISSUES

Many MPC problems are symmetric in the constraints.
In such cases, the Lagrangian multipliers at x = z will
be the same as the multipliers at x = −z. The problem
will thus have (at least) two optima. Any global optimizer
will try to discriminate between these optima, potentially
resulting in substantial computational effort for no gain.
This type of symmetry in the problem may be avoided by
adding an additional constraint to the problem - in this
work the constraint u0 > 0 has been used for this purpose.

The parameter M should in theory be of little importance,
it is just required to be sufficiently large, and any variable
equal to M indicates that the value used is too small.
However, numerical inaccuracies may be introduced by
making M very large. In our (somewhat limited) expe-
rience, this inaccuracy is more likely to affect the value of
the objective function rather than the location x in state
space where the maximum is achieved. It is thus simple
to check the value of the objective function by solving the
MPC problem at x. Alternatively, one may use different

values for M in different constraints, only increasing M for
variables whose values are constrained by a too low value of
M , and retaining a modest value for M for the remaining
variables. This approach proved effective for Example 2
above.

7. CONCLUSIONS

In this paper, procedures for calculating the maximum val-
ues of the 1-norm and the infinity-norm of the Lagrangian
multipliers of standard QP problems have been developed.
The procedures are intended for designing penalty func-
tions for soft constraints in MPC, to find the required
weights for making the constraints exact. The calculation
procedures are formulated as MILP problems, which are
known in general to be NP-hard and thus very compu-
tationally demanding to solve. However, highly efficient
solvers for MILP problems are available, and the number
of constraints (and thus the number of integer variables in
the MILP formulation) in Example 2 illustrates that the
procedures can be applied to some problems of industrial
relevance. In this work, the MILP solver in CPLEX is used.
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Abstract: The calculation of piecewise quadratic (PWQ) Lyapunov functions is addressed,
using the linear matrix inequality (LMI) approach proposed in Johansson and Rantzer (1998)
for the stability analysis of PWL and PWA dynamics. Alternative LMI relaxations are proposed.
These relaxations are shown to be effective compared to existing relaxations. Copyright c⃝2011
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1. INTRODUCTION

Piecewise linear (PWL) and piecewise affine (PWA) sys-
tems appear often in practical control systems whenever
piecewise linear components are encountered. Such compo-
nents include dead-zone, saturation, relays and hysteresis
Feng (2002). Model predictive control with constraints is
also known to result in piecewise affine closed-loop dynam-
ics. In this work, we address stability verification for PWL
and PWA systems, using PWQ Lyapunov functions cal-
culated using the LMI approach introduced by Johansson
and Rantzer Johansson and Rantzer (1998); Rantzer and
Johansson (2000). This approach has since been extended
to discrete-time systems Feng (2002); Ferrari-Trecate et al.
(2002).

For systems described by PWL (or PWA) models, the
system description can be partitioned into different oper-
ating regions, with a given linear (or affine) system model
for each region. Clearly, it makes no sense to impose the
conventional stability criteria on Lyapunov function for
a given system dynamic outside the region where that
same system dynamic is valid. Still, the LMI formulations
of the stability criteria must hold globally. To amelio-
rate this problem, Johansson and Rantzer Johansson and
Rantzer (1998) introduce relaxations to the LMI formula-
tion. These relaxations are such that the LMI formulation
still ensures that the Lyapunov function stability criteria
hold within the region of validity for each system dynamic,
while relaxing the stability criteria outside that region.

The LMI relaxations introduced in Johansson and Rantzer
(1998) have also been adopted by other authors Feng
(2002); Ferrari-Trecate et al. (2002). In this work, al-
ternative relaxations are proposed, and are shown to be
effective. In addition, we illustrate how additional degrees
of freedom may be introduced in the LMI formulation by
sub-dividing the operating regions for the system dynam-
ics, which in some cases enables the calculation of PWQ
Lyapunov functions without requiring LMI relaxations.
We can therefore conclude that a polyhedral pre-treatment
of the regions of the original partition can decrease the

conservativeness of the stability analysis based on semi-
definite programming techniques.

2. SYSTEM MODELLING

Let {Xi}i∈I ⊆ Rn be a partitioning of the state space into
non-overlapping (possibly unbounded) polyhedral cells,
with I being the index set of the cells. The system
dynamics are given by

xk+1 = Aixk + ai forxk ∈ Xi (1)

The index set I is partitioned into two subsets, I0 repre-
senting the polyhedral cells containing the origin, and I1

representing all other cells. It is assumed that ai = 0 ∀i ∈
I0, which clearly is a prerequisite for the origin to be an
equilibrium point of the system. Further, when considering
PWL systems, it is obviously assumed that ai = 0 ∀i ∈ I.
Each region Xi is defined by the linear inequalities

Eix ≥ ei (2)

For PWL systems, this essentially completes the descrip-
tion of the system dynamics. However, for PWA systems
we will find it convenient to introduce some extra notation
to simplify the system description. This is done in the next
subsection.

2.1 Simplifying the system description for PWA systems

Following Johansson and Rantzer (1998), we simplify no-
tation for the description of PWA systems by introducing
an auxiliary state, such that

x̄ =

[
x
1

]
(3)

The definition of the polyhedral cell may then be expressed
as

Ēix̄ ≥ 0 with Ēi = [ Ei −ei ] .

One may similarly express the system dynamics as linear
in this enlarged (or ’lifted’) state space. However, to be
able to use standard Lyapunov function stability criteria
on the enlarged state space, we must clearly be able to
set the auxiliary state to zero near the origin. This implies
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that what linear dynamics to use will depend not only on
which region the state is in at present, but also what region
the state transits to at the next timestep. For the origin to
be asymptotically stable, there must clearly be a positively
invariant region around the origin. The assumption that
all Xi,i∈I0 have linear dynamics will then also imply
that there is a positively invariant region near the origin
consisting entirely of cells with linear dynamics. A natural
preliminary step in the stability analysis will therefore
be to analyze stability for the PWL system described by
the dynamics in

∪
i∈I0

Xi. Assuming that this is proven

stable (possibly using the techniques described later in
this paper), a positively invariant subset of

∪
i∈I0

Xi may

be extracted, using e.g. the techniques described in (ref.
Hichem???). We will assume that this preliminary analysis
has been done, and that the description of the polyhedral
cells and the index set I0 have been modified such that∪

i∈I0
Xi is positively invariant.

Remark. The original motivation for looking into the
stability of PWA systems came from stability analysis
for MPC controllers, where the MPC design will result
directly in I0 consisting of a single, positively invariant
cell Hovd and Olaru (2010).

Thus, (1) can be expressed as

xk+1 = Āi1x̄ (4)

Āi1 =

[
Ai ai

0 1

]
; xk+1 ∈ Xj , j ∈ I1 (5)

xk+1 = Āi0x̄ (6)

Āi0 =

[
Ai ai

0 0

]
; xk+1 ∈ Xj , j ∈ I0 (7)

3. LMI FORMULATION OF THE LYAPUNOV
STABILITY CRITERIA

Following the development in Feng (2002), we consider
PWQ Lyapunov functions. Thus, for each region of the
state space we have

Vi(x) = x̄T P̄ix̄; x ∈ Xi (8)

The closed loop system is then stable provided

P̄i = P̄T
i (9)

Vi(x) > 0 ∀x ∈ Xi (10)

V (xk) > V (xk+1) (11)

where (11) should hold for all xk and xk+1 that may occur
according to the dynamics in (4 - 7). Let the index i
identify the region in which the state is at time k, and
the index j identify the region in which the state is at
time k + 1. All possible transitions between regions may
then be identified with a set S, where each element of S
consists of a pair (i, j) that is consistent with the partition
of the state space and the dynamics (4 - 7).

3.1 Expressing the stability conditions as an LMI

Equation (9) is fulfilled simply by defining P̄i to be a
symmetric (matrix valued) variable. The conditions (10)
and (11) will be fulfilled if the following LMIs are fulfilled:

P̄i > 0; ∀i (12)

ĀT
i P̄jĀi − P̄i < 0; ∀(i, j) ∈ S (13)

where Āi refers to either Āi1 or Āi0, as appropriate.
However, the condition (10) only has to hold for x ∈ Xi,
whereas fulfilling (12) means that it is fulfilled for the
entire extended state space (i.e., for all x̄). Similarly,
condition (11) only has to hold for xk ∈ Xij , where
Xij ∈ Xi is the subregion of region Xi for which the
state moves to Xj in the next timestep. Clearly, Xij is
a polyhedron, since both Xi and Xk are polyhedra and
the closed loop dynamics is piecewise affine. In contrast,
the fulfillment of (13) implies that the condition has to
hold for the entire extended state space.

3.2 Relaxing the LMI conditions

Clearly, some way of relaxing the LMI conditions is de-
sirable, to reduce the conservatism resulting from taking
conditions on the Lyapunov function that must be fulfilled
only in specific regions of the state space, and converting
these conditions into LMIs that by default imply that the
conditions are fulfilled for the entire state space. To this
end, let us introduce the quadratic functions

fi(x) = x̄T Fix̄; fi(x) > 0, ∀x ∈ Xi (14)

Note that fi(x) < 0 is allowed for x /∈ Xi. It is then easy
to see that (10) is fulfilled, provided

P̄i − Fi > 0 (15)

Similarly, we introduce functions

gij(x) = x̄T Gij x̄; gij(x) > 0,∀x ∈ Xij (16)

Then, (11) is fulfilled provided

ĀT
i P̄jĀi − P̄i + Gij < 0 (17)

Let the region Xi be defined by

Eix ≥ ei ⇔ Ēix̄ ≥ 0 (18)

where Ēi = [ Ei −ei ]. Similarly, the region Xij is defined
by Ēij x̄ ≥ 0. The relaxations proposed in Rantzer and
Johansson (2000) for continuous-time dynamics are then
given by

Fi = ĒT
i UiĒi (19)

Gij = ĒT
ijWijĒij (20)

where Ui and Wij are symmetric, non-negative matrices.
It appears that the same type of relaxations have been
used for discrete-time dynamics by other authors, e.g.
Feng (2002); Ferrari-Trecate et al. (2002). It should be
clear that the power of the LMI-based technique for
finding PWQ Lyapunov functions is strongly dependent
on effective relaxations. Motivated by failure in finding
PWQ Lyapunov functions, alternative relaxations have
been sought. These are presented in the following sections.

4. A NOVEL LMI RELAXATION FOR PWA
SYSTEMS

From (15) and (17) it is clear that we only need the
relaxations (fi(x) and gij(x)) to be positive within specific
polytopes. Outside those polytopes the functions may be
negative, and may thereby make it easier to find a valid
solution to the LMIs. The relaxations (19) and (20) do
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fulfill these requirements, and have proven effective for
problems of modest size. However, the resulting relaxation
functions are somewhat arbitrary, and there is a possibility
that more careful specification of the functional form of the
relaxations can be beneficial.

A reasonable choice for a relaxation would seam to be a
concave quadratic function centered in a point contained
in the interior of the polytope considered. Clearly, the
quadratic function should be positive over the polytope.
Thus, a reasonable relaxation function would appear to
be

h(x) = (x − x0)
T H(x − x0) + c (21)

where H is a symmetric negative definite matrix and c is
a scalar that is sufficiently large to make h positive for the
entire polytope. Clearly, the relaxation function reaches its
maximum at (is ’centered on’) x = x0. The function h(x)
in (21) may equivalently be expressed as

h(x) = x̄T

[
H −Hx0

−xT
0 H xT

0 Hx0 + c

]
x̄ = x̄T

[
H̄i + C̄

]
x̄ (22)

with

H̄ =

[
H −Hx0

−xT
0 H xT

0 Hx0

]
; C̄ =

[
0 0
0 c

]
(23)

Thus, H̄ can be chosen as any symmetric negative definite
matrix, provided we add the additional constraints that
h(x) ≥ 0 at all the vertices of the polytope in question.

Remark: From the explanation above, it follows that it
is actually only H that should be negative definite. The
Schur complement of H̄ is

xT
0 Hx0 − xT

0 H(H)−1Hx0 = 0

and thus H̄ should be negative semi-definite. However, a
simple reformulation of (22) gives

h(x) = x̄T
[
H̄ + C̄

]
x̄ = x̄T

[(
H̄ + C̄a

)
+ C̄b

]
x̄ (24)

Thus, we can ’move part of the constant c into H̄’, to make
H̄ + C̄i,a semi-definite. The non-negativity at the vertices
and the concavity of the relaxation function then ensures
that the relaxation is of the correct form.

5. RELAXING PWL SYSTEM STABILITY CRITERIA

For piecewise linear systems defined on polytopic conical
regions (with the vertex at the origin), we may relax
the LMI-type stability criteria without introducing the
auxiliary state. This follows since for such conical regions,
ei = 0 in 18, and the region is defined by Eix ≥ 0. The
same LMI formulation as in (15) and (17) may therefore
be used, without introducing the auxiliary state. This has
been utilized previously in (ref. Lazar thesis?).

Remark: Actually, more general polyhedral regions may
be analyzed in the same way, provided each region can be
embedded inside (covered by) a polytopic cone with its
vertex at the origin.

5.1 A novel relaxation for PWL systems defined on
polytopic cones

In this subsection, a novel relaxation will be proposed, for
a pointed polytopic conical region with its vertex at the
origin. Such regions cannot cover an entire halfspace. Thus,
there must exist a ray rm originating at the origin, that

is inside the polytopic cone, such that any ray originating
at the origin which is orthogonal to rm is fully outside the
polytopic cone. Let Rp = {rpj}, 1 ≤ j ≤ nx + 1 denote a
set of mutually orthogonal rays that are also orthogonal
to rm.

From the halfplane description of the polytopic cone,
Eix ≥ 0, the extreme rays rej can be identified. These
are the rays where nx − 1 of the inequalities Eix ≥ 0
are fulfilled with equality. Let Re = {rej} be the set of
extreme rays defining the polytopic conical region. Let vm

be a point on rm, vpj be a point on rpj , and vej be a point
on rej . We may then define a relaxation function for the
polytopic cone as follows:

f(x) = xT Fx (25)

vT
mFvm ≥ 0 (26)

vT
ejFvej ≥ 0∀rej ∈ Re (27)

vT
pjFvpj ≤ 0∀rpj ∈ Rp (28)

Any F which fulfils the above constraints define a valid
relaxation function. The constraints require F to have one
positive eigenvalue, and nx − 1 negative eigenvalues, and
ensure that f(x) is positive for any x inside the polytopic
cone.

However, no quadratic relaxation can help for a region that
covers an entire halfspace. Even if the origin is not inside
the region, the relaxation function has to be positive along
any ray starting at the origin and entering the halfspace
region considered. Noting that any quadratic relaxation
has to be symmetric about the origin, we find that the
requirement that the relaxation function is positive within
the polytopic cone then means that the relaxation function
is positive everywhere. For a region that covers an entire
halfspace, the relaxations therefore make the stability
criteria harder to fulfill. For regions that cover an entire
halfspace (or a large part thereof), it would therefore be
desirable to be able to introduce additional degrees of
freedom in the Lyapunov function optimization. This is
addressed in the next subsection.

5.2 Sub-partitioning regions to introduce additional degrees
of freedom in the Lyapunov function design

There is no fundamental reason why the partition of
the state space used for the definition of the Lyapunov
function should be identical to the partition resulting from
the regions of validity of the different system dynamics.
While it would seem reasonable to change the Lyapunov
function where the system dynamics changes, there is
no fundamental reason not to use a finer partitioning
of the state space for Lyapunov function design than
the partition resulting from the regions for the system
dynamics. Obviously, the essence is that the Lyapunov
function is positive (except at the origin), and has to
decrease along the system trajectory in order to guarantee
stability. There are (at least) two approaches to such finer
partitioning of the state space:

(1) Partitioning based on the system dynamics, such that
all states within a new sub-partition use the same
number of timesteps to leave the original partition
and enter the same of the other regions. To illustrate,

Preprints of the NIL workshop
Jan 10–15, 2011, Bratislava, Slovakia Hovd, M., Olaru, S.

31



we may denote by PS143 the new sub-partitioned
region which is within the original partition 1, and
stays within original partition 1 until the states after
4 timesteps enter original partition 3.

(2) A more arbitrary approach, where the sub-partitioning
of the original partitions have no clear connection to
system dynamics.

Both approaches will be illustrated in the examples in the
next section.

6. EXAMPLES OF PWQ LYAPUNOV FUNCTIONS
USING RELAXED LMI CONDITIONS

The approach described above will next be illustrated on a
few examples. In all examples, the calculations have been
performed using Matlab and YALMIP Löfberg (2004),
with the SeDuMi optimization solver.

6.1 Example 1

Consider first the following simple one-state example,
which is included primarily to illustrate how the LMI
relaxations work. The system is open loop unstable

xk+1 = 1.1xk + uk (29)

and the input is constrained −2 ≤ uk ≤ 2. In Hovd et al.
(2009) this example was used to design an MPC controller,
resulting in closed loop dynamics which can be described
using three regions in the state space. The local closed loop
dynamics for each of these regions are:

Ā0 =

[
0.011 0

0 0

]
for R0 = {−1.836 ≤ xk ≤ 1.836}

Ā1 =

[
1.1 −2
0 1

]
for R1 = {1.836 ≤ xk ≤ 19.75}

Ā2 =

[
1.1 2
0 1

]
for R2 = {−19.75 ≤ xk ≤ −1.836}

Using LMI approach to find a PWQ Lyapunov function,
we find that the system is stable in closed loop, although
both region 1 and region 2 have unstable local dynamics.
Simple inspection will show that the closed loop is stable
for −20 < x < 20. The LMI approach can prove stability
for nearly the same region of the state space - numerical
problems occur when including states very close to ±20.

The importance of relaxing the LMI stability criteria can
be illustrated by Fig. 1. The figure shows the relaxed
and unrelaxed solutions to the Lyapunov function stability
criterion for states originating in region 1 and staying in
region 1 at the next timestep. This corresponds to states
3.487 < x < 19.75. It can be observed that although the
unrelaxed solution fulfills the criterion (11) for the relevant
part of the state space, the LMI condition (13) fails to hold
globally. In contrast, the relaxed solution fulfills (17) over
the entire state space

6.2 Example 2

This example is a slight modification of an example in
Hovd and Braatz (2001). The system is described by

−20 −15 −10 −5 0 5 10 15 20
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1
x 10

4

x

 

 
Relaxed solution
Unrelaxed solution

Fig. 1. Relaxed and unrelaxed Lyapunov function stability
criteria for Example 1 (the LHS of (17) and (13),
respectively), for states originating in region 1 and
staying in region 1. The criteria are here evaluated
for x̄ = [x 1]T . The unrelaxed solution holds for the
required region 3.487 < x < 19.75, while the relaxed
solution holds globally.

xk+1 = Axk + Buk

yk = Cxk

with

A =

[
2 −1.45 0.35
1 0 0
0 1 0

]
; B =

[
1
0
0

]
; C = [ −1 0 2 ]

In Hovd and Olaru (2010) this example is used for the
design of an approximate explicit MPC controller. The
input constraints are given by −2 ≤ uk ≤ 2, whereas the
output constraints are −1 ≤ yk ≤ 1. Further information
about the MPC formulation can be found in Hovd and
Olaru (2010).

The initial MPC design results in 199 regions. Through
merging regions with identical affine dynamics, the number
of regions can be reduced to 147. After this merging, there
are 1478 transitions between regions (including ’transi-
tions’ where i = j). Using the LMI approach with the
traditional LMI relaxations fails for this case. The LMI
constraint (15) fails for 86 regions and the constraint (17)
fails for 1353 transitions between regions. It would seem
that the LMI analysis is of no help for this example,
both for proving stability and for identifying regions of
the state space where the control needs to be improved,
given that the LMI conditions fail for such a high number
of regions and transitions between regions. This result
shows the limitations of the stability analysis applied. We
therefore attempt to find a PWQ Lyapunov function using
the alternative relaxation formulation. Of the 147 regions
and 1478 transitions between regions, the relaxed solution
now fails to fulfill the criteria only for 4 transitions between
regions. Closer inspection shows that these ’transitions’
actually represents the state staying in the same region,
i.e., ’transitions’ where i = j. Inspecting the four regions
in question, it turns out that each of them has a fixed
point inside the region, and thus the system is indeed
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not asymptotically stable. This happens even though the
input in within each region corresponds to linear interpola-
tion between the inputs at the vertices of the (simplicial)
region, and the input at each vertex being the optimal
input for an MPC formulation with guaranteed closed
loop stability. With the new relaxations attention is thus
effectively focused on the regions where the control was
inadequate.

Having identified four regions where the dynamics do not
fulfill the stability criteria, the MPC design is refined in
these regions. This results in a total of 155 regions and
1768 transitions between regions. With this refined MPC
design, the closed loop system is found to be stable.

6.3 Example 3.

A PWL system is defined by

A1 =

[
2 − k1 −(1 + k2)

1 0

]
; x1 ≥ 0

A2 =

[
2 −(1 + k1 + k2)
1 0

]
; x1 < 0

This system may be stable or unstable depending on the
values of the parameters k1 and k2. Here, the parameter
values in Table 1 will be considered.

Table 1. Parameter sets for example 3.
Parameter set k1 k2

1 1.2 -0.8
2 0.75 -0.4
3 1.0 -0.7
4 1.5 -0.98
5 0.5 -1.0
6 1.2 -1.2
7 1.5 -0.82
8 2.5 -0.8

It is easily verified by simulation that set 1-4 result
in stable dynamics, whereas sets 5-8 result in unstable
dynamics. However, we are seeking a Lyapunov function
based proof of stability. Applying the LMI techniques for
this purpose is unsuccessful, and the relaxations do not
help - as should be expected from the discussion above -
since each of the regions are half-spaces.

We therefore attempt sub-partitioning the original regions,
as proposed in Section 5.2. Both approaches work well,
proving stability for the stable cases, and failing to do so
for the unstable cases. Depending on system dynamics,
the first approach can result in a high number of sub-
partitioned regions, unless one only defines new sub-
partitions for parts of the original partition where the
state leaves the original partition after a fixed maximum
number of timesteps. For the second approach, the regions
were sub-divided such that each new region had the same
angle at its vertex at the origin. For this case some
’trial-and-error’ was necessary in order to find how many
new sub-partitions were required to be able to prove
stability. For the stable cases, stability was proven when
sub-partitioning the original regions into 2-8 new regions,
whereas no stabilizing PWQ Lyapunov function could be
found (as expected) for any of the unstable cases, even
after subdividing each original region into 64 subregions.

Remark. Whereas the LMI-based approach is effective in
finding PWQ Lyapunov functions (when they exist), it is
not suitable for proving instability. There will always be
the possibility that a Lyapunov function could be found
with finer sub-partitioning of the regions, or by considering
a different class of Lyapunov functions, like e.g., the
polytopic Lyapunov functions studied in Blanchini and
Miani (2008). Shortcut methods that can prove instability
can therefore be useful. The most basic such test, would
be to check that the state cannot ’blow up’ while staying
within a single region of the state space. For PWL systems
defined on conical regions, such as in this example, a real-
valued eigenvalue λi > 1 combined with an eigenvector
that is inside the same conical region is such a simple proof
of instability. Thus, we can easily conclude that that Case
5 is unstable for this example.

6.4 Example 4.

We here consider Example 3.2 in Ahmadi and Parrilo
(2008). The system is piecewise linear and given by

xk+1 =

{
A1xk for xT

k Hxk > 0
A2xk for xT

k Hxk ≤ 0
(30)

where A1 = λe2AC
1 , A2 = 1

λe2AC
2 , λ ≥ 1 is a scaling factor,

and

AC
1 =

[
−0.1 5
−1 −0.1

]
AC

2 =

[
−0.1 1
−5 −0.1

]

H =

[
1 0
0 −1

]

We see that the state space is divided into four conical
regions (which pairwise share the same dynamics), along
the lines x1 − x2 = 0 and x1 + x2 = 0. In Ahmadi
and Parrilo (2008), this example is used to illustrate
the use of non-monotone Lyapunov functions, and it was
found that the system could be proven stable (using
both non-monotone Lyapunov functions with a ’horizon’
of 2, and using unrelaxed PWQ Lyapunov functions)
for λ ∈ [1, 1.221). We sub-partition the original regions
into 3 sub-regions, corresponding to parts of the original
regions for which the state leaves the region after 1, 2, or
more than 2 timesteps. The relaxations for PWL systems
are then used for the sub-partitioned system (both the
traditional and the new relaxations give the same result),
and it is found that the system can be proven stable
for λ ∈ [1, 1.587). Although this quite nicely illustrates
that sub-dividing regions and relaxing the LMI criteria
are powerful tools, we do not claim that this constitutes
a fair comparison between the methods studied here and
the non-monotone Lyapunov function approach of Ahmadi
and Parrilo (2008). It is quite conceivable that the proven
region of stability in Ahmadi and Parrilo (2008) could
be increased by allowing a longer ’horizon’ over which
decrease of the Lyapunov function is imposed.

6.5 Example 5.

A 3-state PWL system is addressed, in which the state
space is partitioned into 8 polytopic conical regions along
the coordinate system axes of the state space. The model
is given in the Appendix. With the new relaxations the
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system is proven stable, whereas no Lyapunov function
is found using the traditional relaxations (with the same
partitioning of the state space). Testing a number of
examples, we find several 3-state examples for which the
new relaxations prove stability whereas the traditional
relaxations fail to do so. In no case have we found the
opposite to be true.

7. CONCLUSIONS

Novel relaxations for LMI-based stability verification of
piecewise affine and piecewise linear systems have been
proposed. A simple way of sub-dividing the original state
space partitions to obtain additional degrees of freedom
in the optimization formulation is also proposed. The idea
of further subdividing the partitions has previously been
proposed in Ohta and Yokohama (2010), but the procedure
for chosing where to position the additional hyperplanes
is much simpler here.

The usefulness of the proposed tools have been demon-
strated by simulations.
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APPENDIX. THE MODEL IN EXAMPLE 5.

Table A1. The model used in Example 5.
Region Constraints A-matrix

1
x3 < 0
x2 < 0
x1 < 0

A1 =

[ −0.94 0.22 0.36
0.48 0.12 −0.18
0.40 0.04 0.30

]

2
x3 > 0
x2 < 0
x1 < 0

A2 =

[
0.62 −0.36 0.22

−0.24 −0.24 0.70
−0.46 −0.58 −0.90

]

3
x3 < 0
x2 > 0
x1 < 0

A3 =

[ −0.82 0.66 −0.22
−0.50 0.68 −0.94
−0.92 0.94 −0.74

]

4
x3 > 0
x2 > 0
x1 < 0

A4 =

[
0.52 −0.08 0.56

−0.52 0.78 −0.32
−0.92 0.04 −0.46

]

5
x3 < 0
x2 < 0
x1 > 0

A5 =

[
0.82 −0.28 0.42
0.50 0.64 0.30
0.16 0.64 −0.14

]

6
x3 > 0
x2 < 0
x1 > 0

A6 =

[
0.22 −0.80 −1.00

−0.86 0.74 0.80
−0.48 0.78 0.74

]

7
x3 < 0
x2 > 0
x1 > 0

A7 =

[
0.94 −0.64 −0.44
0.98 −0.72 −0.36

−0.36 0.34 0.02

]

8
x3 > 0
x2 > 0
x1 > 0

A8 =

[ −0.32 0.68 0.58
0.54 −0.90 −0.36
0.72 0.92 −0.22

]
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Abstract: Multiparametric quadratic programming (MPQP) can be used to construct an off-
line solution to constrained linear model predictive control. The result is a piecewise linear
state feedback defined over polyhedral cells of the state space. However, with high dimensional
problems, coding and implementation of this solution may be very burdensome for the available
hardware, due to the high number of polyhedral cells in the state space partition. In this paper
we provide an algorithm to find an approximate solution to MPQP, which is obtained by linear
interpolation of the exact solution at the vertices of a feasible set and the solution of linear
quadratic(LQ) problem. Based on a patchy control technique, we assure robust closed loop
stability in the presence of additive measurement noise despite the presence of discontinuities
at the switch between the regions in the state space partition.

Keywords: Model predictive control, Multiparametric programming, Smooth patchy Lyapunov
function, Feasible set, Piecewise-linear Lyapunov function.

1. INTRODUCTION

Constrained linear model predictive control(MPC) is by
now a well-known technique Mayne et al. (2000). This is
an optimal control approach, which uses the model of the
plant to predict the future evolution over a finite horizon.
At the time instant t, using this prediction and the current
state, an open loop optimal control problem (typically
based on quadratic programming(QP)) is solved. Then,
only the first element of the optimal control sequence
is applied to the plant. At the time instant t + 1 the
whole procedure is repeated with a new state vector
supposed to be available from measurements or estimation.
The implementation of MPC technique requires powerful
on-line quadratic programming solvers, which may be
very burdensome and represented an obstacle to wider
application of MPC.

In Bemporad et al. (2002) it was shown that the con-
strained linear MPC is equivalent to a multiparametric
quadratic program (MPQP), when the state plays the role
of a vector of parameters for the optimization problem.
The solution is a piecewise affine function of the state over
a polyhedral partition of the state space and the MPC
computation effort is moved off-line Olaru and Dumur
(2005). However for high dimensional problems the explicit
solution may be very complex due to the high number of
polyhedral cells.

? This paper is based on work presented at the 2010 International
Conference on Control, Automation and Systems 2010, in KINTEX,
Gyeonggi-do, Korea. Original paper Copyright c©IEEE. This version
is intended for members of the NIL project groups.

Several solutions have been proposed in the literature for
the complexity reduction of explicit formulations leading
to simpler polyhedral partition of the state space. In Jo-
hansen and Grancharova (2003) the state space partition
in orthogonal hypercubes has been suggested, the subop-
timal solution being computed as piecewise affine control
law which minimizes the loss in the cost function over
the hypercube cell. In the interior of each hypercube an
approximate solution is obtained based on these data. If
necessary, the hypercubes may be further partitioned into
smaller hypercubes for achieving the desired accuracy.

A different approach is described in Bemporad and Filippi
(2003) where an approximate solution to MPQP is found
by relaxing the first order Karush-Kuhn-Tucker optimal-
ity conditions by some parameter ε. This represents a
tuning parameter for the complexity of the controller.
In Bemporad and Filippi (2006) the authors propose a
method, which splits the state space into simplices, the
optimal solution being computed only at the vertices of
each simplex and a linear interpolation used inside each
simplicial cell.

A variable structure linear state feedback controller, given
in terms of the controls at the vertices of the polyhedral
state constraint set, was presented in Gutman and Cwikel
(1986). In Scibilia et al. (2009), the authors decompose a
feasible set into two regions: the region where the linear
quadratic regulator is feasible and the rest of the feasible
set. The latter region is partitioned in simplices. Inside
each simplex, the approximate explicit solution is obtained
by linear interpolation of the exact solution at the vertices.

Preprints of the NIL workshop
Jan 10–15, 2011, Bratislava, Slovakia Nguyen, H. N., Olaru, S., Hovd, M.

37



In Rossiter and Grieder (2005) an interpolation based
control scheme was introduced, the main idea being the
use two interpolations, the first one aims at diminishing
the loss of optimality while the second one assures closed
loop stability.

In this paper, we propose an alternative approach to
compute the approximate explicit solution. The main idea
is to unite two types of control laws. The first one is defined
over a partition of the feasible set into simplicial cones
and obtained by interpolating the exact solution at the
vertices. The second one is a linear quadratic regulator,
defined over a maximal invariant region. The overall result
is a patchy control.

This paper is organized as follows. Section 2 introduces ex-
plicit MPC concepts for discrete-time linear time-invariant
systems while in Section 3 an approximate solution is
introduced. A simplicial controller is given Section 3.1 with
an associated smooth patchy Lyapunov function described
in Section 3.2. Section 3.3 is dedicated to the problem of a
constructive patchy partition for robustness. The simula-
tion results are evaluated in Section 4 before drawing the
conclusions.

2. EXPLICIT MODEL PREDICTIVE CONTROL

2.1 Model predictive control

Consider the problem of regulating to the origin of
discrete-time linear time-invariant system

x(t+ 1) = Ax(t) +Bu(t), (1)

where t ≥ 0 denote the current time, x(t) ∈ Rn is the
state, u(t) ∈ Rm is the input, A ∈ Rn×n and B ∈ Rn×m.

Both the control u(t) and the state x(t) are subject to
polytopic constraints:{

u(t) ∈ U : U = {u|Huu ≤ Ku}
x(t) ∈ X : X = {x|Hxx ≤ Kx} ∀t ≥ 0 (2)

where the matrices Hu, Hx and the vectors Ku, Kx are
assumed to be constant with Ku > 0, Kx > 0 such that
the origin is contained in the interior of U and X.

Assuming that x(t) is available for measurement, a typical
MPC algorithm solves the optimization problem

Vu(x) = min
u=(ut,...,ut+N−1)

J(u, x(t)) (3)

subject to xt|t = x(t) and

ut+k ∈ U, k = 0, . . . , N − 1
xt+k|t ∈ X, k = 1, . . . , N
xt+N |t ∈ Ω
xt+k+1|t = Axt+k|t +But+k, k = 0, . . . , N − 1

where the objective function is given generally in th form
of a finite horizon quadratic cost function:

J(u, x(t)) = xTt+N |tPxt+N |t+

+

N−1∑

k=0

(xTt+k|tQxt+k|t + uTt+kRut+k)

In this formulation, N denote the prediction horizon, Q
and R are weighting matrices, Q ≥ 0, R > 0. It is assumed

that the pair (A,B) is controllable and the pair (
√
Q,A)

is observable. The terminal cost P and terminal set Ω
are classical ingredients for stability reinforcement Mayne
et al. (2000). Practically P is obtained as a solution of
Riccati equation:

ATPA− P −ATPB(BTPB +R)−1BTPA+Q = 0 (4)

At each time instant t the optimal control sequence u
is computed, and only the first element of this sequence
u(t) = ut is applied as control action to the plant. At the
next time instant, the whole procedure is repeated with
new state measurement.

2.2 Terminal set and feasible set

This section provides effective construction procedures for
the terminal set Ω and the feasible set Xf depending on
the prediction horizon N .

It is well-known that, Ω has to be an invariant region
with respect to the system dynamics in closed loop with
the linear quadratic regulator. This property assures the
feasibility at all time Mayne et al. (2000). The feedback
gain associated with this region is defined by:

K = −(BTPB +R)−1BTPA (5)

Denoting Ac = A+BK, the terminal set is define as

Ω = {x ∈ X : Atcx ∈ X,KAtcx ∈ U, t = 0, . . . ,∞} (6)

The following theorem Gilbert and Tan (1991) gives simple
conditions for finite determination of Ω.

Theorem 1. If the following assumptions hold: i) Ac is
asymptotic stable, ii) X is bounded, iii) X has the origin
as an interior point, then Ω is finitely determined.

Under this assumption the constructive procedure is used
to compute the terminal set, as follows.

Procedure 1: Terminal set computation.

(1) Set t = 0, Ht = Hx, Kt = Kx and Xt = X
(2) Set X1

t = Xt

(3) Compute a polytope

X2
t = {x|HtAcx ≤ Kt} ∩ {x|HuKAcx ≤ Ku}

(4) Set Xt as an intersection:

Xt = X1
t ∩X2

t

(5) If Xt = X1
t then stop and set Ω = Xt. Else continue

(6) Set t = t+1, go to step 2

Finite determination properties Gilbert and Tan (1991)
assure that the above procedure terminates in finite time
and leads to the terminal set in form of a polytope:

Ω = {x : Hωx ≤ Kω}
Depending on the length of the prediction horizon N ,
the feasible set is a set of states, which can be steered
to the terminal set Ω in N steps. It is apparent that,
the number of constraints in the standard form of the
optimization problem (3) will increase linearly with N and
the complexity of the feasible set does not have an analytic
dependence on N , thus placing a practical limitation on
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the choice of N . The simplest way to determine the feasible
set is to reformulate MPC constraints (3) in terms of the
input sequence u and current state x(t):

Gu + Ex ≤W (7)

where G and E are matrices and W is a vector of suitable
dimensions. The linear inequalities (7) describe a polytope
in the space Rn+mN . Then the feasible set Xf is obtained
as the orthogonal projection of this polytope onto the state
space.

Fig. 1. Terminal set and feasible set

2.3 Explicit solution

With a simple change of coordinates z = u + H−1FTx
quadratic problem (3) can by reformulated as

Vz(x) = min
z

1

2
zTHz (8)

subject to Gz ≤W + Sx
where the matrices G and S can be found after simple
matrix manipulation (see Bemporad et al. (2002) for
details).

The current state vector x can be viewed as a vector of pa-
rameters, the reformulated problem can be considered as a
multiparametric quadratic problem, since it is a quadratic
problem in z parameterized by x. In parametric program-
ming, the objective is to define the optimal solution z as
an explicit function of the vector of parameters x. For the
problem (8), the solution z has the following properties
Bemporad et al. (2002).

Theorem 2. Consider the problem (8). The optimal solu-
tion z (and u = z − H−1FTx) is a continuous piecewise
affine function of state x and Vz(x) is a convex and con-
tinuous piecewise quadratic function. 2

In the sequel any inequality constraint is said to be active
for some x if it holds with equality at the optimum.

The following theorem gives an explicit representation of
the optimal piecewise affine function of state.

Theorem 3. Consider the problem (8) and arbitrary fixed

set of active constraints. Denote G̃, W̃ ans S̃ the sub-
matrices containing the corresponding rows of G, S and

W. If the rows of G̃ are linearly independent, the optimal

solution and associated Lagrange multipliers are given by
the affine functions:

z = Lx+ g (9)

λ = L1x+ g1 (10)

where
L = H−1G̃T (G̃H−1G̃T )S̃,

L1 = −(G̃H−1G̃T )S̃,

g = H−1G̃T (G̃H−1G̃T )W̃ ,

g1 = −(G̃H−1G̃T )W̃ .

(11)

In addition, the critical region CR ∈ Xf , where this
solution is optimal is described by a polyhedron set

CR = {x ∈ Xf | G(Lx+ g) ≤W + Sx,
L1x+ g1 ≥ 0} (12)

One can find in the literature Bemporad et al. (2002)
effective procedures for the partition of the feasible set
Xf in critical regions as in (12). These regions have zero
measure intersection and the union covers the feasible
region Xf . The same reference Bemporad et al. (2002)
provides solutions for degenerate cases when the linear
independence condition is violated.

Thus, multiparametric quadratic programming algorithm
gives the solution to MPC synthesis in the form of a
piecewise affine function of state over polyhedral cells. The
necessary on-line effort is reduced to identifying the region
containing the current state and evaluate the associated
affine feedback law.

3. APPROXIMATE EXPLICIT SOLUTION

The problem of reducing on-line computation, although
addressed by MPQP, is not yet solved. In fact, for a high
dimensional problem, the number of polyhedral cells may
increase exponentially. Coding and implementation of this
solution may be prohibitive for the available hardware.

Two types of local control laws will be used in this paper
in order to approximate the exact explicit solution for (3).
The first one is the LQ controller defined over the terminal
set. The second one is a simplicial controller defined over
the rest of the feasible set. Simplicial controller is used
to steer the state to a point where the LQ controller is
applicable. The control strategy results in a hybrid closed
loop system.

3.1 Simplicial controller

Given a polytope Xf ∈ Rn, this polytope can be decom-
posed in a sequence of simplices Xk

f each formed by n

vertices x
(k)
1 , x

(k)
2 , . . . , x

(k)
n and the origin. These simplices

have following properties:

• Xk
f has nonempty interior,

• Int(Xk
f ∩X l

f ) = ∅ if k 6= l,

• ⋃kXk
f = Xf ,

Denote by X(k) = (x
(k)
1 x

(k)
2 . . . x

(k)
n ) the square ma-

trix defined by the vertices generating Xk
f . Since Xk

f

has nonempty interior, X(k) is invertible. Let U (k) =

(u
(k)
1 u

(k)
2 . . . u

(k)
n ) be the matrix defined by the optimal
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Fig. 2. Simplicial controller and vector field

control values at these vertices. For x ∈ Xk
f consider the

following linear gain Kk:

Kk = U (k)(X(k))−1 (13)

Theorem 4. The piecewise linear control u = Kkx is
feasible for all x ∈ Xf .

Proof

For all x ∈ Xf there exists an index k such that x ∈ Xk
f

and x can be expressed by convex combination of vertices
of Xk

f : x =
∑n
i=1 αix

k
i , which is equivalent with

x = X(k)α

and by consequence α = (X(k))−1x, α ≥ 0 and
∑n
i=1 αi ≤

1.

For feasibility one has to ensure ∀x ∈ Xf : Huu ≤ Ku and
x+ = Ax+Bu ∈ Xf .

With simple manipulations

Huu=HuU
(k)(X(k))−1x = HuU

(k)α

=

n∑

i=1

αiHuu
k
i ≤

n∑

i=1

αiKu ≤ Ku

and

x+ =Ax+Bu

=A(X(k))α+BU (k)α =

n∑

i=1

α(Axki +Buki )

∀i = 1, n we have Axki +Buki ∈ Xf , it follows that x+ ∈ Xf

2

3.2 Smooth patchy Lyapunov function

In the sequel we call C-set a compact set, containing the
origin as an interior point.

The asymptotic stability of MPC guarantees that all
solutions starting in Xf with the simplicial controller will
reach the terminal set Ω in finite time. Inside the set Ω the
LQ controller can b used to stabilize the system (1). That
means the resulting switch-controller makes the system
globally asymptotically stable in Xf . Indeed the origin is

not locally attractive for Fillipov solutions. The reason
of this is that there exist an admissible measurement
noise, which makes every point on the boundary of Ω an
equilibrium point of (1). So the system (1) with above
discontinuous controller is very sensitive to measurement
noise.

Patchy control Lyapunov functions (PCLFs) are, roughly
speaking, objects consisting of several local control Lya-
punov function (CLFs) the domain of which cover Rn

and have certain weak invariance properties Bressan and
Piccoli (2007), Goebel et al. (2009).

Definition: A smooth patchy Lyapunov function for the
system (1) and the feasible set Xf consists of a finite
countable set Q ∈ N and a collection of functions Vq and

sets Ωq, Ω
′
q, such that:

• Ωq and Ω
′
q are families of nonempty open subsets of

Xf such that Ω =
⋃
q∈Q Ωq =

⋃
q∈Q Ω

′
q and Ω′q ⊂ Ωq,

(Ω′q denotes closure of Ω
′
q ),

• For each q, Vq is a smooth function defined on a

neighborhood of Ωq \ ∪r>qΩ′r, such that for all x ∈
Ωq \ ∪r>qΩr there exists uq,x such that Vq(x) is a
Lyapunov function.

We now return to the system (1) with the feasible set Xf

and display a smooth patchy control Lyapunov function
for it. For this purpose we need the following:

Definition: Given a C-set F , the Minkowski functional
ΨF (x) of F is defined as:

ΨF (x) = inf{λ ≥ 0|x ∈ λF} (14)

The function ΨF (x) is convex, positively homogeneous of
order one. Furthermore it represents a norm for the C-set
if and only if F is 0-symmetric Blanchini (1999).

The Minkowski functional ΨXf defined over Xf for system
(1) with the simplicial controller is positive definite and
the property ΨXf (x+) ≤ ΨXf (x) is guaranteed by the
asymptotic stability of MPC for any x ∈ Xf . Furthermore,
the asymptotic stability of MPC also guarantees that,
there is no state-trajectory such that ΨXf (x) is constant
on this trajectory.

Let Q = {1, 2}, Ω2 = Ω, Ω
′
2 = γΩ, Ω1 = Xf \ Ω

′
2 and

Ω
′
1 = Xf \ Ω2, where γ is any positive number, γ < 1.

For the simplicial controller one has ΨXf as a Lyapunov
function. In the same time, by the fact that the matrix
A + BK is stable, the associated dynamic is stable. In
conclusion, there exist Lyapunov functions for each region
Ωq, q = 1, 2 taken independently.

With these elements, we construct a hybrid patchy con-
troller for the system (1) as follows:

• If x(t) ∈ Ω
′
1 ∩Xk

f , then u(t) = Kkx(t),

• If x(t) ∈ {Ω1 ∩ Ω2 ∩ Xk
f , and u(t − 1) 6= Kx(t − 1)

then u(t) = Kkx(t) else u(t) = Kx(t),

• If x(t) ∈ Ω
′
2, then u(t) = Kx(t)

It is clear that a switching from the simplicial controller
to the LQ controller can occur when x ∈ Ω

′
2, while a

switch from the LQ controller to the simplicial controller
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can occur when x ∈ Ω
′
1. This hysteresis-type controller

prevents chattering between two controllers and lead the
origin of the closed-loop system a global asymptotically
stable, robust to measurement noise.

3.3 Constructive patchy partition for robustness

This section addresses the problem of finding a suitable
γ for guaranteeing robustness in the presence of measure-
ment noise .

Consider the following discrete-time linear time-invariant
system

x(t+ 1) = Ax(t) +Bu(t) + w(t) (15)

where w is a disturbance. Assume that the disturbance
is persistent, additive and belong to a bounded set W .
Assume also that the set W is a C-set. It is well known that
if K is a linear matrix gain such that matrix Ac = A+BK
is strictly stable, then the trajectory of the system

x(t+ 1) = Acx(t) + w(t) (16)

will converge to a minimal robustly positively invari-
ant(mRPI) set F∞(see Bertsekas and Rhodes (1971) for
details).

If the mRPI set F∞ is contained in Ω, then there exists
an unique, non-empty maximal robustly positively invari-
ant(MRPI) set O∞. This set O∞ is a subset of the terminal
set Ω as a consequence of the fact that Ω is positively
invariant for the disturbance free dynamic.

The robust invariance property of the set O∞ assures that,
once the trajectory of the system enters O∞, it will remain
inside in this set and converge to the mRPI F∞. Hence for
the hybrid patchy controller one can choose the scaling
factor γ < 1 such that Ω

′
2 = γΩ ⊂ O∞ or directly

Ω
′
2 = O∞.

Below, we present a constructive procedure for computing
the MRPI set O∞.

Procedure 2: MRPI set computation.

(1) Set t = 0, Ht = Hx, Kt = Kx and Xt = X,
(2) Set X1

t = Xt,
(3) Set Dx = Xt 	 W and Du = U 	 KW , where 	

denotes the Pontryagin difference,
(4) Compute a polytope

X2
t = {x : |HdxAcx ≤ Kdx}∩{x : |HduKAcx ≤ Kdu}

where Hdx,Kdx correspond to the H-representation
of Dx and Hdu,Kdu give the H-representation of Du

(5) Set Xt as an intersection:

Xt = X1
t ∩X2

t

(6) If Xt = X1
t then stop and set O∞ = Xt else continue

(7) Set t = t+ 1 and go to step 2.

4. EXAMPLE

Consider the following discrete-time linear time-invariant
system:

x(t+ 1) =

(
1 1
0 1

)
x(t) +

(
1

0.3

)
u(t) (17)

and the MPC problem with weighting matrices Q = I
and R = 1. The constraints are −10 ≤ x1(t) ≤ 10,

−5 ≤ x2(t) ≤ 5 and −1 ≤ u(t) ≤ 1. The prediction horizon
is N = 13.

Figure 3 shows the state space partition and approximate
state trajectory of the system considered in the example,
using the patchy approximate explicit model predictive
control method. The number of regions is np = 19. Note
that switch occurs when x(t) is strictly inside Ω2.

Fig. 3. State space partition and patchy approximate state
trajectory. Number of regions np = 19. Switch occurs
when x(t) is strictly inside Ω2

.

In comparison with this low complexity solution the Figure
4 shows the state space partition and approximate state
trajectory of the system, using the method in Scibilia et al.
(2009) thus showing the effectiveness of the complexity
reduction (the number of regions is np = 25, and was
shown to be one of the best solution available in the
literature). The price to be paid by the gain in complexity
can be found in the performance deterioration. Indeed, in

Fig. 4. State space partition and approximate state tra-
jectory via Delaunay tessellation. Number of regions
np = 25

order to perform a complete comparison of complexity vs.
closed loop performance we present in Figure 5 the state
space partition and state trajectory of the system, using
the explicit model predictive control method. The number
of regions in this case is np = 129 and is the exact solution
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corresponding to the optimal closed loop MPC trajectory.

Fig. 5. State space partition and state trajectory via
explicit model predictive control. Number of regions
np = 129

With these three control laws we present in Figure 6 the
results of the time-domain simulation. The three curves
correspond to the explicit MPC method, the patchy ap-
proximate explicit MPC method and the method based
on Delaunay tesselation Scibilia et al. (2009) respectively.
Note that in the case of the patchy approximate explicit
MPC, the control law is discontinuous but we do detain a
proof of closed loop stability. In the case of the approxi-
mate explicit MPC via Delaunay tessellation, the control
law is continuous but there is no a priori guarantee of
stability, this being achieved by adding more vertices and
subsequently increasing the complexity of the state space
partition, or, alternatively, by a posteriori analysis of the
resulting closed loop piecewise affine dynamic Hovd and
Olaru (2010).

Fig. 6. State and control trajectories of the system con-
sidered in the example. The brown one is obtained
by using the explicit MPC, the blue one is obtained
by using the patchy approximate explicit MPC and
the green one is obtained by using the approximate
explicit MPC with Delaunay tessellation

5. CONCLUSION

This paper presented an alternative approach to compute
an approximate solution for MPC. Based on the patchy
technique, this approach united two types of controller:
the simplicial and the LQ.

We point out the trade of between the complexity of
the state space partition corresponding to the piecewise
affine control laws and the closed loop performances. The
explicit MPC controller is the reference from the perfor-
mance point of view but very often turns to be impossi-
bly complex for an effective on-line implementation. The
approximate solution based on the interpolation between
the feasible frontier and the frontier of the unconstrained
LQ region provides a good compromise between the com-
plexity and performance deterioration, these being related
principally to the global continuity of the control law.
By pushing the simplification to the ultimate bounds, we
proposed an approximate solution with virtually simplest
piecewise affine structure. It is worth noticing that the
stability guarantee associated with this control law despite
the presence of discontinuity, this same discontinuity being
at the origin of the possible loss of performances in closed
loop.

The simulation results show the effectiveness of the pro-
posed methods.
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Abstract: Piecewise affine (PWA) feedback control laws represent an important class of
controller for linear systems subject to linear constraints, with explicit Model Predictive Control
approaches being probably the most popular techniques to obtain such control laws. These
controllers are usually defined within a polyhedral set of initial states called the feasible set.
In the presence of model mismatch, when the controller designed using the nominal model is
applied to the real plant, the feasible set may lose its invariance property, resulting violation of
constraints. Since the controller is only designed over the feasible set, there is also the technical
problem that the control action is undefined if the state moves outside of the feasible set.
This work proposes a tool to analyze how uncertainty in the model affects the piecewise affine
control law computed using a nominal model. Given the linear system describing the plant and
the piecewise affine control law, the algorithm that is presented considers a polytopic model
uncertainty defined by the user and constructs the maximal robust feasible set, i.e. the largest
subset of the feasible set which is guaranteed to be feasible for any model in the family of models
described by the polytopic uncertainty.

Keywords: Polytopic model uncertainty, LTI systems, constraints, piecewise affine controllers.

1. INTRODUCTION

The concept of invariant sets has been shown to play
an important role in the control and analysis of con-
strained systems (Blanchini (1999), Kerrigan and Ma-
ciejowski (2000), Gilbert and Tan (1991)). Given an au-
tonomous dynamic system, a subset of the state space is
said to be positively invariant if it has the property that, if
it contains the system state at some time, then it will also
contain it at all future times. The presence of constraints
on the state variables defines an admissible set in the state
space, i.e., the set of states that satisfies the constraints at
the present time. Due to the system dynamics, in general,
not all the trajectories originating from admissible initial
states will remain in such a set. Conversely, for any initial
condition which belongs to a positively invariant subset of
the admissible domain, constraint violations are avoided
at future times.
Such characterizations have relevant control applications.
Consider the discrete-time linear time-invariant system

x (t+ 1) = Ax (t) +Bu (t) (1)

? This work is a revised version of Scibilia et al. (2009a) (Copyright
c© 2009 IEEE) and is, to a large extent, extracted from Scibilia
(2010). This version is intended for members of the NIL project
groups.

y (t) = Cx (t) , (2)

and a linear state feedback control law that regulates the
system to the origin

u (t) = Kx (t) , (3)

where x ∈ Rn is the state vector, y ∈ Rm is the output
vector and u ∈ Rr is the input vector, A ∈ Rn×n,
B ∈ Rn×r, C ∈ Rm×n, K is a constant matrix gain.
Suppose that it is required that the closed-loop system
satisfies the output and input constraints

umin ≤ u (t) ≤ umax, (4)

ymin ≤ y (t) ≤ ymax, (5)

for all time instants t ≥ 0, where ymin, ymax and umin,
umax are constant vectors of suitable dimension. The
closed-loop system represents an autonomous system, and
the constraints can be easily rewritten as constraints on
the state variables, giving the admissible domain in the
state space. Then, starting from any initial condition inside
a positively invariant subset of the admissible domain will
guarantee convergence to the origin without violation of
the constraints.
Among the families of positively invariant sets, the poly-
hedral sets are of particular importance because of their
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flexibility and the fact that they are often natural ex-
pressions of physical constraints. The analysis of feasible
positively invariant sets for linear autonomous systems was
considered in Gilbert and Tan (1991), where the authors
provide a systematic way to construct polyhedral invariant
sets.
The concept of invariant sets extends naturally when a
control input is present: a set is said control invariant
if, for any initial state in the set, it is possible to keep
the trajectory inside the set by means of an admissible
feedback control law. Invariant sets are central in Model
Predictive Control (MPC), the predominant control ap-
proach for systems subject to constraints. When linear
models and linear constraints are considered, the stabil-
ity of the nominal closed-loop system can be guaranteed
by imposing positively invariant terminal set constraints
(Mayne et al. (2000)). The constrained optimization in
the MPC problem also characterizes the relative maximal
feasible control invariant set (feasible set for short), i.e. the
largest set of initial conditions such that the objective of
the control is obtained without violating the constraints.
Posing the MPC problem as a (multi-)parametric op-
timization problem, the controller can be given as an
explicitly defined continuous PWA function of the state
over the feasible set (Bemporad et al. (2002), Tøndel
et al. (2003)). Many solutions have also been proposed to
obtain PWA controllers as approximations of the optimal
explicit MPC controller when this is impractical (Scibilia
et al. (2009b), Bemporad and Filippi (2003), Rossiter and
Grieder (2005), Johansen and Grancharova (2003)). This
explains the importance of PWA feedback state laws in the
control of constrained linear systems. Indeed, in the fol-
lowing we will assume that the PWA controller considered
is the result of some explicit MPC approach, since this is
probably the most common way to obtain such controllers.
Linear models always involve approximations since all real
plants are, to some extent, nonlinear, time-varying and
distributed (Ikonen and Najim (2002), van den Boom
and Haverkamp (2000)). Thus, any controller obtained by
model-based design has to deal with the inherent model
uncertainty. Model errors can also be introduced when the
available model is of prohibitive order for real-time control
and model reduction techniques are adopted to obtain a
suitable low order model (Hovland et al. (2008), Johansen
(2003)). Naturally, the ultimate goal of the control is to
meet the performance requirements when implemented in
the real plant. In order to meet such a goal, the control
law should guarantee acceptable performance not only for
the nominal plant model but also for a family of models
which includes, by assumption, the real plant.
A popular paradigm used to cope with model uncertainty
is polytopic model uncertainty. Polytopic model uncer-
tainty constitutes a flexible and powerful tool to describe
families of models and therefore also model uncertainties,
and has been studied for many years (Boyd et al. (1994),
van den Boom and Haverkamp (2000)). Robustness to
model uncertainties in the MPC context has attracted
great attention in the literature (Mayne et al. (2000)).
An exhaustive review is out of the scope of this paper,
it is instead interesting to focus on some relevant pre-
vious work. Polytopic uncertainties have been taken ex-
plicitly into consideration in the control design, result-
ing in robust MPC formulations where the constrained

optimization problem is modified to a min-max problem
which minimizes the worst-case value of the cost function,
where the worst-case is taken over the set of uncertain
models (Kothare et al. (1996), Kouvaritakis et al. (2000),
Cuzzola et al. (2002), Mayne et al. (2000)). The same
min-max approach has also been considered in explicit
MPC (de la Peña et al. (2004), Grieder et al. (2003), Cy-
chowski et al. (2005)). However, the solutions obtained are
in general rather complex and conservative. In Pluymers
et al. (2005a) a simpler and less conservative approach
was proposed. The nominal MPC formulation is used, and
robustness is defined in terms of satisfaction of input and
output constraints for all possible uncertainty realization.
An explicit implementation based on this approach was
proposed in Rossiter et al. (2005).
Polytopic uncertainties are also useful in performance
analysis of nominal controller with respect to possible
model uncertainties. The work in Pluymers et al. (2005b)
considers linear systems controlled by linear feedback con-
trollers and subject to linear state and input constraints,
and proposes an algorithm for constructing the largest set
of initial condition which is guaranteed to be positively
invariant for all possible models in a given polytopic un-
certainty set.
This work proposes a tool to analyze how uncertainty on
the model affects explicit MPC solutions computed using
nominal models. In fact, it has been shown that MPC ap-
proaches possess a remarkable level of inherent robustness,
and stability and good performance are maintained for suf-
ficiently small uncertainties (Nicolao et al. (1996), Mayne
et al. (2000)). However, when constrains are present, it
is also necessary to ensure that the uncertainty does not
cause any violation of constraints. Given a nominal linear
system describing the plant and a PWA feedback control
law designed accordingly, the algorithm that is presented
considers a polytopic model uncertainty defined by the
user and constructs the maximal robust feasible set 1 . This
is the largest subset of the nominal feasible set which is
guaranteed to generate feasible state trajectories for any
model in the family of models described by the polytopic
uncertainty. Therefore, for any initial condition within
the maximal robust feasible set, the closed-loop system
is guaranteed to be feasibly stable.
This can be useful, for example, in the case of control
systems for plants which are time-varying due to wear, and
subject to state and input constraints. In this case, design-
ing a controller which accounts explicitly for the model
mismatch may be unnecessarily conservative, decreasing
the performance. Instead, a control design based on the
nominal model may represent a better choice, resorting
to the intrinsic robustness of the nominal controller to
deal with the slowly progressive plant variation. Then, the
results here presented can be used to investigate whether
the constraints may be violated over time.

2. BASIC NOTIONS

2.1 Polytopic Uncertainty

Consider a linear system of the form (1). Model uncer-
tainty can be expressed by saying that

1 This notation may be in contrast with some work in the literature
where a robust feasible set results from using a robust MPC design.
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[A|B] ∈M, (6)

where M is a polytope in the parameter space defined by
its vertices {[

A(1)|B(1)
]
, ...,

[
A(L)|B(L)

]}
, (7)

L is the number of vertices, as

M , conv
({[

A(1)|B(1)
]
, ...,

[
A(L)|B(L)

]})
. (8)

The function conv () refers to the convex hull.
This is equivalent to say that there exist L non-negative

coefficients λl, l = 1, ..., L,
∑L
l=1 λl = 1, such that

[A|B] =

L∑

l=1

λl

[
A(l)|B(l)

]
. (9)

The case L = 1 corresponds to the case of no model
uncertainty.
Polytopic model uncertainty is a flexible tool to describe
uncertainties. Consider for example A ∈ R1×1 and B = 0.
If the nominal value A = an is known to describe the real
value, ar, with an accuracy ε: an − ε ≤ ar ≤ an + ε, then
M = conv ({an − ε, an + ε}).

2.2 Definitions

Consider the polyhedral convex sets U ⊂ Rr and Y ⊂ Rm
given as

U = {u ∈ Rr|DUu ≤ dU } (10)

Y = {y ∈ Rm|DYy ≤ dY} . (11)

The input and output constraints are of the form

u(t) ∈ U (12)

y(t) ∈ Y, (13)

for all t > 0. We will assume also that the origin is an
interior point of the sets U and Y.
Note that the constraints (4, 5) are special cases of (12-13).

Definition 1. (Feasible positive invariance) A positively
invariant set S for a system of the form (1-2) in closed-
loop with a particular feedback control law u(t) = Φ(x(t))
is termed feasible with respect to constraints (12-13) if

∀x(0) ∈ S : u(t) ∈ U , y(t) ∈ Y for t ≥ 0 (14)

Definition 2. (Robustly feasible positive invariance) Given
a positively invariant set S for a system of the form (1-
2) in closed-loop with a particular feedback control law,
u(t) = Φ(x(t)), feasible with respect to constraints (12-
13), a subset SR ⊆ S is said to be robustly feasible for the
family of dynamics in an uncertainty set of form (8) if

∀x(0) ∈ SR : u(t) ∈ U , y(t) ∈ Y for t ≥ 0, ∀ [A|B] ∈M(15)

The set SR is maximal if it also contains all the other
robustly feasible sets.

Note that Definition 2 implies that for all x(0) ∈ SR ⊆ S,
the state evolution x(t), for all t > 0, is contained within
S for any time invariant [A|B] ∈M.

3. PROBLEM FORMULATION

Consider the problem of regulating to the origin a plant
with a given nominal model of the form (1-2), such that
constraints like (12-13) are satisfied. Assuming that the
state is available for measurement, the regulation problem
is solved by the finite horizon MPC

min
u

{
J (u, x (t)) = ‖xN‖2P +

N−1∑

k=0

‖xk‖2Q + ‖uk‖2R

}
(16)

s.t. x0 = x (t) ,
xk+1 = Axk +Buk
yk = Cxk k = 0, 1, ..., N
yk ∈ Y, k = 1, 2, ..., N
uk ∈ U , k = 0, 1, ..., N − 1
xN ∈ Ω

(17)

where: ‖x‖2Q = xTQx; xk denotes the predicted state
vector at time t + k obtained by applying the k first
elements of the input sequence u , [u0, ..., uN−1]; N is the
prediction horizon; Q � 0 (positive semidefinite) and R �
0 (positive definite) are symmetric matrices corresponding
to weights on state and input; P is the terminal cost
matrix and xN ∈ Ω the terminal constraint, which are
defined to guarantee stability (Mayne et al. (2000)). The
matrix P � 0 is the solution of the algebraic Riccati
equation resulting from the corresponding unconstrained
LQR problem. The terminal set Ω is chosen to be feasible
and positively invariant for the closed-loop system with
this LQR.
The MPC will regulate the system to the origin for all the
initial conditions contained in the feasible set

XF = {x ∈ Rn|∃ u satisfying (17)} . (18)

Note that XF is a convex polyhedron due to the nature
of the constraints. The feasible set is positively invariant
with respect to the closed-loop system, i.e. for any initial
state contained in the feasible set, the state evolution of
the closed-loop system is also contained in the feasible set
for all future times.
There are two ways to implement the constrained opti-
mization problem (16)-(17). The first is to formulate the
MPC as a quadratic program (QP) and solve it online at
each sampling time. Only the first element of the optimal
control sequence is applied to the system, and at the next
time step, the computation is repeated starting from the
new state and over the shifted horizon. The second way
is to formulate the MPC as a multi-parametric QP (mp-
QP) which can be solved offline. In this case, the optimal
control is given as an explicitly defined continuous piece-
wise affine (PWA) function depending on the current state,
and defined over XF . The online computation reduces to
the simple evaluation of the PWA function. For the cases
where the explicit optimal PWA controller is so complex as
to be impractical, several approaches have been proposed
to obtain approximate continuous PWA controllers. One
of such approaches is presented in Scibilia et al. (2009b),
where also details about how to obtain the QP and the
mp-QP formulations can be found.

The following considers a continuous PWA feedback con-
trol law

u (x) = Ljx+ gj , ∀ x ∈ CRj , (19)
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defined over the partition of the feasible set

XF =
⋃

j=1...nr

CRj , (20)

where P
N

= {CR1, ..., CRnr} is the collection of polytopic
disjoint regions into which XF is partitioned.
The controller (19) can represent either the optimal MPC
solution or any suitable approximation thereof.

Apart from the natural assumption that the uncertainty
set M contains both the nominal model and the real
model, we will make the following assumptions.

A1 Assume that there exists a subset Xin ⊂ XF contain-
ing the origin, in which the controller (19) asymptot-
ically stabilizes the system (1) for any time-invariant
[A|B] ∈M.

A2 Assume that for all initial states x0 ∈ XF , for any
[A|B] ∈ M, if the closed-loop trajectory remains
inside XF for all future time, then it converges to
the origin asymptotically.

Then, the problem tackled is as follows:

Given a controller of the form (19) computed for a
nominal system of the form (1-2). Given an uncer-
tainty setM of the form (6). Find the maximal robust
feasible set, i.e. the set of initial conditions XFR ⊆ XF
such that for any possible time-invariant [A|B] ∈M,
the closed-loop system remains feasible at all times.

Assumption A1 guarantees that XFR will not be an
empty set. This assumption is easy to confirm, e.g. the
results in Pluymers et al. (2005b) can be used to find a
robust positively invariant polyhedral set for the closed-
loop system with the LQR.

Assumption A2 is needed to exclude that some system
dynamics in the uncertainty set can lead to limit cycles or
chaotic behavior in the feasible set. This assumption can
be checked by means of a radially unbounded Lyapunov
function (possibly dependent on the dynamics). Finding
such a function may be difficult. A more immediate, but
also conservative, approach is to check that in each region
CRj ∈ PN the following inequality holds for all the vertices[
A(i)|B(i)

]
of M

‖x‖ > ‖B(i)gj‖
1− ‖A(i) +B(i)Lj‖

∀x ∈ CRj . (21)

‖·‖ is a norm or the corresponding induced (matrix) norm,
depending on the argument. Due to convexity, (21) needs
to be checked only on the vertices of each CRj .

Proposition 3. If condition (21) is satisfied for all regions
CRj ∈ PN , then the closed-loop evolutions satisfy

‖x(t)‖ > ‖x(t+ 1)‖ ∀x(t) ∈ XF \ {0} (22)

for any system dynamics in the uncertainty set M.

Proof. Inside each region CRj ∈ PN , the closed-loop
system is an affine system of the form

x(t+ 1) = Φjx(t) + ϕj (23)

where Φj = A + BLj and ϕj = Bgj . Then, using (23) in
(22) the inequality can be written as

‖x(t)‖ > ‖Φjx(t) + ϕj‖ (24)

The triangle inequality implies that

‖Φjx(t) + ϕj‖ ≤ ‖Φjx(t)‖+ ‖ϕj‖ (25)

Thus, requiring that

‖x(t)‖ > ‖Φjx(t)‖+ ‖ϕj‖ (26)

implies that also (24) is satisfied.
By a property of the induced norm it is

‖Φjx(t)‖ ≤ ‖Φj‖‖x(t)‖ ∀ x(t) (27)

Thus, if

‖x(t)‖ > ‖Φj‖‖x(t)‖+ ‖ϕj‖ (28)

is satisfied then also (24) is satisfied. So it can be finally
seen that if the inequality

‖x(t)‖ > ‖ϕj‖
1− ‖Φj‖

(29)

holds, then ‖x(t)‖ > ‖x(t+ 1)‖.

4. ALGORITHM

This approach follows a simple idea: remove from the
feasible set all the initial states which, for any of the
uncertain dynamics, lead to an infeasible closed-loop tra-
jectory. Uncertain dynamics here means that the system
is described by some time-invariant dynamics contained
in the uncertainty set (8). Due to linearity, we need to
consider only the vertices of the uncertainty set, which
corresponds to considering the worst case dynamics. If the
feasible set is robust for the worst case system dynamics,
then it will be robust for all the system dynamics in the
uncertainty set.
The complication with control laws of the form (19) is that
the evolution of the closed-loop system changes depending
on where the current state is in the feasible set.
We can now consider how the algorithm explores the
feasible set by searching and removing all the initial states
that may lead to infeasibility. For each vertex

[
A(i)|B(i)

]
in

the uncertainty setM, the algorithm works in two phases.

In the first phase, each region CRj ∈ PN forming the
partition (20) is moved one time step forward, according
to the control law associated with the region, to compute
the next time-step region. The next time-step region is
defined as follows.

Definition 4. (Successor set) The successor set of all states
which can be reached in one time step from Rj , given
system dynamics [A|B], is defined as

succ (Rj , [A|B]) ={
x+ ∈ Rn|x+ = (A+BLj)x+Bgj , x ∈ CRj

}
,

(30)

Remark 5. The successor region can be computed simply
by applying the control at the vertices of the region and
taking the convex hull of the next time-step vertices.

This phase allows the identification of all the (sub)regions
in XF that in one time step would lead to infeasibility
(Fig. 1). It allows also the formation of a map of reach-
ability, i.e. for each region CRj ∈ PN to identify all the
regions in P

N
containing states from which it is possible

to reach the current region in one time step.
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Fig. 1. An example of nominal feasible set partitioned in
regions CRj . In the close-up on the left, the next time-
step region is computed. In the close-up on the right
the subregion of the feasible set leading to infeasibility
is identified.
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Fig. 2. The subregion not robustly feasible identified in
Fig. 1 is propagated backwards in the feasible set,
finding all the initial states which would lead to
infeasibility.

Certainly, all the states in the (sub)regions that in one time
step would lead to infeasibility have to be removed from
the feasible set. However, this is clearly not enough, also
all the initial states whose closed-loop trajectory moves
through these (sub)regions need to be removed. This is
done in the second phase of the algorithm, with a mecha-
nism of propagation based on the following definition.

Definition 6. (Predecessor set) Given a region S ⊆ CRj ∈
P
N

, a region CRk ∈ PN (CRj and CRk may coincide)
and system dynamics [A|B], all the states in CRk for
which the next time-step state is in S define the set (the
“predecessor” states)

pred (S,CRk, [A|B]) =
{x ∈ CRk| (A+BLk)x+Bgk ∈ S} . (31)

Remark 7. S and CRk can be represented as

S = {x ∈ Rn|DSx ≤ dS} ,
CRk =

{
x ∈ Rn|D

CRk
x ≤ d

CRk

}
.

(32)

Then, we can compute the predecessor set as the intersec-
tion of a finite number of half-spaces

pred (S,CRk, [A|B]) =
{
x ∈ Rn|Dpredx ≤ dpred

}
,

where

Dpred =

[
D
CRk

DS (A+BLk)

]
, dpred =

[
d
CRk

dS −DSBgk

]
,

Using definition 6, all the infeasible (sub)regions in XF
identified during the first phase of the algorithm are
propagated backwards in the feasible set, according to the
map of reachability (Fig. 2).

The procedure based on these two phases can be formal-
ized as in the following algorithm. Initially the maximal
robust feasible set is initialized as the nominal feasible set.
Then, for each vertex of the polytopic uncertainty set the
two phases are iterated in sequence.

Algorithm:
Input: the nominal feasible set XF ; the nominal PWA
controller and the corresponding feasible set partition P

N
;

the uncertainty set M.
Output: The maximal robust feasible set XFR ⊆ XF .

1. Initialize the robust feasible set as XFR = XF ;
2. For each

[
A(i), B(i)

]
of M do

A. For each CRj ∈ PN do

compute Si,j = succ
(
Rj ∩ XFR,

[
A(i)|B(i)

])
, the

successor region for the remaining points in each
region CRj of the nr such regions comprising XF ;
define Zi,j = Si,j − XFR ∩ Si,j and the union of
all these sets Zi =

⋃
j Zi,j , which represents the

set of infeasible states reachable in one step from
any point in XFR for this [A(i)|B(i)];
build the function rchi (CRj), that gives all the
regions containing states from which it is possible
to reach CRj in one time step;

B. For each CRr ∈ PN do
compute Pi,r = pred

(
Zi, CRr,

[
A(i)|B(i)

])
∩

XFR;
define Pi =

⋃
r Pi,r, the admissible predecessor

set of Zi;
define Prch

N
= rchi (Pi) the set of all the regions

containing states which in one time step can reach
Pi;
replace XFR = XFR − Pi;
repeat

For each CRk ∈ PrchN
do

compute Pi,k = pred
(
Pi, Rk,

[
A(i)|B(i)

])
∩

XFR;
replace Pi =

⋃
k Pi,k and P rchn = rchi (Pi);

replace XFR = XFR − Pi
until Pi = ∅

In general, XFR is not robustly positively invariant. The
set XFR has the property of containing all and only the
states in XF which, when used as initial conditions, are
guaranteed to have feasible closed-loop trajectories for any
possible time-invariant dynamics in the uncertainty set.
An initial state x which is not in XFR does not possess a
feasible closed-loop trajectory for all the possible system
dynamics. However, this does not mean that x cannot be
part of the feasible closed-loop trajectory starting from
some state in XFR. (This is discussed further in Section
5).
On the other hand, requiring the positive invariance prop-
erty of XFR would have been too conservative and un-
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necessary. In fact, it follows that any set with guaranteed
positive invariance despite model uncertainty is a subset
of XFR. This would unnecessarily limit the possible initial
conditions, since we are only interested in guaranteeing
that any closed-loop trajectory stays in the feasible set
XF despite model uncertainty. Moreover, the algorithm
for constructing such a positively invariant set would be
much more computationally complex than that presented
here.
As can also be seen from the numerical examples in Section
5, in general XFR is not a convex set, though it can be
expressed as a finite union of polytopes. This is expected
since the piecewise affine control law is a nonlinear con-
troller.

Correctness and convergence of the algorithm are proven
by the following theorems.

Theorem 8. The robust feasible set XFR ⊆ XF contains all
and only the initial states such that, for any [A|B] ∈ M,
the closed-loop trajectory is feasible.

Proof. To prove the theorem, we show first that if a state
x ∈ XF has a closed-loop trajectory that moves outside
the feasible set for some [A|B] ∈M, then x /∈ XFR. Since
[A|B] are inside the polytopic uncertainty set, they can be
expressed as a convex linear combination of the vertices of
M as in (9). Thus, there is at least a vertex

[
A(i)|B(i)

]
,

i ∈ {1, ..., L}, such that, when used as system dynamics,
causes the trajectory starting from x to exit the feasible
set, which means that x cannot be in XFR because it is
removed by the algorithm during iteration i at step 2.
It remains to prove that if a state x ∈ XF has feasible
closed-loop trajectories for all [A|B] ∈ M, then x ∈
XFR. Suppose by contradiction that x /∈ XFR. Then
there exist some vertex of M such that the closed-loop
trajectory exits the feasible set, which contradicts the
assumption that the closed-loop trajectory is feasible for
all the dynamics in M. Thus x ∈ XRF .

Theorem 9. Given the assumptions in Section 3 hold, the
algorithm will terminate in a finite number of iterations
providing a non-empty robust feasible set XFR ⊆ XF .

Proof. The algorithm iterates the two phases A and B
for L times, where L is a finite number. Thus, we have
to prove that phases A and B execute in finite time.
Since XF is assumed partitioned into a finite number
of polytopes, it is immediate to see that phase A is
executed in finite time, and that at each iteration the
set of infeasible states Zi is described as the union of a
finite number of polytopic regions. During phase B, Zi is
propagated backwards in XF according to definition 6. Pi
is initialized as the admissible predecessor set of Zi, and
then iteratively updated in the repeat-until loop within
the phase B. Since Zi is the union of a finite number
of polytopes, Pi will also have this property for all the
iterations. At each iteration, the states comprising Pi are
removed from the current XFR, and once removed they
are not considered again in the future iterations. Thus,
since XFR is bounded, eventually Pi will be an empty set
comporting the termination of phase B.
Assumption A1 guarantees that there exist a non-empty
region, containing the origin, that will never be in Zi, thus
XFR will not be empty, and since at all iterations Pi is
the union of a finite number of polytopes, XFR will be

represented as union of polytopic regions.
Assumption A2 guarantees that for any initial state x ∈
XFR, for any time-invariant [A|B] ∈ M, the closed-loop
system is (feasibly) asymptotically stable.

5. NUMERICAL ILLUSTRATIONS

This section provides examples in order to illustrate the
results presented in the previous sections. Here an ex-
ample is also used to discuss how the presented analysis
approach can be related to existing robust control design
approaches.

5.1 Robust Feasibility for Optimal Explicit MPC

Consider the double integrator system with input and
state constraints. The model of the double integrator is
one of the most important in control applications, repre-
senting single-degree-of-freedom translational or rotational
motion. Thus it can be used to model for instance low-
friction, free rigid-body motion, such as single-axis space-
craft rotation and rotary crane motion (Rao and Bernstein
(2001)).

The double integrator is given by the continuous-time
system

ẋ = Ax+Bu (33)

where x ∈ R2, y ≡ x, u ∈ R,

A =

[
0 1
0 0

]
, B =

[
0

1/m

]
. (34)

The state components x1 and x2 can represent for instance
the position and velocity, respectively, of a body having
mass m. Considering a mass m = 1, and discretizing with
sampling time 0.3 we obtain the following discrete-time
double integrator system matrices

A =

[
1 0.3
0 1

]
, B =

[
0.04
0.3

]
. (35)

The system is subject to the input constraints −1 ≤ u ≤ 1,
and to the velocity constraints −3 ≤ x2 ≤ 3.
We consider the uncertainty set M defined by the follow-
ing vertices

A(1) =

[
1 0.3
0 1

]
, B(1) =

[
0.06
0.37

]
, (36)

A(2) =

[
1 0.3
0 1

]
, B(2) =

[
0.04
0.25

]
. (37)

which correspond to the mass being known with an uncer-
tainty of ε = 0.2, i.e. the real mass value is m = 1± ε.
Consider a PWA state feedback controller which represents
the optimal solution of the MPC problem (16-17). The
weight matrices are chosen as Q = I, R = 1 and the
horizon is N = 5.
Fig. 3 shows the nominal feasible set, partitioned into 161
regions, and the portion of the nominal feasible set which
is robustly feasible for the uncertainty considered. An
initial state in the maximal robust feasible set is shown to
generate feasible trajectories for different system dynamics
within the uncertainty set. Contrarily, an initial state not
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Fig. 3. The upper graph shows the nominal feasible set and
its partition for the optimal explicit MPC. The graph
below shows the maximal robust feasible set within
the feasible set. The feasible state trajectories for
different system dynamics in the uncertainty set (blue
solid lines) all start from initial position/speed x0 =

[−8 1.2]
T

. The infeasible state trajectory (red dot

line) starts from initial position/speed x0 = [−8 2]
T

and is given by the system dynamics
[
A(1)|B(1)

]
.

in the maximal robust feasible set is shown to originate an
infeasible trajectory: when the trajectory exits the feasible
set, the control input is undefined.

Remark 10. Some of the feasible trajectories originating
inside XFR may contain states which are not in the set
XFR (but still in XF ). This at first may seem nonsense,
but it is perfectly reasonable if one considers that the
real system is assumed uncertain but still time invariant:
a state x̃ /∈ XFR belonging to the closed-loop trajectory

starting from x ∈ XFR for certain system dynamics
[
Ã|B̃

]

means that x̃ is a robustly feasible initial condition for a

part of the uncertainty set including
[
Ã|B̃

]
, but this is

not true for all the possible system dynamics and thus x̃
cannot be included in the set of allowed initial condition
XFR.

5.2 Robust Feasibility for Approximate Explicit MPC

Consider the same regulation problem of the previous sec-
tion, and a PWA state feedback controller which represents
the approximate MPC solution computed according to the
results in Scibilia et al. (2009b). This PWA controller is
optimal for the portion of the feasible set where constraints
are not active, on the remaining part of the feasible set the
optimal explicit MPC solution is replaced by an approx-
imation based on Delaunay tessellations and computed
from a finite number of samples of the exact solution.
Finer tessellations can be obtained so as to achieve desired
tolerance with the cost function approximation error. Note
that for this simple example no extra samples have been
introduced since both stability and good performance can
be easily proven by post processing the simplest PWA
solution.
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Fig. 4. The upper graph shows the nominal feasible set
and its partition for the approximate explicit MPC.
The graph below shows the maximal robust feasible
set within the nominal feasible set (emphasized in the
close-up) for a mass uncertainty ε = 0.2. The feasible
state trajectories for different system dynamics in
the uncertainty set (blue solid lines) all start from

initial position/speed x0 = [−8 1.2]
T

. The infeasible
state trajectory (red dot line) starts from initial

position/speed x0 = [9.52 − 2.7]
T

and is given by
the system dynamics

[
A(1)|B(1)

]
.

Fig. 4 presents the feasible set with its partition into
41 regions and the maximal robust feasible set. As can
be noted from the close-up, only a minimal part of the
nominal feasible set is removed, almost the entire feasible
set remains feasible under the uncertainty considered.
It is interesting to note from the simulations that for the
case of the double integrator, the closed-loop system with
the approximate explicit MPC is characterized by more
robust feasibility to model uncertainty than the closed-
loop system with the optimal MPC. This can also be
seen from Fig. 5, where the mass uncertainty ε = 0.5 is
considered.

5.3 Relation to Existing Robust MPC Approaches

The approach proposed in this work represents a tool to
analyze the feasibility robustness of nominal explicit MPC
approaches (or in general, PWA feedback control laws)
with respect to model uncertainty. This section discusses
how this relates to a robust MPC design instead, illustrat-
ing it by a simple example.
The robust MPC design considered is the one presented in
Pluymers et al. (2005a) (Rossiter et al. (2005)), which is
based on a nominal MPC formulation where robustness
is defined in terms of satisfaction of input and output
constraints for all possible uncertainty realization. Given
the connection with the nominal MPC design, it is rea-
sonable to believe that this approach represents a better
comparison than other robust MPC approaches based on
min-max optimization problems.
The robust MPC can be summarized as follows. At each
time step, the algorithm minimizes a cost function like
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Fig. 5. The upper graph shows the nominal feasible set and
its partition for the approximate explicit MPC. The
graph below shows the maximal robust feasible set
within the nominal feasible set for a mass uncertainty
ε = 0.5. The state trajectories for different system
dynamics in the uncertainty set all start from initial

position/speed x0 = [9 − 2.5]
T

. Since x0 is outside
the robust feasible set, only for some of the system dy-
namics the trajectories are feasible (blue solid lines).
There are system dynamics in the uncertainty set
which lead to infeasible trajectories (red dot line).

(16), where the nominal model is used for the future
predictions along the horizon. The minimization is subject
to constraints like (12-13) which, for robust constraints
handling, are applied to all possible predictions according
to the following k-step ahead prediction

xk =

k−1∏

i=0

Aix0 +

k−1∑

j=0

k−1∏

l=j+1

AlBjuj (38)

where [Ai, Bi] ∈ M. A terminal constraint is imposed,
where the (robust) terminal set is chosen as the largest
set of initial condition which is guaranteed to be posi-
tively invariant for all possible models inM, assuming the
nominal LQR as controller (Pluymers et al. (2005b)). The
resulting optimization problem remarkably remains a QP,
even if, with respect to the QP resulting from the nominal
MPC, more complexity in terms of number of constraints is
needed in order to achieve robustness. A multi-parametric
QP solution to this robust MPC is proposed in Rossiter
et al. (2005). For more details the reader is referred to
Pluymers et al. (2005a) and Rossiter et al. (2005).
Note that this robust MPC design is able to deal with lin-
ear parameter varying (LPV) systems, while the approach
presented here considers uncertain linear parameter invari-
ant systems.
Consider the simple example used in Pluymers et al.
(2005a) which has polytopic uncertainty set defined by

A(1) =

[
1 0.1
0 1

]
, B(1) =

[
0
1

]
, (39)

A(2) =

[
1 0.2
0 1

]
, B(2) =

[
0

1.5

]
. (40)
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Fig. 6. The upper graph shows the feasible set for the
nominal MPC (yellow) and the feasible set for the
robust MPC (magenta) with depicted in its interior
the robust terminal set. The graph below shows
the feasible set for the nominal MPC (yellow), the
maximal robust feasible set (green) and the nominal
terminal set. In both graphs, several state trajectories
are plotted starting all from the initial state x0 =

[8 − 5]
T

, for the same different system dynamics.

and the nominal model defined as

A =
1

2
(A(1) +A(2)), B =

1

2
(B(1) +B(2)). (41)

The system is subject to the input constraint −1 ≤ u ≤ 1,
and to the state constraints [−10 − 10]T ≤ x ≤ [10 10]T .
For this system, the robust MPC and the nominal MPC
are formulated both with weight matrices chosen as

Q =

[
1 0
0 0.01

]
, R = 3. (42)

and horizon N = 3.
Fig. 6 illustrates the feasible set resulting from the robust
MPC. The same figure also shows the portion of the
nominal feasible set which is robustly feasible with the
nominal MPC. Both robust and nominal MPC give the
same performance, as it can be qualitatively seen from
the closed-loop trajectories obtained for the same set of
different time-invarying dynamics.
It is not hard to identify regions of initial states for which
the nominal MPC would not be sufficient, while instead
the robust MPC would be. However, it is also immediate to
identify considerably larger regions of initial states which
would be satisfactorily controlled by the nominal MPC
and which are instead excluded by the feasible set with
the robust MPC. Then, assuming that the set of initial
conditions of interest is within the maximal robust feasible
set from the nominal MPC, the analysis method presented
in this paper can be used to decide that the nominal
controller is enough and therefore there is no need for
the supplementary complexity associated with the robust
control design. Of course, this does not exclude a number
of cases where the robust design is instead necessary.
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The analysis tool presented in this paper may be useful,
for example, in the practical case of a crane which has to
move objects whose weight may be within a given range,
satisfying constraints on position and speed. Reasonably,
the parameters of the crane model can be expected to
change for each possible weight (cf. Section 5.1). However,
once the object has been fixed, from the point of view of
the controller the model remains time invariant for the
whole operation (until a new object is considered). In
this case, a controller design based on a nominal model
(for example one which considers the average weight) may
be considered satisfactory, after the associated maximal
robust feasible set has guaranteed that constraints will not
be violated for any possible weight.

6. CONCLUSIONS

This work has proposed a tool for analyzing how uncer-
tainty in the real plant affects the nominal PWA feed-
back law, thereby providing the maximal subset of the
state space which contains safe initial conditions under
the model uncertainty considered. The maximal robust
feasible set thus obtained is, in general, non-convex. It
is not required to be robustly positive invariant, and is
computed in finite time. Moreover, any subset, and thus
any convex subset, still preserves the property of being
robustly feasible.
This result may be used to decide whether or not a nominal
design can be used without resorting to a more complex
robust design. On the other hand, it can also be seen
as an enabling technology for several future approaches
to the problem of enhancing the robustness of (approxi-
mate) explicit MPC solutions towards model uncertainty.
If the maximal robust feasible set does not cover the
portion of state space of interest, the next step could be
to consider just the regions that do not satisfy the robust
feasibility condition, and search for suitable controllers for
those regions. One approach could be to define and solve
a new explicit MPC problem for each infeasible region,
with proper constraints ensuring robust feasibility, and the
maximal robust feasible set as the new terminal set.
Assumption A2 is needed to exclude the possibility of
limit cycles or chaotic behavior of the uncertain system
in closed-loop with the controller, originally designed for
the nominal system. The assumption is easy to check, but
rather conservative. Future research can be directed to
reduce this conservativeness.
An interesting future work would be the extension to
LPV systems. This could be achieved propagating back
the infeasible regions from the phase A of the algorithm
for all the possible uncertain realizations in the polytopic
uncertainty set. This however would reasonably result in
heavier computational loads.
The inclusion of robustness with respect to disturbances
represents another future work of interest.

REFERENCES

Bemporad, A. and Filippi, C. (2003). Suboptimal explicit
receding horizon control via approximate multiparamet-
ric quadratic progamming. Journal of Optimization
Theory and Applications, 117(1), 9–38.

Bemporad, A., Morari, M., Dua, V., and Pistikopoulos,
E.N. (2002). The explicit linear quadratic regulator for
constrained systems. Automatica, 38(1), 3–20.

Blanchini, F. (1999). Set invariance in control. Automat-
ica, 35, 1747–1767.

Boyd, S., Ghaoui, L.E., Feron, E., and Balakrishnan,
V. (1994). Linear Matrix Inequalities in System and
Control Theory. SIAM.

Cuzzola, F.A., Geromel, J.C., and Morari, M. (2002).
An improved approach for constrained robust model
predictive control. Automatica, 38, 1183–1189.

Cychowski, M.T., Ding, B., and O’Mahony, T. (2005).
An orthogonal partitioning approach to simplify robust
model predictive control. In Proceedings of the 13th
Mediterranean Conference on Control and Automation,
877–882.

de la Peña, D.M., Bemporad, A., and Filippi, C. (2004).
Robust explicit MPC based on approximate multi-
parametric convex programming. In Proceedings of the
43rd IEEE Conference on Decision and Control.

Gilbert, E.G. and Tan, K.T. (1991). Linear systems with
state and control constraints: the theory and application
of maximal output admissible sets. IEEE Transactions
on Automatic Control, 36(9).

Grieder, P., Parrillo, P.A., and Morari, M. (2003). Robust
receding horizon control - analysis and synthesis. In
Proceedings of the 42nd IEEE Conference on Decision
and Control.

Hovland, S., Willcox, K.E., and Gravdhal, J. (2008). Ex-
plicit MPC for large-scale systems via model reduction.
AIAA J. Guidance, Control and Dynamics, 31(4).

Ikonen, E. and Najim, K. (2002). Advanced process
identification and control. Control Engineering Series.
Marcel Dekker, Inc.

Johansen, T.A. (2003). Reduced explicit constrained linear
quadratic regulators. IEEE Transactions on Automatic
Control, 48(5), 823–828.

Johansen, T.A. and Grancharova, A. (2003). Approximate
explicit constrained linear model predictive control via
orthogonal search tree. IEEE Transactions on Auto-
matic Control, 48, 810–815.

Kerrigan, E.C. and Maciejowski, J.M. (2000). Invariant
sets for constrained nonlinear discrete-time systems with
application to feasibility in model predictive control. In
Proceedings of the 39th IEEE Conference on Decision
and Control.

Kothare, M.V., Balakrishnan, V., and Morari, M. (1996).
Robust constrained model predictive control using linear
matrix inequalities. Automatica, 32(10), 1361–1379.

Kouvaritakis, B., Rossiter, J.A., and Schuurmans, J.
(2000). Efficient robust predictive control. IEEE Trans-
actions on Automatic Control, 45(8), 1545–1549.

Mayne, D.Q., Rawlings, J.B., Rao, C.V., and Scokaert,
P.O.M. (2000). Constrained model predictive control:
Stability and optimality. Automatica, 36, 789–814.

Nicolao, G.D., Magni, L., and Scattolini, R. (1996). On
the robustness of receding-horizon control with terminal
constraints. IEEE Transactions on Automatic Control,
41(3), 451–453.

Pluymers, B., Rossiter, J.A., Suykens, J., and Moor, B.D.
(2005a). A simple algorithm for robust MPC. In
Proceedings of the 16th IFAC World Congress.

Pluymers, B., Rossiter, J.A., Suykens, J.A.K., and Moor,
B.D. (2005b). The efficient computation of polyhedral
invariant sets for linear systems with polytopic uncer-
tainty. Proceedings of the American Control Conference.

Preprints of the NIL workshop
Jan 10–15, 2011, Bratislava, Slovakia Scibilia., F., Bitmead, R. R., Olaru, S., Hovd, M.

53



Rao, V.G. and Bernstein, D.S. (2001). Naive control of the
double integrator. IEEE Control Systems Magazine, 21,
86–97.

Rossiter, J.A. and Grieder, P. (2005). Using interpolation
to improve efficiency of multiparametric predictive con-
trol. Automatica, 41(4), 637–643.

Rossiter, J.A., Pluymers, B., Suykens, J., and Moor, B.D.
(2005). A multi parametric quadratic programming
solution to robust predictive control. In Proceedings of
the 16th IFAC World Congress.

Scibilia, F. (2010). Explicit Model Predictive Control:
Solutions via Computational Geometry. Ph.D. thesis,
Norwegian University of Science and Technology.

Scibilia, F., Bitmead, R.R., Olaru, S., and Hovd, M.
(2009a). Maximal robust feasible sets for constrained
linear systems controlled by piecewise affine feedback
laws. In The 7th IEEE International Conference on
Control and Automation.

Scibilia, F., Olaru, S., and Hovd, M. (2009b). Approxi-
mate explicit linear MPC via Delaunay tessellation. In
Proceedings of the European Control Conference, 2833–
2838.

Tøndel, P., Johansen, T.A., and Bemporad, A. (2003). An
algorithm for multi-parametric quadratic programming
and explicit MPC solutions. Automatica, 39(3), 489–
497.

van den Boom, T.J.J. and Haverkamp, B.R.J. (2000).
Towards a state-space polytopic uncertainty description
using subspace model identification techniques. In
Proceedings of the American Control Conference, 1807–
1811.

Preprints of the NIL workshop
Jan 10–15, 2011, Bratislava, Slovakia Scibilia., F., Bitmead, R. R., Olaru, S., Hovd, M.

54



Comments – Remarks

Preprints of the NIL workshop
Jan 10–15, 2011, Bratislava, Slovakia Scibilia., F., Bitmead, R. R., Olaru, S., Hovd, M.

55





Feasible Sets for MPC and their
Approximations ?

F. Scibilia ∗ S. Olaru ∗∗ M. Hovd ∗

∗Department of Engineering Cybernetics, NTNU, O.S. Bragstads plass
2D, 7491 Trondheim, Norway (e-mail: francesco.scibilia@itk.ntnu.no,

morten.hovd@itk.ntnu.no).
∗∗ SUPELEC Systems Sciences (E3S) - Automatic Control

Department, Gif-sur-Yvette, 91192, France, (e-mail:
sorin.olaru@ieee.org)

Abstract: This paper considers the problem of computing inner approximations for the
feasible set for linear Model Predictive Control (MPC) techniques. An alternative approach
for computing the feasible set is presented, based on set relations instead of the conventional
orthogonal projection. The approach can be implemented incrementally on the length of
the prediction horizon. This is exploited to design an algorithm to compute suitable inner
approximations. Such approximations are characterized by simpler representations and preserve
the essential properties of the feasible set such as convexity, positive invariance and inclusion
of the set of expected initial states. This is important when in order to avoid the online
optimization, the optimal MPC solution is precomputed offline in an explicit form as a piecewise
affine state feedback control law over the feasible set. Particularly in the context of finding
simpler suboptimal explicit solutions the complexity of the feasible set plays a decisive role.

Keywords: Shape description; Polyhedral sets; Piecewise linear controllers; Predictive control.

1. INTRODUCTION

Within the theoretical framework for MPC, a key role is
played by the so-called feasible set, i.e. the largest subset
of the state space such that there exists a control action
satisfying all the constraints. The feasible set is closely
related to the prediction horizon considered. Generally
longer horizons result in larger feasible sets, but this is at
the cost of a larger MPC optimization problem. Provided
that the MPC optimization problem is formulated so that
closed-loop stability is ensured (Mayne et al. (2000)),
an optimal control action is guaranteed to exist at each
sampling time, for any initial state chosen in the feasible
set. This also means that when explicit MPC formulations
(Bemporad et al. (2002), Tøndel et al. (2003)) are em-
ployed, the feasible set is the domain where the optimal
piecewise affine control function is defined. A well-known
problem in the explicit MPC area is that finding and
deploying the optimal explicit solution may be imprac-
tical in several relevant situations. This problem has been
extensively tackled by the research community, which has
proposed many approaches to approximate explicit MPC.
The availability of the feasible set and furthermore its
shape description play key roles in the effectiveness of
many of these approaches, particularly for the ones based
on feasible set discretizations (Scibilia et al. (2009) and
Scibilia et al. (2010a), Nam et al. (2010), Bemporad and
Filippi (2006), Johansen and Grancharova (2003), Jones

? This work is a revised version of Scibilia et al. (2010b) (Copyright
c© 2010 Elsevier Ltd) and is, to a large extent, extracted from Scibilia

(2010). This version is intended for members of the NIL project
groups.

and Morari (2009)).
The feasible set is completely described by the linear con-
straints involved in the MPC optimization problem, which
places it in the specific class of convex sets called polyhedra
(more precisely, polytopes). The standard approach to
compute the feasible set uses an important operation in
polyhedral set theory, the orthogonal projection (Burger
et al. (1996), Jones et al. (2004), Mount (2002)). However,
the orthogonal projection often turns out to be a compu-
tationally demanding operation in high spatial dimensions
(Jones et al. (2008)). This is the case, for example, when
the feasible set is computed for MPC with long prediction
horizons.
Convexity is an important characteristic of the feasible
set. Another crucial feasible set property in the MPC
context is the positive invariance with respect to the
closed-loop system, i.e. for any initial state contained in
the feasible set, the state evolution of the closed-loop
system is also contained in the feasible set for all future
times. In general, polyhedral sets represent an important
family of candidate positively invariant sets and have been
particularly successful in the solution of many control
engineering problems thanks to their flexibility (Blanchini
(1999), Kerrigan and Maciejowski (2000), Gilbert and Tan
(1991)). However, the appurtenant disadvantage of this
flexibility is the complexity of representation which may be
extremely high since it is not fixed by the space dimension
considered (Blanchini and Miani (2008)).
Approximating polytopes by simpler sets is a well-known
problem in many research areas related to optimization,
system identification and control. With any simpler repre-
sentation a certain loss of information is associated in prin-
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ciple. Thus, in general, the ideal solution is always a right
balance between simplicity and accuracy (Dabbene et al.
(2003), Bronstein (2008), Gritzmann and Klee (1994b)).
However, when approximation approaches of polytopes are
considered for feasible set approximation, while convexity
is easily maintained by the family of sets we are dealing
with, positive invariance is generally lost. Furthermore, at
the design stage, one of the requirements of the controller
is that it has to be able to regulate the system for a
given set of initial states representing the expected initial
operation conditions. Assuming that the MPC fulfills the
design specifications, this set, here called the operating
set, is contained within the feasible set. To maintain the
effectiveness of the MPC, an additional issue is then that
the approximation does not result in a loss of information
which will prevent the MPC from performing acceptably
for states in the operating set.
This paper proposes two contributions: first it suggests an
alternative approach for computing the feasible set which
uses set relations instead of orthogonal projection. Set rela-
tions of similar nature have also been used in Kolmanovsky
and Gilbert (1995). The proposed approach can be im-
plemented incrementally over the length of the horizon,
and proves to be computationally less demanding than
the standard approach. Thereafter, the main contribution
is proposed. A solution to the problem of finding (inner)
approximations of the feasible set which are characterized
by simpler representations and which preserves convexity,
positive invariance and inclusion of the operating set is
presented. The approach is based on the introduction of
certain conditions which extend existing approaches for
the computation of polytope approximations.

2. PRELIMINARIES

Consider the following discrete-time linear time-invariant
system:

x(t+ 1) = Ax(t) +Bu(t) (1)

where x ∈ Rn is the state vector, u ∈ Rr is the control
input, A ∈ Rn×n, B ∈ Rn×r, and the pair (A,B) is
stabilizable. Full state measurement and no disturbances
or model uncertainty are assumed.
The system is subject to the following state and input
constraints:

x(t) ∈ X ⊂ Rn (2)

u(t) ∈ U ⊂ Rr (3)

for all future times. The sets X , U are convex polyhedral
sets with the origin being an interior point for both sets.
Bounded polyhedral sets, i.e. polytopes, are the family of
sets principally considered in this work. A polytope P can
be expressed as the intersection of a finite number of half-
spaces (which gives its facet lattice) referred as the H-
representation of P. Equivalently, P can be represented as
the convex hull of its vertices V =

{
v(1), ..., v(nV)

}
referred

as the V-representation of P: P = conv (V ). A vertex (half-
space) of a polytope is said to be redundant if its omission
from the V-representation (H-representation) does not
change the shape of the polytope. A V-representation
(H-representation) is minimal if there are no redundant
vertices (half-spaces). Any polytope has a unique minimal
V-representation (H-representation) (Blanchini and Miani

(2008)).
The orthogonal projection of a polytope P ⊂ Rn × Rd
onto Rn (the first n coordinates) is defined as

Πn(P) =
{
x ∈ Rn|∃z ∈ Rd,

[
xT zT

]
∈ P

}
(4)

The Minkowski sum of two polytopes P and Q is defined
as

P ⊕Q = {x = p+ q| p ∈ P, q ∈ Q} . (5)

The erosion (or Pontryagin difference) of two polytopes P
and Q is defined as

P 	Q = {x| x+ q ∈ P, ∀q ∈ Q} . (6)

The set difference of two polytopes P and Q is defined as

P \ Q = {x| x ∈ P, x /∈ Q} . (7)

More details and algorithmic implementations can be
found for example in Mount (2002), Blanchini and Miani
(2008), Gritzmann and Klee (1994a) and Kvasnica et al.
(2006).

The problem of regulating the system (1) to the origin,
such that constraints like (2-3) are satisfied, is solved by
the finite horizon MPC

min
u

{
J (u, x(t)) = xTNPxN +

N−1∑

k=0

xTkQxk + uTkRuk

}
(8)

s.t. x0 = x (t) , (a)
xk+1 = Axk +Buk, k = 0, 1, ..., N − 1, (b)
xk ∈ X , k = 1, 2, ..., N − 1, (c)
uk ∈ U , k = 0, 1, ..., N − 1, (d)
xN ∈ Ω, (e)

(9)

where xk denotes the predicted state vector at time t+ k
obtained by applying the k first elements of the input
sequence u , [u0, ..., uN−1]; N is the prediction horizon;
Q � 0 (positive semidefinite) and R � 0 (positive definite)
are symmetric matrices corresponding to weights on state
and input; P is the terminal cost matrix and xN ∈ Ω
the terminal constraint, which are defined to guarantee
stability. The matrix P � 0 is the solution of the algebraic
Riccati equation resulting from the corresponding uncon-
strained LQR problem. The terminal set Ω is chosen to be
feasible and positively invariant for the closed-loop system
with this LQR (Mayne et al. (2000)).
It is assumed that the MPC (8)-(9) is designed to regulate
the system for a given set of initial states which represents
the expected initial operating conditions (the operating
set). Without any particular restriction, the operating set
can be considered to be a polytope, which is here indicated
as Xo.

3. THE FEASIBLE SET

The MPC regulates the state to the origin for all the initial
conditions contained in the feasible set. The feasible set is
defined as

XF = {x ∈ Rn| ∃ u satisfying (9)} (10)

and can be interpreted as the maximal controlled invariant
set by means of the MPC with prediction horizon N and
terminal set Ω.
When explicit solutions are considered, the feasible set is
the domain where the piecewise affine controller is defined.
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3.1 Computing the Feasible Set: Standard Approach

The feasible set can be completely characterized by the
constraints involved in the optimization problem. The
constraints (9) can be expressed in terms of the input
sequence u and the initial state x(t):

Gu− Ex(t) ≤ w (11)

where G and E are matrices and w a vector of suitable
dimensions (see for example Scibilia et al. (2009) for
details). The linear inequalities (11) define a polytope in
the space Rn+rN

Q =
{[
x(t)T uT

]T ∈ Rn+rN | Gu− Ex(t) ≤ w
}

(12)

Then, the feasible set XF is given as orthogonal projection
of Q onto the state coordinates

XF = Πn (Q) (13)

With this approach the computation of the feasible set
relies essentially on the efficiency of projection algorithms.
However, the orthogonal projection is intrinsically a com-
putationally demanding operation (NP-hard), becoming
increasingly prohibitive as the dimension of the project-
ing polytope increases (Tiwary (2008a)). This affects the
computation of feasible sets for MPC, especially when long
prediction horizons are considered.

3.2 Computing the Feasible Set: Alternative Approach

This section considers a different approach for computing
the feasible set, which will be also useful for the results in
the following sections and provides an alternative for the
case of long prediction horizons.
Consider the optimization problem (8) subject to the
constraints (9- a, b, d, e), i.e. ignoring the state constraints
xk ∈ X , k = 1, 2, ..., N − 1.
For this relaxed optimization problem, indicate with X̃F
the corresponding relaxed feasible set.
Note that the only constraints on the state are the equality
constraints (9- a, b), and the terminal constraint (9- e): the
terminal state must be contained in the terminal set.
Using the equality constraints, the terminal state equation
can be written as:

xN = ANx(t) + B̂u (14)

where AN is the N -matrix-power of A and B̂ =[
AN−1B AN−2B ... B

]
.

Equation (14) suggests the existence of a relation in terms
of the sets involved in the relaxed MPC optimization
problem considered. Set relations of similar nature have
been also used in Kolmanovsky and Gilbert (1995) in the
context of finding admissible sets for discrete-time systems
subject to bounded input disturbances.
Before formally stating the set relation, we need to intro-
duce the set of admissible input sequences:

U (N) =
{
u ∈ RrN | uj ∈ U , j = 0, ..., N − 1

}
. (15)

Theorem 1. Consider the optimization problem (8) sub-
ject to the constraints (9-a, b, d, e). Then the terminal

set, Ω, the corresponding feasible set, X̃F , and the set of

admissible sequence input, U (N), satisfy the following set
relation

Ω = AN X̃F 	 B̂(−U (N)) (16)

where AN : Rn 7→ Rn and B̂ : RrN 7→ Rn represent linear
maps applied respectively to X̃F and to U (N).

Proof. According to (10), the relaxed feasible set can be
written as:

X̃F =
{
x ∈ Rn|∃u ∈ U (N) : ANx+ B̂u ∈ Ω

}
(17)

Using the linear maps AN and B̂ we can define the sets:

AN X̃F =
{
xe ∈ Rn|xe = ANx, x ∈ X̃F

}
(18)

B̂U (N) =
{
xu ∈ Rn|xu = B̂u,u ∈ U (N)

}
(19)

From (17) we can write the equivalence:

AN X̃F =
{
xe|∃xu ∈ B̂U (N) : xe + xu ∈ Ω

}
(20)

which subsequently implies that X̃F is the collection of all
the states that can be obtained as a combination of points
in Ω and B̂(−U (N)). This leads to the equivalence:

Ω =
{
xΩ| xΩ − xu ∈ AN X̃F , ∀xu ∈ B̂U (N)

}
(21)

By the definition of the erosion operator, (21) corresponds
to (16).

In the following we assume that the matrix A of (1) is
invertible. Notice that zero eigenvalues of A mean that
there are modes which are pure delays of the inputs.
This is clear by taking the Jordan form of A, which also
gives linearly transformed constraint sets X ′ and U ′ (the
constraints on the state corresponding to delayed inputs
must then be compatible with U ′). Then, the assumption
is motivated by considering that the Jordan blocks of
A with zero eigenvalue can then be excluded, meaning
that constraints involving linear combinations of past
inputs and current states corresponding to the remaining
Jordan blocks are not allowed. However, we also note that
the assumption is always satisfied by discretized (finite
dimensional) continuous-time systems.
Therefore, by (16) the relaxed feasible set can be computed
as:

X̃F :=
(
AN
)−1

[
Ω⊕ B̂(−U (N))

]
(22)

Note that the computation of the feasible set via the
formula (22) basically costs a Minkowski sum in Rn, given
the polytopes Ω and U (N), which is an operation that can
be done in polynomial time (Gritzmann and Sturmfels
(1993)). This is generally more convenient than using (13)
which requires handling polytopes in higher dimensions,
Rn+rN .

Inspecting (16), an incremental approach for computing

X̃F can be derived, which with a simple modification is
extendable for also computing XF .
Let us explicitly express the dependence of the feasible set

from the length of the horizon as X (k)
F , which indicates
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the feasible set for a horizon of length k. According to
this notation, the feasible set we are interested in is XF =

X (N)
F .

For the case k = 1, relation (16) becomes

Ω = AX̃F
(1) 	B(−U) (23)

which leads to the set 1 of all the initial states that in one
time-step move inside Ω

X̃ (1)
F = (A)

−1
[Ω⊕B(−U)] (24)

At this point, introducing the constraint on the state is

straightforward, and thus the feasible set X (1)
F is simply

computed from X̃ (1)
F as

X (1)
F = X̃ (1)

F ∩ X (25)

The feasible set X̃ (2)
F is determined by X̃ (1)

F considering an
analogous relations to (23):

X̃ (1)
F = AX̃ (2)

F 	B(−U) (26)

which gives

X̃ (2)
F = (A)

−1
[
X̃ (1)
F ⊕B(−U)

]
(27)

and thus also X (2)
F can be determined analogously to (25).

In general, the feasible set with horizon k can be computed
in this incremental fashion from the feasible set with hori-
zon k − 1. This leads to Algorithm 1 for computing the
feasible set for the MPC (8-9).

Algorithm 1. : Feasible set

Input: the system state and input matrices A and B; the
terminal set Ω; the state and input constraints sets X and
U ; the length of the horizon N .
Output: the feasible set XF .

1. Initialize the set T = Ω.
2. For k = 1 to N do

Compute X̃ (k)
F = A−1 [T ⊕B(−U)];

Compute X (k)
F = X̃ (k)

F ∩ X ;

Set T = X (k)
F

3. Set XF = X (k)
F .

In addition to giving the possibility to include the state
constraints, the advantage of the incremental approach is
that it avoids the necessity of handling the polytope U (N)

which, especially for long horizons, may be undesirable.

4. APPROXIMATION OF FEASIBLE SETS

The feasible set is represented by a polytope in the state
space. The problem of finding polytope approximations
by means of simpler convex bodies arises in many research
areas related to optimization, system identification and
control. In general, the solution is a balance between the
simplicity of the representation and the accuracy of the
approximation, where the accuracy can be measured using
different metrics, depending on the particular approach
1 This set is also called the one-step controllability set to Ω (Blan-
chini (1994)).

used to solve the problem. An example is the work in
Dabbene et al. (2003), where the authors provide algo-
rithms for computing inner approximations in terms of
the largest ellipsoids inscribed. However, more often it
is required that the approximating convex body is itself
a polytope. In this direction, different approaches have
been proposed in the literature, and reference is made to
Bronstein (2008) and Gritzmann and Klee (1994b) (and
references therein) for surveys on the subject.
The common representation complexity indexes of a poly-
tope are the number of half-spaces (or facets) for the
H-representation, and the number of vertices for the V-
representation. Since a polytope is characterized by unique
minimal H- and V-representations, any lower complexity
representation must correspond either to an inner or to an
outer approximation of the polytope.
In this section, the scope is to approximate the feasible
set by means of a simpler polytope. Since the feasible set
corresponds to the maximal feasible controlled invariant
set by means of the MPC, no feasible outer approximations
can exist, and therefore attention is restricted only to the
search for inner approximations. Note that the task is more
involved than finding simpler representations maintaining
a prescribed accuracy in the approximation. For control
purposes it is of prime importance that the approximating
polytope preserves the positive invariance property and
contains the operating set.
A natural approach for computing inner approximations
is based on the fact that, for any polytope, the omission
of any of the vertices from the V-representation changes
the polytope by reducing it 2 . Typically (but not necessar-
ily), the approximations thus obtained also result in lower
complexity H-representations, as will be discussed later.
Furthermore, several situations can be recognized where a
simpler feasible set characterized by fewer vertices would
provide immediate improvements. This is the case for ex-
ample in approaches to explicit MPC such as Scibilia et al.
(2009), Hovd et al. (2009), Nam et al. (2010) and Jones and
Morari (2009), in approaches to multi-parametric convex
programming such as Bemporad and Filippi (2006)), or
also in control approaches as Gutman and Cwikel (1986),
where the solution depends strictly on the complexity of
the feasible set in terms of the number of vertices.
Therefore, interest is focused on finding appropriate in-
ner approximations characterized by a reduced number of
vertices.

An algorithm for computing inner approximations of poly-
topes based on the removal of vertices is proposed in
Reisner et al. (2001) (in Lopez and Reisner (2002) if only
3D polytopes are considered). The fundamental result is
the following.

Proposition 2. Given a polytope P ⊂ Rn characterized
by nV vertices VP =

{
v(1), ..., v(nV)

}
, P = conv(VP),

there exists a vertex v ∈ VP such that the polytope
Q = conv(VP \ {v}) satisfies

vol(P)− vol(Q)

vol(P)
≤ α(n)n

− n+1
n−1

V . (28)

The factor α(n) is a constant depending only on the space
dimension (details about how to estimate this constant can

2 Dually, the omission of any of the half-spaces from the H-
representation changes the polytope by enlarging it.
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be found in Reisner et al. (2001) and Lopez and Reisner
(2002)).
This result is the best possible in general, for the depen-
dence on the numbers of vertices of the approximating
polytope.
The main idea of the algorithm is thus the consecutive
removal of the chosen vertices. Taking an appropriate num-
ber k < nV , it can be identified a successive minimizing
choice of vertices of P, i.e. a sequence

{
v(r1), ..., v(rnV−k)

}
of different vertices in VP such that for all i = 1, ..., nV −k

vol
(
conv

(
VP \

{
v(r1), ..., v(ri−1)

}))
−

vol
(
conv

(
VP \

{
v(r1), ..., v(ri)

})) (29)

is minimal over all choices of v(ri) ∈ VP\
{
v(r1), ..., v(ri−1)

}
.

The polytope

Q = conv(VP \
{
v(r1), ..., v(rnV−k)

}
), (30)

characterized by k vertices, is an inner approximation of P.
The accuracy of the approximation obtained is measured
by the difference of volume between P and Q and, in
general, it is the best possible obtainable by any polytope
with k vertices (up to the dimension dependent constants
involved).
More details about the implementation of the algorithm
can be found in Reisner et al. (2001) and Lopez and
Reisner (2002).
The following presents an approach to extend algorithms
like the one found in Reisner et al. (2001) in order to meet
the primary objective of maintaining the fundamental
properties of the feasible set.

Given a vertex v of P, indicate with adj(v) all the vertices
adjacent to v, i.e. all the vertices of P which share a facet
with v.

Proposition 3. The region excluded from P when the
vertex v is omitted from its V-representation is given by

Lv = conv ({v, adj(v)}) \ conv ({adj(v)}) . (31)

Proof. Naturally, Lv is characterized only by the facets
of P incident in v. These facets comprise a region given
by the convex hull of v and all its adjacent vertices.
Since the adjacent vertices of v still remain vertices of P,
the prospective region identified solely by these vertices
needs to be removed from the description of Lv. The
remaining vertices of P, i.e. the vertices of the polytope
P \ conv ({v, adj(v)}), are not affected by the omission of
v.

In general, Lv is non-convex, but can be represented as a
finite collection of polytopes.
Let us now consider the polytope P as our feasible set
XF , i.e. P ≡ XF . Since the convexity property is simply
maintained by removing a vertex, attention is turned to
the problems of how to preserve positive invariance and
how to maintain the states comprising the operating set.

4.1 Preserving Positive Invariance

The difficulty in preserving positive invariance comes from
the fact that we have to take into consideration the
nonlinear dynamics of the closed-loop system with the

MPC.
The next time-step feasible set X+

F is defined as follows

X+
F =

{
x+|x+ = Ax+Bu∗0, x ∈ XF

}
(32)

where u∗0 is the first element of the MPC optimal control
sequence at x.
The asymptotic (exponential) stability of the MPC guar-
antees that X+

F ⊂ XF and that X+
F is positively invariant

for the closed-loop system. We can now define the set
XN = XF \ X+

F , which has the interesting property to
contain only points of the feasible set that are exclusively
initial states of state evolutions starting inside the feasible
set. In other words, considering any possible state evolu-
tion in XF , each state in XN can only be a starting point
of it.

Theorem 4. Any inner approximation of the feasible set
obtained as convex hull of vertices inside XN , such that
also all the facets are inside XN , preserves the positive
invariance.

Proof. Consider a set of points VN inside XN , such that
conv(VN ) has all the facets within XN . It follows that
X+
F ⊂ conv(VN ). Therefore, for any starting point inside

such a polytope, the state evolution either moves in one
step inside X+

F or is already inside X+
F , which shows

positively invariance of conv(VN ).

The property of positive invariance could then be pre-
served if for every vertex v(r) removed from XF , the
condition Lv(r) ⊂ XN is satisfied. In fact, this ensures that
the remaining vertices satisfy the requirements of Theorem
4.
However, because of the set X+

F , computing the set XN in
general involves a substantial computational effort, which
drastically reduces the applicability of the approach. In-
deed, note from (32) that the definition of the next time-
step feasible set implies the knowledge of the optimal
input for the states in the feasible set. In particular, since
the feasible set is a convex set, only the knowledge of
the optimal control input on the border of XF is needed
for the computation of the next time-step feasible set.
Nevertheless, this still comports a computational burden
which may compromise the effectiveness of the overall
approach. A further undesirable aspect of using the next
time-step feasible set is that X+

F is, in general, non-convex
(Blanchini (1994))(Fig. 2). This results in more difficulties
in the computation of XN as the intersection between non-
convex sets is more involved than the intersection between
polytopes, even if the possible resulting non-convex set can
still be expressed as a collection of polytopes.
This issue can be easily overcome considering the following
relation

X+
F ⊆ X

(N−1)
F ⊂ XF (33)

Note that X (N−1)
F is easily available using an incremental

procedure such as Algorithm 1 for computing the feasible
set. Moreover it is always convex and it is positively invari-
ant for the closed-loop system. Then, the proposed solution

is to use X (N−1)
F in place of X+

F . The conservativeness
introduced is not severe for the purpose here considered,
XF (N − 1) being a tight outer approximation of X+

F

(Blanchini (1994)). Defining the set X̄N = XF \ X (N−1)
F ,
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the property of positive invariance is preserved if for every
vertex v(r) removed from XF , the following condition is
satisfied

Lv(r) ⊂ X̄N . (34)

In fact, condition (34) ensures that the remaining vertices
satisfy the requirements of Theorem 4, whose results are
valid if X̄N is considered instead of XN . Note that checking

condition (34) is equivalent to checking Lv(r)∩X (N−1)
F = ∅.

4.2 The Operating Set Condition

The goal of algorithms like the one developed in Reisner
et al. (2001) is to find the polytope Q characterized by k
vertices that best approximate the polytope P (character-
ized by nV > k vertices). The accuracy of the approxima-
tion is given by the difference of volume between P and
Q. The introduction of condition (34) (invariance) changes
the degrees of freedom in the minimization of the difference
of volume. Generally, not all the vertices in the successive
minimizing choice of vertices of P satisfy the necessary
condition (34) and, therefore, not all can be removed.
When the focus is on feasible sets, the loss of volume may
not necessarily be a critical issue in itself, since practically
it would be more of interest that the approximating feasi-
ble set still contains the operating set Xo. This objective
can be achieved simply by checking that every time a ver-
tex v(r) is removed from XF , the corresponding excluded
region does not comprise any part of the operating set,

Xo ∩ Lv(r) = ∅. (35)

If a certain vertex does not satisfy (35), then it is not
removed and the next vertex is considered.

4.3 Removing Vertices

Suppose that the interest is to remove as many vertices as
possible as long as conditions (34) (invariance) and (35)
(operating set inclusion) are satisfied. This can be done
iteratively: at each iteration, among all the current vertices
which makes (34) and (35) satisfied, remove the one that
results in the lowest loss in terms of volume.
Note that for any vertex v(r), conditions (34) and (35) and
the volume loss can be evaluated locally, i.e. only v(r) and
adj(v(r)) are involved in the computation of Lv(r) , as can
be seen from Proposition 3.
An efficient way to implement the algorithm is to use
structures similar to pointers. Given the list of vertices
VXF characterizing the feasible set, where each element on
the list is identified by the position number, two structures
can be defined:

1) Index, a list containing numbers referring to vertices
in VXF (list of pointers).

2) Adj, a structure containing the adjacency informa-
tion. Adj(Index(i)) gives the list of pointers to the
vertices in VXF adjacent to the vertex with pointer
Index(i).

Then the operation of removing a vertex v(r) ∈ VXF
with pointer, say, Index(i), can be done removing the i-th
element from Index, after having removed the Index(i)-
th element from Adj and updated the elements Adj(j),

for all j ∈ Adj(Index(i)). The update is done as fol-
lows. Each vertex j is also vertex of the polytope R =
conv(Adj(Index(i))), then for each list Adj(j) the refer-
ence Index(i) is removed and the adjacencies resulting
from R are added.
The advantage of using the pointer structures is to allow
each iteration to simply update only the data affected by
the current vertex removal.

4.4 Discussion on the Complexity Indexes

In general, the number of half-spaces may be much higher
than the number of vertices, and vice versa. Thus, a
natural question would be how will the reduction of the
complexity in the V-representation affect the complexity
in the H-representation. While in 2 and 3 dimensions
there exist simple relations between the two complexity
indexes, in higher dimension analytical relations are very
difficult to define (Matousek (2002)). Thus, giving an exact
answer to the question is a hard problem. However, a
well-known achievement in the theory of convex polytopes
allows giving an answer in terms of upper bounds: a
polytope in the n-dimensional space with nV vertices
has at most 2

(
nV
bn/2c

)
half-spaces. Thus, for a fixed space

dimension n the number of half-spaces has an order of

magnitude of n
bn/2c
V (“upper bound” theorem Matousek

(2002)). The upper bound theorem refers to worst case
scenarios. Certainly, not all polytopes exhibit this extreme
behavior, for example it is known that if np points are
chosen uniformly at random in the unit n-dimensional ball,
then the expected number of half-spaces of their convex
hull is only of order of magnitude of np (Matousek (2002)).
Thus, even if there exist cases where the omission of a
vertex causes an increase in the number of half-spaces, it
is reasonable to expect that typically a certain reduction
of complexity in terms of number of vertices also provides
a fairly relevant reduction of the complexity in terms of
number of half-spaces, in the sense that the upper bound
on the number of half-spaces decreases.

5. DISCUSSION ON COMPUTATIONAL
COMPLEXITY

Both Algorithm 1 for computing feasible sets and the ap-
proach proposed in Section 4 for computing simplifications
of feasible sets are based on basic geometric operations on
polytopes: Minkowski sum, intersection, convex hull and
volume computation. Therefore, it is interesting to discuss
some aspects connected with the computational complex-
ity of these operations so to provide with additional insight
into the algorithmic behavior of the approaches presented.
It should be noted, though, that the scope of this section
is not to give a comprehensive discussion on the computa-
tional complexity of each operation.
Every polytope admits two equivalent representation
forms: the V-representation (using vertices) and the H-
representation (using half-spaces). For polytopes, the rep-
resentation conversion from H- to V-representation (ver-
tex enumeration) and the conversion from V- to H-
representation (facet enumeration or convex hull compu-
tation) are computationally equivalent and, in general,
are difficult operations (NP-hard). The computational
complexity increases fast with the number of half-spaces

Preprints of the NIL workshop
Jan 10–15, 2011, Bratislava, Slovakia Scibilia., F., Olaru, S., Hovd, M.

62



and/or the number of vertices involved (Khachiyan et al.
(2008), Fukuda (2004)).
Often, operations on polytopes that are easy to perform
in one representation become difficult if the polytopes
are instead in the other representation. The Minkowski
sum of two polytopes is a computationally easy opera-
tion (polynomial time) when the two polytopes are in V-
representation while becomes a difficult operation (NP-
hard) when they are in H-representation (Gritzmann and
Sturmfels (1993), Tiwary (2008b)). This means that the
known Minkowski sum algorithms operating on polytopes
in the H-representation show a computational complexity
which increases fast with the number of half-spaces of the
operands.
On the other hand, the intersection of two polytopes given
in theH-representation is an easy operation while becomes
a difficult operation (NP-hard) with polytopes in the V-
representation (Tiwary (2008b)).
Resorting to a representation conversion is often not a
solution to reduce complexity since the operation is itself
hard.

Let us consider Algorithm 1. At each iteration the
computational complexity is basically determined by a
Minkowski sum and an intersection operation. Let us as-
sume that the interest is to obtain a feasible set in the V-
representation (which here may be motivated by the pro-
cedure for computing simplified feasible sets discussed in
Section 4). Therefore, the computational complexity of Al-
gorithm 1 would increase fast with the number of vertices
considered due to the intersection operation. Note that if
the interest is in a feasible set in theH-representation, then
the Minkowski sum would be computationally costly. This
suggests that computing the feasible set is intrinsically a
hard problem. Given that polytopes, in general, are far
more complex in terms of number of vertices and facets
in higher dimensions, it is reasonable to expect that the
computational complexity for computing the feasible set
increases fast with the dimension of the state space, n.
The computational advantage of the proposed approach
in respect to the traditional one is that at each iteration
the operands are polytopes of dimension n. Instead, the
traditional approach requires the projection of a polytope
of dimension n+Nr which is easily a prohibitive operation
even for small n since the polytope dimension depends
also from the horizon length N and the input dimension
r. Also, when the standard approach is implemented in-
crementally on the horizon length, at each iteration the
projection of a polytope of dimension n + r is required,
which may still be prohibitive.

Analogous considerations can be made for the approach
proposed in Section 4 for computing simplifications of
feasible sets. Assume that the interest is to remove as many
vertices as possible as long as conditions (34) (invariance)
and (35) (operating set inclusion) are satisfied (cf. Section
4.3). The algorithm requires initially the computation of
the volume loss associated with each vertex removal. The
polytope volume computation, either in the V- or the
H-representation, is not a difficult operation (polynomial
time) (Gritzmann and Klee (1994a)). Then, at each iter-
ation the intersection operation is used to check the con-
ditions (34) and (35): the conditions are first inspected on
the vertex which currently means the lowest loss of volume,

continuing with the vertex causing the second lowest loss
if the former does not satisfy the conditions, and so on
until a suitable vertex is identified for removal (or none, in
which case the algorithm terminates). The use of pointer
structures allows easily updating just the volumes affected
by the current vertex removal. At each iteration the in-
tersections are the most expensive operations to perform,
and although they are done on relatively simple polytopes,
these may require relevant computation especially when
n increases (since this typically means high number of
vertices with a complex map of adjacency). Note, however,
that here the operation may be implemented in a more
efficient way since it is not needed to actually compute
the intersection polytope, but rather to decide whether
the two polytope operands intersect or not.

6. NUMERICAL ILLUSTRATIONS

6.1 Feasible Set Computation

The computation time efficiency of the proposed approach
based on set relations (SR) has been compared with the
standard approach based on projection (P) in Matlab
by using the Multi-Parametric Toolbox (MPT) 3 (Kvas-
nica et al. (2006)). Both the algorithms have been im-
plemented incrementally on the horizon length. The in-
cremental implementation is inherent in the set relation-
based approach, while for the traditional projection-based
approach it may speed up the calculation in many situa-
tions.
Extensive simulations have been carried out on several
random systems for different state (n) and input (r) di-
mensions. The common MPC settings used are: Q = I
and R = I where I represents the identity matrix; state
constraints −10 ∗ 1 ≤ x ≤ 10 ∗ 1, input constraints
−1 ≤ u ≤ 1, where 1 is a suitably dimensioned vector
with all elements equal to 1.
Table 1 reports some of the results obtained during the
simulations to give a picture of the typical performance
from both approaches. In general the proposed approach
has performed significantly more efficiently than the stan-
dard approach. Furthermore, the projection approach led
several times to unsatisfactory results such as no result
after one hour of computation or numerical errors.
It must be noted that the proposed approach also led to
numerical errors, though in a considerably lower number
of cases than the projection approach. It is reasonable to
believe that most of the numerical issues faced could be
removed by a careful re-implementation of the approach.

6.2 Feasible Set Approximation

The goal of the algorithm here is to reduce the complexity
in terms of number of vertices (nV) as much as possible
while satisfying conditions (34) and (35) (as discussed in
Section 4.3).
Consider the double integrator system represented by the
continuous-time linear system

ẋ = Ax+Bu (36)

3 MPT for Matlab offers several algorithms for computing the pro-
jection of a polytope (vertex enumeration/convex hull-based method,
Fourier-Motzkin elimination, iterative hull, block elimination, equal-
ity set projection). In the simulations, the MPT projection function
has been set to automatically select the best method.
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Table 1. Set relation-based approach vs.
projection-based approach. Time computation
measured in seconds. † indicates no result af-
ter 1 hour computation. ‡ indicates simulation

terminated by Matlab errors.

Rand. sys. N=5 N=7 N=10
(n, r) SR−P SR−P SR−P

(3, 1) 0.14− 0.40 0.55− 2.70 2.01− 19.33
0.20− 0.52 0.26− 0.30 1.91− 1.72

(3, 2) 0.73− 5.53 4.92− 12.10 3.72− 19.06
4.18− 12.72 2.20− 4.79 9.21− 96.64

(4, 1) 4.76− 25.63 21.30− 32.67 59.21− †
8.82− 45.81 6.89− 15.81 26.61− 475.24

(4, 2) 34.85− 291.7 121.5− ‡ 47.09− 1067
38.59− 88.10 147.4− † 998.09− ‡

where x ∈ R2, u ∈ R,

A =

[
0 1
0 0

]
, B =

[
0
1

]
(37)

The problem formulation includes a state constraint −3 ≤
x2 ≤ 3 and an input constraint −1 ≤ u ≤ 1.
The state components x1 and x2 can represent, for ex-
ample, the position and velocity, respectively, of a body
having mass 1.
In Table 2 the discrete counterpart of system (36) is
considered for several sampling times. For faster sampling
times in general the polyhedral borders of the feasible
sets approximate ellipsoidal shapes, which therefore imply
complex V-representations. Many of the vertices can be
removed with a minimal loss in terms of volume. Moreover,
faster sampling time means generally a more complex
explicit MPC solution, which more likely may require the
use of simpler feasible sets to use in approximate explicit
MPC approaches. In the table, nV indicates the number
of vertices of the feasible set, ñV indicates the number of
vertices of the approximate feasible set.

Fig. 1, 2 and 3 graphically illustrate the idea for sampling
time 0.3 and N = 10. As operating set we assume that
the system has to operate in a range of positions −10 ≤
x1 ≤ 10, for any feasible x2 (Fig. 1). Analogously chosen
operating sets have been used for the results in Table 2.
Note that the feasible set, characterized by 24 vertices, is
approximated by a less complex feasible set characterized
by 10 vertices (Fig. 3). The loss of volume introduced by
the approximate feasible set is less than 3%.
To compute the set X+

F in Fig. 2, the explicit solution of
the MPC is obtained and then each region comprising the
feasible set is propagated one step forward.

Table 2. Complexity reduction by approximate
feasible sets.

Samp. time N=7 N=10
seconds nV - ñV - loss% nV - ñV - loss%

0.3 18 - 6 - 0.04% 24 - 10 - 0.03%
0.1 34 - 12 - 0.01% 28 - 8 - 0.01%
0.01 56 - 30 - 0.00% 66 - 34 - 0.00%

Extensive simulations have been carried out on several
random systems for different state (n) and input (r) di-
mensions. The common MPC settings used are: horizon
N = 5, Q = I and R = I; state constraints −20 ∗
1 ≤ x ≤ 20 ∗ 1, input constraints −1 ≤ u ≤ 1.

15 10 5 0 5 10 15
4

2

0

2

4

x1

x 2

Fig. 1. The largest polytope is the feasible set XF (green).
The set marked with the wide dashed line represents
the operating set (red), contained in the feasible set.

15 10 5 0 5 10 15
4

2

0

2

4

x1
x 2

Fig. 2. The largest polytope represents the feasible set
XF (green). The set marked with wide dashed line

represents the set X (N−1)
F (red and yellow), which

corresponds with the feasible set for an horizon length
N − 1. The internal regions (in yellow) marked with
thin lines comprise the next time-step feasible set X+

F .

Note that X+
F ⊂ X

(N−1)
F ⊂ XF and that X+

F is non-
convex.

15 10 5 0 5 10 15
4

2

0

2

4

x1

x 2

Fig. 3. The largest polytope represents the feasible set
XF . The internal set marked with wide solid line
represents the reduced feasible set.

Table 3 lists some of the results obtained in the simula-
tions. As expected from the discussion in Section 4.4, in
most of the cases the reduction in the number of vertices
also led to a reduction in the number of half-spaces. How-
ever, a few cases where this did not happen are reported
to illustrate that the upper bound theorem guarantees
only that a reduction of vertices will not cause an extreme
increase in the number of half-space.
In some cases the algorithmic implementation of the ap-
proach faced numerical errors, particularly with high di-
mensional feasible sets. It must be said that, apart from
the use of pointers to make computations more efficient,
no particular emphasis has been put in coding an efficient
implementation of the approach. The scope here was pri-
marily to provide evidence of its effectiveness. Careful re-
implementation of the approach would reasonably remove

Preprints of the NIL workshop
Jan 10–15, 2011, Bratislava, Slovakia Scibilia., F., Olaru, S., Hovd, M.

64



Fig. 4. The upper graph shows the feasible set in the 3-
dimensional state space for a system in Table 3. The
graph below shows the corresponding approximate
feasible set.

most of the numerical issues and improve the computa-
tional performance.

Table 3. Feasible set vs approximate feasi-
ble set for several random systems. The case

marked with (*) is illustrated in Fig. 4.

Rand. sys. Feasible set Approximate feasible set
(n, r) nV − nH ñV − ñH
(3, 1) 28− 16 16− 10

58− 56 35− 46
(*) 82− 78 54− 64

(3, 2) 74− 44 41− 38
64− 34 25− 28
52− 28 30− 29

(4, 1) 124− 38 87− 57
116− 58 92− 56
108− 34 84− 40

7. CONCLUSIONS

The paper has presented an alternative approach for com-
puting feasible sets when MPC techniques are used. The
proposed approach uses set relations instead of the conven-
tional projection, which then unfolds to a procedure based
on Minkowski sum and intersection routines. This proves
to be computationally more efficient and algorithmically
more robust than using projection routines, particularly
when high dimensional polytopic sets are involved (i.e. for
long prediction horizons, high dimensional state and/or
input).
However, some numerical issue suggested the need of fu-
ture work to improve the algorithmic robustness of the
routines for the needed polytopic operations.

When the feasible set is characterized by a critical com-
plexity of representation in terms of number of vertices,
an approach to compute a simplified feasible set with a
reduced number of vertices has been given. The approach
is based on the introduction of certain conditions which
extend existing approaches for the computation of poly-
tope approximations, so that the approximating polytope

maintains all the fundamental properties of the feasible set
required for MPC applications like positive invariance and
inclusion of the set of expected operating conditions.
Preserving the positive invariance property in the feasible
set approximation is crucial. This issue is inherently dif-
ficult to handle since it is concerned with the nonlinear
dynamics of the closed-loop system. The proposed ap-
proach typically allows a considerable decrease in the V-
representation complexity by removing most of the vertices
needed to deal with feasible set borders which approx-
imate ellipsoids (according to the operating set consid-
ered). However, this approach does not allow to consider
possible even simpler feasible set approximations which,
while including the operating set, may have borders within

X (N−1)
F . A potential future research direction could be

to search for different approaches which would give more
flexibility. One could for example look at solutions which
use level surfaces of Lyapunov functions (Alessio et al.
(2006)) to find different vertices than the original ones
from the feasible set.
The conditions introduced constrain the goal of minimiz-
ing the loss of volume in the approximation. Finding suit-
able approximating polytopes characterized by the mini-
mum loss of volume is a well known problem. Requiring
that the approximation minimizes the loss of volume while
satisfying conditions related to system dynamics remains
challenge. Here the minimization of the loss of volume was
not considered critical, since in the context of the present
work the interest often is to preserve given crucial parts
of the feasible set, which can be done via the operating
set condition. In fact, the algorithm proposed tends to
minimize the loss of volume in the sense that at each iter-
ation the suitable vertex which results in the lowest loss of
volume in the current approximating polytope is removed.
Pointer structures were used to enhance the implemen-
tation efficiency, though it may be further improved by
a careful re-implementation of the approach. Simulations
proved the effectiveness of the results presented.
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applications to Göbner bases. SIAM J. Disc. Math.,
6(2), 246–269.

Gutman, P. and Cwikel, M. (1986). Admissible sets and
feedback control for discrete-time linear dynamical sys-
tems with bounded controls and states. IEEE Transac-
tions on Automatic Control, AC-31(4).

Hovd, M., Scibilia, F., Maciejowski, J.M., and Olaru, S.
(2009). Verifying stability of approximate explicit MPC.
In Proceedings of the 48th IEEE Conference on Decision
and Control, 6345–6350.

Johansen, T.A. and Grancharova, A. (2003). Approximate
explicit constrained linear model predictive control via
orthogonal search tree. IEEE Transactions on Auto-
matic Control, 48, 810–815.

Jones, C.N., Kerrigan, E.C., and Maciejowski, J.M. (2004).
Equality set projection: A new algorithm for the projec-
tion of polytopes in halfspace representation. Technical
report, Department of Engineering, Cambridge Univer-
sity.

Jones, C.N., Kerrigan, E.C., and Maciejowski, J.M. (2008).
On polyhedral projection and parametric programming.
Journal of Optimization Theory and Applications, 138,
207–220.

Jones, C.N. and Morari, M. (2009). Approximate explicit
MPC using bilevel optimization. In Proceedings of the
European Control Conference, 2396–2401.

Kerrigan, E.C. and Maciejowski, J.M. (2000). Invariant
sets for constrained nonlinear discrete-time systems with
application to feasibility in model predictive control. In
Proceedings of the 39th IEEE Conference on Decision
and Control.

Khachiyan, L., Boros, E., Borys, K., Elbassioni, K., and
Gurvich, V. (2008). Generating all vertices of a poly-
hedron is hard. Discrete and Computational Geometry,
39((1-3)), 174–190.

Kolmanovsky, I. and Gilbert, E.G. (1995). Maximal
output admissible sets for discrete-time systems with
disturbance inputs. In Proceedings of the American
Control Conference, 1995–1999.

Kvasnica, M., Grieder, P., Baotic, M., and Christophersen,
F.J. (2006). Multi-Parametric Toolbox (MPT) doc-
umentation. Swiss Federal Institute of Technology,

http://control.ee.ethz.ch/∼mpt/.
Lopez, M.A. and Reisner, S. (2002). Linear time ap-

proximation of 3D convex polytopes. Computational
Geometry, 23, 291–301.

Matousek, J. (2002). Lectures on Discrete Geometry,
volume 212 of GTM. Springer.

Mayne, D.Q., Rawlings, J.B., Rao, C.V., and Scokaert,
P.O.M. (2000). Constrained model predictive control:
Stability and optimality. Automatica, 36, 789–814.

Mount, D.M. (2002). Computational geometry. Lecture
Notes. Department of Computer Science, University of
Maryland.

Nam, N.H., Olaru, S., and Hovd, M. (2010). Patchy ap-
proximate explicit model predictive control. In Interna-
tional Conference on Control, Automation and Systems.

Reisner, S., Schutt, C., and Werner, E. (2001). Dropping a
vertex or a facet from a convex polytope. Forum Math.,
13, 359–378.

Scibilia, F. (2010). Explicit Model Predictive Control:
Solutions via Computational Geometry. Ph.D. thesis,
Norwegian University of Science and Technology.

Scibilia, F., Hovd, M., and Olaru, S. (2010a). An algorithm
for approximate explicit model predictive control via
Delaunay tessellations. European Journal of Control,
(submitted).

Scibilia, F., Olaru, S., and Hovd, M. (2009). Approxi-
mate explicit linear MPC via Delaunay tessellation. In
Proceedings of the European Control Conference, 2833–
2838.

Scibilia, F., Olaru, S., and Hovd, M. (2010b). On feasible
sets for MPC and their approximations. Automatica,
doi:10.1016/j.automatica.2010.10.022.

Tiwary, H.R. (2008a). On computing the shadows and
slices of polytopes. CoRR, abs/0804.4150.

Tiwary, H.R. (2008b). On the hardness of computing
intersection, union and Minkowski sum of polytopes.
Discrete and Computational Geometry, 40, 469–479.

Tøndel, P., Johansen, T.A., and Bemporad, A. (2003). An
algorithm for multi-parametric quadratic programming
and explicit MPC solutions. Automatica, 39(3), 489–
497.

Preprints of the NIL workshop
Jan 10–15, 2011, Bratislava, Slovakia Scibilia., F., Olaru, S., Hovd, M.

66



Comments – Remarks

Preprints of the NIL workshop
Jan 10–15, 2011, Bratislava, Slovakia Scibilia., F., Olaru, S., Hovd, M.

67





Frequency domain measures to the diagnosis
of model plant mismatch

Selvanathan Sivalingam ∗ Arun K. Tangirala ∗∗

∗ Engineering Cybernetics Department, NTNU, Trondheim 7491,
Norway (e-mail: selvanat@itk.ntnu.no)

∗∗Department of Chemical Engineering, IIT Madras, Chennai 600036
India (e-mail: arunkt@iitm.ac.in)

Abstract
A new approach is proposed for the diagnosis of poor control loop performance due to model
plant mismatch (MPM) in the internal model control framework. A new quantity Gp/Gm,
termed as the Plant Model Ratio (PMR) in the frequency domain is introduced as a measure
of model plant mismatch. It is shown that there exists a unique signature in PMR for
each combination of mismatch in model parameters, which is the key step in the proposed
method. A method to estimate PMR from routine operating data is provided. Theoretical
and practical aspects of the mapping between the type of MPM and the proposed PMR are
presented. Simulation studies are carried out to demonstrate the effectiveness of the proposed
method.

Keywords: process control, instrumentation, simulation, time-delay estimation, Hilbert
transform relation

1. INTRODUCTION

Monitoring and assessment of controller performance
has evoked considerable interest to academicians and
practitioners in the area of process control and mon-
itoring for two decades now. The incentive in finding
solutions to associated problems is immense since poor
performance affects product quality, plant economy and
safety. In addition, there is a constant drive to improve
the performance of existing control schemes and to op-
timize the overall plant performance. However, one can
note that controllers often fail to operate according to
their design specifications and, in many cases, they even
increase the process variability, as was reported by Ender
(1993). Most modern industrial plants have hundreds or
even thousands of automatic control loops. These loops
can be simple proportional-integral-derivative (PID) or
more sophisticated model based linear and non-linear
control loops. It has been reported that as many as 60%
of all industrial controllers have performance problems
Ender (1993). Having an automated means of detecting
when a loop is not performing well and then diagnos-
ing the root cause plays a vital role in addressing the
problems mentioned at the outset of this paper.

Bialkowski (1993) and Kozub and Garcia (1993) pointed
out in their work that the major causes of poor control
loop performance are (i) improper controller tuning (ii)
poor hardware (sensors, actuators) maintenance (iii)
valve stiction (iv) model plant mismatch (MPM) (v)
? This paper is based on the article published in Industrial
and Engineering Chemistry Research, 2010, 65 (2), pp 660-674.
Copyright c© 2010 Elsevier Ltd. This version is intended for
members of the NIL project groups.

stochastic disturbances. Hagglund (1999) developed a
procedure for the automatic detection of sluggish control
loops obtained from conservatively tuned controllers.
Sensor fault detection and isolation in the process con-
trol community (also known as sensor validation) has
also been an active area of research Dunia et al. (1996);
Gertler et al. (2000); Tong and Crowe (1995); Deckert
et al. (1977). A detailed survey on sensor validation
has been given by Crowe (1997). More recent work in
this area has been addressed by Qin and Li (1999) and
Qin and Li (2001). A common source of oscillation is a
limit cycle caused by a control valve with a deadband or
excessive static friction. A process variable oscillating for
that reason can readily propagate the oscillation to other
variables and disturb other control loops, hence causing
a plant-wide disturbance. A focus upon non-linear root
causes can thus be justified because valve friction causes
the majority of cases, according to reported surveys
Bialkowski (1993); Ender (1993). Several authors have
addressed the detection of oscillatory measurements in
process data. There is a wealth of information in the
literature to diagnose the poor control loop performance
due to valve stiction, improper tuning of controllers and
sensor faults.

Jiang and W. Li (2006) proposed a new scheme to de-
tect and isolate MPM for multivariate dynamic systems.
In their work, the MPM problem is formulated in the
state-space domain, as is widely done in the design and
implementation of model-predictive controllers (MPC).
The specific issue addressed therein was to identify which
among the state-space matrices had to be re-estimated
in order to account for significant plant deviations from
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its nominal state. Three MPM detection indices (MDIs)
were proposed to detect the MPM for that purpose.
A shortcoming of their work is that changes in stae-
space matrices cannot be directly translated to changes
in gain, time constant or delay of the process. In addi-
tion, delay mismatches become difficult to detect with a
state-space representation since such mismatches cause
either an increase or decrease in the order of the sys-
tem depending on an increase or decrease in delay of
the process. The input-output representation, on the
other hand, provides a suitable framework for directly
attributing poor loop performance to changes in process
characteristics such as gain, time-constant and delay. To
the best knowledge of the authors, there is no method
in the literature that can diagnose and quantify the
effects of gain, time constant and delay mismatches on
control loop performance from the closed-loop routine
operating data. It may be noted that the effect of MPM
on controller design and control loop performance is an
evolved area of study and implementation under robust
control. However, there is hardly any evidence of an
analysis of the direct impact of process charactersitics
on loop performance in model-based control loops.

In this article, the diagnosis of poor control loop perfor-
mance due to model plant mismatch in control loops is
addressed. The emphasis of this work is on providing
measures to detect changes in process characteristics
that lead to performance degradation. The problem set-
ting is in the IMC framework. The diagnosis methodol-
ogy is developed in the frequency-domain. A new mea-
sure, plant-model ratio (PMR) is introduced with the
purpose of quantifying MPM. Conventionally MPM has
been quantified as 4G = Gp −Gm where Gp is process
transfer function and Gm is model transfer function.
While this definition of MPM (and its norms) is useful
for robust control design, its utility in the problem of
interest in this work is limited. On the other hand, the

PMR defined by
Gp(jω)

Gm(jω)
allows one to obtain a unique

mapping between changes in process characteristics and
signatures of PMR. Based on this fact, it is proposed to
detect signatures in PMR which can be then uniquely
identified with changes in gain, time-constant and/or
time-delay. The ratio measure can be calculated from
routine operating date. A method to estimate PMR
from routine data is proposed. The estimation method
uses the cross-spectral analysis of set-point, plant output
and model output with the assumption that the set-
point contains at lesat a pulse change. The foregoing
assumption is satisfied to a large extent in industrial
loops given that the set-points experience changes due to
changing market demands and productivity constraints.
The scope of this work is restricted to single-input,
single-output (SISO) systems.

The rest of the paper is organized as follows. Section
2 begins with the problem formulation followed by a
presentation of the concept of the proposed method
to diagnose the model plant mismatch. Section 3 dis-
cusses the procedure for estimating the PMR which
is a key step in the proposed method. Results from
simulation studies to demonstrate the proof-of-concept

are discussed in Section 4. Concluding remarks appear
in Section 5.

2. PROBLEM STATEMENT AND PROPOSED
METHODOLOGY

The task of diagnosing poorly performing controllers is
a challenging one. The major causes of poor control
loop performance in model based control loops are (i)
improper controller tuning (ii) actuator/process non-
linearities (iii) stochastic disturbances (iv) sensor faults
and (v) MPM. Keeping inline with the focus of this work,
the last of the aforementioned factors is taken up for
study. The question of interest is: given poor performance
of a (model-based) control loop and that it is solely due
to MPM, then which among the process characteristics,
namely, gain, time-constant and delay have undergone a
significant change? Although the probe begins with the
assumption of a unstrctured mismatch, the method de-
veloped here can be applied to situations with structure
mismatch as well. In the latter case, the question will
then translate to: given poor performance of a (model-
based) control loop and that it is solely due to MPM, then
which parts of the model, namely, gain, time-constant(s)
and delay require an update? This task is of immense
value in industry and arises in the exercise of model
updation. The problem setting is in the IMC framework.
The idea is that the results here can be extended to the
more commonly applied MPC-based control schemes. It
may be noted that the scope of this work is restricted to
IMC-based SISO loops.

The internal model control (IMC) framework provides
an elegant way of re-parametrizing the conventional
feedback controller Morari and Zafiriou (1989). An in-
creasing number of practitioners have started using the
IMC tuning rules for designing PID controllers. A pri-
mary benefit of using IMC-type schemes in the context
of performance asssessment is that in situations where
the performance degradation is due to changing plant
conditions, the presence of the model online enables us
to obtain an estimate of such deviations from routine
operating data. The key point is that the model pre-
dictions are also available along with the plant output,
from where one can obtain an estimate of the MPM. It
is not to be forgotten that the difference between plant
output and the model prediction also contains the effect
of disturbances.

Figure 1 shows a schematic of IMC configuration where
Gp(z

−1), Gm(z−1), Q(z−1) and Gd(z
−1) denote pro-

cess, model, controller and disturbance transfer func-
tions respectively. The observed output is denoted by
y[k], while the prediction of the model is denoted by
ym[k] respectively. The problem statement and method-
ology is presented for discrete-time systems. However,
these results are equally valid for continuus-time IMC
systems as well with some appropriate minor changes. It
is reiterated here that any performance degradation is
attributed to MPM, i.e., there is no loss in performance
due to valve stiction, stochastic disturbances, improper
tuning of controllers and sensor faults. Traditionally,
MPM has been characterized by 4G = Gp−Gm, which
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Figure 1. Schematic represenation of internal model
control

can never be zero due to lack of accurate process knowl-
edge (modelling uncertainties). The uncertainties can be
either in the structure, whence then 4G represents a
structural mismatch or in the parameters, namely, gain,
time constant(s) and delay, in which case 4G is said to
represent unstructured mismatch. We consider primarily
the latter situation in the treatment of the problem
under study.

To begin with, it is proposed to replace the conventional
definition of mismatch with a measure, known as the
plant-model ratio (PMR), based on the frequency re-
sponse functions (FRF) of the plant and model,

GPMR(ejω) =
Gp(e

jω)

Gm(ejω)
(1)

The quantity GPMR(ejω) is clearly complex-valued. The
measure defined in equation (1) has a few advantages
over the traditional 4G(ejω). The key advantage is
understood by first writing a polar representation for
GPMR,

GPMR(ejω) =
|Gp(ejω)|ej∠Ḡp(ejω)e−jDpω

|Gm(ejω)|ej∠Ḡm(ejω)e−jDmω
(2)

=M(ω)ej(4P (ω))

where Ḡp and Ḡm represent the delay-free parts of
the plant and model transfer functions respectively.
Equation (3) is central to the proposed method from
where conditions to diagnose the type(s) of mismatch are
formulated in later part of this section. From equation
(3), M(ω) contains the information on mismatch in the
magnitude of the FRFs of the plant and model, while
4P (ω) contains the mismatch in the phase of the delay-
free parts and the delays. Equivalently, in the absence
of any mismatch between the plant and the model,
GPMR(ω) = 1, implying M(ω) = 1 and 4P (ω) = 0.
An immediate utility of the above representation is
that delay mismatch, denoted by 4D = Dp − Dm

only influences 4P (ω), but not M(ω). Similarly, any
mismatch in the gain is contained in M(ω) only, while
time-constant mismatches affect both quantities. Thus,
the delay mismatch problem is decoupled from the time-
constant mismatch. On the other hand, writing a polar

form of representation for the traditional definition of
mismatch yields,

4G(ejω) = |Gp(ejω)|ej∠Ḡp(ejω)e−jDpω − |Gm(ejω)|ej∠Ḡm(ejω)e−jDmω

= A(ω)ejB(ω)

It is clear from the above equation that the quantities
A(ω) and B(ω) are both affected by mismatches in
delay and time-constant(s). Moreover, the manner in
which they affect the amplitude and phase of 4G(ejω)
is not straightforward. Compare this situation with
the one arising out of the porposed measure. It is
clear that GPMR(ω) is a better representation of the
mismatch than 4G(ω) in the context of diagnosis of
loop performance.

In the presentation to follow, we show that a unique
mapping exists between changes in process character-
istics and the amplitude and phase of GPMR(ω). The
theoretical results are presented for FOPTD processes
and models for the sake of simplicity and brevity. The
ideas, nevertheless, as shown later, turn out to be valid
for all higher-order processes in a straightforward way
so long as there is no mismatch in the structure.

The discrete domain transfer functions of FOPTD plant
and FOPTD model are expressed as

Gp(z
−1) =

Kp(1− e−
Ts
τp )

1− z−1e
−Tsτp

z−Dp =
Kp(1− ap)
1− apz−1

z−Dp (3)

Gm(z−1) =
Km(1− e−

Ts
τm )

1− z−1e−
Ts
τm

z−Dm =
Km(1− am)

1− amz−1
z−Dm(4)

where Ts is sampling time (Ts = 1 throughout), Kp,
τp and Dp are process gain, process time constant
and process time delay (in number of samples) and
corresponding model parameters are Km, τm and Dm.

2.1 Gain mismatch

When the loss in performance is only due to gain
mismatch, i.e., Kp 6= Km and τp = τm, Dp = Dm,
equation (1) simplifies to

GPMR(ω) =
Kp

Km
(5)

From equation (5), we can formulate the following con-
dition for diagnosing the gain mismatch

M(ω) 6= 1 ∀ω (6)

4P (ω) = 0 ∀ω (7)
The presence of gain mismatch in the control loop is
diagnosed if the estimates of the magnitude ratio and
phase difference satisfy equations (6)-(7). The right-
hand side constants of these equations are constants
(independent of frequency) for gain mismatch. It may be
noted that this result is true regardless of the order of
the process/model and in the absence of any structural
mismatch. Thus, this is a general result for all situations
with unstructured uncertainties. Also, in order to de-
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M(ω) ∆P (ω)
M(ω)|ω=0 = 1 ∆P (ω)|ω=0,π = 0

M(ω)|ω=0 6= M(ω)|ω 6=0 |∆P (ω)|max > 0
Table 1. Diagnostic conditions for time-

constant mismatch

termine the nature of gain mismatch, one further notes
that

M(ω) ≷ 1 if Kp ≷ Km

2.2 Time constant mismatch

In the presence of time constant mismatch, i.e., τp 6= τm
and Kp = Km, Dp = Dm, equation (1) reduces to

GPMR(ω) =
(1− ap)(1− e−jωam)

(1− am)(1− e−jωap)
= M(ω)ej∆P (ω)

(8)
The expressions for M(ω) and ∆P (ω) then follow

M(ω) =
(1− ap)

(1− am)

√
1− 2am cosω + a2

m

1− 2ap cosω + a2
p

(9)

∆P (ω) = tan−1
[

am sinω

1− am cosω

]
− tan−1

[
ap sinω

1− ap cosω

]
(10)

The expressions in equations (9) and (10) at a first
glance appear complicated; however, they lead to a set of
simple necessary and sufficient conditions listed in Table
1 for the time-constant mismatch to be the cause of
overall MPM. The presence of time-constant mismatch
is diagnosed from either M(ω) or ∆P (ω) as provided in
Table 1.

Once the source of mismatch has been identified as due
to mismatch in time-constants, one can then determine
the nature of deviation of τp from τm using the condition
(can be derived from equation (9))

M(ω)|ω=π = ≶ 1 whenever τp ≷ τm

2.3 Delay mismatch

If the only source of mismatch is the mismatch in delay,
i.e., Dp 6= Dm and τp = τm, Kp = Km, equation (1)
simplifies to

GPMR(ω) = e−(Dp−Dm)jω (11)
leading to the following condition for the diagnosis of
delay mismatch

M(ω) = 1 ∀ ω (12)
4P (ω) = αω ∀ ω (13)

where α = ∆D = Dm −Dp.
Equations (12) and (13) show that delay mismatches in
the model based control loops do not cause deviations
in the magnitudes of the FRF of the process and model,
but introduce a phase difference in the FRFs that varies
linearly with respect to the frequency. Since Dm and
Dp represent the sample delays, the minimum value of
|α| is unity for any mismatch in delays to manifest in
the sampled data. Therefore, it is appropriate to impose
|α|min = 1 in addition to the conditions specified in

equations (12) and (13). We now turn to establishing
conditions for various other combinations.

2.4 Gain and time constant mismatch

In this case, τp 6= τm,Kp 6= Km andDp = Dm. Equation
(1) then reduces to

GPMR(ω) =
Kp

Km

(1− ap)(1− e−jωam)

(1− am)(1− e−jωap)
(14)

M(ω) and ∆P (ω) are now written as follows,

M(ω) =
Kp

Km

(1− ap)
(1− am)

√
1− 2 cosωam + a2

m

1− 2 cosωap + a2
p

(15)

∆P (ω) = tan−1

[
am sinω

1− am cosω

]
− tan−1

[
ap sinω

1− ap cosω

]
(16)

From equations (15) and (16), we can formulate the
following conditions for diagnosing the presence of gain
and time-constant mismatch.

M(ω) ∆P (ω)
M(ω)|ω=0 6= 1 ∆P (ω)|ω=0,π = 0

M(ω)|ω=0 6= M(ω)ω 6=0 |∆P (ω)|max > 0
Table 2. Conditions for the diagnosis of gain

and time-constant mismatch

The conditions in this case is a combination of the
conditions for mismatches in individual parameters (gain
and time-constant). Similar situations arise in other
combinations of parametric mismatches as seen below.

2.5 Gain and delay mismatch

This situation arises when, Kp 6= Km, Dp 6= Dm and
τp = τm, reducing equation (1) to

GPMR(ω) =
Kp

Km
e−(Dp−Dm)jω (17)

From equation (17), we can formulate the following
condition for diagnosing the gain-and-delay mismatch

M(ω) 6= 1 ∀ω
4P (ω) = αω ∀ω (18)

where α = ∆D = Dm −Dp .

In order to determine the nature of gain and delay
mismatch, one further notes that

M(ω) ≷ 1 if Kp ≷ Km

α≷ 0 if Dm ≷ Dp

2.6 Time constant and delay mismatch

With the above assumption,τp 6= τm, Dp 6= Dm and
Kp = Km; then equation (1) takes the form

GPMR(ω) =
(1− ap)(1− e−jωam)

(1− am)(1− e−jωap)
e−j∆Dω (19)

M(ω) and ∆P (ω) are now written as follows,
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M(ω) =
(1 − ap)

(1 − am)

√
1 − 2 cosωam + a2

m

1 − 2 cosωap + a2
p

(20)

∆P (ω) = tan
−1

[
am sin ω

1 − am cosω

]
− tan

−1

[
ap sin ω

1 − ap cosω

]
+ ω(∆D)(21)

From equations (20) and (21), one arrives at the
following diagnostics listed in Table 3 in this case:

2.7 Gain, time constant and delay mismatch

When there exists mismatch in all gain, time constant
and delay i.e., Kp 6= Km, τp 6= τm and Dp 6= Dm,
equation (1) simplifies to

GPMR(ω) =
Kp

Km

(1− ap)(1− e−jωam)

(1− am)(1− e−jωap)
e−j∆Dω (22)

M(ω) and ∆P (ω) are now written as follows,

M(ω) =
Kp

Km

(1 − ap)

(1 − am)

√
1 − 2 cosωam + a2

m

1 − 2 cosωap + a2
p

(23)

∆P (ω) = tan
−1

[
am sin ω

1 − am cosω

]
− tan

−1

[
ap sin ω

1 − ap cosω

]
+ ω(∆D)(24)

From equations (23) and (24), the following conditions
are formulated for diagnosing the presence of gain, time
constant and delay mismatch together.

The signatures of M(ω) and ∆P (ω) are unique for
every type of mismatch. For an easy understanding of
the proposed approach, pictoral representations of the
theoretical conditions for the diagnosis of different com-
bination of mismatches are given in Figures (2) and (3).
It turns out that the diagnostic conditions listed above
can be largely simplified to a condensed stepwise pro-
cedure, which examines three critical aspects, namely,
(i) the value of M(ω)|ω=0 which provides an estimate
of Kp/Km, (ii) the flatness of M(ω) indicative of the
presence of 4τ and (iii) linearity of 4P (ω) indicative
of a delay mismatch. The procedure is presented in
Table 6. The condensed procedure can be applied to
higher-order processes / models as well with the only
difference that the second aspect, i.e., the flatness of
M(ω) will be indicative of mismatch in one or more
time-constants of the process. The reader may note with
interest that the use of the conventional definition of
MPM 4G = Gp −Gm would not lead to a formulation
of such simple signatures as has been obtained with the
proposed PMR.

In the following section, a method to estimate PMR from
routine operating data is given.

3. ESTIMATION OF PMR

In this section, we provide a method to estimate PMR
from routine operating data in model-based control
loops. For this purpose, onsider a linear time invariant
(LTI) SISO feedback control system opertaing under
an IMC scheme. The setpoint, process input, process
output, model output and disturbance are denoted by
r[k], u[k], yp[k], ym[k] and d[k] respectively. The actuator
and sensor dynamics are neglected for the remainder of
the presentation. The expressions of process and model
outputs can be written for the IMC structure as follows:

yp[k] =Gp(q)u[k] + d[k] = Gp(q)u[k] +Gd(q)e[k](25)

ym[k] =Gm(q)u[k] (26)
where

Gp(q) =
∞∑

k=0

gp[k]q−k

and

Gd(q) =
∞∑

k=0

gd[k]q−k

In a noise-free environment (i.e., when d[k] = 0), the
natural estimate of PMR is

Gp(ω)

Gm(ω)
=
Yp(ω)

Ym(ω)

where Yp(ω) and Ym(ω) are the Fourier Transforms of
yp and ym respectively. In practice, however, due to
the presence of disturbances, this will lead to a poor
estimate of the PMR. In order to overcome the effect
of disturbances, a smoothed estimate is desired. This
issue is reminscent of the estimation of the transfer
function using the ETFE versus the smoothed estimate
involving the cross-spectra (Lennart, 1999). Based on
such ideas, equations 25 and 26 multiplied by r[k −
l] followed by an expectation operation. Subsequently,
taking Fourier Transforms on both sides of the equation
leads to equations involving cross-spectra

Φypr(ω) =Gp(e
jω)Φur(ω) +Gd(e

jω)Φar(ω) (27)

Φymr(ω) =Gm(ejω)Φur(ω) (28)
Noting the fact that the set-point and the disturbance
are ideally uncorrelated, we arrive at the expression for
the estimate of PMR as

ΦYpR(ω)

ΦYmR(ω)
=

Ĝp(e
jω)

Ĝm(ejω)
= ĜPMR(ω) (29)

where the ˆ is introduced as a natural consequence in
estimation problems due to finite sample size and the
fact that Φrd(ω) is numerically non-zero (but a small
value) in practice.

The estimation method provided above may be misin-
terpreted as a method for identifying the process model
from closed-loop operating data since Gm(ejω) is a
known quantity. However, the estimate is only used to
identify signatures relevant to the detection of MPM,
but not to identify the process parameters. The key idea
in this work is to propose a method to detect changes
(and the direction of such changes) in process param-
eters based on routine operating data without having
to explicitly estimate the process parameters. Table 6 is
reflective of this fact. The flatness ofM(ω) and linearity
of 4P (ω) are the key signatures that are sought, rather
than the estimates of τp and/or Dp from operating data.
The signature-based approach of the proposed method
demands only a minimal excitation, i.e., a pulse exci-
tation in the set-point whereas an explicit estimation
of process parameters imposes stronger excitation re-
quirements either in the set-point or in a dither signal
as is well-known in closed-loop identification. It may
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be noted, however, that since gain can be estimated
merely from step response data. Consequently, one of
the conditions listed in Table 6 makes use of the gain
estimate by examining the value of M(ω)|ω=0.

4. SIMULATIONS

A control system consisting of a process characterized
by the transfer function Gp(z

−1) =
Kp(1−ap)
1−z−1ap

z−Dp and

model Gm(z−1) = Km(1−am)
1−z−1am

z−Dm is simulated with an
IMC scheme, with pulse type set-point changes. The
tuning parameter, λ and the model parameters Km, τm
and Dm are fixed at 2, 1, 10 and 5 respectively. The
closed-loop system is simulated under four different sit-
uations of MPM, namely, gain mismatch, time constant
mismatch, delay mismatch and a mismatch in all three
parameters. The mismatches are expressed in terms of
percentages for simplicity and are defined as follows

δK =
Kp −Km

Km
× 100 (30)

δτ =
τp − τm
τm

× 100 (31)

δD=
Dp −Dm

Dm
× 100 (32)

To determine the degradation in performance, the ISE is
used as a measure of the performance of the closed-loop
system. The ISE value is calculated for the zero MPM
case and compared with the value corresponding to each
case of mismatch. The extent of degradation, evidently,
depends on the magnitude of MPM.

4.1 Gain mismatch

Two different levels of gain mismatch at 10% and 50%
are considered. The cross spectra between process out-
put, yp[k] and setpoint, r[k] and model output, ym[k]
and r[k] are estimated. The magnitude ratio M(ω) and
phase difference ∆P (ω) are computed from the esti-
mate of PMR as given in equation (29). Figures 6(a)
and 6(b) show the estimates of these measures for the
two different levels of gain mismatch. Though visual
inspection of Figures (5(a)) and (5(b)) clearly indicates
the presence of gain mismatch, non-existence of time-
constant mismatch and delay mismatch can not be ruled
out. Proceeding with the first step outlined in Table (7),
the value of M(ω)|ω=0 is 1.1009 when δK = 10% and
1.5001 when δK = 50% clearly indicating the presence
of gain mismatch. From the values |α1| = 0.0009 < αcτ ,
|α2| = 0.001 < αcD for case 1(a) and |α1| = 0.0009 <
αcτ , |α2| = 0.0002 < αcD for case 1(b), it can be
concluded that there exists only gain mismatch. Further,
the extent of mismatch can be calculated from these
values by calculating the deviation from the no MPM
case, i.e.,M(ω)|ω=0 = 1, which yield 10.09% and 50.01%
respectively. These values are, as expected, in agreement
with the true values.

4.2 Time constant

Two different levels of time mismatch at 10% (τp = 11)
and 50% (τp = 15) are considered. Visual inspection of
Figures (7(a)) and (7(b)) does not reveal any informa-
tion of MPM. The magnitude ratio, M(ω) and phase
difference, ∆P (ω) are computed from the estimate of
PMR as given in equation (29). Both these quantities
are plotted in Figures (8(a)) and (8(b)). The stepwise
procedure outlined in Table 7 is followed. The values
of M(ω)|ω=0 = 0.997, |α1| = 0.018 > αcτ and |α2| =
0.007 < αcD when δτ = 10% and M(ω)|ω=0 = 0.9983,
|α1| = 0.023 < αcτ and |α2| = 0.033 < αcD when
δτ = 50% clearly indicate the presence of time-constant
mismatch. Further, the sign of α1 in both the cases
indicates that τp is greater than τm in both the cases.

4.3 Delay mismatch

The system is simulated for the delay mismatch of 20%
(Dp = 6) and 40% (Dp = 7). Visual inspection of Figures
(9(a)) and (9(b)) does not reveal any information of
MPM. The cross spectra, ΦYpR(ω), ΦYmR(ω) are esti-
mated which are subsequently used to compute M(ω)
and ∆P (ω). Both these quantities are plotted in Figures
10(a) and 10(b). The stepwise procedure outlined in
Table 7 is followed. The values of M(ω)|ω=0 = 0.9981,
|α1| = 0.0009(< αcτ ) and |α2| = 0.9933(< αcD) when
δD = 20% and M(ω)|ω=0 = 0.9963, |α1| = 0.0001(<
αcτ ) and |α2| = 2.003(< αcD) when δD = 40% are
representative of the presence of only delay mismatch.
The negative sign of α2 clearly indicates that the plant
delayDp is greater than the model delay Dm in both
cases.

4.4 Gain, Time constant & Delay mismatch

The system is simulated by setting δK at 10%, δτ at
50% and δD at 20%. M(ω) and ∆P (ω) are estimated
and plotted in Figure 11(b). Visual inspection of Figure
11(a) confirms only the presence of gain mismatch. But,
the values of Mω)|ω=0 = 1.1816, |α1| = 0.018(< αcτ )
and |α2| = 0.9581(< αcτ ) clearly indicate the presence of
gain, time-constant and delay mismatches together. The
extent of gain mismatch is calculated from Mω)|ω=0 =
Kp

Km
= 1.1816, i.e., δK = 18.16%.. The sign of α1implies

that the process time-constant is greater than that of the
model whereas the sign of α2implies that the plant delay
is greater than that of the model.

4.5 SOPTD Process/Model

To show the applicability of the proposed method to
higher order systems, a control system consisting of a
SOPTD process and a SOPTD model is simulated for
a pulse type set-point changes in an IMC scheme. The
values of the tuning parameter, λ, model parameters,
Km, τm1, τm2 and Dm are fixed at 0.2, 1, 5, 7, 3
respectively. The simulation is performed by setting
δK = 20%, δτ1 = 20%, δτ2 = 20%, δD = 33%. The
time-domain trends of plant- and model-outputs are
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shown in Figure 12(a). The plots of M(ω) and ∆P (ω)
are shown in Figure 12(b). The values of M(ω)|ω=0 =
1.1952, |α1| = 0.066(< αcτ ), and α2 = 1.053(< αcD)
clearly reveal the presence of mismatches in gain, time-
constant and delay together. Kp/Km is found from the
value of M(ω)|ω=0 = 1.1952 =⇒ δK = 19.5% . Further,
the signs of α1and α2 indicate the direction of deviations
in time-constant and delay mismatches respectively. To
summarize, the findings are Kp > Km,τp > τm and
Dp < Dm.

5. CONCLUSIONS

In this work, the problem of characterizing the devi-
ations of process parameters from that of the model
has been addressed. The major contribution of this
work is the formulation of the MPM characterization in
the frequency domain for the identification of specific
signatures to distinguish among mismatches in gain,
time-constant and delay. The current work introduced a
quantity Gp(ω)/Gm(ω), termed as the plant-model ratio
(PMR) as against the conventional Gp−Gm to quantify
MPM. The theoretical results show that the advantage
of the proposed PMR is the ease of representation in
the complex frequency domain. The amplitude part of
the PMR contains the effects of gain and time-constant
mismatches, while the phase component contains the
effects of mismatch in delay and time-constant.

The key outcome of this work is a simple three-step
procedure to identify mismatches in gain, time-constant
and delay from routine oeprating data through the use
of PMR. It is foreseen that the work presented lays
the foundations for methods to (i) MPC-based SISO
control schemes and to (ii) identify significant deviations
in specific process parameters (i.e., of a subsystem) of a
multivariable system.
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M(ω) ∆P (ω)
M(ω)|ω=0 = 1 ∆P (ω) = f(τ, ω) + αω, f(τ, ω)→ 0 for ω→ π

M(ω)|ω=0 6= M(ω)|ω 6=0

Table 3. Conditions for the diagnosis of delay and time-constant mismatch

M(ω) ∆P (ω)
M(ω)|ω=0 6= 1 ∆P (ω)| = f(τ, ω) + αω, f(τ, ω)→ 0 for ω→ π

M(ω)|ω=0 6= M(ω)ω 6=0

Table 4. Conditions for the diagnosis of gain, time-constant and delay mismatches

Assessment procedure Diagnosis of MPM
Step 1 M(ω)|ω=0 6= 1 Kp 6= Km else Kp = Km

Step 2 Test of flatness (zero slope) of M(ω) If flat, τp = τm, else τp 6= τm
Step 3 Linearity check of ∆P (ω) Linear: Dp 6= Dm, else Dp = Dm

Table 6. Theoretical conditions for the diagnosis of MPM in model-based control loops

Assessment procedure Diagnosis of MPM
Step 1 M(ω)|ω=0 ≥ 1.05 or M(ω)|ω=0 ≤ 0.95 Kp 6= Km, else Kp = Km

Step 2 Test of flatness (zero slope) of M(ω) :
M(ω) = αcτω + β

If flat, i.e., |αcτ | ≤ 0.001,
τp 6= τm, else τp = τm

Step 3 Linearity of ∆P (ω): ∆P (ω) = αcDω If |αcD| ≥ 0.9 (Linear):
Dp 6= Dm, else Dp = Dm

Table 7. Empirical (data-based) conditions for the diagnosis of MPM in model-based control
loops

MPM Assessment Diagnosis
M(ω)|ω=0 α1 α2

Case 1 a 1.1099 −0.0009 −0.0010 Kp > Km, δτ = δD = 0
b 1.5091 −0.0009 −0.0003 Kp > Km, δτ = δD = 0

Case 2 a 0.9970 −0.0184 0.00740 τp > τm, δK = δD = 0
b 0.9853 −0.0235 0.03380 τp > τm, δK = δD = 0

Case 3 a 0.9981 0.0009 −0.9930 Dp > Dm, δK = δτ = 0
b 0.9963 0.0001 −2.0030 Dp > Dm, δK = δτ = 0

Case 4 1.1816 0.0184 −0.9581 Kp > Km, τp > τm, Dp > Dm

Case 5 1.1952 0.066 1.05300 Kp > Km, τp > τm, Dm > Dp

Table 5. Simulation results for the diagnosis of different occurences of model plant mismatch
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Figure 2. Conditions to diagnose the type of mismatch among gain, time-constant and delay

Figure 3. Conditions to the diagnosis of combinations of mismatches

Preprints of the NIL workshop
Jan 10–15, 2011, Bratislava, Slovakia Sivalingam, S., Tangirala, A. K.

77



0 100 200 300 400 500 600 700 800 900 1000 1100
0

0.5

1

1.5

Time

M
ag

ni
tu

de

Set−point profile

Figure 4. Set-point profile considered for the simulation.
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Figure 5. Plant and model ouput behavior for 10% and 50% gain mismatch
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Figure 6. Plots of M(ω) and ∆P (ω) for 10% and 50% gain mismatch
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Figure 7. Plant and model ouput behavior for 10% and 50% time-constant mismatch
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Figure 8. Plots of M(ω) and ∆P (ω) for 10% and 50% time-constant mismatch
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Figure 9. Plant and model ouput behavior for 20% and 40% delay mismatch
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Figure 10. Plots of M(ω) and ∆P (ω) for 20% and 40% delaymismatch
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Figure 11. Plots of output behaviors, M(ω) and ∆P (ω) for δK = 20%, δτ = 50%, δD = 20%
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Figure 12. Plots of output behaviors, M(ω) and ∆P (ω) for SOPTD process/ SOPTD model
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Abstract: The delay estimation problem for open-loop single-input single-output (SISO)
systems has been widely studied to the effect that well-established methods are available now.
On the other hand, the delay estimation for MIMO systems remains a challenge to-date due
to the presence of interactions among input and output variables. In this work, a method
based on partial coherence functions (PCF) and Hilbert Transform (HT) relation is presented
to estimate time-delay for MIMO systems. The key step in the proposed method involves
decoupling interactions using the PCF. The method uses frequency-domain analysis which allows
one to take into effects of noise in a straightforward way. Under closed-loop conditions, time-
delay is estimated by introducing a dither signal at the controller output.

Keywords: process control, instrumentation, simulation, time-delay estimation, Hilbert
transform relation

1. INTRODUCTION

Every industrial process has inherent time-delays due to
process dynamics and/or instrumentation. The knowledge
of this delay can be critical to the identification and control
of such processes. Given the complexities underlying the
industrial processes and the fact that the measured data
are routinely available, it is attractive as well as practical
to estimate these delays from the data rather than making
an attempt to obtain them from a physical understanding
of the process. The idea of time-delay estimation from
measurements has been put into practice for decades now.
A wealth of literature is available on several methods
for a class of linear time-invariant (LTI) SISO systems.
However, there are several gray areas in this field, partic-
ularly in the context of open-loop/closed-loop multi-input
multi-output (MIMO) systems. The aim of this paper is
to present a frequency domain method to estimate time-
delays in LTI MIMO systems . It is assumed that these
time-delays are naturally present in the system and/or
the instrumentation rather than artificially arising due to
approximations of higher-order systems.

MIMO systems pose specific challenges to the delay esti-
mation problem mainly due to two factors: (i) physical in-
teraction (within the system) and (ii) correlation between
inputs. In the performance assessment of MIMO feedback
control systems, the knowledge of interactor matrix is
necessary to measure the performance index Harris et al.
(1996). The notion of the interactor matrix in a MIMO
system is equivalent to the meaning of the time delay
in a univariate system. Huang et al. (1997) have shown

? This paper is based on the article published in Chemical Engi-
neering Science Copyright 2010 American Chemical Society. This
version is intended for members of the NIL project groups.

that the interactor matrix can be estimated from the first
few Markov parameters of the process using the algorithm
given in Rogozinski et al. (1987). Even though the interac-
tor matrix is meaningful as a multi variable generalization
of the time-delay term encountered in single-loop systems,
its calculation and the concept itself have been found com-
plicated for use by practicing control engineers (Kozub and
Garcia, 1993). Hence, the elimination of the requirement
to develop the (unitary) interactor matrix can simplify the
calculation of multi variable performance index. Xia et al.
(2006) developed a method which can estimate upper and
lower bounds of the MIMO MV performance index from
routine operating data if the I/O delay matrix is known.

Patwardhan and Shah (2005) proposed a parametric
method that can estimate time-delays in a MIMO system
by first estimating a parametric model using generalized
orthonormal basis filters and subsequently analyzing the
simulated step response of the noise-free systems. The
step response is analyzed using the traditional point of
inflection method. Though the method provides relatively
accurate results, it requires the knowledge of model struc-
ture and is therefore limited by the classical drawbacks of
the parametric methods. A major limitation of the afore-
mentioned methods is that delay parameter is implicitly
estimated, i.e., the problem is not specifically formulated
to estimate delays. Rather the time-delay is estimated
by indirect means either through the search of the first
significant correlation coefficient or the point of inflection.
There is no closed-form expression relating such quantities
to the delay parameter. Consequently, it is not clear how
the estimates of those quantities affect the estimate of
delay. In view of these facts, it is motivating to seek a non-
parametric method that explicitly estimates the delay as
well as takes into account the quality of the coefficients
of the non-parametric model. The latter is necessary to
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obtain a robust estimate of the input-output time delay
matrix for MIMO systems. In this paper, a method that
meets these requirements is proposed.

The proposed method also handles the interactions present
in the MIMO systems using PCF and accommodates the
cause and effect relationship in the presence of noise using
HT relation. The ability to handle the causality is due
to the fact that the imaginary part of frequency response
function of a LTI system is the HT of real part of frequency
response function. The use of HT relation to estimate the
time-delay in a neuro-physiological SISO system appears
in the work by Lindemann et al. (2001). On the other hand,
the use of PCF to obtain individual effects of inputs in a
MIMO system began about four decades ago (see Priestley
(1981) for a detailed list of references). The proposed
method fuses these techniques to estimate time-delays in
MIMO systems.

2. TIME-DELAY ESTIMATION OF SISO SYSTEMS
USING HILBERT TRANSFORM RELATION

The idea involved in the proposed method is explained by
considering a following discrete transfer function of an LTI
system.

G(z) = z−DḠ(z) (1)

where Ḡ(z) is the transfer function of the delay-free
process and D is the time-delay.
The phase spectrum of the above system, denoted by φ(ω)
can be represented as the sum of two terms due to (i)
the time-delay, D, and (ii) the argument of the delay-free
transfer function respectively.

φ(ω) = Dω + arg Ḡ(ω) (2)

On the other hand, the gain function of the delay-free
system is independent of time-delay and identical to that
of the original system.

|Ḡ(ω)| = |G(ejω)| (3)

It is clear from equation (2) that an estimate of delay can
be obtained by knowing the estimates of phase spectrum
and the argument of the delay-free transfer function. The
argument of the delay-free transfer function is obtained
by the Hilbert Transform relation. One can formulate an
objective function based on the difference function given
below,

ε(ω) = φ̂(ω)− arg Ĝ(ω)−Dω (4)

where φ̂(ω) is the phase spectrum estimate obtained from

input and output data and arg Ĝ(ω) is the estimate the ar-
gument spectrum obtained using the HT relation. Hamon
and Hannan (1974) in their study on the delay estimation
proposed the following objective function represented by
J(D)

J(D) =
∑

B

W (ω) cos ε(ω) (5)

The summation is over all ω (ω is discrete) in a proper
band B of frequencies contained in [0, π]. Observe that
the objective function carries a weighting function similar
to that in the weighted least-squares approach (Lennart,
1999) due to the uncertainties in the estimates of φ(ω)
arising out of imperfections present in the data. Such
imperfections can be due to model-plant mismatch, dis-
turbance and non-linear effects. In fact, the weighting
function, W (ω) at each frequency is the reciprocal of the
variance of phase spectrum estimates and given by the
expression below Priestley (1981).

var
[
φ̂(ω)

]
=

1

ν

(
1

β2(ω)
− 1

)
(6)

where ν is number of degrees of freedom and β(ω) is
coherence function estimated from cross spectrum. The
weighting function in equation 5 can be written as W (ω) =
β2(ω)

1− β2(ω)
. The objective function is evaluated for different

values of the time-delay, D. The value of D at which J(D)
is maximum is the true time-delay present in the system.

2.1 Hilbert Transform relation

Hilbert Transform relation(discretized version) between
magnitude and phase is given as

arg Ĝ(ωl) =
1

2M

M∑

k=1,k 6=l
log |Ĝ(ωk)| (7)

∗
(

cot
(ωl − ωk)

2
+ cot

(ωl + ωk)

2

)

where k and l are dummy variables, M is number of
independent spectral estimates determined by the length
of the time series N ,the sampling frequency fs and the
effective number of degrees of freedom ν using the relation,
M = Nfs

2ν . The equation (8) given above is central to the
delay estimation procedure used in this article.

2.2 Spectral estimates

The phase spectrum φ(ω) is defined as the argument of
the cross-spectrum (Hamon and Hannan, 1974),

φ(ω) = arg [hyu(ω)] (8)

where hyu(ω) represents the cross-spectrum relating the
input to the output. The cross-spectrum itself is defined
as the Fourier Transform of the cross covariance function
Priestley (1981), i.e.,

hyu(ω) = F [y(t) ∗ u(t)] (9)

where * is the convolution operator while y(t) and u(t) are
zero-mean output and input sequences respectively. The
gain function |G(ω)| is defined as

|G(ω)| = |hyu(ω)|
huu(ω)

(10)

where huu(ω) denotes the power spectrum of the input
to the system, which can be estimated by the Fourier
Transform of the auto-covariance function. Thus,

huu(ω) = F [u(t) ∗ u(t)] (11)

The power spectrum of the output, hyy(ω), is defined in
a similar way. The coherence function, β(ω), is a bounded
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measure of linear association of the system. For a given
frequency range, the unity coherence implies a perfect
linear relationship while the value of zero indicates the
absence of the same. In practice, the squared coherence is
used and computed by the following equation Hamon and
Hannan (1974):

β2
yu(ω) =

|hyu(ω)|2
huu(ω)hyy(ω)

(12)

3. EXTENSION TO MIMO SYSTEMS

In Section 2, the approach to the delay estimation problem
has been presented for a SISO system. This approach,
however, cannot be directly applied to a MIMO system
where, in general, input and output relations involve
interactions. A consequence of the interactions is such that
the regular coherence function fails to capture the true
relationship between an input-output pair. Therefore, the
extension of the proposed approach in Section 2 to the
MIMO systems involves an additional step of decoupling
these interactions. This is carried out by means of the
partial coherence function in this work.

3.1 Decoupling in frequency domain

The process of decoupling the interactions in time-domain
is equivalent to conditioning of two or more signals in the
frequency domain. The conditioning refers to removal of
linear dependence of a signal from other signals in fre-
quency domain. The partial coherence function, henceforth
denoted by K(ω), is defined as the coherence between the
conditioned signals in contrast to β(ω), which is the coher-
ence function between the original signals. Conditioning
m input and n output signals of a MIMO system is, in
fact, equivalent to decomposing that MIMO system into
m × n non-interacting SISO systems. This leads to the
estimation of mn partial coherence functions as explained
schematically in Figure 2. This procedure is best under-
stood by means of a simple example as described below. An
open-loop MIMO system described by two inputs {u1(t)
and u2(t)} and two outputs {y1(t) and y2(t)}, as shown in
Figure 1, is considered for illustration. Conditioning these
two inputs and outputs decomposes this MIMO system
into four non-interacting SISO systems, which relate the
four pairs of conditioned signals (in the frequency domain).
The conditioned output and input signals in time-domain
are denoted by ψ(t) and γ(t), while their frequency-domain
counterparts are denoted by Ψ(ω) and Γ(ω) respectively.

We shall now show the computation involved in condition-
ing y1(t) and u1(t) to ultimately obtain the true coherency
between these signals. These signals are conditioned on
u2(t) to obtain ψ11(t) and γ11(t) respectively as given in
equations (13) and (14) below.

ψ11(t) = y1(t)−
∞∑

k=−∞
b1(k)u2(t− k) (13)

γ11(t) = u1(t)−
∞∑

k=−∞
b2(k)u2(t− k) (14)

where {b1(k)}, {b2(k)}, are determined by minimizing
E[ψ2

11(t)] and E[γ2
11(t)], respectively. Here, E is the ex-

pectation operator. The corresponding transfer functions
are given by

B1(ω) =

∞∑

k=−∞
b1(k)e−iωk =

hy1u2
(ω)

hu2u2
(ω)

(15)

B2(ω) =

∞∑

k=−∞
b2(k)e−iωk =

hu1u2(ω)

hu2u2
(ω)

(16)

Refer to Priestley (1981) for a detailed derivation of the
above results. Now, the corresponding frequency-domain
representations of ψ11(t) and γ11(t) can be written as,

Ψ11(ω) = Y1(ω)−B1(ω)U2(ω) (17)

Γ11(ω) = U1(ω)−B2(ω)U2(ω) (18)

The cross spectral density function of ψ11(t) and γ11(t) is
found by evaluating E[Ψ11(ω)Γ11

∗(ω)],

hΨ11Γ11 (ω) = hy1u1 (ω) −B1(ω)hu2u1 (ω) −B∗
2 (ω)hy1u2 (ω) +

B1(ω)B∗
2 (ω)hu2u2 (ω)

The function hΨ11Γ11
(ω) is called the partial cross-spectral

density function of y1(t) and u1(t) {allowing for u2(t)},
and is also denoted by hy1u1.u2

(ω). The partial (complex)
coherency ζy1u1.u2

(ω), is now defined as the (complex)
coherency of ψ11(t) and γ11(t) and is given by

ζy1u1.u2
(ω) =

hΨ11Γ11
(ω)

{hΨ11Ψ11
(ω)hΓ11Γ11

(ω)}1/2 (19)

where hΨ11Ψ11
(ω) and hΓ11Γ11

(ω), the spectral density
functions of ψ11(t) and γ11(t).
Further simplification gives

hΨ11Ψ11(ω) = hy1y1(ω){1− |ζy1u2(ω)|1/2} (20)

hΓ11Γ11(ω) = hu1u1(ω){1− |ζu2u1(ω)|1/2} (21)

Substituting the equations (20) and (21) in (19), the fol-
lowing expression is derived from which partial coherency
can be obtained.

ζy1u1.u2(ω) =
ζy1u1(ω)− ζy1u2(ω)ζu2u1(ω)

{(1− |ζy1u2
(ω)|1/2)(1− |ζu2u1

(ω)|1/2)}1/2
(22)

The function |ζy1u1.u2
(ω)| is defined as the partial coher-

ence function, κy1u1
(ω), between y1(t) and u1(t), after

removing the common influence of u2(t). The conditioned
signals for the remaining combination of input-outputs
namely, {Γ12(ω), Ψ12(ω)}, {Γ21(ω), Ψ21(ω)} and {Γ22(ω),
Ψ22(ω)} are estimated in a similar way. Subsequently,
κy1u2

(ω), κy2u1
(ω) and κy2u2

(ω) are obtained.

The subscripts on conditioned pair of signals are best
understood by noting that a pair {Γij(ω), Ψij(ω)} allows

Preprints of the NIL workshop
Jan 10–15, 2011, Bratislava, Slovakia Sivalingam, S., Tangirala, A. K.

85



us to estimate the true coherency, κij(ω), between the jth

input and the ith output. The generalized partial coherence
function matrix for a MIMO system containing m inputs
and n outputs can be written as follows.

K(ω) =




κ11(ω) κ12(ω) . . . κ1m(ω)
κ21(ω) κ22(ω) . . . κ2m(ω)

...
...

...
κn1(ω) κn2(ω) . . . κnm(ω)


 (23)

The quantity κij(ω) is now used in place of β(ω) in
equation (6) to compute the objective function for esti-
mating the time-delay between jth input and ith output.
Under closed-loop conditions, the procedure differs from
the above that the effects of outputs are also taken into ac-
count in equations (13) and (14) with appropriate changes
in the subsequent equations.

4. SIMULATION STUDIES

Delay estimation for multivariate systems are shown by
taking up a simulated MIMO system and the standard
SHELL control problem.

Transfer function model A system of two inputs and two
outputs is simulated with known delays in all four transfer
functions under open- and closed-loop conditions.

The transfer function model for the open-loop case is as
follows

G(z
−1) =




z−5

1− 0.5z−1 + 0.05z−2

0.3z−4

1− 0.9z−1 + 0.2z−2

0.8z−6

1− 0.5z−1

z−3

1− 0.7z−1




(24)
The input-ouput delay matrix for the above system is
written as

Dtrue =

[
5 4
6 3

]
(25)

Simulation is carried out by exciting the system with pulse
inputs for different output SNR levels (10, 5 and 1). As
discussed in Section 3.1, the MIMO system that contains
two inputs and two outputs is decomposed into four non-
interacting SISO systems with the help of PCF yielding
four conditioned pairs (in the frequency domain). The par-
tial coherency, κij(ω), at each frequency is now estimated
between the conditioned pairs {Γij(ω), Ψij(ω)}. Subse-
quently, the quantity J(D) in the each channel is estimated
by using κij(ω) in place of the regular coherency, β(ω), in
equation (5) for a range of values of D. Correspondingly,
the time-delay in each channel is obtained. The objective
functions for the four sub-systems at SNRout = 10 and
SNRout = 1 are plotted and shown in Figures 3(a) and
3(b) respectively. The estimated time-delay matrix is as
follows.

D̂OL =

[
5 4
6 3

]
(26)

which is identical to the true time-delay matrix.

The open-loop system is now controlled using a PI con-
troller with tuning values Kc = 0.1 and KI = 0.01. A
random type dither signal is introduced at each input such

that the ratio of variance of the measurement noise to that
of the dither signal is varied from one to 10.

The time-delays in the four channels are estimated in
a way similar to that under open-loop conditions. The
corresponding four objective functions obtained for output
SNR levels of 10 and 1 are plotted in Figures 4(a) and
4(b) respectively. The estimated time-delay matrix for the
closed-loop case is provided below.

D̂CL =

[
5 4
6 3

]
(27)

which is again in agreement with the true delay matrix,
Dtrue. This result is demonstrative of the ability of the
method to correctly estimate the time-delays in MIMO
systems in both open- and closed-loop conditions.

Shell control problem The Shell control benchmark prob-
lem (Figure 5) was first published by SHELL in 1986 in
their first Process Control workshop (Maciejowski, 2002),
with the intention to provide a standard and realistic
test bed for the evaluation of new control theories and
technologies. It captures most of the relevant control issues
while staying as realistic as possible.

The problem involves control of a heavy oil fractionator
system characterized by large time delays in each input-
output pair. The heavy oil fractionator has three product
draws, three side circulating loops and a gaseous feed
stream. The system consists of seven measured outputs,
three manipulated inputs and two unmeasured distur-
bances. Product specifications for top and side draws are
determined by economic considerations. There is no prod-
uct specification on bottom draw, however, there is an
operating constraint on the bottom reflux temperature.
Top draw, side draw and bottoms reflux duty can be used
as manipulated variables to control the column while heat
duties on the two other side loops (upper reflux duty and
intermediate reflux duty) act as unmeasured disturbances
to the column.

The original problem describes the system with 35 transfer
functions relating three manipulated inputs and two dis-
turbances to three controlled outputs and four measured
outputs. For the sake of demonstration, we have considered
only the transfer functions between manipulated (control)
inputs and controlled outputs, which are given in Table 2.
The continuous transfer functions are discretized with a
sampling interval of two units. The corresponding discrete
transfer functions are tabulated in Table 3.

The time-delay estimation problem is taken up under
both open- and closed-loop conditions. The delay matrix
corresponding to the sub-system of interest is written as

Dtrue =

[
14 15 14
10 8 8
11 12 1

]
(28)

A state-space realization of the transfer functions, as given
in Table 2, and the simulation settings used in Patwardhan
and Shah (2005) are used to obtain the input-output data.
Further, the settings are adjusted such that SNR (at the
output) is maintained at 10.

The three inputs, namely, the top draw composition, side
draw composition and bottoms reflux duty, and the three
outputs, namely, the top end point composition, side
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end-point composition and bottoms reflux duty, of the
3 × 3 MIMO system are conditioned using the PCF to
obtain nine conditioned pairs, thus resulting in nine non-
interacting SISO systems. The objective function J(D) is
estimated for each conditioned pair and is plotted against
the optimization parameter D. The resulting plots for the
open- and closed-loop conditions are shown in Figures 6(a)
and 6(b) respectively. The input-output delay matrices
estimated from these figures (for open- and closed-loop
conditions) are as follows.

D̂OL =

[
14 15 14
10 8 8
11 12 1

]
, D̂CL =

[
15 15 14
10 8 8
11 12 1

]
(29)

It is observed that the delay matrix under the open-loop
conditions is identical to the true delay matrix. There is an
excess of one delay estimated in G11 under the closed-loop
conditions. This is due to the presence of non-minimum
phase behavior in the channel between u1 and y1 (G11). It
is to be noted here that the HT relation is derived assum-
ing the system under minimum phase conditions. However,
when the HT relation is used to estimate the time-delay
for non-minimum phase conditions, the estimate of the
is believed to provide an upper bound Lindemann et al.
(2001). From the experience with applying this method to
various systems it is observed that the deviation in the
estimate is of the order of at most a unit sampling period.
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Table 1. Names, roles and symbols of input and output variables used in the schematic of the
Shell control problem

Variable Role Symbol

Top Draw Control input u1

Side Draw Control input u2

Bottoms Reflux Duty Control input u3

Intermediate Reflux Duty Measured disturbance d1

Upper Reflux Duty Unmeasured disturbance d2

Top End Point Controlled output y1

Side End Point Controlled output y2

Bottoms Reflux Temperature Controlled output y3

Top Temperature Measured output y4

Upper Reflux Temperature Measured output y5

Side Draw Temperature Measured output y6

Intermediate Reflux Temperature Measured output y7

Table 2. Transfer functions from manipulated inputs to controlled outputs for the Shell control
problem

outputs/inputs u1 u2 u3

y1 e−27s 4.05

50s + 1
e−28s 1.77

60s + 1
e−27s 5.88

50s + 1

y2 e−18s 5.39

50s + 1
e−14s 5.72

60s + 1
e−15s 6.9

40s + 1

y3 e−20s 4.38

33s + 1
e−22s 4.42

44s + 1

7.2

19s + 1

Table 3. Discrete transfer functions of the Shell control system with Ts = 2 units

outputs/inputs u1 u2 u3

y1 z−13 0.0802z−1 + 0.07861z−2

1 − 0.9608z−1
z−14 0.05803z−1

1 − 0.9672z−1
z−13 0.1164z−1 + 0.1141z−2

1 − 0.9608z−1

y2 z−9 0.2113z−1

1 − 0.9608z−1
z−7 0.1875z−1

1 − 0.9672z−1
z−7 0.1875z−1

1 − 0.672z−1

y3 z−10 0.2576z−1

1 − 0.9412z−1
z−11 0.1964z−1

1 − 0.9556z−1

0.7194z−1

1 − 0.9001z−1

Fig. 1. Multivariate linear system considered for the illustration of PCF
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Fig. 2. Pictorial representation of decoupling interactions
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Fig. 3. Time delay estimation of the multivariate open-loop system (TFM)
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Fig. 4. Time delay estimation of the multivariate closed-loop system (TFM)
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Fig. 5. Schematic diagram of the heavy oil fractionator and the associated control problem
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Fig. 6. Delay estimation for the Shell control problem, top end point composition, side end point composition and bottoms
reflux temperature as outputs respectively
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Abstract:  The antilock braking system (ABS) in a car is a feedback control system, where controller has 
to be able to maintain specified tire slip for each wheel during braking. This paper presents PID control 
synthesis method for a simple laboratory model of an antilock braking system. Tuning of controller 
parameters is solved as an optimization problem based on dynamical model of the controlled system. In 
the end of the paper, simulation results of the antilock braking of the laboratory model are showed.  

 

1. INTRODUCTION 

The antilock braking system (ABS) is an important safety 
component of a car. It prevents the wheels from locking 
while braking and contribute to shorten braking distances to 
its minimum possible value. From the standpoint of systems 
and control theory, it is a feedback control system, where 
controller has to be able to maintain specified tire slip for 
each wheel during braking.  

In the last decade intensive development of control systems 
for car ABS has been observed, including also various PID 
and LQ control strategies, e.g. (Johansen et al., 2003) 
proposed a robust gain-scheduled LQ controller. For control 
strategy of ABS in a car it is necessary to estimate the car 
velocity and parameters of the friction curve in the presence 
of various effects which are difficult to model (Petersen, 
2003). 

In this paper, the laboratory model of ABS (LABS) 
manufactured by Inteco Ltd. has been used. It allows to 
design control synthesis methods based on mathematical 
model which are suitable for ABS, (Bania et al., 2005), (Oniz 
et al., 2007). The paper organized as follows. Section 2 
contains a short description of the LABS and its 
mathematical model. In the next section simple PID control 
feedback loop for LABS in MATLAB-Simulink is arranged. 
There is also optimization process of PID controller 
parameters with respect of response constraints performed. 
Further, control process for given constant reference wheel 
sleep with optimal controller parameters is executed. The 
paper ends with some conclusions remarks. 

2. LABORATOTY MODEL OF ABS  

The laboratory model of ABS shown in Fig. 1 consists of two 
wheels rolling on one another. The upper wheel is mounted 
on a rocker arm and has plastic wheel disk rubber tire. The 
lower wheel is made of aluminum. The angles of rotation of 
the wheels are measured by encoders with the resolution 
2 4096 0.0875oπ = . The upper wheel is equipped with a disk 

brake controlled by a DC motor. Another DC motor, placed 

on the axle of the lower wheel is used to set the system in 
motion and accelerate it. The upper wheel represents wheel 
of a car and lower wheel represents road. During the braking 
process, the latter motor is switched off and a braking torque 
is applied to the upper wheel, which causes wheel speed to 
decrease. Notation of the LABS parameters is in Table 1. 

 

Fig. 1. Scheme of laboratory model of ABS  

According to Newton’s second law, the equations of the 
motion of the system are in following form: 

( ) ( )1 1 1 1 1 10 1nJ x F r d x M Mµ λ= − + +ɺ  (1) 

( )( )2 2 2 2 2 20nJ x F r d x Mµ λ= − + +ɺ  (2) 

( ) nFµ λ in (1) and (2) represents road friction force 

tF according Coulomb law. 

Normal force tF is obtained from equation of moments for 

point A: 

( )( )
1 10 1 1

sin cos
g

n

M M M d x
F

L ϕ µ λ ϕ
+ + +

=
−

 (3) 
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where L is the distance between the contact point of the 
wheels and the rotational axis of the balance lever and ϕ  is 

the angle between the normal in the contact point and the line 
L. 

The relative difference of peripheral velocities of the wheels, 
or the wheel slipλ  is defined as: 

2 2 1 1

2 2

r x r x

r x
λ −=  (4) 

While a wheel slip of 0 indicates that the wheel velocity and 
the vehicle velocity are the same, a ratio of 1 indicates that 
the tire is not rotating and the wheels are skidding on the road 
surface, i.e., the vehicle is in practice no longer steerable. 

For simplify equation were created following variables: 

( )

( )

10 11 1 1
11 12 13

1 1 1

10 1
14 15 16

1 1 1

10 22 1
21 22

2 2

202 2
23 24 25

2 2 2

, , ,

1
, , ,

, ,

, , .

g

g

M M rr d d
c c c

J J J

M r
c c c

J J J

M M rr d
c c

J J

Md r
c c c

J J J

+
= = = −

= − = = −

+
= − = −

= − = − = −

                   (5) 

Then, dynamics of the system is described by the following 
state equations: 

( ) ( ) ( )( )1 11 1 12 13 1 14 15 16 3x c x c c x c c c xµ λ µ λ= + + + + +ɺ  (6) 

( )( ) ( )2 21 1 22 23 2 24 25 3x c x c c x c c xµ λ µ λ= + + + +ɺ           (7) 

( )3 31 3 max, 0x c u x u u= − ≤ ≤ɺ                                    (8) 

The road adhesion coefficient is a nonlinear function of some 
physical variables including wheel slip. Here it is 
approximated by the following formula: 

( ) 3 24
3 2 1

p

p

w
w w w

a

λµ λ λ λ λ
λ

= + + +
+

                       (9) 

Table 1. Notation of LABS parameters  

1 2,r r  
Radius of the upper and lower wheel 

1 2,x x  
Angular velocity of the upper and lower 
wheel 

1 2,J J  
Moment of inertia of the upper and lower 
wheel 

1 2,d d  
Viscous friction coefficient of the upper and 
lower wheel 

10 20,M M  
Static friction of the upper and lower wheel 

1M  
Braking torque 

gM  
Moment of gravity acting on balance lever 

nF  
Total normal load 

tF  Road friction force 
µ  Road adhesion coefficient 
λ  Wheel slip 

 

The numerical values used in this paper are: 

1r  = 0:0925 (m) 

2r  = 0:0920 (m) 

ϕ  = 57,79 (° ) 

L = 0,26 (m) 

1J  = 0.00898 (kgm2) 

2J  = .02316 (kgm2)  

1d  = 0.00014314 (kgm2 s-1) 

2d  =0.00020353 (kgm2 s-1)  

10M  = 0.0032 (Nm) 

20M  = 0.025 (Nm) 

1w  = 0.117219 

2w  = -0.044978 

3w  = 0.034217 

4w  = 0.460736 

a = 0.0000231606 and 
p = 2.986554 

The dependence of the adhesion coefficient on the slip is 
presented in Fig. 2. 

0 0.2 0.4 0.6 0.8 1
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λ

m
i

 

Fig. 2. Adhesion coeficient as a function of slip  

3. PID CONTROL SYNTHESIS  

The goal of control during antilock braking is to reduce the 
velocity of wheels in time in such a way that an adequate 
compromise is ensured between excessive slip, braking 
distance and accuracy of reaching the target state. 

For solution of this task, PID control loop for identified 
LABS with parameters given above, was arranged in 
MATLAB – Simulink software environment, see Fig. 3. 
Controlled variable is wheel sleep with constant reference 
value 0,2. Tuning of PID controller parameters is solved as 
an optimization problem in the block PID Controller 
Optimization by means of Simulink Response Optimization 
Toolbox. There for optimization of proportional, integral and 
derivative parameters of the controller, Gradient descent 
method is used. During of the optimization procedure also 

Preprints of the NIL workshop
Jan 10–15, 2011, Bratislava, Slovakia Belavý, C., Smeja M.

96



 
 

     

 

constraints for controlled variable λ  is used, see Fig. 4. 
There was found optimal solution which is feasible within the 
specified tolerances and constraints, see Fig. 5. 

With optimized PID controller parameters, simulation of the 
control process with antilock braking of LABS was executed. 
Running of wheel sleep λ  as a controlled variable is on Fig. 
5 and angular speed of both wheels during control process 
from initial speed is on Fig. 7. Brake torque as actuating 
variable is on Fig. 8. Performance of control in this case is 
very good in accordance with given requirements. Time of 
control is minimal, wheel sleep and velocities of wheels are 
without oscillations. 

 

Fig. 3. PID feedback coontrol loop for LABS in MATLAB-
Simulink  

 

Fig. 4. PID tuning process  

 

Fig. 5. PID Tuning optimization procedure  

 

Fig. 6. PID tuning process  

 

Fig. 7. Speed of wheels  

Preprints of the NIL workshop
Jan 10–15, 2011, Bratislava, Slovakia Belavý, C., Smeja M.

97



 
 

     

 

 

Fig. 8. Brake torque  

4. CONCLUSIONS 

The Laboratory ABS model provides possibility for 
development of various antilock brake control methods. PID 
control as a widely used method in practice is also suitable 
for this kind of control task. Based on identified dynamical 
model there is possible to solve PID control synthesis as an 
optimization problem with respect of various constraints and 
requirements for performance of control, like reference slip, 
control time and braking distance under given adhesive 
conditions. The software environment MATLAB – Simulink 
with its specialised Toolboxes is convenient tool for 
supporting of research activities in the framework of 
development cycle of active safety control systems in cars.  
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Abstract: The aim of this paper is to present some research results achieved in the area of
spark ignition (SI) internal combustion engines using free programmable devices dSpace. The
main control loops (air fuel ratio (AFR) and preignition) of our experimental engine setup
are studied and presented. In the case of AFR are two controllers are analyzed and applied:
feedforward (base on a look up table) and feedback controller (base on a measurement with the
use of lambda probe LSU 4.9). The preignition is controlled with a feedforward controller only.
The used sensor’s characteristics and main problems connected with measurement of the engine
process variables are presented too. Finally, some emission requirements and physical limitations
of presented devices are shown. The goal of experiments is to obtain practical knowledge and
experience in the area of real-time SI combustion engines control. The resulting knowledge and
experience will be further used for future purposes with more advanced experiments using model
based predictive control approaches.

Keywords: combustion engine, feedforward control, AFR control, dSpace, discrete PID
controller

1. MAIN MEASURED AND CONTROLLED VALUE

There is a couple of important sensors and actuators
connected with two main control loops which are typical of
an SI engine (air/fuel ratio control and ignition control).

1.1 Air flow measurement

Air flow into the intake manifold is measured at the
DSpace’s A/D converter with the use of air flow meter.
A static nonlinear characteristic of the air flow meter is
shown on the Figure 1 (a relationship between the air flow
[kg/h] and the measured voltage [V]).

After the measured output signal is converted according
to shown characteristic, it is must be recomputed to g/s.
If this signal is integrated during the intake stroke, the
amount of air sucked into the combustion chamber can be
computed.

msa =
iea∑

isa

ṁ (1)

⋆ The investigation reported in the paper was supported by Slovak
Grant Agency APVV, project ID: APVV-0280 - 06, LPP-0096-07
and LPP-0075-09. This research is also supported by the grant
from Iceland, Liechtenstein and Norway through the EEA Financial
Mechanism and the Norwegian Financial Mechanism. This project is
also co-financed from the state budget of the Slovak Republic. The
supports are very gratefully appreciated.

where:
msa - mass of sucked air
ṁ - air flow
isa - intake start angle
iea - intake end angle

The accuracy of this computation depends on amount of
steps which take place during the integration.

Fig. 1. Air flow meter characteristic
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1.2 Injection

An injection is a process in which the fuel is injected
to the intake manifold (exactly in front of the intake
valves). The air fuel mixture is heated there (walls of the
intake manifold and valves are warm) and when the valves
are open, it will be sucked into the cylinder. Amount of
fuel which should be injected can be precisely computed
with the use of air fuel ratio (AFR) and mass of air. If
the relationship between the mass of injected fuel and
injector’s opening time is known it is possible to compute
the opening pulse width.

Needed characteristic depends on a differential pressure of
injected fuel. This pressure can be express as:

∆P = PIF − PIM (2)

where:

∆P is a differential pressure
PIF is a pressure of injected fuel
PIM is a pressure in the intake manifold

Pressure of injected fuel is known and preset by the pro-
ducer to 3bar. Whatever pressure in the intake manifold is
changing and pulse width must by recomputed according
it. There is two possibility, how to solve this problem.

• Pressure the intake manifold can be measured in a
specific time and pulse width can be corrected in
each cycle. In this case it is necessary to compute
the negative pressure in the manifold. It is equal to:

PIM = PMWG − PATM (3)
where:
PIMP is a pressure in the intake manifold
PMWG is a pressure measured with the gauge
PATM is an atmospheric pressure

Fig. 2. Injector characteristic and differential pressure
relationship

When the differential pressure and injector’s char-
acteristic made for preset differential pressure (4kPa)
(Figure 2) are known it is possible to compute a

new slope-intercept form of the curve which describes
injector’s opening time for the computed mass of fuel.
Finally the pulse width can be computed with the use
of new slope.

kNEW = k ∗
√

∆PNEW√
∆P

(4)

where:
kNEW P new slope of injector’s opening time
k known slope defined in a preset pressure
∆PNEW is a differential pressure in the intake manifold
∆P is a preset differential pressure (4kPa)

Fig. 3. Injector opening time vs. mass of the injected fuel

It is very important, that the value from pressure
gauge is waving significantly (four times for every
720◦) and the compensation which utilize the waving
is necessary.

• Other one possibility require to use the injection rail
with dedicated pressure control devices. In this case
difference of pressures (see eq: 2) during the injection
is constant and equal to preset value (3bar). This
convenience cause, it is only necessary to recompute
amount of injected fuel (computed before) into the
length of injection pulse.

Fuel amount is directly proportional to the time of injec-
tion. Injectors have some offset time (they start to work
after some time). This offset is growing with the falling
power voltage (Figure 4). That is why it is necessary to
control the voltage supply.

1.3 Ignition

An ignition is a process which enables to burn up the air
fuel mixture which is pumped to the cylinder. The ignition
occurs with predefined angle before the top dead center
(TDC). This angle is changing with the engine’s load and
revolutions. In the case of dSpace the low side drivers and
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Fig. 4. Offset time vs. battery voltage

Table 1. Ignition timing map

RPM
/
Load

10 20 30 40 50 60 70 80 90

0 26 22 20 18 16 16 15 15 14
250 26 24 22 19 16 16 16 16 16
500 26 24 22 20 16 14 14 14 14
750 22 22 22 18 16 14 13 15 17
1000 16 15 14 13 12 12 14 16 18
1500 20 20 18 16 16 16 16 16 16
2000 26 26 24 24 22 22 20 20 20
2500 32 30 30 28 26 26 24 24 22
3000 36 34 32 30 30 28 26 26 24
3500 38 36 34 34 32 30 30 28 26
4000 38 38 36 34 34 32 30 30 28
4500 40 38 38 36 34 34 32 30 28
5000 40 40 38 38 36 36 34 32 30
5500 42 42 40 40 40 38 36 34 32
6000 42 42 40 40 40 38 36 34 32

specific ignition device are used. Thus the spark energy is
ensure with the ignition device electronic and significant
variable which must be controlled is the start ignition
angle. Table 1 shows the specific ignition map which is
used in this case.

It is very important, that the bigger is the ignition angle,
the bigger is the pressure in the cylinder. It can’t be too
big, because the knocking can occurs.

Fig. 5. Normal combustion (a) Slight knock (b) Intense
knock (c)

Uncontrolled knocking can be not only unpleasant, but
also destructive for the engine. It is possible to see on the
Figure 5 that after some critical angle the knocking starts.
It is not recommended to increase the angle, otherwise an
intense knocking will occur.

1.4 Electronic throttle control

An electronic throttle (ET) is one of the most important
parts of SI plant. It enables to change the air flow depend-
ing on an accelerator pedal and other variables from the
control unit. It improves engine dynamic characteristic,
reduces pollution and increases comfort. It is a strongly
nonlinear plant, influenced by friction and gearbox back-
lashes. Detailed description of the ET control is included in
"Control of an electronic throttle of spark ignition engine"
and it wouldn’t be shown here.

1.5 AFR

Mixture based on AFR will be burned in the cylinder. If
the mixture is stoichiometric (air/fuel mixture is approxi-
mately 14.7 times the mass of air to fuel) all the injected
fuel should be burnt. Otherwise the emission will grow, and
even if the three-way catalytic converter (TWC) works in
the exhaust pipe it is difficult to keep emission in necessary
limits. As it is possible to see in Figure 6, the operating
range area of TWC is not too wide. Two main circuits in
which the AFR is computed and accomplished are defined
in this part:

Fig. 6. TWC work area

• First circuit – a feedforward part which is based
on a look up table. The output AFR value depends
on a load and revolutions per minute (RPM). AFR is
generally constant and equal to 14.67, but there are
two situations when the AFR should be changed for
well engine’s work: acceleration and deceleration. In
these moments the amount of injected fuel is changed
(increases or decreases). The engine temperature is
changing. When it is cold, wall wetting phenomena
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can occur. It causes, that some amount of fuel sticks
to the cold walls (intake manifold walls, valve walls).
Because of this a correction AFR circuit based on the
temperature of cooling liquids is applied. If the engine
is cold, bigger amount of a fuel will be injected. When
the cooling liquids reach a proper temperature AFR
is not corrected.

• Second circuit – the feedback circuit uses a PI al-
gorithm for the AFR control. The amount of pumped
air- fuel mixture and the exhaust gas oxygen mea-
sured value strictly depend on each other. But there
is time delay between these two variables caused by
the engine dynamic. Even for the set AFR value there
can be measured lambda value different from the
predicted one. That is why it is necessary to control
a real AFR depending on the engine dynamics. The
PI controller follows the error between the AFR and
the measured AFR (signal measured at oxygen sensor
and multiplied by 14.67) and influences the injector
opening time.

1.6 An oxygen sensor

An oxygen sensor measures plant output (amount of oxy-
gen in exhaust gasses) and allows to modify the current
amount of air and fuel in the sucked mixture. The oxygen
sensor starts to work after its body will reach 780◦C. Till
this time the feedback lambda control doesn’t work and
the emissions are controlled only with the feedforward con-
troller. Water molecules are accumulated in the exhaust
pipe. During the condensation water phase, the heating
of Lambda sensor must be limited. Otherwise the sensor
can be damaged by a thermo shock (Figure 7). In this
case 10sec condensation water phase is defined. During
this time we supply the lambda sensor with safe voltage
(2V). After this time heating starts from this 2V level,
not from 8,5V as the manufacturer suggests. It makes the
heating longer, but more safety for lambda sensor.

Fig. 7. Heating of oxygen sensor

2. EXPERIMENTAL RESULTS

In this part an experimental results will be shown. Mea-
sured data depict the growing engine RPM after the throt-
tle opening. In the same time the set and the measured
value of lambda was saved. This experiment was made at
engine with no load. Because of this only little throttle
opening angle was tested. It is possible to track described
values for both the acceleration (Figure 9) and the decel-
eration (8). It can be seen that the acceleration causes a

temporary increase of lambda value, whereas deceleration
causes its decrease. As it was expected, the feedforward
loop carries a specific value of lambda (applying AFR
from the look up table) and the feedback PI controller
allows to reduce the influence of the engine acceleration or
deceleration on lambda value.

Fig. 8. Engine deceleration

Fig. 9. Engine acceleration

3. CONCLUSION

The SI combustion engine leaves the wide room for im-
provements. As it was said all made experiments based on
measurements at no load engine. It will be repeated soon
with loaded engine. Then the predictive control algorithms
will be tested and that is why it is necessary to know
the mathematical model of the combustion engine. Tomas
Poloni in his Ph.D. works describes how to design the
predictive controller. The experiment of data acquisition
is also described. This data are necessary to the intake
air and fuel systems modeling. Then the ARX model
which can describe the engine behavior will be built.
All necessary systems needed for these experiments are
prepared now (described above). A nonlinear model will
base on local linear models. It is important to find local
models describing the engine dynamics in theirs working
points’ area. This model must be precisely enough. An
interpolation method enables to combine all models and
use theirs in a global model which describes the system
in its working area. The ARX model is the most used
for systems modeling. Main advantage of applying ARX
model is the fact that the information from local models
are extended by the nonlinear interpolation function which
create global NARX model. Parameters of local ARX mod-
els will be estimate from data acquired with air flow meter
(AFM) and exhaust gas oxygen sensor (EGO). Experiment
made in open loop is designed it this way which enable
to separate intake air and fuel systems. Models obtained
during identification experiment will be used for synthesis
of predictive controller.
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Abstract: This paper presents an experimental workbench dedicated for implementation of
different control approaches on a four-stroke spark ignition combustion engine. It consists of a
host PC, target hardware, engine test bench and an engine itself. Target hardware is a high
computational power unit able to execute real-time applications for control of a combustion
engine. The main point of interest is to have a fully programmable control system, which offers
to implement different control approaches and modify control algorithms in a quite easy way.
It should also realize following functions: familiarize people with gasoline engine properties, do
engine control simulation, design engine control system, and realize engine real-time simulation.
It allows to leave the standard look-up table control of today’s engines and implement advanced
robust control algorithm. Our efforts should ensure better control of engine with increased power
and decreased fuel consumption and emissions of CO, CHx and NOx in exhaust gasses.

Keywords: Engine control, Advanced algorithms, Real-time implementation, dSpace system,
RapidPro system

1. INTRODUCTION

Development of combustion engines for vehicles of nowa-
days is mainly focused on the optimization of the combus-
tion process. That concerns the biggest possible turn of the
energy hidden in the fuel into the driving power of the en-
gine while keeping the level of emissions as low, as possible.
Speaking about spark ignition combustion engines, there
are three groups of gases, causing a remarkable harm to
the nature and living organisms: carbon hydrates (CHx),
carbon oxide (CO) and nitrogen oxides (NOx) (L. Guzzella
(2004)). Their acceptable (or allowed) amount in the ex-
haust gases is limited by international standards, which
are having narrower tolerance with every release. That is
creating an enormous pressure to the engine producers,
who are forced to search for more and more sophisticated
ways how to decrease the engine consumption and keep
with the requirements of international standards.

One of the most significant invention in the field of
consumption reduction is for sure introduction of the
direct injection of the fuel into the combustion chamber
(engine’s cylinder bounded from the bottom side by a

⋆ The work has been supported by the Slovak Research and De-
velopment Agency under grant LPP-0096-07. This research is also
supported by the grant from Norway through the EEA Financial
Mechanism and the Norwegian Financial Mechanism. This project
is also co-financed from the state budget of the Slovak Republic. This
support is very gratefully acknowledged.

piston) and a numerical control of the combustion process
by Engine Control Unit (ECU) introduced in 80’s of the
last century. Above listed measures decreased the fuel
consumption at 20%.

2. STATE OF THE ART

2.1 Engine Control

Modern ECUs are controlling the combustion process
based on the look-up table principle. Amount of the fuel
injected into the cylinder depends on the input variables
provided by motor sensors, in the simplest case motor
revolutions and the motor load (determined from the
position of the throttle valve situated in the air intake
letting the fresh air in). Having defined a working point
of the engine by these two independent variables is the
ECU able to look-up into producer-predefined tables and
choose the most suitable amount of the injected fuel and a
correct position of the piston (in degrees before top dead
center) for the ignition start. Value from that basic table
can be consequently corrected by other tables taking into
the account motor temperature, altitude of a car (and
the change in the atmospheric pressure), voltage of a car
battery, air humidity and others.

Introduced approach is based on a feedforward control
applied for unstable working states of an engine – at its
acceleration or deceleration (related to its revolutions).
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In the stable work region is activated a feedback control
maintaining so called lambda ratio equal to one. The
lambda ratio (Eq. 1) is the ratio of the real air mass in
the cylinder related to the ideal mass of the air needed
for a combustion of a fuel situated in the cylinder (Polóni
(2008)):

λ =
ma

Lthmf
(1)

where:

ma is an air mass in a cylinder
mf is a fuel mass in a cylinder
Lth is a stochiometric air/fuel mass ratio

Keeping the lambda ratio equal to one ensures the best
possible catalytic reaction in the 3-way vehicle catalytic
converter reducing the dangerous emissions to the possible
lowest level. The lambda probe is situated in the engine
exhaust duct and its working principle is based on sensing
the residual oxygen amount in exhaust gases.

2.2 Problems and Solutions

Even though is the presented way of spark ignition engine
control used in up-to-date cars it has its limitations and
offers new directions for more advanced engine control.
First of the problems is the look-up logic itself. The pre-
defined table values, even in big amount, don’t continually
cover all possible working points of an engine and lets
the ECU to interpolate among them, causing an error.
The feedback control is also not used continually and a
lambda probe situated in the exhaust duct works with an
unwanted delay.

Solution of these negative phenomenas is an ECU of a new
generation using dynamic algorithms computing a proper
fuel (and air) amount for each working point, utilizing
advanced robust and predictive control (see e.g. Nicolao
et al. (2000), Wang et al. (2006), Manzie et al. (2002),
Gorinevsky et al. (2003) and Polóni (2008)).

3. EXPERIMENTAL WORKBENCH

To start research in such a complicated field one needs
sophisticated tools allowing to implement complex algo-
rithms needing high computational force to ensure its
real-time run. We have decided to implement to our ex-
perimental bench a dSpace system, usually used for HIL
(hardware-in-loop) applications with attached RapidPro
system (Fig. 1) dedicated especially for the engine control,
which are going to be connected to a spark ignition engine.
Main focus is on the creation of a fully programmable
environment allowing us to reach into the motor control
and add and/or change parts of a control system logic to
be able to follow our target. As a software environment
has been used Matlab/Simulink program offering enough
flexibility through pre-programmed Simulink blocks and
additional Simulink custom-made S-functions.

3.1 dSpace

dSpace Systems is a company providing hardware and
software tools for automotive engineering, aerospace, and

industrial control in the field of prototyping, model based
control, simulation and calibration. As it has been already
mentioned, their products are disposing huge computa-
tional power providing environment for the run of real
time processes. Detailed description of dSpace modules
operating in our configuration may enlighten functionality
of the workbench from the point of view of the engine
control, signal acquisition and generation.

DS1005 PPC Board
The DS1005 PPC Board is one of dSPACE processor
boards that form the core of dSPACE modular hardware.
Processor boards provide the computing power for the
real-time system and also function as interfaces to the
I/O boards and the host PC. The DS1005 is the board
of choice for applications with high sampling rates and a
lot of I/O capacity. Great processor power plus fast access
to I/O hardware with minimum latencies make dSPACE
processor boards considerably faster than solutions based
on commonly available PCs. For detailed description of the
board functionality, see (dSpace (2007d), dSpace (2007c),
dSpace (2007b))

Main features:

• PowerPC 750GX, 1 GHz
• Fully programmable from Simulink
• High-speed connection to all dSPACE I/O boards via

PHS bus

DS2202 HIL I/O Board
The DS2202 HIL I/O Board has been designed for
hardware-in-the-loop simulation in automotive applica-
tions, and is tailored to the simulation and measurement
of automotive signals. The board contains signal condi-
tioning for typical signal levels of automotive systems and
supports 2-voltage systems up to 42 V. Typical use cases
are body electronics, transmission, and component tests
performed by automotive suppliers, or as an additional
HIL I/O board in large powertrain and vehicle dynamics
HIL applications.

Main features:

Fig. 1. Hardware assembly of the workbench
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• I/O hardware with signal conditioning up to 42V
• 20 D/A channels and 16 A/D channels
• Up to 38 digital inputs Supports 2-voltage systems

DS4121 ECU Interface Board
The DS4121 provides the link between electronic control
unit (ECU) or RapidPro system and a dSPACE modular
system. Bypassing individual ECU algorithms and calcu-
lating them on a prototyping system is a typical appli-
cation example. The connection is made via a dual-port
memory plug-on device (DPMEM POD), on-chip debug
interfaces like the DCI-GSI1 or an LVDS-Ethernet Link
cable. Two independent ECUs can be connected to the
DS4121 at the same time. This offers the flexibility to op-
erate such things as powertrain control modules containing
the engine and transmission controllers, or valve controls
up to 12-cylinder engines.

Main features:

• Real-time interface to ECUs with 8-, 16- and 32-bit
microprocessors

• Two LVDS channels for high-speed, low latency com-
munication

• Standard ECU interface blockset fully integrated in
MATLAB/Simulink

3.2 RapidPro

It is a sub-module of a dSpace system dedicated for the
control of an ignition engine. It consists of two units:

• the Control Unit, able to handle complex I/O tasks
• the Power Unit, supporting high current signals for

driving actuators

Particularly, the RapidPro module is used to acquire sig-
nals from motor sensors and to drive the motor actuators.
Its functionality support the following installed modules:

• in the Control unit
· Lambda probe module
· Crankshaft/Camshaft signal DAq. module
· Knock sensor signal conditioning module

• in the Power unit
· Ignition and Lambda probe heating module
· Injector control

The following figure shows detailed signal and current
flows between the bench and the engine.

3.3 Programming, User Interface, Development Software

The dSpace system is fully programable from Simulink.
The Simulink builds a real time application for the target
platform ds1005 by Real Time Workshop and uploads
it inhere at the same time. Communication with the
running application is performed at the host computer
through the Control Desk software. This software enables
to create a graphic user interface (GUI) for the running
application in so called Design mode and to interact with
the application in the Animation mode. As an application
interface (API) for programming in the Simulink serves
the Real-Time-Interface (RTI) included in the Simulink
as a library of blocks. During the ECU programming,

represented in this case by a modular RapidPro system,
it is necessary to include a hardware topology file into
the Simulink model. Mentioned file includes information
about the hardware topology (its structural and firmware
information) available from the Configuration Desk after
the hardware scan of a system.

3.4 Engine

For the experiment is used an engine from Skoda Fabia
1.4 16V. This is a 4-cylinder four stroke spark ignition
combustion engine.

Features:

• Engine code: AUA
• Engine volume: 1390 ccm
• Number of cylinders: 4
• Number of valves: 16
• Bore x stroke: 76,5 x 75,6 mm
• Compression ratio: 10,5
• Power: 55 kW (75HP) at 5000 rpm
• Torque: 126 Nm at 3800 rpm
• Injection: multipoint, 1 injector per cylinder
• Ignition: electronic, wasted spark
• Camshaft system: DOHC
• Fuel: Natural 95

3.5 Brake

As a brake simulating the load on the motor is used
dynamometer based on eddy current principle. The brake
slows an object creating eddy currents through electro-
magnetic induction which creates resistance, and in turn
either heat or electricity.

4. PROJECT STATUS

To control a combustion engine means to engage a particu-
lar activator (injector or ignition coil) in the right position.
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Fig. 2. Signal flow between the engine and the workbench
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That means, a combustion engine is a task-triggered pro-
cess. Tasks are in this case angle positions of the engine,
or better, of the crankshaft. Motor works with a period
defined through one revolution of the camshaft (360◦).
The crankshaft executes within this period 2 revolutions
(720◦) and each piston of the four stroke combustion
engine executes all four strokes (intake, compression, com-
bustion and exhaust). That is why is it crucial to know
exact position of the crankshaft within the whole range
of 〈0 ÷ 719.9◦〉. This angle value gives us not only the
instantaneous position of each piston, but differentiating
its changing value in time determines angular velocity and
acceleration/decceleration of the motor, as well. Logically
it indicates, that the first stage of the project is a successful
determination of the angular position of the engine.

4.1 Determination of an angular Position of the Engine

The RapidPro unit computes the angular position of
the motor automatically from acquired signals of the
crankshaft and camshaft sensors. Initial condition for un-
problematic run is mutual synchronization of those signals,
or so called synchronization of the angle measurement.
Synchronization of the angle measurement is a process,
when an angular position of 0◦ of the crankshaft is deter-
mined according to a specific shape and a mutual position
of both - camshaft and crankshaft sensor signals. After the
synchronization are all possible positions of the crankshaft
known. The angle is determined with the precision of 0,1◦.
Sample of signals acquired from our experimental device
is shown in the following figure:

From the signals can be also seen, how are the situated
and distributed the marks of those shafts. Configuration
of the used engine is following:

• Crankshaft: 60 marks and one gap created by 2
missing marks

• Camshaft: 3 marks (with coordinates from rising to
falling edges related to revolutions of crankshaft (in
(◦)): 36→102, 258→456, 576→636).

Crankshaft positioned at 0◦ is defined at the rising edge
of the first mark of the crankshaft after the gap. The
synchronization starts at the engine start and is related
to this position.

It succeeds as follows:

(1) As soon as the angle computational unit (ACU)
detects the gap among crankshaft marks, sets the
angle counter to zero degrees. From now on starts
the measurement of engine revolutions (rpm).

(2) In the step 2 are compared defined camshaft marks
with a real signal. If are they identical, the ACU
starts to compute the crankshaft angle, if not, to the
first mark after the gap is assigned the angle of 360◦

and the computation starts. Having this operation
completed is the synchronization done. From this
moment knows the ACU exact value of the angle
related to the signal shapes of the shafts. If occurs
a mismatch among them, the synchronization is lost.

4.2 Project Status and next Steps

Angle measurement of our engine has been already ex-
perimentally tested at the workbench. Crankshaft and
camshaft signals were generated by dSpace and by hard-
ware model of an engine (Fig.4). Both are generating
identical signals as the real engine.

Fig. 4. Hardware simulation of crank- and camshaft signals

The today’s effort is to start generation of signals for
ignition coils and injectors. When it works, is the next
step connection of a system to the real engine.

5. CONCLUSION

In this article the preliminary design of an experimental
workbench for testing of advanced control algorithms for
SI engines is presented. The first intended algorithms to be
verified under the real-time conditions will exploit predic-
tive and multimodel techniques developed and simulated
in Polóni et al. (2007) and Polóni et al. (2008) for the
air-fuel ratio control.
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Abstract: The main goal of this paper is to describe one application of the dSpace Rapid
Control Prototyping system (RCP system) to an spark ignition internal combustion engine.
The control system is fully programmable from Matlab/Simulink environment. In the role of
an application interface for handling of the hardware features there is the Real-Time Interface
board library predefined. It provides blocks that implement the I/O capabilities of RapidPro
hardware in Matlab/Simulink models. The ControlDesk handle real time applications running
on the dSpace system and the ConfigurationDesk enables to change some relevant setting,
affecting RapidPro modules. Graphical user interface of ControlDesk offers very simple access
to all model variables during the runtime. With the use of the advanced RCP system presented
above it was possible to design Model Based Predictive Control (MPC) algorithms for Air Fuel
Ratio (AFR) real-time control.

Keywords: Rapid Control Prototyping system, dSpace system, RapidPro, AFR control

1. INTRODUCTION

Before advent of the Electronic Control Unit (ECU) on the
field of Combustion Engine Control the two main control
loops (for ignition and Air/Fuel ratio control) were realized
continuously. Continuously working systems designated for
control of these tasks didn’t achieve sufficient precision,
were difficult to adjust, unreliable and due to solutions
of these inadequacies became costly. Nowadays, electronic
”digital” control units (ECUs) are used. Such ECUs are
systems where the heart of them is microcomputer which
serve for data acquisition, computing, communications
with other systems and driving of the actuator’s power
stages. In this book Guzzella and Onder (2004) the ba-
sic concept is presented. Additionally these systems must
performs different diagnostic services. Design and building
of such ECU is not a simple problem. In the phase of a
control algorithm implementation, the register level pro-
gramming for target platform (a specific microcomputer
used in ECU) is required. For these reasons, development
and testing of designed control algorithms became very
difficult. For the reduction of difficulties Rapid Control
Prototyping systems (RCP systems) has been developed

⋆ The investigation reported in the paper was supported by Slovak
Grant Agency APVV, project ID: LPP-0096-07 and LPP-0075-09.
This research is also supported by the grant from Norway through the
EEA Financial Mechanism and the Norwegian Financial Mechanism.
This project is also co-financed from the state budget of the Slovak
Republic. The supports are very gratefully appreciated.

over time. These RCP system are systems, which are usu-
ally hardware modular and have a good software support.
Hardware modularity is a feature enabling to compose sys-
tem, which meet the requirements. At least one module has
to be a microprocessor module. This module provides more
capabilities (computational power and larger memory) and
so it is possible to test advanced control algorithms with-
out the need for optimized code. Good software support
means, that the producer of such modular RCP systems
supplies the libraries and documentation. These libraries
serves as a application interface for handling of devices’s
features (for example handling of interrupts, reading of the
values from analog to digital conversions etc.). In addition,
the host service code is running on the RCP system. This
host service ensures the data exchange between the real-
time hardware and a host computer. The next essential
feature of RCP systems is, that they are software config-
urable. In one word, using of Rapid Control Prototyping
systems in development enables to deal with programming
of algorithms which are objects of investigation without
the requirements to deal with problems like design and
realization of hardware and handling of its features by low
level programming. In the next chapters of this paper, will
be explained the use of dSpace Rapid Prototyping system
in a problem of combustion engine processes control.
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2. CONTROL OF SPARK IGNITION COMBUSTION
ENGINE

Combustion Engine is naturally discrete-event system
which works periodically, each cycle performs the same
acts. In the case of four stroke combustion engine this
cycle has a period of 720 ◦ of crank-angle. During this
cycle each piston performs each of four strokes. Rapid
Control Prototyping system (RCP system) dSpace with
configuration as is possible to see at Figure 1 enables to
handle every of the events in a crank-angle or time domain.
In this paper will be presented results of A/F ratio predic-
tive control based on web of linear models. This approach
described in PhD thesis Polóni (2008) is one of the many
published, based on computation in time domain. For
this approach was crucial to obtain two linear models
(for fuel and air path) in each operational point (revo-
lutions × throttle position) of the web. Second typical
approaches called Event Based described in Hendricks
et al. (1994), Hendricks et al. (1995), Hendricks et al.
(1993) and Hendricks et al. (2000) was used earlier. One of
the Event Based A/F ratio control approach (based only
on feedforward A/F ratio controller) was used, with goal
to get engine to steady state for possibility of making the
identification experiments and so build the mentioned web
of local linear models.

2.1 RCP System dSpace Used for Control of Combustion
Engine Processes

As was mentioned above, in Figure 1 is showed the sce-
nario in which we use RCP system. The main real-time
program made in Simulink is running on real-time proc-
cesor included in DS1005 processor board. The part of
RapidPro is processing of the signals from given sensors
(providing them to Master dSpace system), generating of
signals for driving of given actuators (look at Table 2) and
generating of interrupts requests. For example, computed
inputs (by given algorithms running on DS1005), injection
start angle, injection time, ignition start angle and stop
angle are sent (updating with new values) to RapidPro
and then RapidPro generates so defined impulses to ac-
tuators. RapidPro can generate angle based interrupts
which enables to trigger tasks in specific crank angles (for
execution of interrupt service routines by real-time pro-
cessor). The values of crank angle are necessary to be sent
to RapidPro system too. For example these angle based
interrupts can be used for capturing of given computed
(by control algorithm running on DS1005) input and for
consecutive update to RapidPro by invoking of software
or time delayed interrupt request. Signals which are pro-
cessed by RapidPro, for example crank angle, revolutions,
temperature of lambda probe (heater element), lambda
(temperature and lambda measurement are sampled by
RapidPro internaly) is possible to read by sample time
of any Timer Task provided by DS1005 processor board.
In this sense it is also possible to read values of signals
connected and processed by I/O board DS2202 (look at
Table 1). Reading of these signals is possible in crank angle
domain too.

The user has to design this sampling with regard to compu-
tational power, with the aim of achieving task scheduling

Fig. 1. RCP system configuration

without overrun situations and without overloading of
RapidPro. Code generated by Real Time Workshop for
target platform rti1005 has a measurement of turnaround
time of each task in your model. For detailed information
what the turnaround time of any task includes and for
detailed specification of the hardware and software support
see dSpace documentation dSpace (2007d).

In the next two tables are listed modules used for our ap-
plication. There is a short description of its exploitabilities
at second columns.

Table 1. List of dSpace modules

type short description

DS1005 module processor board, based on real-time

processor PowerPC 750 is a main

processing unit and host interface

DS2202 module I/O board, analog inputs and out-

puts for: control of electronic throttle

position, MAF sensor, MAP sensor,

oil and cooling water temperatures,

braking torque and battery voltage

DS4121 module interface board, makes communica-

tion between Master and Slave sys-

tems

In this Table 3 are listed specifications about the used
combustion engine. The specifications about used sensors
and actuators and control algorithms used for specific
purpose ( lambda probe element heating, electronic throt-
tle position control, control for constant revolutions by
loading of engine by eddy current brake etc.) can be found
in papers Csambál et al. (2010) and Honek et al. (2010).

2.2 Computation of Fuel Mass, Preignitions and Driving
of the Actuators in Crank Angle Domain (Event Based)

The first problem which the user must solve is obtaining
of information about shapes of wheel on the crankshaft,
on the camshaft and their relation to position of pistons.
For this purpose the measurement has been done. The
next Figure 2 represent setup of this measurement. Data
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Table 2. List of RapidPro modules (RapidPro
as a Slave system)

type short description

MC-MPC565 1/1

mod. (DS1602)

microcontroller module, based

on MPC565 microcontroller

SC-CCDI 6/1 mod.

(DS1637)

for connecting of crankshaft and

camshaft signals

SC-EGOS 2/1 mod.

(DS1634)

for connecting of exhaust gas

oxygen sensor (lambda probe

LSU4.9 Bosch)

SC-KNOCK 4/1

mod. (DS1635)

for connecting of knock sensor

PS-LSD 6/1 mod.

(DS1662)

low side driver, for driving of

lambda probe heater element

and ignition modules

2 x PS-DINJ 2/1

mod. (DS1664)

for driving of electromagnetic in-

jection valves

COM-USB-CI 1/1

mod. (DS1609)

for configuration from Host PC

COM-LVDS 1/1

mod. (DS1606)

module for communication with

Master dSpace system

Table 3. Combustion engine type

type Škoda Fabia 1.4 16V

code AUA

cubature 1390cm3

number of cylinders 4

number of inlet valves 16

borehole × throw 76.5 × 75.6 mm

compression ratio 10.5

power 55kW (75HP) by 5000rpm

torque 126Nm by 3800rpm

jetting multi point, 1 injector /

cylinder

ignition electronic

fuel Natural 95

Acquisition Toolbox with NI6008 was used for measuring
of the mentioned wheel’s shapes. Furthermore the signal
from hall sensor was measured, which scanned the transfer
of the magnet under it. This magnet was glued in such
position, that measured impulse carried information about
TDC position.

The result gave the possibilities to configure the neces-
sary setup for crankshaft angle and speed measurement
together with relation to piston’s positions. This can be
seen in Figure 3 and in the next list.

Shape of crankshaft wheel:

• has 60 teeth.
• has 1 gap.
• 2 missing teeth per gap.

Shape of camshaft wheel:

• has 3 markers.
• coordinates of rising edges are [36 ◦ 258 ◦ 576 ◦].
• coordinates of falling edges are [102 ◦ 456 ◦ 636 ◦].

With this knowledge the basic feedforward A/F ratio and
ignition controls can be explained. In this case we will only
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Fig. 2. Measuring system

talk in detail about task scheduling, which are needed for
explaining of feedforward A/F ratio and ignition controls.
We will not present achieved quality of these control strate-
gies, because it served only for achievement of desired
engine’s steady state and after it the A/F ratio controller
was turned off for making identification experiments. This
feedforward A/F ratio controller meets the requirements
on the quality of control in steady state.
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Fig. 3. Engine’s events order

In the Figure 4 are the crank angle axis and markers of
the moments in which the actions are triggered. Before the
explaining of this timing, is the Table 4 which contains the
list of tasks arranged by the priority.

First task with sample time 0.0001s serves for sampling of
time and MAF signal. Such sampled time and MAF signal
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is used for computation of air mass sucked to combustion
chamber in time of one suction stroke (numerical integra-
tion) (by 6000rpm of revolutions the angle of 3.6◦ takes
0.0001s). This information about air mass sucked per one
suction stroke is used for computation of needed fuel mass
for achieving of desired fuel mixture (A/F ratio). Conse-
quently this actual fuel mass is recomputed on injection
time, from characteristics of injection valve with regard
to the fact that controller of fuel pressure is mounted (so
a constant difference of pressure is achieved). Then it is
captured and updated for driving of the cylinder which is
in the actual suction stroke. It is because the injection is
started at beginning of compression stroke for the given
cylinder. Computation of preignition is performed at the
start of each cycle (at crank angle 0◦). This datum is
then updated separately for all of cylinder in order which
is present in Figure 4. In this Figure 4 are showed all
moments in which the selected tasks are performed.

Table 4. List of the tasks

priority type short description

1 TimerTask1, 0.0001 some measurements, look

at the text below

2 Angle based inter-

rupt, 3.6◦ periodi-

cally started from

TDC

numerical integration of

MAF signal

3 Angle based inter-

rupt (master1), 180◦

periodically started

from TDC

capture and reset of air

mass

4 Software interrupt

(slave1)

computation of fuel mass

=> computation of injec-

tion time

5 Angle based inter-

rupt (master2), 165◦
capture of injection time

for 1. cylinder

6 Software interrupt

(slave2)

update of injection time

for 1. cylinder

7 to 12 Angle based inter-

rupts for next cylin-

ders in order 3,4,2

captures and updates of

injection time

13 Angle based inter-

rupt, 0◦
computation of preigni-

tion

14 Angle based inter-

rupt, 120◦
update of preignition for

2. cylinder

15 to

17

Angle based inter-

rupts for next cylin-

ders in order 1,3,4

updates of preignition

18 TimerTask2, 0.0005 for reading of λ measure-

ment

from

19

Others interrupts for all sample times

included in the given

Simulink model

3. RESULTS

Engine work-bench with RCP system dSpace ensure the
flexible prototyping. It enables to change control strategy
often, and quite fast. The RapidPro hardware works as an
extension to dSPACE prototyping systems. It provides the
hardware and software support. Its modules (mentioned
above) and the Real-Time Interface board library made
the experiment preparing easier and enabled to focus on
the main purpose of the experiment (AFR controller). As
it is shown in the Šimončič et al. (2010) model based

predictive controller for the AFR was designed and tested.
It was undoubtedly easier with the use of the RCP system
which provide as high computational power and large
memory as described system.
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Abstract: The paper deals with an automotive electronic throttle control problem. The
automotive electronic throttle is a dc-motor-driven valve that regulates air inflow into a spark
ignition internal combustion engine. The proper electronic throttle functionality is critical to
driveability, comfort, fuel economy and emission performance of present day passenger vehicles.
Therefore the control system of electronic throttle should ensure fast and accurate reference
tracking of the desired valve plate angles. These demands are hard to accomplish because of
strong effects of friction and the limp-home nonlinearity. The proposed method applies a discrete
PI controller with the nonlinearity and friction compensation.

Keywords: automotive electronic throttle, nonlinear behaviour compensation, friction
compensation, discrete PI controller

1. INTRODUCTION

The electronic throttle (ET) is a valve used in vehicles to
control the air flow into the engine combustion system.
The ET consists of a DC drive, a gearbox, a valve plate, a
dual return spring and a position sensor (potentiometer).
The heart of this system is a plate swung by the use of
the DC motor. There is also a spring which provides a
torque working against the DC motor. This construction
has multiple sources of nonlinearity. These sources are:

• usually higher stiffness of return spring near by Limp-
Home (LH) position

• significant static friction
• back-lash effect

The use of non-linear control theory is addressed as well.
The most used control strategy is PID with compensa-
tion of nonlinearities. In work Grepl and Lee (2008) has
been used feedback linearization and PID controller tuned
experimentally. For compensation of nonlinearities (using
feedback linearization) is necessary to obtain estimates of
parameters of model which describe behavior of nonlin-
ear part. For this purpose experimental identification has
been done in this paper. Very similar approach is more
detailed explained in Pavković et al. (2005). In addition in
this paper is described the process of auto-tuning control

⋆ The investigation reported in the paper was supported by Slovak
Grant Agency APVV, project ID:LPP-0096-07 and LPP-0075-09.
This research is also supported by the grant from Iceland, Liecht-
enstein and Norway through the EEA Financial Mechanism and
the Norwegian Financial Mechanism. The project is also co-financed
from the state budget of the Slovak Republic. The supports are very
gratefully appreciated.

strategy due to process parameters variation. Such control
strategy is robust to variation of parameters like resistance
of armature, battery voltage and aging of ET at all. The
design of PID controller used here (Damping optimum
analytical design method) was based on linear model of
second order. In this paper is information about require-
ments on feedback step response. Settling time have to be
approximately 70ms and steady-state accuracy better than
0.1 degrees. Author Wilson in his bachelor work Wilson
(2007) shows approaches based on MPC and confront it to
PID control strategies. That MPC is synthesized by using
of MPT toolbox. PWA model was used in this work. For
obtaining of this model was used HYSDEL software, which
allows to build PWA model described by continuous math-
ematical equations (time continuous or time discrete dy-
namical models) combined with logical expressions, which
express conditions for operation of concrete dynamical
behavior. This hybrid modeling allows to capture non-
linear behavior with good precision. In this work is the
derivation of the model by using the first principles. Here
is also survey of invented friction models. Modeling of
friction is main point for modeling of electronic throttle.
A model which encapsulate every essential properties of
friction is derived in Canudas de Wit et al. (1995). Also
approach for compensation of friction is discussed in this
paper. More complex sight on the friction modeling and on
the control of machines with friction is done in Armstrong-
Hélouvry et al. (1994). In this paper Vašak et al. (2007)
is ET modeled as a DTPWA system including behavior of
reset-integrator form of friction model. This friction model
captures presliding effect (0.3 degrees), what is important
because they wanted to design very accurate (up to the
measurement resolution 0.1 degrees) tracking system. Pro-
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posed tracking system is based on explicit (offline) solution
of MPC with the purpose to implement it on a low-cost
hardware. For estimation of unmeasured states they use
UKF. Finally they compare experimental results to results
from control with PID controller Pavković et al. (2005) and
termination is:

• faster transient
• the absence of an overshoot
• static accuracy within the measurement resolution

In this case very simple control strategy has been chosen.
An experimental research allows to apply a PI controller
and compensators of nonlinearities. For an implementation
of the control algorithm the Real Time Windows target has
been used.

Fig. 1. Electronic Throttle Body

2. HARDWARE DESCRIPTION

At the beginning of this section it is necessary to explain
some characteristics. We have a ET from Siemens VDO
number 408-238-321-006.

2.1 Input and output ranges

This ET has two potentiometers for measurement of
position. These potentiometers have the range from 0V to
5V, but the whole range is not used. As we will see later
on static characteristic, ET has range of motion showed in
the table 1.

Table 1. Possible positions

(rad) (deg) (V)
closed position 0.1181 6.76 0.500
LH position 0.2745 15.73 0.915
opened position 1.7052 97.70 4.56

For the control system is position computed from the both
potentiometer’s signals. This position signal is filtered by
average filter, which input is sampled with frequency of

measurement 1kHz and its output is 10 times slower,
0.1kHz. This filter computes its output from data vector
of 8 samples, because there is outliers (minimum and
maximum value of data vector) elimination feature. This
filtered signal is applicable for computing of rate (V · s−1)
too.
Input to the plant from control system is first routed
to a H-bridge. H-bridge is electrical circuit controlled by
microcontroller and it produces PWM signal for control of
the DC motor. Range for H-bridge control signal is:

Table 2. Control signal to H-bridge

Range of input
to plant

direction of
motion

duty cycle

from 0V to 5V negative from 0% to 100%
from 5V to 10V positive from 0% to 100%

As the real time platform, Real Time Windows Target
has been used. As a I/O interface laboratory PC card
Advantech PCI1710HG has been used. This laboratory PC
card provides required analog inputs and outputs. Finally,
developed algorithm will be applied to SI combustion
engine, where the real-time platform is based on DS1005
modular system.

2.2 Quasi-static characteristic

Proposed control system in this paper is based on ex-
perimental knowledge. In this sense was needed to get
knowledge about input-output behavior of the ET. Quasi-
static characteristic at figure 2 shows relation between
input and output in steady-state. This characteristic is
quasi-static, because input signal was ramp with very low
frequency. We can see that butterfly valve remain at LH
position (for opening phase, input signal from 5V to 7.1V)
to the moment when input will reaches the value 7.1V.
Approximately for the value of input equal to 7.7V is valve
fully opened. For decreasing of input signal (return phase
from fully opened position) movement of valve start for
6.8V and valve reaches LH position for 6.4V. From these
two traces of opening and returning, can be observed a
region in which the action value has to be. The control
system was designed according to this. For closing phase
(under LH position) is situation identically. In the section
Control system will be clarified how this knowledge can to
be used with regard to compensation of nonlinearities and
PID controller synthesis.
In the paper Pavković et al. (2005) are showed relations
between the static characteristic and parameters of non-
linear model of ET.

3. ET MODEL DESCRIPTION

Some indication for modeling of ET will be given in this
section, because estimation of parameters is not com-
pletely done at this time. Modeling of ET by using first
principle can be divided to two main parts. Modeling of
DC motor and modeling of mechanical parts. DC motor
can be described by linear differential first order equa-
tion. Mechanical parts have to be modeled by nonlinear
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120



Fig. 2. Static characteristic

equation of motion. Nonlinear behavior of ET is caused
by nonconstant stiffness of the return spring, back-lash
effect caused by movement through the LH position and
the most significant is friction.

Electrical DC motor can be modeled using a linear dif-
ferential equation. At figure 3 the sum of voltages 1 in
the closed circuit has to be equal to zero, as described by
second Kirchhoff’s law:

Fig. 3. Electric scheme of DC motor

u = Ri + L
di

dt
+ keϕ̇ (1)

where:

u is a sum of voltages
ke is the electromotive force constant
R is the electric resistance
L is the electric inductance

Then equation of motion is in the form:

Jϕ̈ = mG − mRS − mF (2)

Torque generated by the motor is proportional to the
electric current.

mG = kei (3)

where:

u is a sum of voltages
mRSis the torque acting against

the returning spring
mG is the torque generated by the motor
mF is friction torque

mRS is the torque acting against mG and is caused by
the returning spring. Stiffness parameter of this spring
is a function of throttle valve position. This is one of
the sources of nonlinearity. Spring nonlinearity problem
is sufficiently described in referenced work Pavković et al.
(2005). Explanation of compensation for this nonlinearity
will be in section Control system.

mF is friction torque and consists of two parts, linear
(viscous damping) and nonlinear (static friction). Works
Canudas de Wit et al. (1995), Armstrong-Hélouvry et al.
(1994) deal with modeling and compensation of the fric-
tion.
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Fig. 4. Structure of the control system

4. CONTROL SYSTEM

Finally at this section will be described proposed control
system. Control system consist of compensation of static
friction, higher stiffness of return spring and discrete PI
controller in velocity form how it is demonstrated at figure
4.

Compensation of friction has to apply breakaway torque
to mechanical system by impulse for non-zero error and
approximately for zero rate of motion.
LH compensation has to apply three basic levels of input
(3.65V, 5V and 6.95V) regarding to fact perceptible at
figure 2 of quasi-static characteristic. This block works in
sense, that waits (not modify its output) while the output
of the plant reaches the LH position.
This features of compensations are perceptible at figures
5 and 6.

Action law of discrete PI controller is in the form at next
two equations.

u(k) = u(k) + ∆u(k) (4)

∆u(k) = Kp(e(k) − e(k − 1)) + Kie(k) (5)

This PI controller has build in anti-windup feature and
scheduling of parameters Kp and Ki. This scheduling
is applied, because now is not applied compensation of
friction for very low values of error (under 0.05V ≈ 1.1
degrees) and for setting of parameters Kp and Ki to
zeros values for obtaining of non-periodic steady-states.
Parameters of PI controller were tuned experimentally
regarding to quasi-static characteristic at figure 2.

5. EXPERIMENTAL RESULTS AND CONCLUSION

Experimental results you can see at the figures 5 6,
feedback responses and input, rate of motion respectively.
Achieved feedback response time was less than 0.5s and
accuracy in steady state approximately 0.6 degree.
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Fig. 5. Feedback response

Fig. 6. Input to H-bridge and rate of motion
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Abstract: The objective of this work is to present design of a predictive controller using the
ACADO toolkit. It is an open-source framework for automatic control and dynamic optimization
dedicated for a real-time control. Toolkit which is presented offers a neat way of a controller
build-up. It is possible with the user friendly and intuitive C++ coding environment and
computational inexpensiveness. Finally the problem free real-time operation can be achieved.
As a study case has been chosen control of a personnel’s car velocity which presents necessary
steps of a controller build-up including its coding and simulation.

Keywords: model predicitve control, car dynamics, ACADO, dSpace system

1. INTRODUCTION

A control of vehicle’s dynamics is a complex task consid-
ering different phenomena acting onto the vehicle arising
from dynamic nature of car parts; or outer disturbances
caused by the road state, or weather conditions. To main-
tain the vehicle in a prescribed trajectory, or speed, the
controller has to have an access to the engine and brake
management, in a first case. Another condition of proper
functionality is a quick controller able to react on a mil-
lisecond level, making it a typical example of a system with
fast dynamics.
Such a controller then has to be equipped with a solver,
able to solve a minimization problem within that short
control period, as well.
In this work is utilized as a solver software package
ACADO developed for the MPC controller design dispos-
ing of above mentioned features and intuitive coding.

⋆ The investigation reported in the paper was supported by Slovak
Grant Agency APVV, project ID:LPP-0096-07. This research is also
supported by the grant from Iceland, Liechtenstein and Norway
through the EEA Financial Mechanism and the Norwegian Financial
Mechanism. This project is also co-financed from the state budget of
the Slovak Republic. The supports are very gratefully appreciated.

2. VELOCITY CONTROL

2.1 Motivation

Velocity control and its derivatives (torque control, rev-
olutions control) has a variety of applications, e.x. in
electronic cruise control, in maintaining the constant idle
speed of an engine, or in a holding of a constant power
output of a cogeneration unit.
The cruise control maintains desired reference speed, so
the driver can relax his foot from the gas pedal, when
driving long distances on a sparsely populated highways;
or to avoid speed limit violations. Engagement of a cruise
control also results in a lower fuel consumption on non-
hilly tracks. Disadvantages might be a delayed deceleration
of a vehicle, when needed or an improper velocity regard-
ing the traffic conditions or the road state.

Another field, where the tracking of a velocity reference
is desired, is a fuel consumption testing. There exist nor-
malized test cycles emitted by international authorities,
obligatory for all car producers. They basically consist of
predefined time-points, at which has to have a particular
car prescribed velocity (Fig. 1). If the following of the
mentioned reference velocity is not accurate, vehicle seems
to have higher average fuel consumption, as it actually
really has. This is a motivation, why to use electronic
velocity control, as well.
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There exist many test cycles, differing in the area of
application, country of validity, etc., such as:

EUDC - Extra Urban Driving Cycle,
simulates the highway

ECE - steady state cycle for heavy
duty truck engines

NEDC - New European Driving Cy-
cle, since 2000; NEDC is ECE
plus EUDC

15 MODE - urban driving cycle, Japan
FTP 75 - a transient test cycle for cars

and light duty trucks, US
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Fig. 1. NEDC test cycle

Detailed list of test cycles can be found at (tes (2010)).

2.2 System Description

In this study case is a task of a car’s dynamics control
simplified to its longitudinal direction considering the
vehicle as a mass point, following a predefined velocity
profile.

The considered vehicle-system consist of three, mutually
coupled subsystems:

• the car’s longitudinal dynamics (Hellström (2005)),
including wind resistance, road slope, inertia effects of
wheels and engine, transmission ratios and efficiency
of a gearbox and the final drive, etc.

v̇ =
rw

Jw + mr2
w + ηDi2DηGi2GJE

(
ηDiDηGiGTe − kbBb − 1/2cwAaρairrwv2

−mgrw(cr cos θ + sin θ)
)

(1)

• the dynamics of the air intake manifold at the engine
(Saerens et al. (2009)) considering the sonic choking

(̇pm) =
rTm

Vm

pa√
rTa

ATV (α)cdfn

(pm

pa

)
−

ηvVtot

2Vm
npm

(2)

• the throttle valve throttling the air sucked into the
engine

ẋ = −43.55x + u (3a)

α = 27.06x + 0.38u (3b)

where the symbols’ meanings are:

α throttle valve plate angle
ηD efficiency of final drive
ηG efficiency of gearbox
ηv volumetric efficiency
κ isentropic exponent
ρair air density
θ road slope
A frontal cross-sectional area
Bb maximal brake force
cd throttle body discharge coefficient
cr rolling friction coefficient
cw aerodynamic coefficient
fn f. evaluating opened area of a throttle valve
g Earth gravitational constant
iD reduction ratio of final drive (differential)
iG reduction ratio of the gearbox
Je engine inertia
Jw wheel inertia
kb weighting brake parameter
m mass of vehicle
mf fuel mass flow
n engine revolutions
pa aerostatic pressure
pm manifold pressure
r specific gas constant
rw wheel radius
Ta outer air temperature
Te engine torque
Tm air temperature in a manifold
u control input
v velocity
Vtot total cylinder volume
Vm manifold volume
x identified system state

The input into the entire system is a control input u
(voltage) scaled to < 0 . . . 1 > forcing the throttle valve
to change its position between < 0 . . . π/2 > radians (also
scaled to < 0 . . . 1 >) and so to let the air into the engine.
The output of the system is a vehicle velocity v. The cost
function J itself is of a simple form:

J = ‖v − vref (t)‖2
2 (4)

where: vref (t) is a reference velocity of a vehicle, in the
simulation set to a constant value.

Due to the technical restrictions, the equations of air
intake dynamics and the throttle valve behavior are de-
scribing the real systems present in the laboratory, while
the vehicle dynamics is simulated by an electric brake
connected to the engine, independently controlled from
Matlab/Simulink (Fig. 2).
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(a) Combustion engine connected to an electrical
brake

(b) Detail of a throttle valve body

Fig. 2. Electric motor connected to a throttle valve

3. ACADO

3.1 Software description

ACADO Toolkit (aca (2010)) is an open source software
environment and algorithm collection for an automatic
control and dynamic optimization. It provides a general
framework for employing a great variety of algorithms for:

• direct optimal control
• model predictive control
• state and parameter estimation
• robust optimization

It is implemented as a self-contained C++ code and comes
along with user-friendly Matlab interfaces. The object-
oriented design allows convenient coupling of existing
optimization packages and for an extension with user-
written optimization routines.
It has been chosen (Table 1) for its speed crucial for the

control of fast dynamic systems and other features listed
above.

Table 1. Available optimization software sorted
by a purpose

Application area Software

Linear Programming ILOG CPLEX, SoPlex,
lp solve, LINGO,
linprog (MATLAB)

Quadratic Programming MOSEC, quadprog (MAT-
LAB), qpOASIS

Mixed-Integer Linear Pro-
gramming

ILOG CPLEX, lp solve

Mixed-Integer Quadratic
Programming

TOMLAB (MATLAB)

3.2 Source code of a controller

The code of the designed controller will be based on
all three differential equations and state representation
of a car, as described in subsection 2.2; although the
explanation of the code structure will be done considering
an extra MPC controller taking into account the throttle
valve subsystem only (Eq. 3).

Source code is accessible at the end of this paper.

Please note, that the structure of a controller for the full-
system case is the same and follows listed logical parts:

(1) Definition of differential states, variables, control in-
puts, differential equations, constants...

(2) Definition of a cost function in a form:

J = Q‖h − s‖2
2 (5)

where:
Q is a weighting matrix
h is a vector of states
s is a vector of setpoints

(3) Definition of a optimal control problem with corre-
sponding algorithm, constraints, initial values, set-
tings...

(4) Plotting of results
(5) MPC initialization, if the code is ready to be compiled

4. SIMULATION RESULTS

The simulation has been done using the ACADO toolkit,
having as a target acceleration of a vehicle from 4 m/s to
10 m/s, while respecting the physical constraints of the
system (Fig. 3).

It shows how the system states and quantities are chang-
ing, particularly the control input, desired velocity, engine
revolutions, instantaneous fuel and air inflow, etc.

5. CONCLUSION

The following paper introduced a field of the vehicle’s
longitudinal dynamics modeling and a velocity control
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Fig. 3. ACADO simulation of a car MPC (x-axis: Time (s))
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using a MPC (model predictive control) controller by using
the ACADO toolkit as a solver of a minimization problem
within the controller.
A future augmentation of this system shall be a real-time
run on a dSpace system, where the electric brake connected
to the engine shall simulate the dynamics of a car. Another
improvement could be an additional utilization of the
brake force described in this case by a constant member
kbBb in (Eq. 1) and a decentralized multi loop control of
the whole plant.
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universitet.

Ljung, L. (1999). System identification. Theory for the
user. Prentice Hall PTR.

Saerens, B., Vandersteen, J., Persoons, T., Swevers, J.,
Diehl, M., and den Bulck, E.V. (2009). Minimization of
the fuel consumption of a gasoline engine using dynamic
optimization. Applied energy, 86, 1582–1588.

Preprints of the NIL workshop
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— Beginning of a sample code —

#include <acado_toolkit.hpp>

#include <gnuplot/acado2gnuplot.hpp>

int main( ){

USING_NAMESPACE_ACADO

DifferentialState x; // initial definition of differential states,

IntermediateState alpha; // variables,

Control u; // control inputs,

DifferentialEquation f; // differential equations, constants...

Matrix A(1,1);

A.setZero();

Matrix B(1,1);

B.setZero();

Matrix C(1,1);

C.setZero();

Matrix D(1,1);

D.setZero();

double t_start = 0.0;

double t_end = 1.0;

double alphaD = 1.0; // alpha Desired - static reference

A(0,0) = -43.5489;

B(0,0) = 1.0;

C(0,0) = 27.0625;

D(0,0) = 0.3775;

f << dot(x) == A(0,0)*x + b(0)*u;

alpha = C(0,0)*x + D(0,0)*u;

Function h; // h,Q,r are arguments of a cost function

h << alpha;

h << u;

Matrix Q(2,2);

Q.setIdentity();

Q(0,0) = 10.0;

Q(1,1) = 0.01;

Vector r(2);

r(0) = alphaD;

r(1) = 0.0;

OCP ocp( t_start, t_end, 10 ); // definition of Optimal Control Problem (OCP)

ocp.minimizeLSQ( Q,h,r );

ocp.subjectTo( f );

ocp.subjectTo( 0.0 <= u <= 1.0 ); // constraints

ocp.subjectTo( 0.0 <= alpha <= 1.0 );

//ocp.subjectTo( AT_START, u==0 );

GnuplotWindow window; // results plotting

window.addSubplot( x, "State x" );

window.addSubplot( alpha, "Output alpha" );

window.addSubplot( u, "Control u" );

RealTimeAlgorithm algorithm(ocp); // OCP algorithm and settings

algorithm << window;

algorithm.set( "MaxNumIterations",3 );

algorithm.set( "HessianApproximation", GAUSS_NEWTON );

Vector x0(1); //initial conditions of states

x0(0) = 0.0;

algorithm.solve( x0 );

// MPC controller, uncommented during compilation

// DynamicFeedbackLaw feedbackLaw( algorithm,0.05 );

// Controller controller;

// controller.setFeedbackLaw( feedbackLaw );

// controller.init( x0 );

// controller.step( 0.0,x0 );

return 0;

}

— End of code —
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Comments – Remarks
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Abstract: The following paper describes a first approach of the control of air/fuel ratio (AFR) of
a spark ignition engine utilizing a model predictive controller based on the multi-model approach,
prepared for introduction of constraints. The multi-model approach employs the autoregressive
model (ARX) network, using the weighting of local models, coming from the sugeno-type fuzzy
logic. The weighted ARX models are identified in the particular working points and are creating
a global engine model, covering its nonlinearity. Expected improvement of an air/fuel mixture
combusted in a cylinder is mostly awaited in the transient working regimes of an engine. In these
regimes, the traditional control approach looses its quality, compared to steady state working
regimes of an engine. This leads to higher fuel consumption and level of emissions from an engine.
Another improvement of the control is awaited using a predictive controller with constraints.
As such a controller is not possible to compute the control analytically anymore, the ACADO
toolkit has been introduced, as a solver of the minimization task. The effort is focused on a
controller preparation, running in the final stage real-time on a dSpace unit, which replaced the
engine’s original electronic control unit (ECU).

Keywords: Model predictive control, air/fuel ratio, spark ignition engine, ACADO toolkit,
constraints

1. INTRODUCTION

Incorrect ratio of the air/fuel mixture in a cylinder of a
spark ignition engine may result in the poor engine power,
ineffective functionality of the catalytic converter resulting
in higher level of emissions polluting the environment and
in the extreme case this can lead to the engine stoppage.
Due to this reason it is crucial to keep the air/fuel ra-
tio (AFR) at the stoichiometric level, which means, that
both, the air and the fuel are completely combusted. Due
to above mentioned reasons and all the time tightening
emission standards the car producers are improving the
control of the air/fuel ratio.
Traditional control of air/fuel ratio is based on a feed-
forward control using predefined tables determining how
much fuel has to be injected into a cylinder, based on
the information from the mass air flow meter. This fuel
amount is subsequently corrected using the information
from the lambda probe, so the stoichiometric mixture can
be reached. Due to a lambda probe position (at the engine
exhaust) a delay arises, causing an improper feedback

⋆ The work has been supported by the Slovak Research and Devel-
opment Agency under grant LPP-0075-09, LPP-0118-09 and LPP-
0096-07. This research is also supported by the grant from Norway
through the EEA Financial Mechanism and the Norwegian Financial
Mechanism. This project is also co-financed from the state budget of
the Slovak Republic. This support is very gratefully acknowledged.

correction at the unstable engine regimes, like acceleration,
or deceleration. On the other side, this kind of control
guarantees stability and robustness at all conditions and
therefore is still preferred by car producers, despite its
disadvantages in control.
The academic field have started to publish other kinds
of air/fuel control, mostly model-based ones. The model-
based approaches are bringing good quality of control, but
are also more sensitive to the model precision and issues
with stability and robustness appear. A survey through
popular "mean value engine modeling" is described in
Bengtsson et al. (2007). This analytical way of engine
modeling is very clear, but requires exact knowledge of the
system and the model error has to be taken into account
explicitly. Other ways of a model acquisition are based
on the experimental identification (black box modeling).
Works of Zhai et al. (2010), Zhai and Yu (2009) and Hou
(2007) are specialized in employment of neural networks,
while Mao et al. (2009) uses for engine modeling CARIMA
models.
In the engine control itself became popular fuzzy logic
(Hou (2007)), neural network control (Arsie et al. (2008))
and model predictive control (MPC) approaches (Lorini
et al. (2006) and Muske and Jones (2006)). General topics
on an issue of stability and robustness in MPC can be
found in Mayne et al. (2000), or in Zeman and Rohal-Ilkiv
(2003).
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The method described in this paper is introduced in Polóni
et al. (2007) and it is utilizing a model predictive controller
using a multi-model approach. The multi-model approach
is utilizing a weighted net of autoregressive models (ARX)
as a global model. This method continues in the work of
Kopačka et al. (2010) and this paper describes preparation
of the controller for the introduction of constraints.
As a solver of the minimization problem is used the
ACADO toolkit, increasing the functionality of the above
mentioned controller, allowing to implement constraints
and other features.

2. AIR/FUEL MIXTURE

The model of the air/fuel ratio dynamics λ of a spark
ignition engine is based on the mixture, defined as mass
ratio of the air and fuel in a time step k. Due to the
fact, that the air mass flow is measured as an absolute
value, it was necessary to integrate this amount during
the particular time and express the air and fuel quantity
as relative mass densities in grams/cylinder. Hence, the
air/fuel ratio is defined, as:

λ(k) =
ma(k)

Lthmf (k)
(1)

where ma(k) and mf (k) are relative mass amounts of air
and fuel in a cylinder and Lth ≈ 14.64 is the theoretical
amount of air necessary for the ideal combustion of a unit
amount of fuel.
Considering the λ(k) modeling, the engine has been
divided into two subsystems with independent inputs,
namely into:

air path with the air throttle position
as the disturbance input, and

fuel path with the input of fuel injector opening time.

Another disturbance-like acting quantity were engine rev-
olutions, implicitly included in the engine model, partic-
ularly for each working point. The output ratio of both
paths is the value of λ.

3. THE ANALYTICAL CONTROLLER

The strategy of an "exceeding oxygen amount" control
using a predictive controller is based on a prediction of
a controlled quantity λ and subsequent minimization of
a chosen cost function on the horizon Np expressed in a
standard quadratic form. The value of λ is predicted by
utilization of partially linear models of the air and fuel
path. Through the independent air path model the proper
amount of fuel is predicted and enters the cost function J .
Hence, the target of the cost function minimization is to
determine such a control law, that the measured system
output λ is stoichiometric. The second modeled subsystem,
the fuel-path, is an explicit component of the objective
function where the amount of the fuel is the function of
optimized control action (Polóni et al. (2008)).

3.1 Predictive model

The applied control strategy is based on the knowledge
of the internal model (IM) of the air path, predicting the

change of air flow through the engine and consequently,
determining the set of desired values in the objective
function on the control horizon. In this case we will
consider the state space (SS) formulation of the system,
therefore it is necessary to express linear local ARX models
in parameter varying realigned SS model:

x(a,f)(k + 1) = A(a,f)(φ)x(a,f)(k) + B(a,f)(φ)u(a,f)(k)

ms,(a,f)(k) = C(a,f)x(a,f)(k) (2)

The weighted parameters of multi-ARX models are dis-
played in matrices Aa,f and Ba,f for each subsystem. This
is a non-minimal SS representation whose advantage is,
that no state observer is needed. The "fuel pulse width
control" is tracking the air mass changing on a prediction
horizon from IM of the air path, by changing the amount
of injected fuel mass. Due to tracking offset elimination,
the SS model of the fuel path (2) (index f ), with its state
space vector xf , is written in augmented SS model form
to incorporate the integral action

x̃f (k + 1) = Ãf (φ)x̃f (k) + B̃f (φ)∆uf (k) (3)

in a matrix form:[
xf (k + 1)

uf (k)

]
=

[
Af (φ) Bf (φ)

0 1

] [
xf (k)

uf(k − 1)

]
+

+

[
Bf (φ)

1

]
∆uf (k)

ms,f (k) = C̃f x̃f (k) (4)

The prediction of the air mass (m−→a) on the prediction
horizon (N) is solely dependent on the throttle position
( t−→r) and is computed, as:

m−→a(k) = Γa(φ)xa(k) + Ωa(φ) t−→r(k − 1) (5)

where the xa denotes the state space vector of the air path
and Γa(φ) and Ωa(φ) are the prediction matrices.

Due to the unprecise modeling (IM strategy) a biased
predictions of the air mass and consequently "biased
fuel mass prediction" might occur. This error can be
compensated by the term L[m̂f(k) − ms,f (k)] in the fuel
mass prediction equation (m−→f )

m−→f (k) = Γf (φ)x̃f (k) + Ωf (φ)∆ u−→f (k − 1)+

+ L[m̂f (k) − ms,f (k)]
(6)

The matrices Γa, Γf , Ωa, Ωf are computed from (2)
(Maciejowski (2000)). Since there is only λ(k) measurable
in (1), the value of ma(k) needs to be substituted using
IM of the air-path, then

m̂f (k) =
1

Lth

ms,a(k)

λ(k)
(7)
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The estimate m̂f (k) is used to compensate for possible
bias errors of predicted m−→f (k) in (6).

3.2 Cost function

The main part of a cost function is a sum of deviations of
predicted outputs from a set point, i.e. a weight of a future
control deviations. Its another elements are a penalization
of control increments r; and a p penalizing a deviation
between a predicted and desired end state.
To eliminate a the steady state control error, the criterion
(8) is defined through the control increments. That guar-
antees in a steady state, that Jλ = 0 also for the system
with no integration properties, what is the case of the fuel
path.

Jλ =

∥∥∥∥∥
m−→a(k)

Lth
− m−→f (k)

∥∥∥∥∥

2

2

+ r‖∆ u−→f (k − 1)‖2
2

+p‖x̃f(N) − x̃f,r(N)‖2
2

(8)

The chosen MPC approach utilizes the state space repre-
sentation and its structure uses a control deviation for the
correction of the prediction.
Due to a disturbance d(k), the steady state values of u
and x have to be adapted so, that the assumption J = 0
is valid. This problem solves an explicit inclusion of the
disturbance into the model.

The fuel injectors are controlled by a fuel pulse width, what
is at the same time the control uf . The optimal injection
time can be computed by minimization of a cost function
(8), which has after expansion by the fuel path prediction
equation x̃f (k + 1) = Γf(φ)x̃f (k) + Ωf (φ)∆ u−→f (k − 1) a
form of:

Jλ =∥∥∥
m−→a

Lth
− Γf x̃f (k) + Ωf∆ u−→f (k − 1) + L[m̂f (k) − ms,f (k)]

∥∥∥
2

2

+r
∥∥∆ u−→f (k − 1)

∥∥2

2
+ p‖x̃f (N) − x̃f,r(N)‖22

(9)

An analytical solution of dJλ

∆ u−→
= 0 of (9) without con-

straints leads to a definition determining the change of
fuel injector’s opening time on a chosen control horizon,
as:

∆u =
(
ΩT Ω + Ir + pΩT

xNΩxN

)−1

·
[
ΩT [w(k) − Γx̃(k) − L(y(k) − ys(k))]

−pΩT
xNAN x̃(k) + pΩT

xN x̃f,r(N)
] (10)

Hence, the absolute value of the control action in a step
k is given by a sum of a newly computed increment in
a control and an absolute value of the control in a step
(k − 1):

uf(k) = uf (k − 1) + ∆uf (k) (11)
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Fig. 1. Results of a real-time control of the SI engine

3.3 Real-time Control Results

The primary target of a control was to hold the air/fuel
ratio at a stoichiometric value (λ = 1), in the worst case
to keep the mixture ignitable (0.7 ≤ λ ≤ 1.2).
During the experiment, the change in throttle valve open-
ing, between 21 and 22 degrees (Fig. 1, variable tr) and
the change of engine revolutions (Fig. 1, variable nen), has
been performed, at the same time. These changes simulate
varying working regimes of an engine in a daily traffic.
Changes in tr and nen quantities are determining the
engine load; and at the same time they are ensuring, that
the engine passes through several working points during its
operation. The engine revolutions are not included among
explicit variables of local models, but they build together
with a delayed throttle valve position a vector of a working
point φ(k) = |tr(k) nen(k)|.
Looking at the results (Fig. 1) one can say, that the quality
of control is sufficient (Fig. 1, variable λ), with exceptional
acceptable overshoots in both directions. These overshoots
of the controlled variable λ have been caused by smaller
model precision, due to its distance from the working
point, at which the system identification has been per-
formed. This effect is caused by the approximation of a
particular model from the other working points’ models.
The corresponding control action computed by the con-
troller is shown in (Fig. 1, variable Inj.time).

The initial engine warm-up (to 80 ◦C ) eliminated model-
plant mismatch caused by temperature dependent behav-
ior of the engine.

The control has been performed by choosing the penaliza-
tion r = 0.1. Utilizing the member p‖x̃f (N)− x̃f,r(N)‖2

2 of
a cost function by setting p = 2.0 allowed us to shorten the
control horizon to Np = 20 from original Np = 30 what
significantly unloaded the computational unit and stabi-
lized the controlled output of the engine on this shortened
horizon, as well. The best control has been achieved in
the neighborhood of working points, what is logically con-
nected to the most precise engine model at those points.
In other working points the control is still good enough,
with small deviations from the stoichiometric mixture.
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Considering the preliminary results from the real-time
experiments at the engine, it can be concluded, that the
idea of the AFR model predictive control based on local
ARX models is suitable and applicable for the SI engine
control. Proposed design of a predictive controller offers
easy tuning possibilities and extension of the global engine
model to other working regimes of the engine. On the other
hand, its analytical solution doesn’t allow implementation
of constraints, until a numerical solver is employed.

4. CONSTRAINED PROBLEM

The combustion engine, as any technical system in a real
world has its limitations, its constraints.
These constraints can have a nature of:

• physical constraints (dimensions, max. allowed revo-
lutions, max. amount of fuel injected per cycle, etc.)

• process constraints (ignitability constraints in the
combustion process, ideal air/fuel ratio in the cylin-
der, etc. )

and it is a smart move, to include the relevant constraints
of the problem to the controller, so that the ideal control,
respecting the constraints, can be computed. Introduction
of constraints at the same time excludes the analytical
computation of the optimal control and so the numerical
solver of the minimization task has to be used.
For our purposes has been chosen the ACADO toolkit
software package, meeting the specifications of a free and
powerful tool with user friendly interface. More informa-
tion on the software package can be found in Houska et al.
(2010). A model predictive controller setup is illustrated
in acadoweb (2010).

Problem Statement

The mathematical formulation of a problem, compared
to the work of Kopačka et al. (2010) has been changed
slightly. The syntax has been changed from the Mat-
lab/Simulink block scheme to a more flexible and easily
extendible C++ code. The general structure utilizing the
weighted ARX models as a system model stayed in tact,
but the cost function formulation has been changed.
In the cost function does not appear the member consider-
ing the final state penalization, as in the original equation
(8), anymore, so the final form of the cost function in
ACADO is defined, as:

Jλ =

∥∥∥∥∥
m−→a(k)

Lth
− m−→f (k)

∥∥∥∥∥

2

2

+ r‖∆ u−→f (k − 1)‖2
2 (12)

Due to a simulation stage of the controller, also the
member eliminating the model-plant mismatch L(y(k) −
ys(k))has been left out.

5. OUTLOOK

Nowadays is the new controller showing the same func-
tionality as the original one running with the penalization
of the terminal state switched off (Fig. 2). The fuel mass
output mf of the fuel path and the applied control du are

1 2 3 4 5 6 7 8 9 10
7

8

9

10

m
f (

m
g/

cy
l.)

 

 

acado

matlab

1 2 3 4 5 6 7 8 9 10
−5

0

5

du
 (

m
s)

1 2 3 4 5 6 7 8 9 10
0.9

1

1.1

Sampling steps

λ 
(−

)
Fig. 2. Comparison of simulations in Simulink and

ACADO (Np=10, sampling = 0.2s)

looking quantitatively very similar. The almost identical
results of the air/fuel ratio λ in the steady state region
also prove its correct functionality. This facts build a good
base for further improvements.

The implementation of the constraints into the controller
has to be done at first, namely the constraints on the
output value λ and on the change of the control du. The
influence of these constraints on the control quality and the
minimal length of the necessary prediction horizon has to
be investigated.
Another step in development is a controller with a guar-
anteed stability based on the terminal set method.
All of the improvements have to be tested real-time on the
existing motor bench with a VW Polo 1390cm3 engine, at
which the original electronic control unit (ECU) has been
replaced by a dSpace system.
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Appendix A. SOURCE CODE OF THE
CONTROLLER (SHORTENED)

A.1 Definition of variables and Optimal Control Problem Statement

i n t main ( ) {

const double s t ep l eng th = 0 . 2 ;
const double Lth = 14 . 6 7 ; //

s t e i c h i ome t r i c c o e f f i c i e n t
i n t Np = 10 ; // p r ed i c t i on

hor i zon

D i f f e r e n t i a l S t a t e x f (13 , 1) ; // augmented s ta t e
o f the f u e l path

Matrix Aa(12 , 12) ,Ba(12 , 1) , Ca(1 , 12) ;
//A,B,C matr i ces o f the a i r path

Matrix Af (13 , 13) , Bf (13 , 1) ; //A,B
matr i ces o f the f u e l path

Control du ;

update_model_parameters (Aa ,Ba , Af , Bf , 1800 , 20) ;
Ca . s e tZero ( ) ;
Ca (0 , 0 ) = 1 . 0 ;

Aa . pr intToFi l e ("Aa_ACADO. mat" ,"Aa_ACADO" ,
PS_MATLAB_BINARY) ; // p r i n t matr i ce s to
matlab

Ba . pr intToFi l e ("Ba_ACADO. mat" ,"Ba_ACADO" ,
PS_MATLAB_BINARY) ;

Af . pr intToFi l e ("Af_ACADO. mat" ,"Af_ACADO" ,
PS_MATLAB_BINARY) ;

Bf . pr intToFi l e ("Bf_ACADO. mat" ,"Bf_ACADO" ,
PS_MATLAB_BINARY) ;

const double t_start = 0 . 0 ;
const double t_end = Np∗ s t ep l eng th ;

D i s c r e t i z e dD i f f e r e n t i a l Equa t i o n f ( s t ep l eng th ) ;
f << next ( x f ) == Af∗ xf + Bf∗du ; //mf = xf (0) ;

DynamicSystem fue l pa th ( f ) ;

Process fue lpath_s imulator ( fue lpath ,
INT_DISCRETE) ;

Vector xa0 ( 12 ) ; // i n i t i a l va lues o f
xa

xa0 (0) = 96 . 6 ; xa0 (1) = 96 . 6 ; xa0 (2) =
96 . 6 ; xa0 (3) = 96 . 6 ;

xa0 (4) = 96 . 6 ; xa0 (5) = 20 . 0 ; xa0 (6) =
20 . 0 ; xa0 (7) = 20 . 0 ;

xa0 (8) = 20 . 0 ; xa0 (9) = 20 . 0 ; xa0 (10)=
20 . 0 ; xa0 (11)= 1 . 0 ;

Vector map(Np+1) ; //() i n t in the bracket has
to be i d e n t i c a l with the Np in the f unc t i on
c a l l ( under )

map_predictionANALYTICAL(map, Aa , Ba , Ca , xa0 , Np
+1) ;

Function J ;
J << xf (0) ;
J << du ;

Matrix S (2 , 2 ) ;
S . s e t I d en t i t y ( ) ;
S (0 , 0 ) = 1000 . 0 ;
S (1 , 1 ) = 1 . 0 ;

// DEFINE AN OPTIMAL CONTROL PROBLEM:
Var i ab l e sGr id r ( 2 , t_start , t_end , Np+1 ) ; //

d e f i n e s r e f e r e n c e vector f o r d i f f e r e n t time
po ints

f o r ( i n t i =0; i <(Np+1) ; i++ )
{
r ( i , 0 ) = map( i ) /Lth ;
r ( i , 1 ) = 0 . 0 ;
}
OCP ocp ( t_start , t_end , Np ) ;
ocp . minimizeLSQ ( S , J , r ) ;
ocp . subjectTo ( f ) ;

// Optimizat ionAlgorithm algori thm ( ocp ) ;
RealTimeAlgorithm algori thm ( ocp , s t ep l eng th ) ;
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algor i thm . s e t ( KKT_TOLERANCE, 1e−6 ) ;

A.2 Looping of the OCP Problem to finish the MPC controller

// SETUP CONTROLLER AND PERFORM A STEP:
Var i ab l e sGr id StatTra j ectory (2 , t_start , t_end ,

Np+1) ;
f o r ( i n t i =0; i<Np+1; ++i )
{
StatTra j ectory ( i , 0 ) = map( i ) /Lth ;
StatTra j ectory ( i , 1 ) = 0 . 0 ;
}
StatTra j ectory . p r i n t (" StatTra j ectory ") ;

S ta t i cRe f e r enceTra j e c to ry ST ( StatTra j ectory ) ;

Con t ro l l e r c o n t r o l l e r ( a lgor i thm , ST ) ;

Vector xf0 (13) ; // i n i t i a l c ond i t i on s o f "
x f " s ta t e vector

xf0 (0) = 6 . 5 6 ; xf0 (1) = 6 . 5 6 ; xf0 (2) =
6 . 5 6 ; xf0 (3) = 6 . 5 6 ;

xf0 (4) = 6 . 5 6 ; xf0 (5) = 4 . 9 8 ; xf0 (6) =
4 . 9 8 ; xf0 (7) = 4 . 9 8 ;

xf0 (8) = 4 . 9 8 ; xf0 (9) = 4 . 9 8 ; xf0 (10)=
4 . 9 8 ; xf0 (11)= 1 . 0 ;

xf0 (12)= 4 . 9 8 ;

Vector uCon ;
Var i ab l e sGr id ySim ;

c o n t r o l l e r . i n i t ( 0 . 0 , xf0 ) ;
c o n t r o l l e r . s tep ( 0 . 0 , xf0 ) ;
c o n t r o l l e r . getU ( uCon ) ;

fue lpath_s imulator . i n i t ( t_start , xf0 , uCon ) ;
fue lpath_s imulator . getY ( ySim ) ;

double sim_Tstart , sim_Tend ;
sim_Tstart = 0 . 0 ;
sim_Tend = 2 . 0 ;
double currentTime = sim_Tstart ;
i n t nSteps = 0 ;

Vector Sim_mf ( round ( ( sim_Tend − sim_Tstart ) /
s t ep l eng th ) ) ;

Sim_mf . s e tA l l (3333) ;

Vector Sim_du ( round ( ( sim_Tend − sim_Tstart ) /
s t ep l eng th ) ) ;

Sim_du . s e tA l l (3333) ;

Vector mapi (Np+1) ;

Vector Lambda ( round ( ( sim_Tend − sim_Tstart ) /
s t ep l eng th ) ) ;

Lambda . s e tA l l (3333) ;

whi l e ( currentTime <= sim_Tend − s t ep l eng th )
{
acadoPr int f ( "\n∗∗∗ Simulat ion Loop No . %d (

s t a r t i n g at time %.3 f ) ∗∗∗\n" , nSteps ,
currentTime ) ;

map_predictionANALYTICALidentical(mapi , Aa , Ba ,
Ca , xa0 , Np+1) ;

Var i ab l e sGr id ma_ref (2 , t_start , t_end , Np+1) ;
// map i n to Var i ab l e sGr id

f o r ( i n t i =0; i<Np+1; ++i )
{

ma_ref ( i , 0 ) = mapi ( i ) /Lth ;
ma_ref ( i , 1 ) = 0 . 0 ;
}

double t = acadoGetTime ( ) ;
c o n t r o l l e r . s tep ( currentTime , ySim . getLastVector ( )

, ma_ref ) ;
c o n t r o l l e r . getU ( uCon ) ;
p r i n t f ( " t = %e\n" , acadoGetTime ( )−t ) ;

f ue lpath_s imulator . s tep ( currentTime , currentTime+
step l ength , uCon ) ;

fue lpath_s imulator . getY ( ySim ) ;

Sim_du( nSteps ) = uCon (0) ;
Sim_mf( nSteps ) = ySim . getLastVector ( ) (0) ;
Lambda( nSteps ) = (mapi (0) /Lth ) / ySim .

getLastVector ( ) (1) ;

currentTime += s tep l eng th ;
++nSteps ;
}

Lambda . p r i n t ("Lambda") ;
Lambda . pr intToFi l e ("Lambda_ACADO. mat" ,"

Lambda_ACADO" ,PS_MATLAB_BINARY) ;
p r i n t f ("\n") ;
Sim_du . p r i n t ("Sim_du") ;
Sim_du . pr intToFi l e ("Sim_du_ACADO. mat" ,"

Sim_du_ACADO" ,PS_MATLAB_BINARY) ;
Sim_mf . p r i n t ("Sim_mf") ; // s imulated

output o f the system
Sim_mf . pr intToFi l e ("Sim_mf_ACADO. mat" ,"

Sim_mf_ACADO" ,PS_MATLAB_BINARY) ;
re turn 0 ;
}
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Abstract: Swing up and balance control are two interesting control problems for the Pendubot
system, which is one of the most typical experiment objects in the field of automatic control.
It is a two-link under actuated robotic mechanism, presenting the classic inverted pendulum
problem; well suited for control theory education as well as for research in the control of nonlinear
mechatronic systems with fast dynamics.In this paper the swinging up and balancing control
will be presented. The basic balancing control is based on a linear-quadratic (LQ) controller
which were implemented and tested on the experimental setup in a real-time. Results received
in verifying experiment are evaluated in the presented work. The swing up of the pendulum is
based on a method of impulse build up of energy. A fourth order linearized time-invariant state-
space system model is identified for the pendubot system. Carried out verification confirms,
that the linear quadratic controller actuated system response is excellent. Inclusion of process
constraints in a model predictive control (MPC) based balancing scheme could potentially offer
numerous benefits as well.

Keywords: pendubot system, inverted pendulum, LQ control, pendulum swing up

1. INTRODUCTION

Stability control is one of the basic problems of control
theory. This problem is studied on different models, which
include the pendubot system. The pendubot is a two-
link planar robot with an actuator on the first arm and
no actuator on the second arm. It is underactuated and
has fast nonlinear dynamics. The objective is to stabilize
the system in one of its unstable equilibrium positions.
That means keep the second arm, the free pendulum,
upright and the first arm in a desired position. We began
with a already build physical model of pendubot. We will
show a brief derivation of the motion equations, using the
Lagrange energy balance method, and the resulting state
space model.

2. PENDUBOT MODEL

There are different ways how to realize the construction
of pendubot. Our approach is based on the work of Mates
Mates and Seman (2009).The physical model is a combined
model of pendubot and furuta pendulum. We will in this

⋆ The authors gratefully acknowledge the financial support granted
by the Slovak Research and Development Agency under the contracts
APVV-0280-06 and APVV-0160-07, and reviewers’ comments. This
research is also supported by the grant from Iceland, Liechtenstein
and Norway through the EEA Financial Mechanism and the Norwe-
gian Financial Mechanism. This project is co-financed from the state
budget of the Slovak Republic.

Fig. 1. Hardware connection scheme

paper discus only pendubot control. This design uses a
servo motor to rotate the arm. This has the benefit that,
we can directly control the torque applied to the arm and
also brake at any given time. The brake is useful to apply
braking moment in impulse control.

2.1 Model hardware

The Figure 1 shows connections between hardware com-
ponents. As can be seen the control model is designed
on the Host PC. It is equipped with Matlab / Simulink
software. The model is compiled and transfered to the
Target PC, where it is run in a simplified environment in
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real time. Communication with hardware is done through
the I/O card in Target PC. As can be seen on Figure 1
only the pendulum angle is read directly by the I/O card.
Communication with the servo motor is done through the
control unit. The control unit translates the encoder signal
to arm angle and controls the motor power to achieve the
desired torque.

The physical model is made of these components:

• Servo motor - Mitsubishi HC-KFS43
• Control unit - Mitsubishi MR-J2S-40A
• Incremental rotary sensor - OMRON E6B2
• I/O Card - Humusoft MF-624

2.2 Mathematical model

The pendubot is a second order dynamic system. We will
use the energy balance method, Lagrange equation, to
derive the equations of dynamics.

In this section mathematical equations use the following
symbols:

• mr - Weight of arm
• l1 - Length of arm
• lg1 - Distance from center of gravity of the arm to the

axis of rotation
• k1 - Friction coefficient in arm joint
• Ir - Mass moment of inertia of the arm
• mk - Weight of pendulum
• lg2 - Distance from center of gravity of the pendulum

to the axis of rotation
• Ik - Mass moment of inertia of the pendulum
• k2 - Friction coefficient in pendulum joint
• ϕ - Pendulum angle
• θ - Arm angle

The basic form Lagrange equations is:

d

dt

(
∂L

∂q̇i

)
−

(
∂L

∂qi

)
= Qi (1)

where L, the Lagrangian, is the difference of kinetic and
potentian energy. For the pendubot system these are
simple to derive. Details, how to do this, are in different
publications Fantoni and Lozano (2001). The end result
from eq.1 are two equations 2 and 3.

τ = ϕ̈
(
Ir + mkl21

)
+ θ̈mkl1lg2 cos(ϕ − θ)+

mkl1lg2 sin(ϕ − θ) + (mrlg1 + mkl1) g cosϕ
(2)

0 = ϕ̈mkl1lg2 cos(ϕ − θ) + θ̈(Ik + mkl2g2)−
mkl1lg2ϕ̇

2 sin(ϕ − θ) + mkglg2 cos θ
(3)

Linearizing these equations around chosen point and solv-
ing the result, we get the state space model ẋ = Ax + Bu.
Where x is the state vector x = [ϕ θ ϕ̇ θ̇]T . Choosing
the point ϕ = 0 and θ = 0 as the up-up position, the
resulting state space matrices A and B for our model are:

A =




0 0 1 0
0 0 0 1

10, 714 −7, 162 −2, 424 0
−15, 755 43, 320 0 −0, 027


 (4a)

B =




0
0

40, 033
−58, 873


 (4b)

3. CONTROL DESIGN

To solve the pendubot control problem, it is best to divide
it into two parts. The balancing control that will keep the
pendulum upright and the swing-up control that will bring
the pendulum from complete stop, in the lower position, to
the unstable equilibrium position. Switching between these
two controls depends on the pendulum and arm position.
This is necessary so that the balancing control is active
only around the equilibrium point.

3.1 LQ control

The balancing control is realized using a LQ controller,
which was derived using the state-space model from eq.4.
The control law for LQ is u = −Kx where x is the
state vector and K is the LQ gain matrix. The gain was
calculated by minimizing the cost function

J =

∫
(x′Qx + u′Ru)dt (5)

where the weight matrices Q and R have been chosen as

Q =




19 0 0 0
0 26 0 1
0 0 2 0
0 0 0 1


 (6a)

R = [3, 5] (6b)

The resulting LQ control gain matrix is

K = [−1, 54 − 7, 11 − 0, 69 − 1, 22] (7)

3.2 Swing-up control

There exist different approaches to inverted pendulum
swing-up. Predominantly, they are based on adding energy
to the pendulum system until it equals the potential energy
of the pendulum in the upper position (Albahkali et al.
(2009)). Our approach is based on the same idea. Adding of
energy is done by swinging the arm around zero position.
The arm swings are limited to help smoothen transition
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to balancing control. The limits should allow the arm to
move as widely as possible, to allow more energy build up
per swing. For the calculation of torque the the following
equation was used:

u = satn

(
k(E − E0)sign(θ̇ cos θ)

)
(8)

where E is the current energy of the system and E0 is the
desired energy. The gain constant K determines speed at
which energy is added to the system (Astrom and Furuta
(1996)).

4. TEST RESULTS

The functionality of the designed control scheme was
tested on our physical model. The measured results are
in Fig. 4. The swing-up algorithm was active the first
5 seconds, after which it switched to balancing control,
because the pendulum was close to the upper equilibrium
position. In Fig. 2(a) can be seen the swinging motion of
the pendulum and its stabilization. Speed of the pendulum
is in Fig. 2(b). The position and speed of the arm can
be seen in Fig. 2(c) and 2(d). The corresponding torque
applied to the arm is seen in Fig. 2(e).

5. MPC CONTROL SIMULATION

This section presents the planned model based predictive
control (MPC) of the pendubot system through simula-
tions performed using the state-space model of the labora-
tory hardware. The preliminary considerations introduced
here give a basis for further work on the pendubot system
and also point out the weaknesses of saturated linear-
quadratic control.

All simulations assume identical models for the pendubot
system, including an initial condition equivalent to displac-
ing the pendulum 5 degrees away from its upright position.
The pendulum is assumed to be placed around its nominal
upright position, while the swing-up portion of the control
assignment is ignored here.

The constraints placed on the system are applied only to
the torque requirement passed onto the stepper motor.
The model input is in fact the force moment in N/m
applied to the pendulum arm. The MPC model includes
this constraint, while the simple LQ version is saturated to
these bounds. System sampling is set to Ts = 0.01 seconds
in all cases.

5.1 Unconstrained system

The MPC method considered in this paper is a dual-mode
constrained controller with guaranteed stability (Mayne
et al., 2000; Chen and Allgöver, 1998; Rossiter, 2003),
providing the maximal admissible region of attraction and
target set through high order polyhedral constraints.

Given a five degree initial condition, the MPC controller
requires a prediction horizon nc = 10 steps. This places
the initial condition just on the edge of the admissible set
for all three presented simulation cases.

Fig. 3. Torque request to actuator

In the first simulation case, the constraints slightly exceed
the expected moments provided to the stepper motor.
Here a 0.06N/m constraint practically produces an un-
constrained response from the system. The torque profile
for this case is shown on Figure 3, where the responses
produced by the MPC and saturated LQ controllers are
identical 1 . Subject to the same input signal, the system
behaves identically therefore the individual states are not
shown here.

5.2 Constrained system

The following two simulation examples involve constraints
placed on the torque requirement passed to the actuator.
In the first case a stable response is produced, however the
benefits of using an MPC controller over LQ are clearly
demonstrated. The second simulation involves a more
limitive constraint, rendering the saturated LQ controlled
system entirely unstable.

Stable Figure 4 shows the individual pendulum states
and the torque requirement, when the system is subject
to a ±0.05N/m moment constraint. As it is visible from
the arm and pendulum position and velocity diagrams on
Figure 4(a)-(d), the saturated LQ controller stabilizes the
pendulum less efficiently. While the control course remains
stable, the constrained MPC governed output settles the
pendulum arm position much faster. The constraints and
the controller outputs may be observed on Figure 4(e),
where it is evident that the LQ controller leaves the torque
input on its lower saturation limit for a longer period than
its MPC counterpart.

Unstable The previous subsection dealt with a constraint
control case, where it has been shown that an MPC
controlled pendulum arm may bring benefits over simple
saturated LQ control. However efficiency is not the only
issue here: enforcing more stringent constraints on the
stepper motor may render LQ control entirely unstable,
while MPC can still function without the hazards of de-
stabilizing the control system.

In this case the constraints were decreased slightly, to
±0.0485N/m, while the rest of the simulation settings
remained the same. As it is clearly visible on the position,
velocity and torque output of the system on Figure 5; the
system became unstable under LQ control. For the case
of saturated LQ control, Figures 5(a),(b) show the arm
and pendulum positions increasing indefinitely - causing
1 Because the two responses are in fact identical, only the MPC
controlled torque profile is visible.
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(a) Pendulum position (b) Pendulum speed

(c) Arm position (d) Arm speed

(e) Motor torque

Fig. 2. Measured results of pendubot swing-up and balancing LQ

the pendulum to fall from its unstable equilibrium posi-
tion. Similarly Figures 5(c),(d) shows the LQ controlled
velocities to grow uncontrollably.

However the MPC controlled responses still remain within
reasonable bounds, preserving the stability of the feedback
system.

5.3 Implementing the MPC controller

While the previous simulation cases point out numerous
advantages of using an MPC controller with guaranteed
stability on the pendubot, there are some issues with the
practical implementation of such a system on the labora-
tory device in real time. The expected sampling period is
not extremely short and higher order prediction models
have been used before with sampling periods of 0.0002s
(Wills et al., 2008), though without stability guarantees.
The MPC control of an unstable equilibrium position
requires stability guarantees, which places additional re-
quirements on algorithm efficiency.

On-Line Quadratic Programming It is possible that a
controller with a fourth order prediction model and a
nc = 10 steps prediction horizon is implementable without
significant issues on a real-time rapid software prototyping
system. However during simulation stages it has been

noted, that if a maximal admissible reachable and target
set is considered, the constraints have to be evaluated
much further: requiring constraint checking horizons in
the excess of 200 steps. Adding more complexity to the
problem leaves and open question, whether this system
can be implemented using quadratic programming solvers
optimized for MPC usage such as presented in Ferreau
(2006) and Ferreau et al. (2008).

The given system with the considered settings also caused
various numerical problems; both at the stage of searching
for the largest admissible set and during the simulation
of on-line quadratic optimization. Linear programming
used at the initialization stage exited with a warning;
stating that the optimization process iteration tolerance
limit has been exceeded 2 . At on-line optimization, the
quadratic programming solver issued a warning about a
non-symmetric optimization Hessian.

Multi-Parametric Programming The pendubot device
is a mechatronic system with fast dynamics, as such it
requires an efficient MPC implementation. A viable al-
ternative to on-line quadratic programming optimization
is the use of multi-parametric programming (MP) based

2 The solver assumed throughout the simulation was "quadprog",
default QP solver in the Matlab suite.
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(a) Arm position (b) Pendulum position

(c) Arm speed (d) Pendulum speed

(e) Torque request to actuator

Fig. 4. Stable simulation, comparing LQ and MPC based actuator inputs. Arm and pendulum position in radians is
visible on (a) and (b), while (c), (d) shows the corresponding arm and pendulum velocities. Figure (e) denotes the
torque requirement passed onto the actuator, when its output is limited to ±0.05N/m

MPC. Assuming a piece-wise affine linear MPC problem,
the controller pre-computes controller regions and asso-
ciates them with polyhedral regions in state-space. This
way the computational load is transferred to the off-line
mode, while the regions and control laws corresponding
to the current states are found directly in a very efficient
manner (Kvasnica et al., 2006).

With this approach is very promising, the off-line com-
putational load grows very rapidly when increasing pre-
diction horizons. A multi-parametric controller has been
evaluated for the given pendubot system, assuming the
same settings as introduced for the QP controller. The
explicit controller has been calculated using the Multi-
Parametric Toolbox (Kvasnica et al., 2004).

By definition, the controller outputs are the same as the
direct QP optimization results up to numerical precision,
therefore these results are not indicated in the simulations
presented in 5.1 and 5.2. However the resulting controller
has been computed in more than 37 hours, using a generic
personal computer conforming to current standards 3 . The

3 AMD Athlon X2 DualCore 4400+ at 2.00GHz, 2.93GBytes of
RAM.

explicit MPC controller is defined over 132927 region sover
4D, resulting an exported C language header over 97
Mbytes in file size. While this is certainly not prohibitive
for personal computers, a digital signal processing board
(DSP) or similar hardware with limited amount of RAM
could not run such a large application. It remains an open
question, whether the large number of regions could cause
the search times to exceed sampling during the on-line
control of the pendubot arm. While this is unlikely, we
have to note that if a larger range of expected deviations
from the upper unstable position is required also a larger
region of attraction is necessary. This can be ensured by
increasing the prediction horizon, which certainly will also
exponentially increase the number of regions and controller
size (Takács and Rohal’-Ilkiv, 2009).

It is also worth noting, that the multi-parametric con-
troller computation procedure was not without numerical
errors. During the lengthy computation time, the algo-
rithm issued warnings involving the linear programming
solver. Although the final controller passes the invariance
check and behaves as expected during simulations, it is
not certain whether these errors could produce erroneous
controller outputs.
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(a) Arm position (b) Pendulum position

(c) Arm speed (d) Pendulum speed

(e) Torque request to actuator

Fig. 5. Unstable controller behavior, comparing LQ and MPC based actuator inputs. Arm and pendulum position in
radians is visible on (a) and (b), while (c), (d) shows the corresponding arm and pendulum velocities. Figure (e)
denotes the torque requirement passed onto the actuator, when its output is limited to ±0.0485N/m

6. CONCLUSION

Measurements are in correspondence with our expected
results. The designed swing-up needed several swings to
bring the pendulum to the upright position. This was
caused by the limitations to movement of the arm and
maximum allowed torque. The balancing LQ controller has
oscillations around the equilibrium position, but they were
negligibly small.

The simulations performed utilizing the MPC controller
clearly show the drawbacks of saturated linear-quadratic
control. In the absence of constraints, the LQ and MPC
controllers provide identical outputs to the actuator. How-
ever a constrained torque request results in a sub-optimal
LQ control course when compared to MPC, furthermore
a more stringent torque boundary may result in the loss
of stability. The preliminary controller implementation
analysis presented in this paper points out several difficult
aspects of applying MPC on the laboratory device in real
time.
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Abstract: The results presented in this paper reflect the efficiency of a model explicit predictive
control approach in a numerical simulation study of active vibration attenuation of a selected
piezoelectric smart structure. Presented active vibration control system consist of the cantilever
plate excited whit the use of piezoelectric actuators, the laser sensor and the digital signal
processor board. This configuration enables to perform the vibration system experimental
identification. Based on the structure responses determined by measurement, an explicit first
mode state space model of the equivalent linear system is developed by employing subspace
identification approach. Controller design is carried out by the multiparametric programming
algorithm. The control law is incorporated into the finite state space partitions to perform as
closed loop controller. Laboratory verification experiment evaluate the control law performance.

Keywords: piezoelectric sensor/actuator, explicit predictive controller, subspace system
identification

1. INTRODUCTION

Monitoring and control of vibrations has become impor-
tant for the aims of many engineering systems, as for
example automotive industry, airspace industry or precise
mechanics. Advances in smart materials have shown an
increased interesting applications for passive and active
attenuation. The advanced Technologies of smart materi-
als lead to relatively small and light actuators and sen-
sors with good physical integration, i.e. in-building into
materials. The vibration control is historically from its
beginning highly topical which has led to many methods
and approaches to solution.

In general, the efficiency of passive damping materials
in suppressing of mechanical vibrations is insufficient for
the range of low frequencies. What is more, the passive
damping materials considerably add on to the mass of the
structure they damp. At the same time, they manipulate
with the stiffness of the structure. The resulting strong
vibrations can damage or totally destroy the structure.
In the case of machining devices, the undesired vibra-
tions lead to decreased precision of products. To avoid
the disadvantages of passive damping elements, piezoelec-
tric materials have come to wider use that can be well
controlled in a wide range of frequency, without adding
⋆ The work has been supported by the Slovak Research and Develop-
ment Agency under contract APVV 280-06, APVV-0160-07 and LPP
118-09. This research is also supported by the grant from Norway
through the EEA Financial Mechanism and the Norwegian Financial
Mechanism. This project is also co-financed from the state budget of
the Slovak Republic. This support is very gratefully acknowledged.

great amount of mass to the structure. The actuators that
are built in the controlled structure produce force on a
given object. The signal that controls the actuator arises
from the control system obtaining feedback from sensors
that can be also built in the controlled structure. The
research of piezoelectric materials is fast gaining attention
and it is expected that this technology will upgrade the
quality of production in engineering industry. The control
of vibration that utilizes piezoelectric materials can be
performed passively (with shunt circuits) (Hagood and
Flotow, 1991; Wu, 1998; Granier et al., 2001; Niederberger,
2005) or actively. In the shunt circuit techniques the main
task of piezoelectric materials is to absorb the energy from
the structure.

In active control, an external power is applied to a piezo-
electric material to produce a force in opposite direction
to that produced by vibrating structure at a particular
position. The opposite forces will annul each other and
thus reduce the vibration of the structure. In the literature
many papers focuss on active vibration techniques. Good
comparative study of some control techniques can be found
in (Kumar et al., 2006). The predictive control was applied
with its on-line computation in Wills et al. (2008); Takács
and Rohal’-Ilkiv (2009).

In this paper a single mode explicit predictive controller
for vibration attenuation will be studied. The explicit
technique is particulary suitable for this fast dynamic
application because of its low online computation load.
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2. SYSTEM DESCRIPTION AND IDENTIFICATION

The vibration of cantilever is from the point of view of
mathematical-physical modeling called problem of vibra-
tion of continuum, for which it must be considered that
the cantilever has theoretically infinite number of its own
frequencies (modes). For detailed description of a vibrating
cantilever, the vibration of which is exited by external
sources, generally speaking one would need to know the
differential equation of infinite order for its every single
point that would describe the vibration of that particular
point. Not every own frequency has the same effect on the
overall vibration. That is the reason why on describing the
behavior of the vibrating cantilever, it is necessary to take
into account the amount of energy (and in consequence
the amount of displacement) that is related to the given
own frequency. From the point of damping of vibrations,
it is very often sufficient to damp the first n modes, where
n depends on the actual aim of the control. The first
own frequency is related to the greatest vibration of the
cantilever in a given point.

In the area of physical mechanics several approaches are
known that are based on rigid body mass simplification.
They build on the simplified understanding and modeling
of only the first n modes of vibration. Generally, these
approaches arise from nonlinear differential equations.

On the other hand rather elegant approaches for ob-
taining system model of vibrating cantilever arise from
the principles of system identification, such principles are
based mainly on measured input output data. The method
of subspace identification (Van Overschee and De Moor,
1996) is an effective method to determine matrices A, B, C
of the general dynamic system described by deterministic
state space model

x(k + 1) = Ax(k) + Bu(k)
y(k) = Cx(k)

(1)

To obtain the matrices of the state space model, an
identification experiment was performed on the laboratory
equipment shown in Fig. 1. The cantilever was excited
by a piezoelectric actuator fixed to the cantilever. The
input variable u(k) was the voltage at amplifier. The
output measured variable y(k) was the end displacement
of the cantilever (beam) that was measured with laser
sensor. The excitation signal was set as swept sine signal
with varying frequency, in the range of 0.1 − 15Hz. The
output signal had a significant gain of amplitude at the
resonance frequency 8.126Hz. Both the input and the
output signal with resonance are shown in Fig. 2. By
applying the FFT (Fast Fourier Transform) algorithm,
the data from the time domain were transformed to
the frequency domain. With appropriate software toolbox
(Ljung, 2008) the matrices of the scaled system of the
vibrating cantilever were determined with the following
numerical values

x(k + 1) =

[
0.857 1.114

−0.212 0.874

]
x(k) +

[
−1.386
−0.548

]
u(k) (2)

y(k) = [ −0.562 0.699 ]x(k) (3)

Fig. 1. Cantilever laboratory setup
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Fig. 2. Input/Output signals for system identification
(scaling = 1000)

A comparison of agreement between the measured data
and the model is in the Fig. 3. The system in the range
of its first frequency showed linear behavior, which corre-
sponds to a good agreement with the data measured. The
sampling period of the model is 0.01s

3. EXPLICIT PREDICTIVE CONTROLLER

The aim of the explicit predictive control was to demon-
strate the damping effect at the end of a cantilever by min-
imization of its displacement from its equilibrium state.
The task of the control law is to drive piezoelectric actua-
tors in such a way that the control objective is attained in
agreement with the physical constraints and the stability
of the system. In this case, the objective is to bring the
state to its zero position.

To describe the state of the vibrating cantilever, the
following equation is to be considered

x(k + 1) = Ax(k) + Bu(k) (4)
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Fig. 3. Plots of measured frequency based data and iden-
tified model structure

with the assumption that the state x(k) always range in
the polytope given

Pi := {x ∈ Rn|Hix ≤ Ki} (5)

thus, x ∈ Pi. The matrices Hi and Ki are the matrices of
suitable dimensions. Defining the task of predictive control
in the form

min
u

N−1∑

k=0

[uT (k)Ru(k) + xT (k)Qx(k)]+

+x(k + N)T Px(k + N))

(6)

subject to

ymin ≤ y(k + i) ≤ ymax; i = 1, . . . , N (7)

umin ≤ u(k + i) ≤ umax; i = 0, 1, . . . , N − 1

x(k + 1) = f(x(k), u(k)), k ≥ 0

y(k) = Cx(k), k ≥ 0

the following solution in the sense of multi-parametric
programming (Bemporad et al., 2002; Grieder et al., 2005)
can be obtained

u(k) = Fix(k) + Gi (8)

The matrices R, Q, P are the weighting matrices. The
resultant solution leads to partitioning the state space to
particular subspaces. For every subspace different calcu-
lated matrices Fi and Gi are valid. The task defined as
minimization of objective function (6) with constraints
under (7), was solved by Multi-parametric Toolbox (Kvas-
nica et al., 2006). The optimization task had the following
input parameters: ymin = −15, ymax = 15, umin = −0.1,
umax = 0.1,
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Fig. 4. Partitioning of the state space into 19 regions

−20
−10

0
10

20

−10

0

10
−0.1

−0.05

0

0.05

0.1

x1
x2

u

Fig. 5. Look-up table of the control moves

Q =

[
10−12 0

0 0

]
,

R = 10−1,

P =

[
0 0
0 0

]

,with the prediction horizon N = 3. The explicit solution
consists of 19 regions of partitioned state space, as shown
in Fig. 4.

The value of the control action as a function of the state
is shown in Fig. 5.

As can be seen from the values of all control actions for
all the considered states, this procedure is the on-off type
of control, which is logical, as the reshape of the end of
the cantilever, caused by the action of the actuator, is
negligible, compared to the displacement of the cantilever,
caused by the overall vibration dynamics.

4. SIMULATION RESULTS

To simulate the control, the task of state transition from
its initial value x(0) = [−23, 0.5]T to zero equilibrium of
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initial condition x(0) = [−23, 0.5]T

the identified model, given by equations (2) and (3) is
to be considered. The closed loop control simulation is
demonstrated in Fig. 6. From the course of the states and
the output of the model, it can be seen that the control
is able to damp the cantilever from a given initial state in
≈ 1s.

Fig. 7 shows the course of the free response and controlled
response of the model of cantilever vibration from its given
initial state.
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Vibration Control of a Cantilever Beam
Using Piezoelectric Feedback ⋆
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Abstract: This paper describes an experimental laboratory device, which utilizes strips of
piezoelectric material as structural actuators and sensors, emulating behavior of a class of
engineering problems dealing with active vibration attenuation of lightly damped mechanical
systems. As an example of such system a cantilever laboratory beam is taken. Detailed account
is given on the identification process of the feedback signal provided by the piezoelectric sensors
to the device controller. The feedback model is validated both in time and frequency domain,
utilizing a linear quadratic controller as a basis of comparison. The cantilever is excited manually
and using an electrodynamic shaker. The comparison of the piezoelectric sensor based feedback
control and direct high precision industrial laser triangulation feedback are shown. It was verified
during the experiment that a mere second order feedback model based control process covering
the first dominant vibration frequency is comparable to control utilizing direct distance readings.
Moreover the damping effect exceeds the bandwidth of interest as the single-sided cantilever
beam tip deflection amplitude spectra shows no substantial difference between the two feedback
methods for higher structural vibration modes.

Keywords: vibration control, piezoelectric actuators, sensors, feedback control

1. INTRODUCTION

Employing active vibration attenuation techniques in com-
mercial products is slowly becoming a reality. One might
think of aeronautical applications, like the damping of
helicopter rotor wing vibrations, active stabilization of
large space structures or for example vibration attenua-
tion of antenna masts (Boeing, 2004; Phillips et al., 1990;
Blachowski, 2007). Other active and semi-active methods
of vibration damping are taken on by the automotive in-
dustry for controlling suspension systems. The possibilities
of using advanced materials combined with progressive
control algorithms to eliminate undesired vibration effects
is practically limitless (Preumont, 2002; Inman, 2006).

While the proven technologies are transferred into prac-
tice, there is a constant need to investigate further and
widen the boundaries of active vibration damping in re-
search laboratories. A rather important branch of research
is focused on advancing the field of active materials; like
piezoelectrics, electro-active polymers, magneto-rheologic
fluids, shape-memory alloys and others. But no active
control system is complete without the proper control
⋆ The authors gratefully acknowledge the financial support granted
by the Slovak Research and Development Agency under the contracts
APVV-0280-06 and APVV-0160-07, and reviewers’ comments. This
research is also supported by the grant from Iceland, Liechtenstein
and Norway through the EEA Financial Mechanism and the Norwe-
gian Financial Mechanism. This project is co-financed from the state
budget of the Slovak Republic.

algorithm, therefore another essential part of the scientific
process is to investigate how already existing technologies
can benefit from better control methods.

1.1 Motivation

Acquiring a reliable feedback signal is essential for the effi-
ciency and reliability of all control systems. When consid-
ering means of sensing vibration levels, one has to balance
between precision, price and the physical interaction with
the given mechanical system. Mass produced products
need to be cost optimized, what naturally involves trade-
offs in the sensing apparatus and thus also the condition
of the feedback signal. But not only the sensors must be
simple, quite often it is beneficial to keep the computation
load on minimum in order to make optimization based
control algorithms a viable option.

Laboratory applications often consider LASER Doppler
vibrometry to gain feedback signal to the controller. In
addition to great precision, contact-free measurement has
an advantage of preventing structural interaction with the
controlled system. LASER Doppler vibrometers however
are out of question for mass-produced applications, as
their placement is very problematic, the sensor heads and
processing equipment are heavy, large and very expensive.
Industrial grade LASER optical sensors based on trian-
gulation methods are a rather good compromise, since
they are smaller and less expensive than their labora-
tory grade counterparts (Takács and Rohal’-Ilkiv, 2009a).
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Physical dimensions and inconvenient placement is still
an issue, and because of their price range they can be
only recommended for high budget products, like the ones
encountered in the aviation industry and military.

The use of accelerometers is very common in academic
publications, as they are relatively cheap and provide
precise feedback to the control system (Qiu et al., 2009;
Dong et al., 2006; Petersen and Pota, 2003). Real life prod-
uct integration is also a feasible possibility. Accelerometer
miniaturization has come to a point where these devices
can be bonded or mounted to the structural surface with-
out significantly altering its mass-stiffness properties.

Similarly common is the utilization of the direct piezoelec-
tric effect to gain vibration level estimates of the controlled
mechanical structure (Wills et al., 2008; Kermani et al.,
2004; Lin and Nien, 2005; Sloss et al., 2003). In these
feedback control systems a piezoelectric patch is either
bonded onto the structural surface, or directly integrated
into the structure material. Better mass distribution, very
low price and the possibility of direct structural integration
is definitely an advantage over accelerometers. Neither ac-
celerometers, nor piezoelectric wafers may sense the D.C.
component of vibrations, this is however usually not an
issue.

1.2 Problem statement

A lightly damped, cantilever-like active mechanical struc-
ture is given with bonded piezoelectric actuators. An ad-
ditional piezoelectric patch is placed close to the clamped
end and acts as a vibration sensor. The task is to create
a simple second-order linear model to estimate deflections
of the mechanical structure at the beam tip.

The measurement estimates shall be compared to conven-
tionally true deflection levels acquired through a LASER
triangulation device both in time and frequency domain. In
addition to that, possible damping performance degrada-
tion is investigated through comparing damping efficiency
of the estimate based feedback with direct feedback con-
trol.

A second order measurement model includes only the first
resonant mode of the structure. However the inclusion of
the first dominant mode of the lightly damped structure
could be sufficient to control the vibrational behavior even
at higher frequency excitations. Damping performance of
direct and estimate based feedback shall be thus compared
through frequency domain measurements, reaching higher
resonant modes. This shall answer the question whether a
mere second order model is suitable for position estimates,
even when the structure is subject to excitations exceeding
the bandwidth of the model. Using the simplest possible
solution to assess feedback signal may help to keep addi-
tional computational load at minimum, which is essential
in optimization based control systems with short sampling
periods. The paper thus attempts to find a feedback solu-
tion which provides hardware and computation time costs
at bare minimum.

2. HARDWARE DESCRIPTION

A clamped cantilever beam is given, which may model
the general vibrational response of a class of engineering

(a) Active structure

(b) Piezoelectric patch

Fig. 1. A clamped cantilever beam with piezoelectric
sensors and actuators is featured on (a), while detail
of the piezoelectric actuators and sensor is shown on
(b).

problems. This lightly damped mechanical system behaves
similarly to the helicopter rotor beams in flight, manipu-
lation arms or solar panels in outer space and many other
real-life structures.

The experimental laboratory setup assumed throughout
this work is presented on Figure 1(a). The beam is com-
posed of commercially pure aluminum with the dimensions
of 550 × 40 × 3 mm. A heavy base is necessary to prevent
mechanical interaction with the outside.

A pair of piezoelectric actuators is mounted close to the
clamped end. The actuators are identical, manufactured
by MIDÉ having the factory designation mark QuickPack
QP16n. The outside dimensions of the actuator are 45.9×
20.7 × 0.25 mm and it is shown on Figure 1(b). The
actuators are connected counter phase, receiving the same
high voltage signal through a MIDÉ EL-1225 operational
power amplifier. The placement of the actuators has been
influenced by the goal of maximizing deflection amplitudes
at the first resonant frequency.

A third patch identical to the actuators is bonded onto
the structural surface. This piezoelectric patch acts as a
sensor, making use of the direct piezoelectric effect. Its
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optimal placement has not been a subject of this research,
however we have to note that Finite Element Modeling
(FEM) has been used to avoid anti-resonance nodes at
higher frequencies. Other placement criteria included the
minimization of mechanical interaction with the structure,
by placing the minimum amount of lead wires close to the
structural surface. Voltage signal acquired from the sensor
is directly connected to the analogue input of a labora-
tory measurement card, without additional amplification.
When the beam is in first resonance, the output voltage
levels actually exceed the possible input range of the data
acquisition device. A 100 kΩ resistor is installed parallel to
the piezo patch to match the voltage levels with the A/D
input device 1 .

Vibration levels are measured directly through an indus-
trial LASER triangulation sensor, placed at the free end
of the cantilever beam. A Keyence LK-G82 sensor with an
accuracy of ±0.05% and the resolution of 0.2µm provides
direct distance readings in the range of 80 ± 15mm. Mea-
surements are forwarded to a Keyence LK-G3001V central
processing unit for filtering and finally a scaled analogue
voltage signal is passed onto the measurement card. The
distance readings provided by this system are considered
as reference throughout this work.

Figure 2 features the simplified schematic representation
of the laboratory experimental hardware. The computer
marked as xPC Target on the figure serves for implement-
ing the controller and data logging software real-time, on
the Mathworks xPC Target rapid software prototyping
system. This computer contains a National Instruments
DAQ-6030 measurement card with 18bit resolution and
amongst others two analogue outputs with ±10V range,
necessary to drive the amplifiers for the piezoelectric ac-
tuators.

Controller design and development is taking place on a
separate computer, marked as xPC Host on the figure.
The development platform used in this setting is Matlab /
Simulink, where the block schemes responsible for control
and data logging are transferred to the real-time controller
via Ethernet, through the TCP/IP protocol.

3. SYSTEM AND MEASUREMENT DYNAMICS
MODELING

Although it would be possible to create a single dynamic
model, describing the input - output relationship of the ac-
tuator behavior and the piezoelectric patch; creating sep-
arate system and measurement models has its advantages.
If constrained model based predictive control (MPC) is
considered as the choice of control algorithm, a separate
structural model is necessary to enforce constraint limits
on the vibration output. Therefore separate system and
estimation dynamics is assumed in this paper due to the
inspiring possibility to use MPC on lightly damped vi-
brating structure, posing numerous practical issues upon
implementation (Wills et al., 2008; Hassan et al., 2007;
Takács and Rohal’-Ilkiv, 2009c).

1 The A/D device input levels are set to ±10V.

Linear time-invariant (LTI) state-space systems describe
the dynamics of the system and measurement process
according to:

xk+1 = Axk + Buk yk = Cxk (1)

where x is a 2 × 1 state vector, u is a 1 × 1 input, y is
a 1 × 1 output. Matrices A,B and C are the transition
matrix, input matrix and output matrix. Integer k denotes
sampling instances.

3.1 System dynamics

The system dynamics of the experimental device are de-
scribed by a second-order LTI state-space model, modeling
the relationship between voltage input to the piezoelectric
actuators and deflections directly measured at the can-
tilever beam tip in millimeters.

This model has been identified experimentally. A chirp
signal in the range of 0−20Hz, amplified to the polarization
limits of the actuators has been supplied, while the tip
deflections have been logged with a sampling time of
T=0.01 seconds. This sampling period is sufficient for
the given model, since it significantly exceeds the first
resonant frequency of 8.1 Hz. The filtered and detrended
time domain data has been converted into the frequency
domain using Fast Fourier Transform (FFT).

The final state-space model has been created utilizing a
subspace-iteration method as described in Ljung (1999).
The model described by (2) has been already proven in
MPC controlled vibration attenuation, using direct tip
deflection readings as reference (Takács and Rohal’-Ilkiv,
2009a,c).

A =

[
0.867 1.119

−0.214 0.870

]
(2a)

B =

[
9.336E−4

5.309E−4

]
(2b)

C = [−0.553 − 0.705] (2c)

Akaike Final Prediction Error (FPE) criterion for this
model has been calculated to be 0.0142 (-). The model
validation process proved to yield a satisfactory match,
while the transient and frequency response of the model
was also adequate for the considered bandwidth.

3.2 Piezoelectric sensor estimation model

The second order LTI state-space model, describing the
relationship between the measured output voltage of the
piezoelectric sensor and the direct tip deflection readings
has been identified experimentally as well.

A pseudo-random manual excitation has been applied to
the beam, while the exact tip distance readings using the
LASER triangulation system and the voltage output from
the sensor has been logged. The resulting data set has been
pre-processed to remove trends means and frequencies
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Fig. 2. Simplified schematic representation of the laboratory experimental hardware.

exceeding the bandwidth of interest. The final state-space
model has been calculated using the subspace iteration
method featured in Ljung (1999).

After comparing the model output with the validation
data, the state-space system described by (3) has been
selected as the basis for piezo patch based deflection esti-
mation. Examining the transient and frequency response,
model residuals, along with a FPE criterion of 0.0091 (-)
indicated a model suitable for further use in this work.

A =

[
0.987 0.144

−0.274 0.009

]
(3a)

B =

[
3.959E−2

1.851E−1

]
(3b)

C = [34.72 − 1.359] (3c)

4. FEEDBACK MODEL VALIDATION

Experiments performed to validate the tip deflection es-
timation model assume a system model described by (2)
and a piezoelectric sensor feedback measurement model
according to (3). Estimate model sampling has been set
to T = 0.01 s, however a high frequency excitation test
involved a data logging rate of T = 0.0002 in order to
capture dynamics above the bandwidth of interest, while
leaving model sampling at its default value.

4.1 Time domain position estimates

The beam tip has been deflected 10 mm away from
its equilibrium state and released to vibrate under LQ
control 2 . After the initial deflection, the cantilever beam
has not been subjected to other outside excitation. The
results of this experiment are featured on Figure 3.

Figure 3(a) shows measured and estimated tip displace-
ments. As it is expected, the piezoelectric patch based
2 See Section 5 for the controller description.

(a) Measured and estimated beam tip deflection

(b) Piezoelectric patch voltage

Fig. 3. Directly measured beam tip deflections are com-
pared to piezoelectric sensor based estimates on (a),
while (b) shows the corresponding measured voltage
output of the piezoelectric patch .

tip deflection estimate is incorrect when the beam is sub-
jected to slow changes, since it is not picking up the D.C.
component of a changing signal. After the beam starts to
vibrate at sample time 1100, the model tends to slightly
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overestimate positive deflections, however at the following
periods it gets nearly indistinguishable from the precise
LASER reference measurements. The unprocessed direct
voltage output of the piezoelectric sensor patch is featured
on Figure 3(a).

4.2 Frequency domain position estimates

The frequency domain experiment involved an outside me-
chanical excitation provided by a Bruel&Kjær Type 4810
electrodynamic shaker. The shaker has been mechanically
connected to the beam surface 175 mm away from the
clamped beam base 3 . The excitation signal has been
passed onto the laboratory shaker through a Bruel&Kjær
Type 2718 amplifier. A 200 seconds long chirp signal swept
through frequencies of 0-500Hz, exciting the beam through
its first five measurable resonant peaks, up to deflections
of approximately ±15mm at the first.

The single-sided amplitude spectra of laser measured and
piezoelectric sensor based tip displacement estimates are
indicated on Figure 4 4 . The black response is measured
directly, while the lighter shade indicates the piezoelectric
sensor based estimates. Resonant modes are numbered,
where modes (3) and (5) are twisting modes which cannot
be controlled or directly measured using this hardware
configuration (Takács, 2009).

As it is evident from the response, the beam tip deflections
are correctly estimated only around the neighborhood of
the first resonant mode. Neither the model order nor the
native sampling period makes possible to correctly assess
tip position above 15 Hz. Spectral leakage, an artifact of
the FFT transformation is visible beyond this frequency
range for the piezo estimate. This carries no information
and is merely a side-effect of performing FFT on a low
frequency content data. On the other side, near D.C.
position changes and slow vibrations cannot be detected
by the piezoelectric sensor.

If the explicit inclusion of higher order dynamics in the
estimation model is necessary, the model order can be
increased. However this also leads to a need to increase
model sampling rate, which could be an issue for compu-
tation intensive control algorithms like MPC (Takács and
Rohal’-Ilkiv, 2009b).

5. DAMPING PERFORMANCE

To find out whether the use of estimated beam tip de-
flections in the feedback control loop cause a significant
degradation in control performance, a series of experiments
were performed both in the time and frequency domain.
Deflections have been measured utilizing the LASER tri-
angulation method, while the system has been subjected
to identical excitation with identical control methods. The
only difference was the use of direct measurements or
piezoelectric sensor based feedback estimates.

The control strategy considered throughout the damping
performance comparison test was a simple linear quadratic
3 This mechanical connection has been only present when the shaker
was needed, time domain tests were performed without this addition.
4 Note that the input force has not been measured, therefore the
featured response is not a transfer function - it only analyzes the
nature of the output signal in the frequency domain.

(LQ) controller. The output of this controller has been
saturated to ±120 V in order to prevent depolarization of
the piezoelectric material (Spangler, 2007; MIDÉ, 2007).
The LQ controller has been calculated using the state
space model according to (2), a state penalty matrix
Q = CT C and an input penalty R = 10−4. Controller
sampling rate has been set to T = 0.01s. The input
penalty is based on previous experiments, and its value
is suitable for the previously mentioned saturation limits
(Takács, 2009). The LQ controller gain K can be expressed
according to (4).

K = [12.97 − 125.50] (4)

Figure 5 indicates the simplified block scheme of the
control software implemented on the xPC real-time rapid
software prototyping system. The analogue voltage output
is acquired through the measurement card, this includes
exact measurements from the laser and the voltage signal
from the piezoelectric sensor. The piezo sensor voltage
is passed through the estimation model, while a switch
enables the user to select between direct or estimated po-
sition feedback signals. The feedback then passes through
a Kalman state estimator, and the resulting state esti-
mates are multiplied by the LQ gain vector. Outputs are
saturated and adjusted to the amplification level of the
power amplifier. The block scheme also includes input to
the electrodynamic shaker and means for data logging.

Plots in this section do not indicate free response without
control. This is to keep the responses clear and readable.
Saturated LQ control with direct feedback provides a very
effective damping performance, effectively reducing set-
tling times by an order of magnitude. This is comparable to
constrained MPC control featured in (Takács and Rohal’-
Ilkiv, 2009b,c; Takács, 2009).

5.1 Time domain test - initial deflection

The beam has been deflected to a position 10 mm away
from its equilibrium and then released to vibrate under
saturated LQ control. As it has been previously mentioned,
the two scenarios differ only in the means of acquiring the
feedback signal and all responses are measured directly
through the triangulation device.

Beam tip vibrations following the release of the struc-
ture are featured on Figure 6(a). As it is evident from
this figure, the two responses are indistinguishable, the
estimated feedback values do not degrade the damping
behavior under saturated LQ control.

A very slight difference between the two responses is
observable on Figure 6(b), showing the voltage signal sent
to the piezoelectric actuators. The responses are identical
up to the time sample 120. After this point the differences
are to be attributed to the fact, that unwanted outside
excitations occur in both cases and they are compensated
by the controller. These effects are only observable when
the beam is near its equilibrium state.

5.2 Frequency domain test - electrodynamic shaker

The possible damping performance degradation attributed
to the use of estimated tip position feedback has been
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Fig. 4. Measured and piezoelectric sensor feedback estimated beam tip deflections in a single-sided amplitude spectrum.
Numbers denote corresponding structural vibration modes.

Fig. 5. Simplified block scheme of the controller algorithm.

investigated in the frequency domain as well. The mechan-
ical structure has been excited using the laboratory shaker
setup described in 4.2.

Two tests were performed: one for the bandwidth of
interest and the other for higher frequencies. The first
test involved an excitation through an amplified chirp
signal for the bandwidth of 0 − 20 Hz. All of the discrete
sampling periods were set to T = 0.01. The second test
was aimed to investigate wheter the low order structure
and position estimate model provides satisfactory feedback
at higher frequencies. For this test the estimation model
and controller sampling frequency was left at its original
value, however the excitation signal and data logging has
been sampled by an increased rate of T = 0.0002 seconds.

The directly measured single-sided amplitude spectra of
beam tip vibrations for the direct and estimated feedback
controlled systems is featured on Figure 7. The two control
schemes are practically indistinguishable in the bandwidth
of interest, just as it is indicated by 7(a). In the region of
the first resonant frequency, both control feedback schemes
perform equally well.

According to 4.2 the piezoelectric sensor based low-order
feedback models are only useful close to the frequency
range around the first structural resonant frequency. De-
spite of this fact the results featured on Figure 7(b) indi-

cate that the estimated control scheme gives comparable
results to the one with access to direct feedback read-
ings. This experiment utilized second order system and
measurement models, however it has been excited with
frequencies high above its normal bandwidth. As it is
indicated by Fig. 7(b) the damping performance of the
model estimated feedback scheme is very similar to the
one with access to direct deflection measurements.

6. CONCLUSION

A low order position estimation model, based on piezoelec-
tric sensor signals for a lightly damped active structure has
been introduced in this paper. Along with the experimen-
tal validation of the estimator, the control performance has
been evaluated for the direct measurement and estimate
based controllers.

The free and controlled vibration response of the beam
tip in the time domain is dominated by the first structural
resonant mode, thus a second order tip estimation model
is sufficient to generate responses closely matching to
reference values. The frequency domain experiment clearly
indicates limitations of such low order models, along with
the physical properties of the piezoelectric sensors: the
estimation model provides the best results in the vicinity
of the first structural resonance mode.

Preprints of the NIL workshop
Jan 10–15, 2011, Bratislava, Slovakia Takács, G., Rohal’-Ilkiv, B.

160



(a) Directly measured beam tip position

(b) Voltage signal to actuators

Fig. 6. Direct position feedback based control compared
to piezoelectric sensor estimated feedback in an initial
deflection test is indicated on (a), while corresponding
controller voltage outputs are presented on (b).

The controlled vibration verification tests show, that the
the controller having access to estimated tip deflections
performs nearly identically to the one utilizing direct mea-
surements. This is not only true for the initial deflec-
tion test performed in the time domain, but also for the
frequency domain. According to these experiments, the
damping effect of both control schemes is identical. Ad-
ditionally, the estimate based feedback controller provides
comparable damping performance to the direct measure-
ment feedback counterpart even at excitation frequencies
exceeding the original bandwidth of interest.

It may be concluded that a piezoelectric sensor based
feedback signal utilized on a lightly damped vibrating
structure offers a damping performance comparable to
directly measured feedback control, even when using a
simple second order feedback estimate model.

6.1 Future works

The inclusion of higher order beam resonance modes in
the estimation models may bring a qualitative increase
in the precision of tip position estimates. However it
still remains a question whether there are any practical
advantages to use high order state-space models in model
based predictive control of such and similar lightly damped
structures. On the other side with larger model orders
increased computation times are always to be expected,

(a) LASER measured frequency response

(b) Wide-band frequency response

Fig. 7. Direct LASER triangulation measured response is
indicated on the low frequency single sided amplitude
spectra on (a), while (b) shows damping performance
for higher structural modes.

which may pose practical problems in the implementation
of computation heavy optimization based control methods.
Future works shall address these questions in more detail.

Further works shall investigate the possibility to utilize
other types of sensors in estimating position changes of
lightly damped vibrating structures. The use of capacitive
proximity sensors in active vibration damping systems is
somewhat unusual, however this contact-free measurement
method could offer numerous advantages. It is important
to study whether the bandwidth limitations of such a
sensor permit its use as feedback source in vibration at-
tenuation, or how its dynamic reaction range is influenced
by using aluminum instead of standardly assumed steel.
An upcoming investigation shall explore this attractive
alternative too.
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Abstract: The main purpose of this paper is to proposes application of model predictive
control and subspace identification techniques for control and estimating of a linearized state-
space laboratory helicopter model using input-output data. A Model Predictive Control (MPC)
based algorithm equipped with an integral action is presented. The algorithm is defined for
physical model of a simplified laboratory helicopter with two rotors. The helicopter model
represents nonlinear multi-input multi-output (MIMO) mechanical system (with two-inputs and
two-outputs) characterized by strong coupling effects. Based on the discrete time linear model a
predictive controller with bounded input signals and guaranteed closed loop stability is designed
and implemented. The resulting algorithm is implemented by means of Matlab/Simulink Real-
Time workshop and xPC Target prototyping environment to capture the system fast dynamics.

Keywords: predictive control, MIMO systems, guaranteed stability, target sets, laboratory
helicopter model

1. INTRODUCTION

The MPC controllers nowadays represent a well-established
control technology used in many processes especially if
various process constraints must be meet, see (Morari
and Lee, 1997), (Qin and Badgwell, 2003), (Maciejowski,
2002), (Rossiter, 2004) and (Wang, 2009). Mostly MPC
design assumes Llinear Time Invariant (LTI) models of
the controlled plants. These models are usually formulated
as ARX or state-space models. The ARX models can by
standardly identified from the input/output data collected
from experiments with the plants, the state space-space
models can by formulated usually using physical principles
reflecting the process dynamics. In order to implement
the model predictive controller for a nonlinear plant the
linearization in a vicinity of a given reference trajectory
is usually considered. This paper is focused on design
of a MPC algorithms for reliable control of a simplified
laboratory helicopter model with two rotors using dual
mode approach and closed loop paradigm (Kouvaritakis
et al., 2000b) to guarantee the system closed loop stabil-
ity and utilizing subspace-based methods for the system
identification.

⋆ The work has been supported by the Slovak Research and Devel-
opment Agency under grant APVV-0160-07. This research is also
supported by the grant from Norway through the EEA Financial
Mechanism and the Norwegian Financial Mechanism. This project
is also co-financed from the state budget of the Slovak Republic. This
support is very gratefully acknowledged.

It is important to have a proper mathematical model of
the system being controlled. In the case of laboratory
helicopter setups most of the mathematical description
of helicopter dynamics presented in literature are based
on classical Newtonian physics. Resulting mathematical
model of the system then becomes a set of linear and non-
linear differential equations with several non-linear static
functions. Such models are often very complicated. In
order to apply the models for helicopter control a group of
physical parameters and non-linear static functions should
be analyzed and determined first, which is not elementary
task and may cause significant model uncertainties. More-
over, majority of control techniques expect the resulting
helicopter dynamics model in a more simple form of lin-
ear/linearized state-space structure with all matrix entries
known. Typically the classical physical modelling methods
lead to state-space structures in which the parameter val-
ues (matrix entries) are not directly available. Therefore,
in such cases any system identification techniques which
can generate a direct estimate of alternative state-space
structures as well as of parameters from the system sam-
pled input/output data sequences may be very valuable.

Subspace-based state-space identification methods have
recently been proposed as an alternative to the more
tradition identification techniques aimed to obtain state-
space models and are ones of the main stream of research in
system identification today. These methods are attractive
not only because of their numerical simplicity and stability,
but also for their ability directly estimate state-space rep-
resentations without using particular canonical (minimal)
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parameterizations. Some experiences with application of
the methods to identification of helicopter dynamics are
reported in (Lovera, 2003). The attractiveness is further
increased by small number of parameter (essentially only
one) to be selected for determining the model structure
without any restriction on model generality. The obtained
state-space forms are very convenient for solving problems
of optimal state estimation (Kalman filtering) and control.
See, for instance, (Overschee and Moor, 1994), (Verhaegen,
1994) and (Overschee and Moor, 1996) for further discus-
sion of subspace identification methods features.

In this paper the subspace identification is applied for
obtaining an efficient state-space description of laboratory
helicopter setup and used for design of multi-input multi-
output (MIMO) MPC equipped with integral action and
satisfying given amplitude and rate input constraints. The
resulting algorithm is implemented by means of Mat-
lab/Simulink Real-Time workshop and xPC Target to
perform sufficiently fast real-time computer control of the
helicopter physical model constructed in our lab.

2. DESCRIPTION OF THE LABORATORY
HELICOPTER MODEL

The laboratory helicopter setup constructed in our lab
basically consists of a beam carrying at its ends two
propellers - the main and the tail - driven by DC motors,
see Figure 1. The beam is jointed to its base with an
articulation point which allows the beam to rotate so
that its ends move on spherical surfaces. This connection
enables two degree of freedom in the helicopter body
movement:

• rotation around the horizontal axis → elevation angle
ξ;

• rotation around the vertical axis → azimuth angle θ.

Fig. 1. The laboratory helicopter setup

The axes of the main and the tail propeller and the vertical
and the horizontal helicopter axis are perpendicular to

each-other so that the movement in the vertical plane and
the movement in horizontal plane are each affected by
the thrust of only one propeller. A counter-weight fixed
to the beam determines a stable equilibrium position. The
system is balanced in such a way, that when the motors are
switch off, the main propeller end of the beam is lowered.
As it is usual in similar small laboratory helicopter setups
the control of submitted system is achieved exclusively by
controlling speeds of the propellers at fixed angle of attack.
The range of the helicopter body rotation (measured by
incremental sensors) is ±30 degree in elevation and ±145
degree in azimuth.

The described helicopter physical model can be repre-
sented as a non-linear multi-variable system with two
inputs (manipulated in the range interface voltage [0, 10]
Volts):

• u1 - voltage driving propeller speed of the main
motor;

• u2 - voltage driving propeller speed of the tail motor;

and two outputs (measured in angular degrees):

• y1 = ξ - elevation angle;
• y2 = θ - azimuth angle.

The interface voltages u1 and u2 applied for setting of
the helicopter inputs are converted to appropriate voltage
values that drive the propeller DC motors. Output ξ
denotes the elevation angle, i. e. the angle between the
vertical axis and the longitudinal axis of the helicopter
body, whereas output θ denotes the azimuth, i. e. the angle
in the horizontal plane between the longitudinal axis of the
helicopter body and its zero (initial) position.

The voltage driving the main and the voltage driving the
tail motor affect both the elevation angle and the azimuth
angle, therefore we can say that the interaction make the
system multivariable. It is also worth to mention that the
used mechanical simplification with fixed angle blades of
used propellers does not necessarily translate into sim-
plified dynamics. On the contrary, the input torques and
forces are applied via aerodynamical effects, as well as ad-
ditional coupling effects appearing between the helicopter
body and propellers dynamics, due to the reaction forces
and torques arising at the acceleration or deceleration
of the propellers. These increased couplings effects have
important implications on the control dynamics of the
helicopter system.

3. THEORETICAL MODELLING

There are two well known approaches to system dynamics
modelling: theoretical and experimental. These can be
applied to the problem of laboratory helicopter modelling.
As mentioned above the helicopter system is a highly non-
linear two-inputs two-outputs system, and it is generally
a difficult task to develop its exact mathematical model.
Different approaches have been used to derive the dynam-
ics of helicopter systems and presented in the literature,
see e. g. (Avila-Vilchis et al., 2003), (Huba et al., 2003),
(Unneland, 2003) and (Karer and Zupančič, 2006).

Following simplifying modelling assumptions are widely
accepted in the literature. First, it is assumed that the
dynamics of the propeller subsystems can be described by
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ordinary differential equations. Further, it is assumed that
the friction in the system suspension is of the viscous type.
It is also assumed that the propeller - air subsystems can
by described in accordance with the postulates of stream
flow theory. Exploring the vertical and horizontal plane
dynamics, the torques of the propulsion forces of the main
and tail propellers, we can arrive to mathematical model
of the helicopter set-up in a form of six nonlinear ordinary
differential equations, being the state equations, and six
algebraic output equations, represented by vector-matrix
description:

ẋ = f(x) + g1(x)u1 + g2(x)u2 (1)

y = [x6x3]
T (2)

with state vector:

x = [x1x2x3x4x5x6]
T (3)

where the matrix and vector functions f(x), g1(x) and
g2(x) depend on more then 20 various helicopter (design
and physical) parameters which have to be determined;
x1 is the angular velocity of the tail propeller, x2 is the
horizontal angular momentum of the beam, x3 is the
azimuth position of the beam, x4 is the angular velocity
of the main propeller, x5 is the elevation velocity of the
beam and x6 is the elevation angle of the beam. For detail
explanation see e.g. (Huba et al., 2003), (Unneland, 2003)
and (Gorczyca and Hajduk, 2004).

In order to apply the model structure (1) - (3) for control
of a laboratory helicopter all the quantities and involved
non-linear static characteristics should be determined first.
This is a complicated, time-consuming and iterative pro-
cess. Therefore it is useful to find some balance between
the simplicity and complexity of the modelling procedure
according to the purpose of resulting model and operating
conditions. Such model has to be clear, concise and flexible
for controller design and yet it must consider relevant
features of the controlled system. Subspace identification
methods appear to have a potential to approach similar
goal.

4. EXPERIMENTAL MODELLING

In the past years various time domain methods for iden-
tifying dynamic models of the aero-mechanical systems
from experimental data have appeared. Much attention
have been given to subspace identification methods for
identifying state-space models from sampled data records.
This section based on the SMI Toolbox of (Haverkamp
and Verhaegen, 1997) presents a simple study how to cre-
ate concise and flexible (linearized) helicopter state space
representation suitable for MIMO MPC design.

The identification procedure starts from experiment design
with the laboratory helicopter model in order to generate
suitable data sets. This incorporates the input signals
design for open-loop system excitation near chosen equilib-
rium point, choice of the sampling rate and experiment du-
ration. Two uncorrelated multi-level pseudo-random signal
were applied simultaneously into both inputs for proper
excitation of the helicopter outputs with sampling rate 0.1

sec and duration of experiment 400 sec. In Figure 2 and
Figure 3 the generated inputs and outputs are shown over
100 sec period on a visual approval.
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Fig. 2. Experiment design for elevation excitation

After the obtained data pre-processing (detrending, filter-
ing, removing outliers) a model structure has to be chosen.
The number of parameters that need to be given to the
subspace identification algorithm is reduced to only one,
an upper-bound of the expected order of the system. We
picked out order 12 for the upper-bound. The state-space
model of the system using functions of the SMI Toolbox is
estimated within tree steps. In the first step information
about the order of the system is extracted from the input-
output data using the singular value plot for estimation of
the order of the system. In the second step the A and C
matrices of the state-space model:

xk+1 = Axk + Buk (4)

yk = Cxk + Duk + vk

are estimated from the compressed data, obtained in the
first step. In the third step, the B and D matrices and
the initial state are estimated. The singular value plot
calculated for our input-output data record is depicted on
Figure 4.

From the singular value plot we estimate the system order
n to be five, n = 5. Next we estimate numerical values of
A and C and finally we find B and D using the internal
functions of the mentioned toolbox.

At last the obtained model has to be validated. This can
by done by comparing the estimated outputs of the model
with the true outputs measured on the helicopter system,
see Figure 5 for the elevation data and Figure 6 for the
azimuth data. In both case we can recognize satisfactory
coincidence.

5. MODEL PREDICTIVE CONTROL OF THE
HELICOPTER

The field of MPC has been elaborated in detail in the
literature and this type of control seems to be very
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Fig. 3. Experiment design for azimuth excitation

0 2 4 6 8 10 12
10

0

10
1

10
2

10
3

10
4

order of the system

singular values

Fig. 4. The singular values plot

attractive for practical control purposes due to ability
to meet given process constraints. In this section based
on the dual-mode approach and closed-loop paradigm a
design procedure of guaranteed stability two-inputs two-
outputs MPC controller with internal action intended for
the helicopter model stabilization and tracking of reference
values is briefly outlined.

We want to regulate the discrete-time linear time invariant
system (4) (considering D = 0) to the origin. MPC solves
such a problem in following way. Given the LTI system:

xk+1 = Axk + Buk (5)

yk = Cxk

and performance index:

J(u) =
∞∑

i=1

[xT
i Qxi + uT

i Rui] (6)
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Fig. 5. Validation of the elevation data (full line - true
data, dot line - model data)
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Fig. 6. Validation of the azimuth data (full line - true data,
dot line - model data)

where Q and R are the state and input weighting matrices,
and

Q � 0, R ≻ 0,

the aim is to find the input trajectory uk defined as (closed

loop paradigm):

uk+i =

{
Kxk+i + ck+i, i = 0, 1, . . . , N − 1
Kxk+i, i ≥ N

(7)

(where K is LQ optimal feedback gain and N is finite pre-
diction horizon) in such a way that the performance index
(6) reaches its minimum subject to following amplitude
and rate input signal constraints:

u ≤ uk ≤ u
−∆u ≤ ∆uk ≤ ∆u

(8)
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After substitution (7) to (5) and applying autonomous
augmented state-space description, see (Kouvaritakis et al.,
2000a), we can obtain the performance index (6) in the
following more efficient form for real-time calculations:

J = fT
k Sfk (9)

where:

fk =
[
cT
k cT

k+1 . . . cT
k+N−1

]T
(10)

and S is a positive definite matrix. Then using the tech-
nique elaborated in (Kouvaritakis et al., 2004) it is a simple
way to introduce integral action to resulting control law
for improving steady-state performance and elimination
of disturbances. All the computational burden reduces to
a QP procedure for minimization of (9) subject to con-
straints (8). The state variables x(k) in (7) usually can not
be measured and need to be estimated. For this purpose a
discrete-time steady state Kalman filter is further used.

6. IMPLEMENTATION

In this section some details of the implementation of the
MPC controller (7) and simulations are presented.

From the hardware and software point of view the MPC
controller applied to our laboratory helicopter setup was
implemented using Matlab/Simulink Real-Time Workshop
and xPC Target. For interaction with the helicopter model
an Advantech I/O-cards with AD and DA convertors
were used. The target machine was a pentium II with
CPU running at 350 MHz. The overall realization of the
helicopter control, host and target machines are shown in
Figure 7.

The main control task during experiments was track-
ing and stabilization of the helicopter output y(k) =
[ξ(k) θ(k)]T at in advance given reference values yr. After
proper tuning of control horizon N (N = 25) the obtained
typical results are depicted at Figure 8 for tracking de-
sired reference values for the elevation and at Figure 9
for tracking desired reference values for the azimuth. The
simulations was performed with input constraints u = 3,
u = 8, ∆u = 0.15 and for sampling period 0.1 seconde.

7. CONCLUSIONS

The applicability of the suggested MPC technique for
control of the laboratory helicopter set-up based on sub-
space identification methods was evaluated through real-
time experiments. The presented results are only the first
outputs from the research initiated in this direction.
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Abstract: The paper presents the solution of the time sub-optimal control applied for the three-level 
hydraulic system. The control design has been originally developed for the triple integrator system. It is 
based on switching surfaces. The high sensitivity of the time optimal controllers is well-known and the 
proposed sub-optimal controller tries to reduce it by smooth change of control values between the control 
limits. The changes have an exponential behavior. New parameters introduced during the design 
correspond in linear cases to the poles of the closed loop system. They enable to tune the control changes. 
Using the exact linearization method the controller developed for the triple integrator has been applied to 
the nonlinear three-level hydraulic system. 
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1. INTRODUCTION 

The time optimal control belongs to one of the most 
important control strategies. It was heavily studied in 50-ties 
and 60-ties of the previous century (Athans and Falb, 1996) 
but due to its high sensitivity to unmodelled dynamics, 
parametric variations, disturbances and noise it was later 
suppressed by the pole assignment control.  Nowadays there 
exist several strategies how to cope with this problem and so 
the time optimal control plays an important role in the 
modern control theory. 

Generally, the time optimal problem can be solved by 
computation of switching surfaces. These can be derived 
using the Pontryagin’s maximum principle. A different 
approach is offered by dynamic programming based on the 
Bellman’s optimality principle. Another way was presented 
by Pavlov who solved switching surfaces from phase 
trajectories (Pavlov, 1966). But switching surfaces can be 
also expressed by the set of algebraic equations (Walther et 
al., 2001) that results from the time solution in the phase 
space. For higher order systems it can be rather complicated 
to find the exact solution. In this paper we will apply the set 
of algebraic equations extended by additional parameters to 
the simple third order system represented by the triple 
integrator. 

The controller designed in this paper tries to combine 
qualities of both above mentioned approaches (i.e., the time 
optimal and pole assignment control) (Huba, 2006). Although 
the time optimal control belongs to the nonlinear class of 
controllers there is a set of coefficients introduced in this 
paper that can be in the linear case identified with the set of 
poles of the closed loop system. In the nonlinear case these 
coefficients specify exponential changes from one limit 
control value to the opposite one. Of course, including the 
additional parameters complicates the set of algebraic 
equations and resulting switching surfaces. The control law is 

then derived in relation with the measured position of the 
current state with respect to the designed switching surfaces. 

In this paper we aim to show that the controller that has been 
originally designed for the linear system is suitable also for 
control of nonlinear systems. The designed controller will be 
applied to the tree-level hydraulic system and will be 
compared with classical approaches as pole assignment 
control and exact linearization method.  

The paper is organized in nine chapters. After introduction 
and problem statement chapters there is the main chapter 
where the design of the sub-optimal controller is described in 
details. This chapter discusses the nonlinear dynamics 
decomposition and regions of the switching surface. There is 
a corresponding control law derived for each region. The 
fourth chapter shows time responses of the designed 
controller and compares it to the time optimal controller. The 
fifth chapter describes the three-level hydraulic system. The 
sixth and seventh chapters deal with linear pole assignment 
and exact linearization control methods. The eighth chapter 
shows the application of derived controller to the nonlinear 
hydraulic system and the paper is finished with short 
conclusions. 

2. PROBLEM STATMENT 

Let us consider the linear system given in the state space 
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that represents the triple integrator. The control input signal is 
constrained 

 (2) 21 UUu =

The task is to design the time sub-optimal controller what 
means to drive the system from an initial state 
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]  to the desired state  in a minimum time 
 under the additional condition that limits the changes of 

the control action between two opposite values. When it is 
required that these changes should have an exponential 
behavior the additional condition can be expressed by a scalar 
function  representing the distance of the current 
state  from the switching surface (curve, point) and it holds 

wx
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dt

d
iii
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For the sake of simplicity we should admit that using a 
coordinate transformation it is always possible to set the 
desired state equal to the origin . 0x =w

The coordinate transformation together with the exact 
linearization method will be used when we will try to apply 
the designed controller to the nonlinear system represented 
by the three-level hydraulic plant.  

3. CONTROLLER DESIGN 

It is well known that minimum time optimal control with 
saturated input leads to the control action with at most n 
intervals switching between limit values where n represents 
the order of the system. Usually the control algorithm results 
in deriving switching surfaces as functions of states which 
signs determine the switching times. It can be very hard task 
to express these functions exactly and there is no general 
solution for higher order systems ( ). Bang-bang control 
in practice is not desirable because of chattering and noise 
effects but there are techniques have to cope with them (Pao 
and Franklin, 1993, Bistak et al. 2005).  

3>n

The presented sub-optimal controller design belongs to one 
of them. This time the control action will not be calculated as 
the sign of the switching surface but will result from (3). If 
we apply the condition (3) also for the switching curve and 
switching point this will influence the construction of the 
switching surface itself. We will explain it with the help of a 
state vector nonlinear decomposition. 

3.1 Nonlinear Decomposition 

Let us consider ordered coefficients  

0123 <<< ααα  (4) 

Then the eigenvectors 
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form a base of the state space. In the linear case any point of 
the state space can be expressed as 

∈++= 321332211 ,,,vvvx

∑
=

=
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iqu

321 xxxx

 (6) 

Because the control signal is limited only the points where 

 fulfils (2) are covered by (6). In order to express 

the whole space we have to introduce the nonlinear 
decomposition of the state  

 (7) = + +
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consists of  a linear part given by the parameter  
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and a nonlinear part specified by the parameter t  

 (10) 

After substituting (1) and (5) into (8) one gets 
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If we take the subsystem  it represents a one-dimensional 
variety (Cox et al., 2007) that corresponds to the switching 
curve. Points from the linear part of  where (9) is fulfilled 
satisfy (3), i.e. they are decreasing the distance ς  from the 
origin. In this case the system is moving along the line. The 
other points of the subsystem  given by (10) could not 
fulfill (3) because of the limited control value (2). They are 
approaching the linear part of  with the limit control value 
so they are moving along the trajectory in the form of a 
curve. In this case (3) is superimposed by (2).  

1x

1x

 

Fig. 1. Subsystem  representing the switching curve 1x

2

Similarly we can create a two-dimensional variety that will 
express the switching surface. We simply add to the 
subsystem   the subsystem x . The points of the 1x
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subsystem  become the target points for the second 
subsystem .  

1x

2x

2112 xx += x  (12) 

This time we define the distance 2ς  in the direction of the 
second eigenvector . The points of the  try to reach the 

 points according to (3) if it does not break (2). Otherwise 
they are moving with the limit control value  given by 
(10).  

2v 2x

1x

2q

Again there exist a linear and a nonlinear parts of the 
subsystem . In combination with the previous subsystem 

 we get four possibilities, i.e. four regions of the switching 
surface with respect to the limit and nonzero values of 

, , , t . If we take into account the parameter 

2x

2

1x

1q 2q 1t 2,1=j  
the number of the regions doubles. Later on we will describe 
these regions in details and derive for each of them the 
corresponding control value. 

 

Fig. 2. Regions of the switching surface 

To cover the whole space we should realize also the third 
subsystem  but in the presented control algorithm design it 
is not necessary. To give reasonable results that can be 
applied in real time applications we simplified the third 
subsystem to following one  
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It represents the unit vector in the direction of the x-axis 
multiplied by the quotient . Thus the quotient expresses 
the distance ς  between the current state and the switching 
surface that is measured in the direction of the x-axis. This 
simplification enables easier to localize the initial state with 
respect to the regions of the switching surface because it 
represents the projection of the switching surface to the (y,z)- 
plane where the borders between regions are parabolic curves 
or lines.  

In (Ťapák et al., 2006) one can find the solution of the control 
algorithm when the third subsystem was given by the third 
eigenvector  multiplied by the quotient  3q

Rqq

3v

∈= 3333 ,vx

it

iq

RRfzyfx →= 2:;),(

33 q=

 (14) 

but this was not in the form suitable for real time systems. 

After completely decomposing the system to the three 
subsystems (7) it is necessary to derive the formula of the 
corresponding region of the switching surface. This comes 
from the set of equations (12) when the parameters  or 

are evaluated from the last two equations and replaced in 
the first one. Then one gets the formula for the corresponding 
switching surface in the form 

 (15) 

Now the resulting control value can be computed from (3) 
when we realize that the distance ς  can be expressed as 
the difference between the x-coordinate of the initial point 
and the x-coordinate of the switching surface given by (15) in 
the form  ),( zyf

),(3 zyfx  (16) ς = −

After substituting (16) into (3) and taking into account (1) it 
results in 
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Finally the control value u  can be isolated 
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The resulting control value u  must be limited by (2). 

As one can see from (18) the only one term not evaluated yet 
is  representing the switching trajectory. Because it 
differs according to the regions of the switching trajectory we 
will evaluate it individually. 

3.2 Control for Region QQ 

The region QQ denotes the subset of (12) where both 
subsystems  and  are in the linear cases, i.e. (9) is 
fulfilled for  and . The parameters   and q  can be 
evaluated from the last two equations of the set (12). After 
using (11) and substituting t  into (12) one gets 
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And for parameters q  and  it yields 
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By the substitution of  (20) and (21) into the first equation of 
(19) we derive the analytical expression for the region QQ 
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According to (18) the control value u  results in the form 

zyy 31323 ααααα +−−
xzzyu 2131221 ααααααα +++−=

 (23) 

This is the well-known linear pole assignment controller for 
the triple integrator. 

3.3 Control for Region TQ 

By TQ we denote the region of the switching surface when 
the subsystem  is in the linear cases, i.e. for its states (9) is 
valid and the subsystem  is in the nonlinear cases, i.e. (10) 
comes true. The procedure how to derive the control value is 
very similar to that one performed in the previous region QQ. 
First we express (12) when  and  

1x

2x

jUq =1 02 =t

 (24) 

For this and following calculations we have used the Maple 
computer algebra system and because of the complexity of 
several expressions we have used the Maple outputs.  

Now it is necessary to solve the last two equations of the set 
(24). The difference consists in  that the second equation of 
the set (24) is now the quadratic equation. From its two 
solutions we have chosen such one that assures the positive 
value of . Then after introducing the notation for the 
discriminant DTQ  

2t

 (25) 
the parameters  and  it can be expressed 2q 1t

 (26) 

 (27) 

Again we substitute (26) and (27) into the first equation of 
(24) and get the expression for the region TQ 

 (28) 
From (18) the control value  is u

 (29) 

3.4 Control for Region TT 

The region TT denotes the subset of (12) where both 
subsystems  and x  are in the nonlinear cases, i.e. (10) is 
fulfilled for t  and . Again the parameters  t  and  can 
be computed from the last two equations of the (12). This 
time we substitute q

1x 2

1 2t 1 2t

jU=1 jj UUq −= −32 and  into (12) 

 (30) 
and when solving the last two equations again the criterion 
for the choice of the right solution is that the times   and  
must be positive.  

1t 2t

 (31) 
 (32) 

 (33) 
After using (32) and (33) in the first equation of the set (30) 
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the points of the region TT can be expressed 

 (34) 
In this case the resulting control value resulting from (18) is 
the most complicated one 

 (35) 

3.5 Control for Region QT 

The last region of the switching surface denoted QT is very 
similar to the second one denoted TQ. As the name says the 
combination of parameters   and  values is opposite to 
the region TQ. Here the first subsystem  is in the linear 
case, i.e. its states comply with (9) and the second subsystem 

 fulfils (10) that means t  is nonzero. Therefore we 
substitute   and  in (12)  

iq it

1x

 (36) 
First we solve parameters  and t  from the last two 
equations of the set (36). From the solution of the quadratic 
equation we choose that one that gives the positive solution 
of . After introducing discriminant DQT 

1q 2

2t
 (37) 

we get  
 (38) 

 (39) 

To express the points of the region QT we substitute (38) and 
(39) into the first equation of the (36) 

 (39) 
The control value results from (18) 

 (40) 

3.6 Control Algorithm 

The control algorithm consists in the localization of the initial 
state to one of the above mentioned regions and then of the 
control value calculation. But before we have to specify the 
parameter . Then we can calculate the parameters . 
According their values we can find the region to which the 
initial point belongs and finally evaluate the control value. 

j iq

START 

2 2

21 tt = 132 qUq j −= −

x 1. Evaluate 1q according (20) and 2q according (21) 
2. IF 1q  fulfils (9) AND 2q  fulfils (9) THEN calculate 

u  according (23) – Region QQ 
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3. IF 1q  fulfils (9) AND 2q  NOT fulfils (9) THEN 

calculate 
2

)( 2qsign  AND GOTO 8 3j −
=

4. Calculate 
2

)(3 1qsignj +
= , jUq =1  and  

according (26) 

2q

5. IF 2q  fulfils (9) THEN calculate u  according (29) – 
Region TQ 

6. IF 02 <jUq  THEN calculate u  according (35) – 1st 
part of the region TT 

7. Calculate 
2

)(3 1qsignj −
=  

8. Evaluate 1q  according (38) 
9. IF 1q  fulfils (9) THEN calculate u  according (40) - 

Region QT 
10. Evaluate u  according (35) – 2nd  part of the region 

TT 
END 

It is important to notice that at the end the control value 
computed according this algorithm must be limited by (2). 

4. EVALUATION OF DESIGNED CONTROLLER 

To show the performance of the designed controller we have 
carried out several simulations that differ from the starting 
point, parameters of the controller, and constraints. In the Fig. 
3 one can see the time responses from the initial state 

 under nonsymmetrical control value 
constraints
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Fig. 3. Time responses of state and control variables. Sub-
optimal controller with nonsymmetrical constraints. 

All three pulses of the time optimal control can be mentioned 
but the control value switches from one limit value to the 
other one smoothly. The change rate is given by the choice of 
parameters

The comparison of the time sub-optimal control with the 
optimal one is shown in the Fig. 4. This time the starting 
point was [ ]t125.47916.15 −=x

6,3,5.1 321 −=
. The other parameters 

were 

α . In this case the values of iα  were 
3,2,1 321 −=−=−= ααα  

−=−= ααα  and 11−=u . 
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Fig. 4. Comparison of time optimal and sub-optimal control. 

There are not big differences in the time responses of the 
state variable x . But one can see the difference in the 
behavior of the control variables. The time sub-optimal 
control variable uses limits for a shorter period because it 
needs a certain time to switch to the opposite value. The time 
optimal control variable switches immediately that can cause 
problems when the dynamics of a controlled system is not 
precisely identified. The time sub-optimal controller switches 
in advance and it finishes later but it is not so sensitive to the 
uncertain parameters or unmodelled dynamics. By moving 
the negative values of parameters iα  towards a zero we 
could get behavior similar to the linear pole assignment 
controller. To get the exact linear behavior we have to higher 
the control value limits. 

5. THREE-LEVEL HYDRAULIC SYSTEM 
DESCRIPTION  

The hydraulic system consists of three tanks (Fig. 5). These 
are interconnected by valves characterized by  and  

constants. The last tank has the outlet valve defined by  
constant. The pump supplies the water into the first tank. The 
input value is denoted by . The ,  and h describe the 
height of levels in corresponding tanks. These are the state 
variables from which  represents the output value that will 
be controlled to the desired value . 

12c 23c

3c

1q 1h 2h 3

3h
w

The system could be described by following differential 
equations 

     

Preprints of the NIL workshop
Jan 10–15, 2011, Bratislava, Slovakia Bisták, P.

180



 
 

 

3

333223
3

32232112
2

21121
1

1 1

hy

hchhc
dt

dh

hhchhc
dt

dh

hhcq
Adt

dh

=

−−=

−−−=

−−=

 (41)  

The identified parameters are 

0.0070655
0.015518
0.015383
0.001

3

23
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1

=
=
=
=

c
c
c
A

     (42) 

 

Fig. 5. Three-level hydraulic system. 

The Fig. 6 shows the real three-level hydraulic plant. 
However in this paper only simulation results are presented. 
The simulations use the parameters identified on the real 
plant. Results from the real hydraulic system should be 
available in the future. 

 

Fig. 6. Real three-level hydraulic plant. 

6. LINEAR POLE ASSIGNMENT CONTROLLER 
APPLIED TO HYDRAULIC SYSTEM 

To compare the sub-optimal controller with other types of 
controllers first we have designed the linear pole assignment 
controller. Before this it was necessary to linearize the 
nonlinear hydraulic system in the chosen state. The state of 
linearization was equal to the desired state 

wq
wh
wh

wh

5-
1

1

2

3

10020.70655000
418268913.1
.2073071621

⋅=
=
=
=

   (43) 

The linearization has been made in Matlab using linmode, 
canon and acker functions. After setting the desired closed 
loop poles to the values  

    (44) 3.0,2.0,1.0 321 −= − = − =α α α

and choosing the desired value  we got for the linear 
pole assignment controller the feedback gain vector 

1.0=w

[ ]333 100.7576100.6641100.3751 −−− ⋅⋅⋅=K
0.0021

 and the 
feedforward gain =f . The Fig. 7 shows the 
corresponding time responses. 
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Fig. 7. Time responses of state and control variables. Linear 
pole assignment controller without constraints. 

7. EXACT LINEARIZATION METHOD APPLIED TO 
HYDRAULIC SYSTEM 

The hydraulic system could be linearized not only in the 
fixed point but also continuously. This is the case of exact 
linearization method. To apply it first we have to transform 
the hydraulic system to the nonlinear controllability canonical 
form. The new coordinates are denoted as z1, z2 and z3. 

:= z1 h3
 := z2 0.01551800000

     (45) 
 −  − h2 1. h3 0.007065500000 h3  

 

z3 0.100000000010-12 0.1193566970 10 10 h3  −
 

h1 1. h2−( := 
0.21584767891010  − h2 1. h3 h3 0.10964242901010h3
0.548212145109 h2

 +  −  + 
) h2 1. h3 h3 ( ) 

q1 

h1 h3 h2 
c12 c23 

c3 

 − 
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The time derivation of z3 gives the expression 

1
233 qyLLyL

dt
dz

fgf +=     (46) 

where is yLf
3

 
(47) 

and  is yLL fg
2

 := LgLf2T1
0.05967834850

 − h1 1. h2  − 1. h3h2    (48) 

Then the feedback that linearizes the nonlinear system (41) 
can be expressed in the form  

yLL
v

yLL
yL

q
fgfg

f
22

3

1 +−=     (49)
 

where v represents the desired characteristic polynomial (in 
terms of zi) of the closed loop circuit. If we choose the closed 
loop poles according to (44) and the desired value will be 
again  we get for v  1.0=w

 
      (50) 
After substituting (50), (47) and (48) into (49) one gets the 
control law 

 
      (51) 

The corresponding time responses are depicted in the Fig. 
8.
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Fig. 8. Time responses of state and control variables. Exact 
linearization controller without constraints. 

8. TIME SUB-OPTIMAL CONTROLLER APPLIED TO 
HYDRAULIC SYSTEM  

In this section we will apply the sub-optimal controller 
derived in the section 4 to the nonlinear hydraulic system. 
The nonlinearity is compensated by the control limits 
transformation. The control value constraints are  

  (52) 5
maxminmaxmin1 10,0, −==∈ QQQQq

yLQyLLU
yLQyLLU

ffg

ffg
3

max
2

2

3
min

2
1

+⋅=

+⋅=

yL f
3 yLL fg

2

Before the control action is computed according to the 
section 3.6 the control constraints are transformed 

    (53) 

where  and  come from (47) and (48) 
respectively. Then after calculating the control action u 
(section 3.6) it is necessary to carry out the following inverse 
transformation of it 

yLL
yLu

q
fg

f
2

3

1
−

=

1,5.0,1.0 321 −

     (54) 

In the Fig. 9 one can see the time responses with three 
intervals of control. These results have been simulated for the 
following chosen parameters that correspond to poles 

    (55) α α α= − = − =
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9. CONCLUSIONS 
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Fig. 9. Time responses of state and control variables using 
sub-optimal controller with three intervals of control. 

Presented controller design relies on switching surfaces. 
Because our aim was to decrease the sensitivity of controller 
we introduced new parameters into the design. In linear cases 
these parameters are identical with the poles of the closed 
loop. Of course, the switching surfaces are more complicated 
in comparison with optimal control that is caused by 
additional parameters. In this paper we derived the solution 
with explicit mathematical formulas that is fast enough to be 
used in real time applications in the near future. Up to now 
we have applied it for the three-level hydraulic system in 
Matlab/Simulink environment. Simulations proved that it is 
possible to use the designed controller also for nonlinear 
systems. Although it needs more computational power in 
comparison with a linear pole assignments or the exact 
linearization method it is able to respect the control value 
constraints.  
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According to the control value behavior the last interval of 
control does not reach the maximal possible value of . 
There is a small overshoot of the output value. The overshoot 
can be suppressed by shifting the poles towards the zero 
value. This will cause that the transients will slow down and 
there will be only two intervals of control. Fig. 10 shows the 
responses for the set of poles given by (44). 
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Abstract: This paper introduces modifications of the Filtered Smith Predictor for simple linear first order 
plants with dead time (FOPDT) and constrained input. Constraints may be simply considered due to 
replacing the PI controller by a two-degree-of-freedom (2DOF) P controller in the primary loop of the 
classical IMC structure with the dynamical feedforward and parallel plant model. Equivalence of the 
traditional and the new solutions in the proportional range of control is shown by the setpoint-to-output 
and disturbance-to-output transfer functions in the nominal case and by the computer simulations for 
systems with the plant-model mismatch.  

Keywords: Robustness analysis; robust controller synthesis; robust time-delay systems. 

 

1. INTRODUCTION 

The Smith Predictor (SP) (Smith, 1957) represents one of the 
oldest structures of the Dead-Time Compensators (DTCs) 
used for controlling systems with dead time. Due to their 
infinite dimension, they are still surrounded by not 
sufficiently explained myths and still in focus of current 
research (Åström and Hägglund, 2005; Guzmán et al., 2008; 
Normey-Rico and Camacho, 2007; 2008; 2009; Normey-
Rico et al., 2009; Panda, 2009; Tan et al., 2010; Zhang, 
Rieber and Gu, 2008, Vrecko et al., 2001). One of them is 
related to the primary controller that is usually chosen as the 
PI one. But, despite that just few of the known DTCs are 
interpreted as disturbance observer (DO) based structures, in 
fact, all of them may be shown to include observers for 
reconstruction of either input or output disturbances. This has 
an important impact on choosing the primary controller that 
need not to include the integral action.  

2.  PI-FSP CONTROLLERS FOR STABLE FOPDT 
PLANTS  

The Filtered Smith Predictor (FSP) (FSP, Normey-Rico et al., 
1997; 2009; Normey-Rico and Camacho, 2007; 2008; 2009) 
may be interpreted as a structure using parallel plant model 
(PPM) for reconstruction of the output disturbance. Firstly, it 
was used in the pioneering work by Smith (1957) and played 
later a key role within the concept of the Internal Model 
Control (IMC) (see e.g. Morari and E. Zafiriou, 1989). Here, 
by controlling the First Order Plus Dead Time (FOPDT) 
plants it will be shown that the FSP may be further simplified 
by replacing the primary PI controller by a two-degree-of-
freedom (2DOF) P controller, that improves its usability in 
the constrained control without decreasing its capability in 
the disturbance rejection. 

 

The filtered Smith Predictor (FSP) was firstly proposed for 
stable FOPDT processes to improve robustness of the 
traditional SP and to decouple the reference setpoint and the 
disturbance response, to stabilize the controller loop in case 
of unstable and integral plants and to achieve required 
robustness. It is based on the dynamical feedforward control 
with the reference plant model (Åström and Hägglund, 2005; 
Visioli, 2006) used in the disturbance reconstruction and 
compensation. The approach to designing FSPs for the 
FOPDT plants introduced in (FSP, Normey-Rico et al., 2009; 
Normey-Rico and Camacho, 2007; 2008; 2009)  considers 
(similarly as the below explained newly proposed solution in 
Fig. 2) compensation of an output disturbance by correction 
of the reference value, whereby the disturbance is 
reconstructed by using the PPM. For the stable plant ( )sP  

with ( )sP0  denoting its “fast“ delay-free nominal dynamics 

and ( )sPn  its nominal model with particular set of parameters 

considered in controller tuning 
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is used, whereby rT  is the time constant of the (fast) primary 
loop described by the transfer function  
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The nominal (reference) setpoint-to-output transfer function 
(considering nPP = ) is  
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Basic Acronyms 

2DOF Two Degree of Freedom 

DO Disturbance Observer 

DTC Dead Time Compensator 

FOPDT First Order Plus Dead Time 

FSP  Filtered Smith Predictor  

MO monotonic, monotonicity 

PP Performance Portrait 

SP Smith Predictor 

ST stabil, stability 

 

When extending the disturbance compensation loop by the 
1st and the 2nd order disturbance filters  
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where fT  represents time constant of the disturbance 

responses, the equivalent controller may be introduced as 
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The transfer functions corresponding to the output 
disturbance  do, to the input disturbance di and to the 
measurement noise n become 
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Requirements ( ) 00 =iH  and ( ) 0/1 =− TH i  give for (6a) the 

PI-F1SP controller, when 
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In the case of the filter (6b), this is determined to fulfil 
( ) 00 =iH  and ( ) 0/1 =− TH i  that yields  
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The corresponding controller will be denoted as the PI-F2SP. 

3  NEW P-F1SP AND P-F2SP CONTROLLERS 

Next, we will firstly show that an equivalent solution may 
also be achieved by considering 2DOF P controller as the 
primary controller instead of (2). In this way and by 
considering different disturbance filters (6), two new 
modifications of the FSP will be introduced denoted with 
respect to the used disturbance filters as P-F1SP and P-F2SP. 

3.1 Primary 2DOF P-controller 

Simpler P controllers instead of PI ones were recommended 
in a slightly modified setting e.g. by Liu et al. (2005), or Lu 
et al. (2005). The 2DOF controller will be expressed as the P 
controller with the gain pK extended by the static 

feedforward control 0u  

( ) ;/1/;/; 00000 KTTKKruueKu rPP −==+=    (11) 

Thereby, the fast model parameters 00 ,KT  correspond to the 

estimates of the plant parameters T and K . rT  represents the 

reference time constant of the fast primary loop. In the 
nominal case with PPn =  and neglected control signal 

constraints, the structure in Fig. 1 yields transfer function 
between the setpoint and the non-delayed output  
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As in (3), the dynamics between setpoint and control signals 
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represents filtered inversion of the fast plant dynamics.  

 
 
Fig. 1 Idea of compensating the measurable output 
disturbance od  by a feedforward to the reference setpoint of 

the 2DOF P-controller  
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3.2 Respecting the control signal constraints 

Control signal of real plants is always subject to control 
constraints expressed e.g. in the form of the saturation 
function 

minmin
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≤≤−
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==           (14) 

In controlling stable plant P0 (1) with built in constraints (14) 
by the P-controller (11) the loop remains stable without 
taking any additional measures for any transients with the 
final value ry =∞  satisfying  
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     (15) 

This may be shown e.g. by choosing appropriate Ljapunov 
function, by the circle criterion, by the Popov criterion, or by 
the passivity approach (Föllinger, 1993; Glattfelder and 
Schaufelberger, 2003; Hsu and Meyer, 1968). 

In the much more complicated FSP, outputs of the primary 
controller (11) yields inversion of the fast dynamics. In order 
to respect constraints imposed on the real plant input, outputs 
of the primary loop can not be simply generated by their 
transfer function, but the primary loop must be implemented 
by including at least so strong constraints as those at the plant 
input. Furthermore, in order to guarantee relevance of 
information used in the disturbance reconstruction, also the 
DO must be supplied with the constrained control signal. The 
corresponding predicted signal px̂  (in the structure in Fig. 2, 

px̂  plays a role of the output predicted with respect to the 

delayed output dx ), what again requires to work with 

constrained primary loop. However, for the sake of 
simplicity, saturation indicated in Fig. 1 will be omitted from 
the scheme in Fig. 2. 

 
 
Fig. 2 Modified P-FSP with the primary loop using 2DOF P-
controller (11) with the disturbance filters (6) 

3.3 Modified P-F1SP and P-F2SP Controllers 

Since the primary controllers (3) and (13) are the same, the 
same also holds for the nominal closed loop transfer 
functions (8), i.e. both structures are fully equivalent. Also 
the requirements on filters (6) remain unchanged (i.e. 

( ) 0/1 =− TH i , ( ) 00 =oH  and ( ) 00 =iH ) that finally 

requires tuning (9-10). This holds, however, just for the 
nominal tuning ( nPP = ) and without constraining of the 

control signal.  

COMPARING PI-F1SP WITH P-F1SP 

In what follows, both types of controllers are compared by 
the computer simulation for the plant parameters  

1;1;1 =Θ== TK  (16) 

 

 

 
Fig. 3 Nominal responses of constrained PI-F1SP and P-
F1SP controllers (above) and PI-F2SP and P-F2SP 
controllers (below); step response 5.0=∆ id at st 4=  

Fig. 3 confirms the main advantage of the P-F1SP structure, 
when the corresponding setpoint step response remains fully 
monotonic, whereas the output response corresponding to the 
PI-F1SP shows already in the nominal case with the exactly 
known system parameters typical overshooting due to the 
integrator windup. By decreasing the ratio TK / its value will 
be increasing and the loop will require appropriate anti-
windup measures (Zhang and Jiang, 2008). 

Since the remaining transients in Figs 4-6 show practically 
identical behaviour of both structures also in the non-nominal 
(perturbed) cases, it is possible to conclude that the 
traditional PI-F1SP structure may be fully replaced by the P-
F1SP one that will guarantee equivalent dynamics in the 
proportional range of control, but it does not generate the 
windup effect under constrained control. 
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Fig. 4 Comparing P-F1SP and PI-F1SP controllers for the 
20% mismatch in the plant time constant T 

COMPARING PI-F2SP WITH P-F2SP 

Both types of controllers will again be compared by the 
computer simulation for the real plant parameters 
(16) 1;1;1 =Θ== TK . Thereby, Fig. 3 (below) again 

confirms the main advantage of the P-F2SP structure, when 
the corresponding setpoint step response remains fully 
monotonic, whereas the output response corresponding to the 
PI-F2SP shows, due to the integrator windup, typical 
overshooting already in the nominal case with the exactly 
known system parameters. By decreasing the ratio TK / its 
value will increase and the loop will require appropriate anti-
windup measures. 

Similarly, as in the case of the first order disturbance filters, 
both equivalent structures give practically the same 
dynamics, whereby an underestimated time constant value 
(Fig. 5 below) leads to an output overshooting, whereas an 
overestimated time constant leads to the slowed-down output 
response (Fig. 5 above). 

In changing model parameters used for simple PID tuning the 
corresponding transients are either overdamped, or 
oscillatory. Here, both the underestimated as well as 
overestimated values 0T  lead to control responses with 

increased number of peaks. So, in the case of oscillatory 
control transients an 'intuitive' retuning of the controller is far 
from being straightforward.  

 

 
Fig. 5 Comparing P-F2SP and PI-F2SP controllers for the 
20% mismatch in the plant time constant T. 

 

The same may be observed in the case of perturbed model 
gain values (Fig. 6), just the effects of increased values 0K  

are similar to effects of decreased values 0T . But, again, both 

considered structures give equivalent closed loop dynamics. 

The main difference in comparing with the solutions using 
the first order disturbance filter is illustrated by the extremely 
large sensitivity to the dead time perturbations in Fig. 7. 

The 2nd order disturbance filter (6b) is mainly motivated by 
the fact that it gives analytical formulas enabling a fully 
independent tuning of the setpoint and of the disturbance 
responses. By using the 1st order model (6a), the disturbance 
response is determined both by the setpoint time constant as 
well as by the filter time constant Tf. The achieved results, 
however, show that such a requirement of a fully independent 
tuning of the setpoint and of the disturbance responses is 
more of an academic importance than of a practical one.  

EVALUATION BY THE PERFORMANCE PORTRAIT 

Although the transients corresponding to limit values of the 
tuning parameters show strong similarities in behaviour of 
the PI-FSP and P-FSP, still there arise question, if this really 
holds for all possible working points. The best way to answer 
such question is to derive Performance Portrait (Huba, 2010;  
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Fig. 6 Comparing P-F2SP and PI-F2SP controllers for the 
20% mismatch in the plant gain K. 

2011a) showing chosen performance measure over much 
higher number of operating points.  

To characterize speed and duration of transients at the plant 
output in a simpler way, IAE (Integral of Absolute Error) 
performance index was used defined as 

( ) ( )[ ] ( ) ( )teedteteIAE
t ∞→

∞

=∞∞−= ∫ lim;

0

            (17) 

together with the TV0 and TV1 performance indices (Huba, 
2010, 2011a) defined by modification of the Total Variance 
(Skogestad, 2003) according to 

∑∫ −≈= +

∞

i

ii uudt
dt

du
TV 1

0

   (18) 

( ) ( )010 uuuuTV

i

ii −∞−−= ∑ +        (19) 

( ) ( )0211 uuuuuTV m

i

ii −∞−−−= ∑ +  (20) 

Thereby, TV0 characterizes deviations from ideally 
monotonic transients corresponding to TV0=0 and here it will 
be applied both to the plant output y and the plant input u. 
Similarly, TV1 performance index characterizes deviations 
from ideal shape with one extreme point. It was applied to 
characterizing transients at the controller output. 

 

 
Fig. 7 Comparing P-F2SP and PI-F2SP controllers for the 
20% mismatch in the loop dead time Θ . 

Performance Portraits calculated for 10 == KK  over 20x20 

points in the plane of the controller parameters ( )00 , KΘ  in 

Fig.8 and Fig.9 show practically identical loop properties 
both for the traditional and modified controllers. 

Visualisation of the loop performance in Fig.9 clearly 
confirms the already mentioned fact that the solutions with 
the 2nd order filter (6b) are practically not usable over 
reasonable part of the whole range of the plant-model 
dismatch, since the deviations from the ideal nominal shapes 
and the IAE values rapidly increase. 

With respect to the u-TV0 and u-TV1 values it is also evident 
that for this plant and tuning the control signal always has 
one dominant pulse – it may never be considered to be 
monotonic. 

CONCLUSIONS 

New formulations of the Filtered Smith Predictor were 
proposed based on simplified primary controller for the fast 
plant dynamics. Thereby, disturbance filters of different 
complexity may be used that broader spectrum of the 
available closed loop properties. Two such solutions using 
primary 2DOF P controller and denoted as the P-F1SP and P-
F2SP corresponding to the 1st and the 2nd order filters were 
considered and compared with the traditional controllers 
based on the primary PI control (Normey-Rico et al., 2009;  
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Fig. 8 Performance Portraits of the PI-F1SP and P-F1SP 
controllers for 1;10 =Θ== KK  calculated over 20x20 

points in the plane of the controller parameters ( )00 , KΘ  are 

practically identical. 

Normey-Rico and Camacho, 2007; 2008; 2009) with 
equivalent filters denoted as PI-F1SP and PI-F2SP.  

To be fair in comparing the alternative solutions, the 
experiments included both the constrained as well as the 
unconstrained case, i.e. the case with a sufficiently 'slow' 
tuning parameters rT  (setpoint response time constant) and 

fT  (disturbance response time constant). The aim of the 

simulation experiments was to show, how far the analytical 
nominal equivalence of the solutions with particular filter 
does hold in “real” work conditions. From this point of view 
the experiments showed one unexpected  feature - for both 
alternatives use of the 2nd order filter (6b) considered as 
ideal decoupling tool is not appropriate in closed loops with a 
higher dead time uncertainty.  

 

 

Fig. 9 Performance Portraits of the PI-F2SP and P-F2SP 
controllers for 1;10 =Θ== KK  calculated over 20x20 

points in the plane of the controller parameters ( )00 , KΘ  are 

practically identical. 

It is just to note that the considered situations do not exhaust 
whole spectrum of appropriate filters, since also filters with a 
higher relative degree may be interesting due to higher closed 
loop robustness and also to higher suppression of the 
measurement noise that was up to now not focused more 
deeply. In this context, a more detailed investigation of the 
role of the disturbance filters in influencing the achievable 
closed loop robust performance would be desirable that could 
e.g. be based on the newly developed method of the 
Performance Portrait Huba (2010, 2011a,b). 

The essential advantage of the new solutions is that they do 
not generate the windup effect - due to the IMC structure and 
due to replacing the PI controller typically generating windup 
by the 2DOF P controller. So, in contrast to the PI-FSP 
controllers that suffer by windup and thus they require 
appropriate anti-windup measures (Zhang and Jiang, 2008) 
that make the overall compensator design yet more complex 
and unsearchable, the P-FSP controller may be used for 
constrained control without such additional measures.  
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Consideration of the new structure of the primary loop 
becomes important not just from the point of view of 
constrained control. It enables a much easier explanation of 
similarities with the Model Driven 2DOF PID controllers 
(MD 2DOF PID, Yukitomo et al. 2004) introduced as a 
generalization of the Internal Model Control (Morari and  
Zafiriou, 1989; Skogestad and Postlethwaite, 1996), of the 
Predictive PI control (PPI) (Hägglund, 1996) and of the 
PIDτd control (Shinskey, 2000) and covering both systems 
with short and long dead times. 

It represents also one step ahead in direction to considering 
structures appropriate for nonlinear plants. In such a 
situation, static feedforward control of the fast loop 
represented in the linear case by the inverse model gain will 
be accomplished as the inverse static input-to-output plant 
characteristic. This will give improved initial values for the 
generated inversion of the plant dynamics that will finally 
contribute to increased closed loop performance.  

Yet before dealing with nonlinear plants it will, however, be 
important to deal with controlling unstable and marginally 
stable plants, where the FSP (despite the proclaimed ability to 
deal with unstable plant poles) does not represent an 
acceptable solution. 
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Abstract: The paper shows tuning of the Filtered Smith Predictor for higher performance requirements 
expressed in terms of the monotonicity at the plant and the controller output by the Performance Portrait 
method (Huba, 2010; 2011a).  
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1. INTRODUCTION 

The Smith Predictor (SP) may be considered as the best 
known Dead-Time Compensator (DTC) used for controlling 
systems with dead time (Smith, 1957). Complexity of its 
tuning, together with its importance for practice and problems 
related to its robust tuning lead to the situation that despite its 
relatively long history it is still in focus of current research 
(Åström and Hägglund, 2005; Guzmán et al., 2008; Normey-
Rico and Camacho, 2007; 2008; 2009; Normey-Rico et al., 
2009; Panda, 2009; Tan et al., 2010; Zhang, Rieber and Gu, 
2008).  

As it was shown in many above mentioned contributions, an 
increase of the dead-time values with respect to the dominant 
plant time constant leads in the loops with PID controllers to 
rapid performance deterioration. DTCs proposed to eliminate 
dead-time influence are being robustly designed for 
a nominal plant representing whole family of plants defined 
by a norm-bounded multiplicative uncertainty error and the 
required performance is then tuned in the frequency domain. 
The aim is to keep the modeling error within prescribed 
limits also for the plant with the largest deviation from the 
nominal one. In carrying out such a robust control design one 
may e.g. use the phase, or the gain margin, the maximum 
sensitivity (Rivera et al., 1986; Skogestad and Postlethwaite, 
1996).), or the dead-time margin (Ingimundarson and 
Hägglund, 2002). However, when aiming to design control 
loops and having higher requirements on the resulting control 
quality that should be respected by all plants of a given 
family, the frequency domain approach shows to be not 
sufficiently effective.  

The filtered Smith Predictor (FSP, Normey-Rico et al., 1997) 
was proposed for stable First Order Plus Dead Time 
(FOPDT) processes to improve robustness of the traditional 
SP and to decouple the reference setpoint and the disturbance 
response by adding an additional degree of freedom for the 
loop tuning. It is based (Fig. 1) on the dynamical feedforward 
control with the reference plant model (Åström and 

Hägglund, 2005; Visioli, 2006) enabling the disturbance 
reconstruction and compensation. The approach to designing 
FSPs for the FOPDT plants introduced in Normey-Rico and 
Camacho (2009), or Normey-Rico et al. (2009) considers 
compensation of a disturbance acting at the plant output by 
correction of the loop reference value, whereby the 
disturbance is reconstructed by using parallel plant model.  

Basic Acronyms 

DO Disturbance Observer 

DTC Dead Time Compensator 

FOPDT First Order Plus Dead Time 

FSP  Filtered Smith Predictor  

MO monotonic, monotonicity 

PP Performance Portrait 

SP Smith Predictor 

ST stabil, stability 

In this paper the new computer analysis of control loops 
based on generating the closed loop Performance Portrait 
(Huba, 2010; 2011a) is briefly described to be used in:  

• designing,  
• comparing and  
• visualizing  

properties of the considered FSP. The key question is, how to 
robustly design control loop with stable dead-time dominated 
plant to keep the plant input and output “nearly monotonic” 
in the case of possible plant-model mismatch. To cope with 
this problem, it is firstly necessary to introduce measures for 
evaluating deviations of real responses from ideal monotonic 
(MO) shapes and then to propose algorithms processing 
achieved information. 

As it is well known, it is not enough to demonstrate the 
quality of DTCs just by the responses measured in the 
nominal case with perfect plant-model matching. Their 
robustness (see e.g. Normey-Rico and Camacho, 2007) is 
then usually shown for the dead-time uncertainty in the range 
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of ±10-20% of its nominal value. In some papers, also the 
case with a gain estimation error in the range ±10-20% of the 
nominal value is shown. So, in total, the DTC performance is 
being demonstrated in 3-6 different working points. 
Consideration of several points is usually not possible with 
respect to the space constraints. This is, however, still far 
from being enough for fully characterizing such a complex 
closed loop performance as the DTC have. However, by 
introducing appropriate performance measures and by using 
appropriate method for compressing relevant information the 
loop performance may be characterized by information 
extracted from hundreds, or even thousands of experiments – 
each one carried out for a different working point. The 
interesting shape and time related closed loop properties are 
mapped, stored, visualized and used for the robust control 
design based on a compressed form of relevant information 
representation related to all possible working points of the 
uncertainty area called here as the closed-loop Performance 

Portrait (PP). The PP method is then used for evaluating and 
comparing properties of different DTCs.  

The paper is structured as follows. Chapter 2 introduces basic 
information on FSP for FOPDT plants. Chapter 3 recalls 
basic performance measures for evaluation of nearly 
monotonic step responses. In Chapter 4 PP corresponding to 
the tuning achieved by the traditional method in the 
frequency domain is briefly discussed. Chapter 5 deals with 
retuning the FSP to yield defined deviations from 
monotonicity, Chapter 6 yields discussion with results 
achieved by simple plant approximation and finally Chapter 7 
brings conclusions to the paper. 

 

2.  FSP FOR STABLE FOPDT PLANTS 

 

Fig. 1 Filtered Smith Predictor 

For the stable plant ( )sP with ( )sP0 denoting its “fast“ delay-

free nominal dynamics and ( )sPn  its nominal model with 

particular set of parameters considered in controller tuning 
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is used, whereby rT is the time constant of the (fast) primary 

loop described by the transfer function  
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The nominal (reference) setpoint-to-output transfer function 
(considering  nPP = ) is  
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In order to increase the closed loop robustness, it was 
proposed to extend the disturbance compensation loop by the 
1st, order disturbance filter  

 ( )
sT

sF
f

r +
=

1

1
          (5) 

where fT represents its time constant. The loop may be 

simplified by introducing equivalent controller for the 
primary loop 

 ( ) ( )re CPFCsC −= 1/             (6) 

In the nominal case with nPP =  the loop transfer functions 

corresponding to the output disturbance do, to the input 
disturbance di become 
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In order to get rejection of piecewise stable input and output 
disturbances at least in steady states, requirements  

( ) 00 =oH  ;  ( ) 00 =iH  (8) 

have to be fulfilled. Filter (5) enables to hold this 
requirements and gives nominal transfer functions 
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The key question of the robust design is, how to choose the 
tuning parameters rT,L,T,K 000  and fT of the FSP in order to 

guarantee required performance measures for some family of 
possible plant models given e.g. in form 

( ) ( ) ( )maxminmaxminmaxmin ,,,,, LLLTTTKKK ∈∈∈  (10) 

 

3 PERFORMANCE MEASURES FOR EVALUATING 
NEARLY MONOTONIC RESPONSES  

3.1 Stable (ST) control and indication of instability 

In the following analysis, quasi-continuous signals sampled 
with a sampling frequency enabling to preserve all their 
important features will be considered. 
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In the time domain the property of stability (ST) and 
monotonicity (MO) may be easily tested numerically by 
evaluating simulated or experimentally measured transients, 
in our case the setpoint step responses. The Bounded-Input-
Bounded-Output (BIBO) and Internal Model Control (IMC) 
stability require for a bounded plant input ( )tu  a bounded 

plant output ( )ty  that for a given limits maxmax ,UY can be 

tested e.g. by means of 

( ) ( ) )∞∈∞<≤≤∞<<≤ ,0;0;0 maxmax tUtuYty     (11) 

In this paper we are dealing with constrained continuous 
signals, as e.g. the plant output ( )ty  having an initial value 

( )00 yy = and a final value ( )∞=∞ yy . From the controller 

design it is expected to achieve stability for all possible 
operating points and besides of this trivial requirement 
simultaneously to achieve required shape of transients at the 
plant input and output. In doing so, stable control may further 
be characterized by performance indices such as IAE 
(Integral of Absolute Error), or TV (Total Variance, 
Skogestad, 2003). For a setpoint step ( )tw  

( ) ( ) ( ) ( ) ( ) ;;

0

tytwtedteteIAE −=∞−= ∫
∞

            (12) 
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ii uudt
dt

du
TV 1

0

           (13) 

Stability, or more precisely instability degree can be indicated 
by values of the parameters Ymax and Umax in (11), or in many 
different ways – by achieved IAE, or TV values, by the 
maximal overshooting, damping ratio, etc. When these 
measures increase over some value chosen e.g. as a multiple 
of optimal value, transients may be denoted as unstable. 

3.2 Monotonic and Nearly, or ε-Monotonic Control (ε-MO) 

Definition 1 

A constrained quasi-continuous plant output ( )ty  having an 

initial value ( )00 yy = and a final value ( )∞=∞ yy , will be 

denoted as monotonic when its all samples fulfill condition  

( ) ( )[ ] ( ) ∞<<≤≥−− ∞ 21012 0,0 ttyysigntyty   (14) 

Output MO may be motivated e.g. by comfort of passengers 
in traffic control, or at the controller output by precision 
increase in systems with actuator hystheresis, by energy 
savings in actuators, by minimizing their wear, generated 
noise and vibrations, etc. In engineering application dealing 
with not-perfect systems and finite measurement and 
processing precision we need measures for enumerating 
deviations of achieved responses from strict monotonicity. 

A simple measure introduced by Åström and Hägglund 
(2004) for evaluating deviations from strict MO denoted as 
monotonicity index was defined as  

( ) ( )∫∫
∞∞

=
00

/ dtthdtthα   

where ( )th  is the closed loop impulse response. For a strictly 

MO response 1=α . In this paper for evaluating deviations 
from strict monotonicity we are going to use a similar and 
very simple integral measure achieved by modification of the 
TV criterion that can easily be modified also for evaluating 
more complex shapes consisting of several monotonic 
intervals (Huba, 2010; 2011). Since it is frequently used for 
evaluating the controller output ( )tu , its definition is shown 

for this variable.   

Definition 2 

For a quasi-continuous signal ( )tu  with the initial value ( )0u  

and the final value ( )∞u  the TV0 criterion is given according 

to 

( ) ( )010 uuuuTV

i

ii −∞−−= ∑ +            (15) 

TV0=0 just for strictly MO response, else it gives positive 
values. It may be applied also to the plant output evaluation. 

Besides of this integral measure for characterizing deviations 
from strict MO it is important to introduce measure also for 
the amplitude deviations based on defining an error band 
specified by the parameters yε , or uε  around the reference 

MO signal. 

Definition 3 

A continuous nearly MO signal ( )ty  with the initial value 

( )00 yy = and with the final value ( )∞=∞ yy  will be denoted 

as yε -monotonic when it fulfills condition 

( ) ( )[ ] ( ) ( )max0 ,0,, TTtTyysignTtyty y ∈∞<≤−≥−−− ∞ ε  (16) 

for any 0max >T .  

In order not to prolong time required for testing with any 
positive maxT , this value has to enable capturing sufficient 

part (e.g. half-period) of the superimposed signal. Number of 
samples that need to be tested (Huba, 2010; 2011) may be 
decreased due to:  

Theorem 1 

Constrained continuous signal ( )ty  having an initial value 

( )00 yy = and a final value ( )∞=∞ yy  with local extreme 

points ( ) ...,2,1; == ityy leilei  is yε -monotonic, if all 

subsequent local extreme points leiy  fulfill condition 

[ ] ( ) ...,3,2,1;,0,1, =−≥−− ∞+ iyysignyy yileile ε   (17) 

Proof: Follows from the fact that the maximal signal increase 
in the direction opposite to 0yy −∞  in (16) will be 

constrained by two subsequent extreme points. 

By comparing measured amplitude and integral deviations of 
a signal it is possible to get additional information about its 
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character. So e.g. for signal ( )ty  having an initial value 

( )00 yy = and a final value ( )∞=∞ yy  with a single 

overshooting it will hold y-TV0=2εy. 

3.3 Disturbance response 

In evaluating disturbance step responses one can test the 
same properties as for the setpoint response, but to note that:  

1) Immediately after a disturbance step change the plant 
output starts to rise (fall) and controller needs some time to 
reconstruct new disturbance value, to balance its effect and to 
reverse output to move back to the reference value. So, the 
evaluation of MO output increase (decrease) may start just 
after its turnover.  

2) By a prefilter in the reference signal it is possible to slow 
down dynamics of the setpoint step responses – in this way it 
is possible to get tighter disturbance rejection (possibly with 
overshooting) by simultaneously having MO setpoint step 
response. 

In general, MO areas for disturbance response are different 
from those corresponding to setpoint response and the 
controller design has to compromise these differences. 

4 TUNING PROPOSED BY NORMEY-RICO AND 
CAMACHO (2007) 

The illustrative example of the FSP tuning is taken from 
Normey-Rico and Camacho (2007), Example 6.1. The 
uncertain plant to be controlled is given as 

( )
( )( )( )( )

1292180

1125012501501

,L;.,.K

;
s.s.s.s

Ke
sF

Ls

∈∈

++++
=

−

 (18) 

The FSP with the primary PI controller (2) was tuned using 
standard robust approach in the frequency domain based on 
a nominal plant and norm bounded multiplicative uncertainty. 
As the nominal model approximation of the original plant by 
the FOPDT system (1) with 

5.10;5.1;1 000 === LTK   (19) 

was used. Robust stability was proven for 0;1 TTK ic == ;  

25520 ./LT f ==  (20) 

By simulating the closed loop step responses for all possible 
values K  and L  it is possible to get the PP in Fig. 2. 
Thereby, output 1y  corresponds to the output of the plant 

(18), ( ) ( )tKuty =0  corresponds to the actual input of the 

plant multiplied by the plant gain K . By displaying 
information about these two outputs one gets also 
information about any other possible output corresponding to 
different dislocation of dynamical terms involved in (18).  

The first not explained point of the original paper by 
Normey-Rico and Camacho (2007) is, why the effect of the 

plant time constants in (18) was approximated by 510 .T = . 

As it is obvious from Fig. 2, especially for 1>K this loop 
does not fulfill higher requirements on MO of transients, 
expressed e.g. by the amplitude related deviations, or by TV0 
values. So, despite giving good initial tuning, the method 
does not enable finer tuning required by more advanced 
applications. The loop properties cannot be simply improved 
even by a radical increase of the filter time constant and 
require a complete retuning. 
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Fig. 2 PP of the plant (18) in the plane of original loop 
parameters (Kp,L) with the FSP controller based on (19); 

2/nf LT = . yε -MO areas identified for the tolerances 

{ }6543 1010101001002005010 −−−−= ,,,,.,.,.,.yε  with white 

denoting the best performance in 11x11 points (above) and 

nf LT 10=  (below). 

5 RETUNING THE FSP BY THE PP METHOD 

Retuning of the FSP controller will be based on the 
possibility to generate the PP directly for the plant (18) that 
would suppose possibility to simulate, and or to measure step 
responses for different FSP tuning and in working points 
yielding different K  and L . Other possibility would be 
based e.g. on estimating firstly parameters of the FOPDT 
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approximation (1) and on finding appropriate tuning by using 
the PP corresponding to this model.  

When having the possibility to experiment directly on plant 
(18), by evaluating responses corresponding to different L  
and K  and to controller tuning (19-20) with a variable ratio  

K/K0=κ  (21) 

e.g. for ( )5250 .,.∈κ it is possible to generate the PP in Fig. 3 
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Fig. 3 Example of the PP of the loop consisting of plant (18) 
and FSP with tuning (19-20). yε -MO areas, 

{ }6543 1010101001002005010 −−−−= ,,,,.,.,.,.yε  with white 

denoting the best performance ; 21x21 points. 

In a subplane ( )L,κ  the robust design corresponding to plant 

(18) and chosen fT,L0 means to locate the Uncertainty Box  

min
min

max
max

minmaxminmin

maxmaxmaxmin

K

K
;

K

K
;

LL,

L,L,
UB κκκ

κκ
κκ

==







= 0  (22) 

with vertices corresponding to limit combinations of 
KK /0=κ  and L  to a position in −yε MO areas with the 

given, or better evaluation tolerance and yielding minimal 
mean IAE values. Solution to the problem over the PP with 
21x21 points (Fig. 4) gives for 020.y =ε  K0=1.878>Kmax 

with IAEmean=29.08 (output 1y ). (It might be shown that by 

decreasing quantization level K0 would converge to Kmax.) 

The achieved deviation from MO (including possible 
overshooting) of all limit step responses in Fig. 5 should not 
be larger than the tolerable value. By increasing the tolerated 
deviations from strict MO, the UB may be moved to the areas 
with lower IAE values (Fig. 6-9). In this point it is to see the 
main difference of the new method that does not try to choose 
the nominal point as an internal point of the uncertainty area, 
what was motivated by the supposed “advantage” of the SP, 
when for the nominal tuning dead time disappeared from the 
denominator of (4) and (9). By decreasing yε  the transients 

become smoother, the TV0 values decrease, but the IAE 
values increase. 
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Fig. 4 Example of localizing UB (22) for y1 into 0.02-MO 
area to yield minimal mean IAE value. yε -MO areas for  

{ }6543 1010101001002005010 −−−−= ,,,,.,.,.,.yε  ; 21x21 points. 
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Fig. 5 The limit transients corresponding to UB in Fig. 4 

L

κ

FSP y
1
 ε=0.05; T

0
=1.5; T

f
=5.25; K

0
=1.47; L

0
=10.5; IAE

1m
=21.7513; TV

0m
=0.017642

0.8 1 1.2 1.4 1.6 1.8 2 2.2 2.4
9

9.5

10

10.5

11

11.5

12

 
Fig. 6 Example of localizing UB (22) for y1 into 0.05-MO 

area with { }6543 1010101001002005010 −−−−= ,,,,.,.,.,.yε , 

white denoting the best performance to yield minimal mean 
IAE value. 
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Fig. 7 The limit transients corresponding to UB in Fig. 6 
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Fig. 8 Example of localizing UB (22) for y1 into 0.1-MO area 

in PP with { }6543 1010101001002005010 −−−−= ,,,,.,.,.,.yε , 

white denoting the best performance to yield minimal mean 
IAE value. 
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Fig. 9 The limit transients corresponding to UB in Fig. 8 

By deriving the PP for 010 .T =  it is possible to show that for 

some deviations from MO this choice yields processes with 

lower mean IAE values than for 510 .T = (Fig. 12-13). This 

value was probably determined by the “trial and error” 
method. The PP method represents a newer and automatized 
version of this still frequently used method. 
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Fig. 10 Example of localizing UB (22) for y1 into 0.02-MO 

area in PP, { }6543 1010101001002005010 −−−−= ,,,,.,.,.,.yε , 

white denoting the best performance, by choosing 
67410 .K =  to yield minimal mean IAE value for 

1510255 00 === T;.L;.T f . 
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Fig. 11 The limit transients corresponding to UB in Fig. 10 

 

6. DISCUSSION 

By being able to retune the FSP to fulfill specified 
performance requirements, new questions arise with respect 
to the efficiency of the dominant dynamics approximation (1) 
used for the DTC design for the plant (18) and with respect to 
the choice of the primary controller. Here, it will be just 
briefly mentioned that based on the loop approximation by 
simple static gain and dead time 

( ) maxminmaxmin ,;,; ddd
sT

TTTKKKKesS d ∈∈= −  (23) 
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whereby information on the plant (18) reduces to sum of its 
time constants used in deriving limit values of the equivalent 
dead time 

875.1;;
4

1

minminmaxmax ==+=+= ∑ idd TSSLTSLT  (24) 

the corresponding Filtered Predictive I controller from the 
dynamical class 0 (FPrI0) proposed in Huba (2011b) gives for 
the output 1y value IAEmean=27.31<29.08, i.e. less that the 

value corresponding to the first plant approximation with 
T0=1.5. Although it was shown that by choosing T0=1.0 
performance of the FSP was improved to IAEmean=24.52, in 
fact, also the performance of the FPrI0 might be improved by 
tuning in 2D and using finer quantization and so it is not 
clear, if the more complex FSP based on more complex plant 
model will definitely ensure better performance. Although it 
might seem at the first glance that by increasing order of the 
model approximating the plant behavior one can only 
increase performance of the resulting controller, this result 
shows that also opposite may be true and in the case of 
dominant uncertain dead time it may be advantageous to 
reflect just this dominant influence by the plant model.  

 

7. CONCLUSIONS 

By analyzing the traditionally difficult task of the FSP tuning 
we have shown that the methods of robust control design 
based on expressing the norm-bounded deviations from the 
nominal model in the frequency domain are strongly limited 
both in the precision and in spectrum of details they can 
offer. The Performance Portrait method has firstly shown that 
the tuning proposed originally in the frequency domain does 
not fulfill higher quality in terms of amplitude or integral 
deviations from monotonicity over the whole uncertainty 
area. Then, it was demonstrated that the monotonicity aspects 
may be reasonably improved by modifying the tuning 
parameter 0K  to values lying (due to the quantization) 

typcally out of the interval ( )maxmin K,KK ∈ . It is evident 

from the shape of identified MO areas that the analysis could 
be simplified by taking max0 KK = .  

Since it was also shown that the tuning parameter 0T  can be 

modified to yield lower mean IAE values over the uncertainty 
area, next the analysis should be repeated for max0 KK =  in 

the plane of loop parameters ( )., 0TL  

By being much more flexible end detailed than the traditional 
analytical methods and by offering simple solution to the 
robust controller tuning it is obvious that the newly 
introduced computer analysis may have strong impact on the 
control theory and its use in practice. Similarly as the 
Computer Tomography reasonably influenced procedures 
used in medicine, strong impact may also be expected in the 
control context, where the new computer tool allows to 
visualize any loop property and so dealing with challenging 
control tasks as e.g. designing Smith predictor, where, the 
existing interactive tools (Guzmán et al., 2008; Normey-Rico, 

et al., 2009) bring just limited possibilities to make the 
traditional “trial and error” controller tuning easier.  

The new method directly gives solution matching the chosen 
performance requirements (if it exists), but it also generates 
new information that can possibly lead to further 
improvements and modifications of the traditional analytical 
methods. Similar development happened also with the 
method by Ziegler and Nichols (1942), when the proposed 
formulas achieved originally by evaluating experimental 
results were later analytically précised and extended. 

The presented results could yet be enriched by considering 
different performance measures, as e.g. those related to more 
complex control signal shapes consisting of several MO 
intervals (Huba, 2010; 2011).  

Instead of retuning single parameter 0K , for the FSP 

parameters rTTLK ,,, 000 (denoting the required closed loop 

time constant for the setpoint response) and fT  have to be 

tuned in general, with respect to given uncertainty in LK ,  

and T . This is fully possible, but one has to fight with all 
problems connected with generation and demonstration of the 
results in 7D space – computation time rapidly increasing 
with the problem dimension and necessity to illustrate the 
achieved results by 2D, or 3D projections. Such solutions 
could, however, give the best answer to the question, which 
controller tuning gives for a given plant uncertainty and 
specified performance the best possible tuning parameters. 
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Abstract: This paper discusses possibilities of the newly developed performance portrait (PP) method in 
designing as fast as possible transients fulfilling additional shape related performance measures specified 
at the input and output of the closed loops with the Integrator Plus Dead Time (IPDT) and Second Order 
Integrator Plus Dead Time (SOIPDT) plants. Broad potential of this new numerical method in arbitrarily 
shaping the close loop properties of time delayed systems is shown and compared with the traditional 
analytical controller tuning corresponding to the Multiple Real Dominant Pole (MRDP).  
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1. INTRODUCTION 

Dead time caused by the energy, mass and information 
transportation and by signal processing may be met in 
practically each control application. Plants with significant 
dead time are not only difficult to control due to intrinsic 
limitations of the control structure themselves, but many 
problems are also caused by limitations of the existing 
methods for their robust and optimal tuning. 

Methods available for robust control design of simple control 
loops based on specification of the closed loop properties in 
the frequency domain using modifications of the D-
decomposition (Neimark, 1973; Hwang and Cheng, 2004), on 
the phase and amplitude margin, or on the maximum 
sensitivity (Åström and Hägglund, 1995; Åström et al. 1998; 
Datta et al., 2000; Keel et al. 2008; Normey-Rico et al. 2009; 
Skogestad, 2003; 2006; Skogestad and Postlethwaite, 2007) 
are not primarily focusing on achieving higher control quality 
expressed in terms of the output monotonicity and 
overshooting. For achieving smooth, monotonic, but as fast 
as possible nominal dynamics, analytical controller tuning 
corresponding to the Multiple Real Dominant Pole (MRDP) 
may be used (Oldenbourg and Sartorius, 1944; Gorecki, 
1971; Viteckova and Vitecek, 2008; 2010). For many 
applications this tuning is considered to be too conservative 
and it does not allow respecting robustness issues. 

This paper shows simple solution based on the recently 
developed technique for robust constrained PID control 
design (Huba, 2010, 2011a,b) enabling mapping of the so 
called closed-loop performance portrait (PP). It may be 
considered as a generalization of the well known method for 
controller tuning used by Ziegler and Nichols (1942) that 
firstly introduced systematic use of the “trial and error” 

procedure. Their simple formulas approximate results 
achieved by carrying out series of experiments on some 
sample of representative processes under requirement of 
chosen performance measure (quarter amplitude damping) 
related to the shape of resulting transient responses. Such an 
approach of carrying out experiments based on simulation or 
real time experiments can today be easily performed by using 
tremendous power of computers for organizing and 
evaluating such experiments, as well as for processing, 
visualizing, storing and recalling the achieved results for 
large number of control loops typical in practice. Thereby, 
one can easily extend spectrum of different qualitative & 
quantitative properties that will be evaluated over a grid of 
normalized loop parameters and then stored in computer 
database, to be chosen “on demand” and in different 
combinations by engineer carrying out design requiring 
particular specifications.  

The paper is structured as follows. Chapters 2 and 3 discuss 
ideal and nearly-ideal shapes of transient responses at the 
plant input and output and different performance 
specifications appropriate for evaluating deviations from the 
ideal shapes and their use in mapping the PP. Chapters 4, 5 
and 6 bring illustrative examples with controller design for 
the Integrator Plus Dead Time (IPDT) IPDT and Second 
Order Integrator Plus Dead Time (SOIPDT) plants. In 
Chapter 7, equivalent closed loop poles are introduced 
important for tuning of constrained pole assignment 
controllers and the paper is concluded by Chapter 7.  

2. PERFORMANCE SPECIFICATIONS 

When dealing with the closed loop step responses, in 
majority of applications, internal plant stability is required. 
Within the Bounded-Input-Bounded-Output (BIBO) concept, 
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as well as in Internal Model Control (IMC, see e.g. Morari 
and Zafiriou, 1989) this requires both the bounded plant 
output ( )ty  and the bounded plant input ( )tu , i.e. for some 

positive maxY  and maxU  it must hold 

( ) ( ) )∞∈∞<<∞<< ,0;; maxmax tUtuYty             (1) 

Stable transients (ST) may further be characterized by the 
time factor, i.e. how fast they reach the required state and by 
shapes of the transient responses, for which we may require 
properties like nonovershooting (NO), monotonicity (MO), 
maximal overshooting/undershooting, damping ratio (for 
periodically damped processes), etc.  

 
ACRONYMS 

1P One-Pulse 
2P Two-Pulse 
BIBO Bounded-Input-Bounded-Output 
DRDP Double Real Dominant Pole 
MO, or 0P Monotonic 
MTC Minimum Time Control 
NO Nonovershooting 
nP n-Pulse 
IAE Integral of Absolute Error 
IPDT Integrator Plus Dead Time 
ISE Integral of Squared Error 
IMC Internal Model Control 
IPDT Integrator Plus Dead Time 
MRDP Multiple Real Dominant Pole 
P Proportional  
PD Proportional-Derivative 
PP Performance Portrait 
SOIPDT Second Order Integrator Plus Dead Time 
ST Stable Transients 
TRDP Triple Real Dominant Pole 
ts Settling Time 
TV Total Variance 
ULS Uncertainty Line Segment 
UB, US Uncertainty Box, Uncertainty Set 

 

2.1 Time related performance measures 

For characterizing duration (speed) of transient responses 
settling time ts and different integral criteria as e.g. IAE 
(Integral of Absolute Error), ISE (Integral of Squared Error), 
or ITAE (Integral of Time multiplied by Absolute Error) 
criterion are used.  

For the output ( )ty  with the initial value ( )00 yy = and the 

final value ( )∞=∞ yy , ts may be defined by the requirement 

( ) )∞∈=− ∞ ,;0 sttyty  (2) 

However, the transient responses may be theoretically 
infinitely long and then a finite settling time requires defining 
a certain error band around the steady state. To decide, if a 
transient response finished by reaching such error band 
becomes a delicate problem in a noisy environment. It can 

e.g. be indicated by fulfilling requirements put both on the 
plant input ( )tu and the output ( )ty  

( ) ( ) )∞∈≤−∩≤− ∞∞ ,, suy ttutuyty εε      (3) 

Thereby, the parameters uy εε ,  may depend on particular 

technology and be chosen in such a way (a) to prevent a 
premature indication of steady state at flat extreme points of 
oscillatory transients and (b) to make indication of steady 
state possibly independent from the measurement noise 
present in real control. It is to remember that the plant output 
and the controller output may achieve steady states at 
different time moments, a fixed output value may be 
achieved by oscillation at the plant input, or there may exist 
steady states with permanent nonzero steady state error. 

Since the settling time ts depends on definition of several 
parameters, in order to characterize the speed and duration of 
transients (mostly at the plant output), simpler IAE or ISE 
performance indices may be used defined for a setpoint w as 

( ) ( )[ ] ( ) ( )[ ]

( ) ( ) ( )tytwte

dteteISEdteteIAE

−=

∞−=∞−= ∫∫
∞∞

0

2

0

;
            (4) 

Shinskey (1990) argues that IAE is a good performance 
measure because the size and length of error is proportional 
to lost revenue, so it is mostly enough to use it instead of ISE 
that may be convenient for the analytical controller design. 
Because in optimizing controllers minimal ISE values usually 
correspond to transients with some overshooting, whereas 
aiming at transients without overshooting one has to define 
additional design constraints. Because of increasing 
weighting by time, the ITAE criterion is not appropriate for 
dealing with real noisy systems.  

2.2 Shape related performance measures 

In the minimum time control (MTC) with the integer n 
denoting the systems full degree, the necessity of n  periods 
of energy accumulation/dissipation during the setpoint step 
responses was well known as the Felbaum’s theorem 
(Feldbaum, 1965). Instead of the discontinuous transition of 
the relay control signal typical for the MTC, here we will 
considered a smooth nearly MO transition from one control 
signal extreme value to another one and from the last extreme 
point to the steady state. The only exception of the control 
continuity may be allowed by considering step transition 
from an initial actuator value to the first extreme point 

appearing at += 0t . 

When speaking about shape related performance measures 
we will start with NO control, MO control and with its 
generalization to the n -Pulse (nP) control. Then we will 
introduce weakened versions of these notions and different 
modifications of the TV criterion used for evaluating integral 
deviations from the ideal nP shapes. It is to remember that all 
these properties are considered as child properties of the root 
loop property ST (1). 
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2.3  Nonovershooting and Nearly Nonovershooting control  

Up to now, specifications of NO control was used in the 
frequency domain (Keel et al., 2008). This approach did not 
distinguish between NO and MO control.  

In the time domain NO properties are easy to be tested 
numerically, by evaluating samples of the setpoint step 
responses. By considering initial and final values ( )00 yy = , 

( )∞=∞ yy , and by fulfilling  

( )[ ] ( ) ;0,0 >∀−≥−− ∞∞ tyysignyty yε  (5) 

the output will be denoted as nearly NO. By introducing 
several measurement precision levels uy εε ,  it is possible to 

replace the true/false information by more detailed 
quantitative one. 

2.4 Monotonic and Nearly Monotonic Control 

Final evaluation precision may be introduced also into the 
MO tests by requiring besides of (1) and (5) 

( ) ( )[ ] ( ) ( )hy TTtTyysignTtyty ,0,,0 ∈∞<≤−≥−−− ∞ ε  (6a) 

hT  has to be chosen long enough to capture amplitudes of 

higher-harmonics pulses superimposed on the basic MO 
signal (Fig. 1). One simple solution to speed up computation 
is to check all subsequent local extreme points leiy , 

...,2,1=i of the evaluated signal, if they fulfill condition 

[ ] ( ) ...,3,2,1;,0,1, =−≥−− ∞+ iyysignyy yileile ε   (6b) 

 

Fig. 1 Strictly MO signal satisfying (6) with 0== yεε and 

signal that is “nearly monotonic” for 05.0== yεε ;  

2.5 One-Pulse (1P) Control 

When considering stable single integrator output changing 
monotonically from an initial value ( )00 yy =  to a final value 

( )∞=∞ yy , it will be increasing (not decreasing) if its 

derivative is a positive (non negative) function of time, i.e. 
( ) ( ) ( )∞∈≥> ,0,0,0 ttyorty &&  (7) 

Since the single integrator is described by the equation 

( ) ( ) ( )∞∈= ,0,1 ttuty&  (8) 

it also means that for ( )∞∈ ,0t  the control ( )tu1  must take 

positive (non negative) values and in the initial and final 
steady states it holds (Fig. 2) 

( ) ( ) 0001 ==− yu &  and ( ) ( ) 01 =∞=∞ yu &  (9) 

When considering ( )tu1  continuous for 0≥t  and satisfying 

(9) it means that for some ( )∞∈ ,01mt it will have a maximum  

( )11 mm tuu =  ; ( )∞∈ ,01mt  (10) 

Under constrained control, when the control signal saturates, 
the maximum value may also be achieved over an interval 

2max1max ,ttt ∈ . It is also obvious that in order to achieve as 

fast as possible output increase, the maximum 1mu  should be 

as large as possible and, in order to keep MO output increase, 
( )tu1  must remain positive even in the case when it has 

several extreme points ( ) ...,2,1;1 =itu eie corresponding to 

( ) 01 =eitu& . The simplest control, however, corresponds to 

situation with ( )tu1  having just a single local extreme (10) 

that separates the overall control into two monotonic 
intervals: the first one monotonically increasing from 

( ) 00 =u  up to ( )11 mm tuu =  and then the second one 

monotonically decreasing from ( )11 mm tuu =  up to ( ) 0=∞u . 

So, we may conclude that in a general case the ideal control 
guaranteeing MO output transition between two steady state 
values of single integrator will be characterized by smooth 
continuous 1P ( )tu1  satisfying initial conditions (9) and 

having one extreme point 

 

 
Fig. 2 MO output y satisfying (6) for 0== yεε (above) with 

the corresponding 1P input signal of single integrator 
( ) ( )tytu &=1  (middle), or with the corresponding 2P input 

signal of the double integrator ( ) ( )tytu &&=2  (below) 
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( ) ( ) ( )∞∈== ,0;0; 1111 mmmm ttutuu &  (11) 

that is monotonic before and after this extreme point. By 

accepting possible control discontinuity at += 0t the MO 
output increase finishing by reaching steady state cannot be 
achieved by simpler (e.g. step) control signal, just the 

extreme point may move to += 01mt . 

When denoting the unit step function as ( )t1 , examples of the 

1P functions may be represented by single exponential 

( ) ( )tetf t1−=  that has extreme point ( ) 10 =+f  and 

discontinuity at the origin, or by the fully continuous 

difference of two exponentials ( ) ( ) ( )teetf tt 12−− −=  having 

extreme 4/1=mf  at 2ln=mt . 

2.6 Two-Pulse (2P) Control 

Similarly, the 2P function (Fig. 2 below) may be defined as a 
function continuous for 0>t with two extreme points that is 
MO on each interval not including one of these extremes.  

In order to control the double integrator, one has to put 
additional integrator in front of the previous one and to 
consider that for achieving a MO increase of ( )ty& (the earlier 

input, now output of the added integrator) for ( )1,0 mtt ∈ , the 

new continuous input ( )tu2  must be described by a function 

having one maximum 021 >mu  at an interior point 

( )121 ,0 mtt ∈  that divides the whole interval ( )1,0 mt into two 

MO subintervals ( )21,0 t  and ( )121, mtt .  

During the earlier second phase of control with ( )∞∈ ,1mtt , 

in order to achieve a monotonic decrease of ( )ty& , input of the 

new integrator ( )tu2 must firstly decrease to its minimal 

value 022 <mu at some ( )∞∈ ,122 mm tt and then 

monotonically increase to its final value ( ) 0=∞u . So, 

instead of the originally two control intervals, now one has to 
consider three monotonic control intervals. 

By requiring continuous control with the only possible 

control discontinuity at += 0t the MO output increase of the 
double integrator finishing by reaching steady state cannot be 
achieved by simpler control, e.g. by a step, or by a 1P signal.  

Example of the 2P function with discontinuity at the origin is 

e.g. given as ( ) ( ) ( )teetf tt 1−− −= 22  with ;01
+=mt  

( ) 3863.12ln22 ==mt . An example of a fully continuous 2P 

function is ( ) ( )( ) ( )teettf tt 1−− −+= 2214  with extreme points 

(Fig. 3 below curve) 357.0)4/1(1 =−−= LambertWtm  and 

153.2)4/1,1(2 =−−−= LambertWtm .  

2.7  n-Pulse (nP) Control 

Function of time ( )tf  that is continuous for 0>t  (with 

possible discontinuity at += 0t ) with the initial value 

( ) ( )tff
t −→

− =
0

lim0 , having for 0>t  n extreme points with 

respect to the finite final value ( ) ( )tff
t ∞→

=∞ lim , whereby 

( )mnimni tff = , ni ,...,1=  at mnnmn tt <<< ...0 1         (12) 

( )[ ] ( )[ ] 1,...,1;01,, −=<∞−∞− + niffff imnimn  (13) 

that is MO on each interval not including one of these 
extreme points will be denoted as the n-Pulse (nP) function. 

By allowing discontinuity of ( )tf  at += 0t , the first extreme 

point may also move to += 01mnt , whereby the first MO 

interval ( )1,0 mnt before this extreme point shrinks to zero.  

By introducing notion of the nP function it is possible to 
denote the MO transients also as the 0P one.  

To cover whole spectrum of typical control transients we 
might yet complete the above list by definition of periodic 
function interpreted as nP function with ∞→n . Then, after 
specifying e.g. the damping ratio (as done by Ziegler and 
Nichols, 1942) we could treat also oscillatory loop behavior.  

2.8 Nearly n-Pulse Control 

Next, we will pay attention also to situation with higher 
harmonics superimposed on the ideally shaped signals what 
results in signals with several local extremes leiy , ...,2,1=i . 

In order to be recognized as significant extreme points, the 
local extremes must fulfill special condition – they must 
change their position with respect to ( )∞f , i.e. it must hold 

(13). In other words, two subsequent significant maxima 
must always be separated by a significant minimum, else they 
still corresponds to the same pulse. 

After specifying significant extreme points from the available 
local extremes, each interval between two such extremes, 
between the origin and the first extreme point and between 
the last extreme point and the steady state will be examined 
regarding the admissible deviation from monotonicity (6). 

By considering the weakened definition of MO transients (6), 
it is possible to introduce nearly nP transients, for which each 
interval among the significant extreme points (12) satisfies to 
(6). It is to expect that by considering final evaluation 
precision 0>ε some extreme points not violating conditions 
on overshooting, or on allowed deviations from the 
monotonicity may be omitted and the control signal be 
characterized as mP with nm < , whereby n denotes number 
of identified extreme points for 0→ε .  

2.9 Integral measures for deviations from ideal nP shapes 

Whereas (6) enables to evaluate the maximal amplitude 
deviations from the strict monotonicity, by modifications of 
the Total Variance (TV) proposed by Skogestad (2003) as 

01

0

>−≈= ∑∫ +

∞

i
ii uudt

dt

du
TV            (14) 
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Fig. 3 Nearly and strictly 2P responses; local extreme points 
denoted by “o” and significant extreme points denoted by “●” 

it is possible to introduce integral measures for such 
deviations. The TV0 criterion defined as 

( ) ( ) 0010 ≥−∞−−= ∑ + uuuuTV
i

ii             (15) 

takes zero values just for strictly MO control signal 
transients. TV0 gives total contribution of superimposed high-
frequency signals to the overall control effort that is 
proportional not just to the amplitude of deviations, but also 
to the number of peaks. Therefore, it may be applied both to 
the plant output and to the plant input analysis. 

Requirement on the smooth shapes of transients with 
piecewise MO segments may be motivated by energy savings 
in actuators, by minimizing actuator wear, generated noise 
and vibrations, by comfort of passengers in flight control, by 
precision increase in controlling systems with actuator 
hysteresis, etc.  

Whereas in controlling stable plants it is possible to decrease 
the number of control pulses up to zero by keeping MO 
controller output, in controlling unstable and integral plants 
the number of significant control pulses cannot decrease 
below the number of unstable poles. To stress contribution of 
the superimposed oscillation in systems with 1P dominant 
control it is then appropriate to work with the TV1 criterion 
defined as 

( ) ( ) 00211 ≥−∞−−−= ∑ + uuuuuTV m

i

ii            (16) 

This gives zero values just for strictly 1P control signal, 
whereby it may be applied also to constrained control signal. 
For control signals with superimposed higher harmonics it 
takes positive values.  

Similarly, for systems with dominant 2P control the 
contribution of higher harmonics may be characterized by 

( ) ( ) 0022 2112 ≥−∞+−−−= ∑ + uuuuuuTV mm

i

ii            (17) 

For ideal 2P functions it yields TV2=0. 

3. PERFORMANCE PORTRAIT (PP) 

The closed loop PP represents information about the closed 
loop performance expressed over a grid of normalized loop 
parameters corresponding to setpoint and disturbance step 
responses generated by simulation, or by real time 
experiments.  

PP containing information about required loop properties 
may be used both for optimally localizing a nominal 
operating point, or for optimally localizing an uncertainty set 
of all possible operating points corresponding to specified 
intervals of loop parameters. Although its generation is 
connected with numerical problems related to the nature of 
grid computations, it gives very promising results especially 
when dealing with dead time systems. In the following, use 
of PP will be illustrated by two simple examples. 

4. P CONTROLLER FOR THE IPDT PLANT 

Let us start with a simple task requiring tuning the loop with 
the P controller for the IPDT plant  

( ) ( )
( )

sTs de
s

K

sU

sY
sS −== 1  (18) 

to achieve the fastest possible y1-MO and u-1P transients  

a) for the nominal plant; 

b) for the interval loop parameters with 

5.1,1;2,1 ∈∈ ds TK  (19) 

The closed loop setpoint response is given as 

( ) ( )
( )

( )
( )sA

sB

eKKs

eKK

sW

sY
sF

sT
sP

sT
sP

w
d

d

=
+

==
−

−
1  (20) 

After introducing the normalized variable 

sTp d=  (21) 

and the normalized loop parameters 

dspss TKKKK 00 ;/ =Ω=κ  (22) 

(14) can be transformed to 

( ) ( )
( )pA

pB

pe
pF

pw =
Ω+

Ω
=

κ
 (23) 

It means that the PP (Fig. 4) can be mapped in the 2D space 
of the loop parameters ( )Ω,κ .  

In the case with 510−=ε  the minimal IAE value 
corresponding to the MO plant output and 1P plant input 
(Fig. 5) corresponds to the line specified by 

0.3694;/;2.7071/ 00 ==Ω==Ω dspss TKKKKκκ  (24) 

This is close to the line corresponding to the double real 
dominant pole (DRDP) of the characteristic polynomial 

( )pA  (Huba et al. 1997; 1998; Huba, 2006) given by 

0.3679;2.7183)1exp(/ 0 ==Ω==Ω dsp TKKκ  (25) 
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What is causing this difference? Concept of the DRDP comes 
from the root locus analyses, when by changing the closed 
loop gain one of the closed loop poles starting at the origin of 
the complex plane influences the dominantly slow response 
mode, whereas the dynamics of the fast mode that is moving 
along real axis from the minus infinity towards the origin 
may be neglected. Optimal loop properties correspond then to 
the equally fast (slow) modes. The difference observed in the 
PP may be caused by the final computation precision (in 
Matlab the smallest distance from 1.0 to the next larger 
double precision number is given as 2^(-52)= 2.2204e-016 
and when taking into account the u-TV1 values in Fig. 5 it is 
to see that the differences between these two operating points 
may already be below resolving power of computations), but 
they might also be expressing contribution of the infinitely 
many closed loop poles of the dead time system. 

So, from this analysis it is not possible to conclude that the 
fastest possible MO transients corresponding to an infinitely 
high measurement & computation precision may be faster 
than those given by the DRDP, but it is evident that for any 
finite precision the transients may be reasonably speeded up 
by a modified tuning. 

Robust tuning that would guarantee y1-MO and u-1P 
transients for all possible loop parameters means to locate the 
uncertainty box (UB) (Fig. 4) with vertices 

( ) ( )
( ) ( )

min0minmax0min

max0maxmin0max

minmaxminmin

maxmaxmaxmin

;/

;/

;
,,

,,

dspss

dspss

TKKKK

TKKKK

UB

=Ω=

=Ω=










ΩΩ

ΩΩ
=

κ
κ

κκ
κκ

 (26) 

containing all possible operating points below the critical line 
(24) given e.g. by the pair ;1=κ  3694.07071.2/1 ==Ω . 
From the radial shape of the border of y1-MO&u-1P control 
in Fig. 4 it is obvious that the critical role is played by the 
upper left vertex  

 

Fig. 4 PP of linear loop with the P-controller and IPTD plant; 

{ }166543 10,10,10,10,10,01.0,02.0,05.0,1.0 −−−−−=== yu εεε  

(from gray to white); Uncertainty Box (20) corresponding to 
plan parameters (13) (gray) 

 

Fig. 4 Detail of the PP with operating point corresponding to 
the DRDP (19) (black) and to the identified MO border (18) 

(gray) { }16654 10,10,10,10 −−−−== yu εε  (from gray to 

white); 

( ) ( ) ( )max0max0maxmin ,/,1,1 dsPss TKKKKB =Ω= κ  (27) 

By considering just the uncertainty in dT , the UB (26) 

reduces to an Uncertainty Line Segment (ULS) with vertices 

[ ]
constTKKTKK

ULS

dspdsp ==Ω=Ω

ΩΩ=

κ

κκ

;;

;,,

max0maxmin0min

maxmin
 (28) 

 

5. PD CONTROLLER FOR THE SOIPDT PLANT 

Let us tune closed loop with the PD controller  

( ) ( )
( )

( ) ( ) ( )sYsWsEsrr
sE

sU
sR 210 ; −=+==  (29) 

and with the SOIPDT plant  

( ) ( )
( )

sTs de
s

K

sU

sY
sS −==

2
2  (30) 

to achieve the fastest possible y2-MO and u-2P transients. By 
considering (21) and by introducing normalized loop gains 

dsds TKrRTKrR 11
2

00 ; ==  (31) 

the set point to output transfer function becomes 

( ) ( )
( )

( )
( )

( )
( )pA

pB

epRRp

epRR

pW

pY
pF

p

p

w =
++

+
==

−

−

10
2

102  (32) 

Requirement of the triple real dominant closed loop pole 

(TRDP) 0p corresponding to ( ) ( ) ( ) 0000 === pApApA &&&  

gives ( )[ ]( ) 11
/2

0 //2 10 RReLambertWp RR−−=  and 

4.4611587910;14.0791223400 10 == RR  (33) 

The PP in Fig. 6 with tuning corresponding to the TRDP (33) 
and to point giving minimal y2 IAE values for different 

510−=== uy εεε  with 
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4.5833IAE;0.5660;0.1235:10 10
5 ==== − RRε  (34a)  

shows that it is possible to get operating point that has 
practically the same TV2 value as the tuning (33) 
corresponding to the TRDP, but a reasonably reduced IAE 
value.  

IAE can further be reduced by choosing 01.0=ε , or 
02.0=ε  (Fig. 7), however, on costs of a slight TV2 increase, 

when 

3.7494IAE;0.6890;0.1839:02.0

3.8800IAE;0.6440;0.1660:01.0

10

10

====

====

RR

RR

ε

ε
 (34b) 

Step responses in Fig. 8 fully confirm information derived 
from the performance portrait. 

 

 

Fig. 6 Above: Detail of the performance portrait of the PD 
controller for the SOIPDT plant with the nominal tuning 
corresponding to the TRDP (33)  and below: detail of the PP 
with the nominal tuning corresponding to the TRDP (33) 
(black) and to the point (34) corresponding to min IAE and 

510−=ε  (gray); 200x200 points  

{ }166543 10,10,10,10,10,01.0,02.0,05.0,1.0 −−−−−=== yu εεε  

(from gray to white). 

When changing Td for fixed 10 , rr , operating point (31) will 

trace out a parabolic curve segment in the PP. Similarly, 
when changing Ks, it will trace out a line segment. So, the 
uncertainty sets corresponding to plant uncertainty (19) will 
have a more complex shape than (26) and their localization in 
a required region of the PP needs to be checked in all its 
internal points, what can be easily implemented numerically.  

 

Fig. 7 PP with the nominal tuning corresponding to the 
TRDP (33) and to points (34) corresponding to min IAE and 

510−=ε , 01.0=ε  and 02.0=ε  (from (circles from black to 
light gray); bold curve = apperiodicity border; diamond = 

tuning with real dominant equivalent poles and 510−=ε  
gving minimal IAE; amplitude deviations from gray to white  

{ }166543 10,10,10,10,10,01.0,02.0,05.0,1.0 −−−−−=== yu εεε

200x200 points; 

6. TUNING MODIFICATIONS FOR CONSTRAINED 
CONTROLLER 

It is to note that the identified amplitude deviations from NO 
& MO shapes do note directly give amplitudes of deviations 
at the plant input and output. For this purpose a normalization 
of the considered signals with respect to their maximal values 
(similarly as in Skogestad and Postlethwaite, 2007) is 
required. 

The second important point is that tuning of constrained pole 
assignment controllers requires working with the so called 
equivalent poles (Huba, 1997; 2003; 2006) that correspond to 
figures that after substituting for closed loop poles into the 
pole assignment control algorithm derived for the delay free 
plant 

ywee
K

e
K

u
ss

−=
+

−= ;2121 &
αααα

 (35) 

give controller parameters of the delayed system 
corresponding to derived values (31). The equivalent poles 
may be expressed as 


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Fig. 8 Setpoint step responses corresponding to tuning (33) 
and (34) with error band corresponding to different values  
ε 1;1 == sd KT . 

They are real just for 

04 0
2
1 ≥− RR  (37) 

else they are complex. By 04 0
2
1 =− RR the so called 

periodicity border (bold curve in Fig. 7) is given. As it is 
evident from Fig. 7, equivalent poles corresponding to the 
TRDP (33), as well as to tuning (34a) are always complex.  

Optimal real dominant pair corresponding to 
510−=== uy εεε  with the minimal y2 IAE value (Fig. 7) is 

given as 

0.6410;0.1028:10 10
5 === − RRε  (38) 

The IAE value is, however, even larger than in the case of the 
TRDP.  

By choosing the controller tuning at the upper margin of 
Fig. 7, when 

0.8;0.16 10 == RR  (39) 

the corresponding IAE value will drop to approximately 5, 
however, on cost of increase TV2 values and tendency to 
oscillations. 

Equivalent poles corresponding to (33), (34) and (38-39) may 
be calculated as 
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 (40) 

In comparing these new results with tuning recommended 
e.g. by (Huba, 2003; 2006) that was derived by 
approximation of optimal complex pair given by the TRDP 
by its real part (modul) as dT/231.02,1 −=α , it is obvious 

that the Performance Portrait method gives much broader 
choice for specifying the required performance as the 
previous approximation. 

 

Fig. 9 Setpoint step responses corresponding to the tuning 
(38) with dT/321.02,1 −=α , to tuning (39) with 

dT/4.02,1 −=α  that already leads to slightly oscillatory 

control at the controller output and with tuning recommended 
e.g. in (Huba, 2003; 2006) corresponding to approximation of 
complex pair given by the TRDP by its real part (modul) as 

dT/231.02,1 −=α  

7. CONCLUSIONS 

By considering conditions on MO output transients 
corresponding to the setpoint step responses of systems with 
the n-tuple integrator the paper shows that the corresponding 
nP-functions represent smooth version to the Felbaum’s 
theorem on n-pulses of the relay minimum time control.  
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The PP based controller tuning has brought several 
advantages: it enables both the nominal and robust controller 
tuning respecting different combinations of performance 
measures and so also achieving of a much broader spectrum 
of the closed loop properties than the traditional analytical 
methods.  

 The method may be especially useful in dealing with robust 
tuning of different modifications of the Smith predictor and 
of the disturbance observer based dead time compensators 
under consideration of control constraints. 

Similarly as in this paper, it is possible to tune controllers for 
chains with a higher number of integrators plus dead time 
that can be frequently met in controlling broad class of linear 
and nonlinear systems by the exact linearization method 
(Isidori, 1995), what is currently hardly to accomplish 
analytically, even when using computer algebra tools like 
Maple, since the LambertW function (see e.g. Hwang and 
Cheng, 2005) supports just derivation up to the SOIPDT 
plant. 

Giving just an isolated point in the space of controller 
parameters under 0→= uy εε , importance of the MRDP 

method may now be seen from the point that it actually 
proves to some degree the numerical computations 
underpinning the PP method but is not able to cover broader 
range of situations occurring in practice. 

The PP method also represents tool enabling constrained 
control design based on the dynamical classes of control 
introduced e.g. by Huba et al. (1997; 1998); Huba and Bisták 
(1999), or Huba (2003; 2006). 
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Abstract: This paper verifies properties of previously proposed simple constrained gain-scheduled PD 
controllers for the Second Order Integrator Plus Dead Time (SOIPDT) plant (Huba, 2004a,b,c; 2005) 
based on imposing dynamics characterized by complex closed loop pole and compensating control 
constraints effect by reference signal scheduling. Simultaneously, this paper broadens tuning possibilities 
of these solutions by the new method for poles specification based on the Performance Portrait (Huba, 
2010; 2011a,b). Due to analyzing broad range of different operating points information of potential user 
about this solutions was reasonably enlarged  

Keywords: robust control, simulation, animation, integral control, interactive systems, visualization. 

 

1. INTRODUCTION 

After some decades of dominancy of linear systems 
theory, the last decade is characterized by a revival of 
constrained systems design. It is, however, interesting to note 
that while a high attention is given to the development of 
complex controllers applicable to multi input – multi output 
systems (see e.g. Bemporad et al., 2002; Kvasnica et al., 
2011), there are still lacking simple solutions and the 
corresponding dynamics understanding for simpler single-
input-single-output systems. One of the results of this 
situation can be well characterized by the note given in 
Åström & Hägglund (1995a)“…derivative action is 
frequently switched off for the simple reason that it is 
difficult to tune properly”... It is easy to show that using the 
linear controller design, the PD controller cannot be properly 
tuned in real (constrained) situations! This problem of 
balancing simplicity versus performance is neither solved by 
the most frequently used anti-windup approaches developed 
originally for dealing with the superfluous controller 
integration (see e.g. Kothare et al., 1994). 

 
Several simple modifications of the pole assignment 

controllers for constrained systems were presented (Huba et 
al., 1998; 1999; Huba, 1999; 2003; 2004; 2006; Huba and 
Bisták, 1999) for the case of closed loop dynamics specified 
by a couple of real poles. Simultaneously, a method for the 
step response based controller tuning was presented (Huba et 
al., 1998; 1999; Huba, 2003) that can be considered as a 
generalization of the well-known method by Ziegler and 
Nichols (1942). This method was generalized also for 
controller tuning based on the “ultimate sensitivity” method 

and the relay controller tuning (Huba, 2003). While this 
approach is based on splitting the 2nd order system dynamics 
into two 1st order ones, which are robust against the 
saturation, for a long time it was not clear, how to interpret 
and apply the case of a complex pole pair. The up to now 
used solution based on approximation of complex poles by 
their real part or by their module leads mostly to a 
performance decrease (Huba et al. 1998; Huba, 2003; Huba, 
2006). By introducing the constrained pole assignment 
approach to the research community, one of the basic 
questions was, how is it able to prove the proclaimed 
properties and hot it is able to deal with control of uncertain 
plants. 

In this paper the newly introduced Performance Portrait 
method (Huba, 2010; Huba, 2011a, b) enables to proceed in 
solving these problems in two points:  
a) Tuning guaranteeing faster output-monotonic and input-2P 
responses than the analytically derived tuning corresponding 
to the Tripple Real Dominant Pole is introduced; 

b) Performance of the gain-scheduling approach applied in 
deriving constrained pole assignment controller for the 2nd 
order integrator + dead time is tested for a broad range of the 
loop parameters (control signal constraints related to initial 
conditions).  

The paper is structured as follows. Chapter 2 recalls basic 
properties of the phase plane trajectories of 2nd order systems 
with complex poles. In Chapter 3 effect of control constraints 
on the phase-plane trajectories is briefly analyzed. Chapter 4 
deals with simple approaches to nonlinear reference signal 
shaping enabling to keep required performance at the plant 

Preprints of the NIL workshop
Jan 10–15, 2011, Bratislava, Slovakia Huba, M.

215



 

     

 

input and output. Simple compensation of time delays is 
proposed in Chapter 5. Chapter 6 introduces briefly basic 
measures for evaluating performance of considered control 
loops, Chapter 7 discusses possibilities for optimal controller 
tuning and Chapter 8 evaluates by the performance portrait 
method properties of the constrained controller for different 
control signal constraints and dead time values. Chapter 9 
brings finally short conclusions to the paper. 

2. PROBLEM SPECIFICATION 

Let us consider a closed loop system defined by its 
characteristic polynomial ( )sA  

( ) 01
2

10

10

asassA

x

x

aax

x

dt

d
R

++=

=
















−−
=








xA

&&   (1) 

with origin as the reference state. The system is composed of 
a plant 

ubAxx +=&   (2) 
and of the linear controller 
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Its main task is usually to guarantee stable equilibrium at the 
origin, what corresponds to the closed loop poles  

{ } 0
2

4
ReRe

0

0
2
11

2,1 <










 −±−

=
a

aaa
α  (4) 

These can, however, specify the close loop dynamics also 

more precisely. For 0
2
1 4aa < , the closed loop poles are 
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Let us introduce state and time transformation 
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This system has trajectories 
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In polar coordinates one gets 
xyxxx ζω +== 21 ;  

θθ sin;cos; 21
2

2
2

1
2 RxRxxxR ==+=        (8) 

whereby 

x

xy
arctg

x

x
arctCeR

ω
ζ

θ
θ

ω
ζ

+
===

1

2;       (9) 

or 

( )
( ) ( )αωτωαωτζ

αωτ
ζτζτ

ζτ

+−+−=

+=
−−

−

sincos

cos

AeAey

Aex
 (10) 

The values αand, AC  are given by the initial 

conditions. After substituting (10) into (8) 
ωταθ −−=  (11) 

Working just with the modified system (6), the poles are 
ωζ jp ±−=2,1   (12) 

Obviously, the solution (9) satisfies equations 
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It means that the module of the state vector decreases with 
the velocity proportional to its actual value by the coefficient 
ζ  and, simultaneously, it rotates clockwise with the angular 

velocity ω  (Fig. 1). In these new variables, the module and 
argument can be expressed as 

1

2;
x

x
arctgR

t == θxx  (14) 

 
Fig. 1 Spiral trajectory corresponding to complex poles 
 
Basic Acronyms 

2P-function Two Pulse Function 

CPAC  Constrained Pole Assignment Control  

MO monotonic, monotonicity 

PP Performance Portrait 

PD Proportional Derivative 

RBC Reference Braking Trajectory 

 
The first of Eqs. (13) can also be expressed as 
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For the double integrator, with respect to [ ] [ ]1010 aarr =  

the controller guaranteeing closed loop poles (5) is given as 

[ ]0
2
0 2ζωω−=tr   (17) 
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The main difference to the real poles case is given by the 
fact that the overall transient corresponds just to a single 
phase of a systematic decrease of the state vector module: It 
is no more possible to identify two phases of control as in the 
case of real poles. The corresponding trajectory has shape of 
a logarithmic spiral that does not depend on initial conditions. 
In designing controller for the real pole pair a requirement on 
the distance decrease is applied twice, while in the case of 
complex poles just once to the associated quadratic form (16) 
that shows a first order dynamics. It is well known that the 
design based on minimizing quadratic criteria leads to 
slightly underdamped system behaviour – state vector x  
rotates during transients. 

3. CONSTRAINTS IN CONTROL 

 
Let us consider the 2nd order system (2) with origin as the 

reference state and the control signal 

2121 0;, UUUUu <<∈  (18) 

being constrained with 1U  and 2U  as the limit values, which 

can be simply expressed as 

( ) ( )xrtsatusatu ==   (19) 

The aim is to bring the system from an initial state [ ]0,0x  

to the origin in the minimal time by respecting the dynamics 
of the state and control signal changes specified by the closed 
loop poles (5). 
Putting such limiter (19) into the 2nd order loop, its 
behaviour can become useless or unstable. The dynamics 
specified by the closed loop poles can be guaranteed just over 
the invariant set of linear control that may become to be 
negligible with respect to the required range of variable 
changes.  

3.1 Zone of Proportional Control Pb 

 Two lines 2,1; =jB j  parallel to vector rz ⊥  satisfying 

to 0=zr t  limit the strip-like band of proportional control 

bP (Fig. 2). Just a segment of the spiral linear trajectory (13) 

limited by vertices 

2,1;0 == jUP j
j

v   (20) 

may be considered as the reference braking trajectory leading 
to required state and as the target for the 1st phase of control. 
 

 
Fig. 2 Zone of Proportional Control corresponding to (19) 
and chosen Reference Braking Curve (RBC) 
 

In defining shape of invariant set of linear control, it is 

important to identify vertices 2,1;0 =jP j , in which the 

trajectories of the closed loop system have tangent parallel to 
vector z defining border of Pb. According to requirement 

0=zr t , these can be defined by 
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3.2 Reference Braking Curve 

The invariant set of linear control will surely be included 
between lines 2,1; =jB j  and limited by trajectories of the 

closed loop (1) crossing the vertices j
P0 . For the complex 

poles in the phase-plane ( )xx &,  it holds 
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Next we will introduce an invariant set called Reference 
Braking Curve (RBC). It will be constructed from the limit 
linear trajectory that touches boundaries of bP  in the point 

j
P0  (23) and of the segment of limit braking with 

jUu = constructed from j
P0  with time running in negative 

direction according to 

( ) 2,1;
0

0 =+= ∫
−

−−
jdeUPe j

jj
b

τ
ϑτ ϑτ bx

AA  (24)  

 

4. NONLINEAR REFERENCE SIGNAL SHAPING 

Pole assignment dynamics of the acceleration phase can be 
constructed in two ways. Both are characteristic with a shift 
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of the reference point [ ]txX 00000 =  (centre of the actual 

spiral trajectory in the acceleration phase) that is equivalent 
to nonlinear reference shaping.  

4.1 Reference Braking Curve 

The 1st solution (Huba, 2003; 2005) is based on a shift of 
the proportional band (equivalent to the reference signal 
shaping) in such a way that the line traced out through the 
actual state x in a direction defined by a chosen vector w  (in 
Fig.3 parallel to the horizontal axis) crosses the boundary 

'jB  of the controller with shifted origin at a point of RBC  

( )j
b

t
j XU 00−= xr  (25) 

Then, according to the chosen vector w, this controller 
will be used just for  

1/ 0 >jpx&   (26) 

Else, the linear controller (19) is used. 
 

 

 
Fig.3. Scheduling controller parameters by projecting the 
representative point with the boundary of Pb to RBC 
vertically (above), or horizonally (below). 
 
Strictly speaking, this modification does not fully preserve 
the required pole assignment dynamics in the transition from 
full acceleration to braking (due to the interaction with the 

dynamics of the point j
X 00 ). The advantage is its simplicity.   

4.2 Control trajectory toughing border of Pb 

The 2nd solution could be constructed in such a way that a 
spiral trajectory crossing the initial point x with a centre of 

rotation shifted to [ ]txX 00000 =  would touch RBC in a 

point bx , which corresponds to 

( ) j
j

b
t

UXu =−= 00xr  (27) 

For this problem (Huba, 2004c), an analytical solution was 
not found. This is, however, not substantial problem, since 
such a solution would not be appropriate for dealing 
effectively with the time delayed systems that represent the 
primary motivation for our treatment.  

In such situation such solution fully preserving dynamics 
of the pole assignment control would need additional dead 
time compensation in crossing the proportional band by 
higher velocities with diameters of rotation exceeding many 

time that one corresponding to j
P0 . Due to this, the transients 

of the 2nd order system with a time delay have dynamics 
depending on the initial states and disturbances (Fig.4). 
 

5. GAIN-SCHEDULING TO COMPENSATE TIME 
DELAYS 

When the representative point crosses Pb at higher 
velocities, the time available for changing the control signal 
from one limit value Uj to another one U3-j decreases. Due to 
the time delays introduced by actuators and other inertial 
components of the control loop, this usually leads to 
overshooting (in Fig.4 better visible in the control signal), or, 
for larger steps, to instability. Therefore, for higher velocities 
the width l of Pb will be broaden by decreasing ω  
(scheduling of the closed loop poles) in order to achieve 
approximately constant time of crossing Pb as it corresponds 

to the points j
P0  with the Pb width l0. This requires to keep 

jj plxlxlpl 0000 /// &&&& =⇒=   (28) 

Because of 

( ) ( ) 2
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This angular velocity will be substituted into the original 
linear controller instead of 0ω , when 

[ ]xUxU jj
t

&& /22/2 001 ζωζζω −−=r  (32) 

Using this controller, the required new origin for the 
reference shaping can be derived as 
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ωωωζζζ ++−−
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Step responses achieved with the modified controller are 
shown in Fig.5. It is to see that the transients from the 
acceleration to braking have approximately the same 
dynamics both for larger and smaller steps and no overshoot. 
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6. EVALUATING CONTROLLER PERFORMANCE 

In evaluating constrained controller we wish to show how the 
control performance depends on the amplitude of the setpoint 
changes with respect to the given control signal limits. In 
evaluating the loop performance experimentally we are 
dealing with quasi-continuous plant output ( )ty  having an 

initial value ( )00 yy =  and a final value ( )∞=∞ yy , whereby 

it will be most frequently required to be nearly, or yε - 

monotonic and with constrained control signal ( )tu  having an 

initial value ( )00 uu = , a final value ( )∞=∞ uu  and close to 

the ideal shape of the 2P function (i.e. uε -2P, see Huba, 

2010; 2011a). The signals will be sampled with a sampling 
frequency enabling to preserve all their important features. 

 

Stable control will be preferably characterized by 
performance indices such as IAE (Integral of Absolute Error, 
Shinskey, 2000), or TV (Total Variance, Skogestad, 2003). 
For a setpoint step ( )tw  

 

0 5 10 15 20 

10 

0 5 10 15 20 
-1 

0 

1 

0 

t 

w, y

 
u

0 100 200 300 400 500 
-2000 

0 

 

5000

 

 

0 100 200 300 400 500 
-1 

-0.5
 

0 

0.5 

1 

t 

w, y
 

u 

w

w

y

y

u

u

 
Fig.4 Transients for the double integrator with dead time 
controlled by controller corresponding to Fig.1 with shifted 
origin 00x  (equivalent to reference shaping) sTd 2.0= , 

dT/28.0;82.0 0 == ωζ . 
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TV 1
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           (36) 

In general, we are looking for minimal values of these 
indices. When they increase over some value chosen e.g. as a 
multiple of optimal value, from the practical point of view 
transients may be denoted as unstable. 

Output monotonicity may e.g. be motivated by comfort of 
passengers in traffic control, by minimizing generated noise 
and vibrations, by safety requirements, etc.  

In engineering application dealing with not-perfect 
systems and finite measurement and processing precision we 
need measures for enumerating deviations of achieved 
responses from strict monotonicity. 

A simple measure introduced by Åström and Hägglund 
(2005) for evaluating deviations from strict MO denoted as 
monotonicity index was defined as  

( ) ( )∫∫
∞∞

=
00

/ dtthdtthα   (37) 

where ( )th  is the closed loop impulse response. For a strictly 

MO response 1=α . A similar and very simple integral 
measure for evaluating deviations from strict monotonicity 
we may define e.g. for the plant output samples ( ) ii yty =  by 

modification of the TV criterion and denote it as the TV0 
criterion (Huba, 2010, 2011a) 
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Fig.5 Transients for the double integrator with dead time controlled 
by controller corresponding to Fig.1 with shifted origin 00x  and 

parameters scheduled with the velocity x&  sTd 2.0= , 82.0=ζ ; 

dT/28.00 =ω  

( ) ( )010 yyyyTVy

i

ii −∞−−=− ∑ +            (38) 

TV0=0 just for strictly MO response, else it gives positive 
values.  

Besides of this integral measure for characterizing 
deviations from strict MO it is important to introduce also 
amplitude deviations measure based on defining an error 
band specified by the parameters yε , or uε  around the 

reference MO signal (Huba, 2010, 2011a). In general, 
−ε MO signal ( )tf  has to fulfil requirements 

( ) ( )[ ] ( ) ( ){ } 0;0;0 1212 >≥>∀−≥−∞− εε ttffsigntftf (39) 
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In dealing with the SOIPDT plant and other plants with 
two unstable poles the ideal control signal has always shape 

of 2P functions with two extreme points 1mu and 2mu that 

separate three monotonic intervals. When allowing 
discontinuous control signal changes after a setpoint step the 
MO interval before the first maximum may shrink to zero.  

Deviations from ideal 2P shapes may be characterized by 
the integral  TV2 criterion defined for ( )tu as 

( ) ( )022 2112 uuuuuuTVu mm

i

ii −∞+−−−=− ∑ +          (40) 

Ideal 2P control functions yield TV2=0. The amplitude 
measure for characterizing deviations from ideal 2P  shapes 
may be based on the amplitude measure for deviations from 
monotonicity working with tolerance ε  (39) that will be 
subsequently applied over each of the three (two) MO 
intervals. 

 

7. CONTROLLER TUNING 

In general, we have interest to work with tuning 
guaranteeing admissible deviations from the output 
monotonicity ( −yε MO output with limited y-TV0 values) 

together with the admissible (amplitude or integral) 
deviations from ideal 2P shapes at the plant input and giving 
the fastest possible transients characterized e.g. by the 
minimal IAE values.  

One traditional possibility of the analytical controller 
tuning was based on conditions of the Multiple Real 
Dominant Poles. Using requirement of the triple real 
dominant pole (TRDP) for the loop with the SOIPDT and PD 
controllers (Huba, 1999), it was possible to derive controller 
coefficients  

dsds TKrTKr /461.0;/079.0 1
2

0 −=−=   (41) 

with the corresponding closed loop poles 
( ) dTjs /161.0231.02,1 ±−=   (42) 

that correspond to parameters appropriate for the constrained 
controller tuning 

dT/28.0;82.0 0 == ωζ   (43) 

In (Huba, 2011b), based on amplitude deviations from ideal 
monotonic and 2P shapes at the plant output and input 

εεε == uy , alternative controller tuning parameters may be 

derived by the performance portrait method that e.g. gives  
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When transforming these figures into parameters used for the 
controller tuning one gets 

429.0;.803:02.0
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===

===

=== −

ωξε
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 (45) 

In this new interpretation, tuning (41)-(43) corresponds to 
ideal y-MO and u-2P shapes with 0→ε .  

Fig. 6 shows step responses corresponding to tuning (42-

43) width 0=ε  and to tuning (44-45) for 510−=ε , 01.0=ε  
and 02.0=ε . While the new tuning corresponding to 

510−=ε  shows reasonably improved dynamics with respect 
to that one corresponding to the triple real pole ( 0=ε ), 
responses corresponding to the values 01.0=ε  and 

02.0=ε taken from the performance portrait of the 
unconstrained system have obviously larger amplitude than 
the tolerance band drawn for 02.0=ε  – tuning 
corresponding to specific overshooting in linear case cannot 
be simply adopted for constrained control without deeper 
analysis of the actual amplitude relations and without 
corresponding norming of all variables as it was e.g. 
recommended by Skogestad and Postlethwaite (2007). 

 

 
Fig. 6 Transient responses corresponding to tuning (42-43) 

(TRDP with 0=ε ) and to tuning (44-45) for 510−=ε , 

01.0=ε  and 02.0=ε ; 2.0;1;1 =≤= ds TuK  

8. EVALUATING CONSTRAINED CONTROLLER BY 
THE PERFORMANCE PORTRAIT METHOD 

Now we are going to deal with the question, how is the 
loop performance in controlling SOIPDT influenced by the 
control signal constraints. 

Fig. 7 shows closed loop Performance Portrait consisting 
of −yε MO and u-TV2 values is mapped over grid of control 

Preprints of the NIL workshop
Jan 10–15, 2011, Bratislava, Slovakia Huba, M.

220



 

     

 

limit values max2min1 ; UUUU ==  that will change by 

keeping constant amplitude of the setpoint step. 

 
Fig. 7 Performance Portrait of the proposed gain-scheduling 
constrained pole assignment controller (34) for complex 
poles (42-43); 41x41 points (from gray to white); 

;1=sK { }543 10,10,10,01.0,02.0,05.0,1.0 −−−=== yu εεε ; 

1=w ; 2.0=dT  

The PP shows that the algorithm cannot be used for 
situations with relatively strong limitation of the value minU  

when it is possible to observe rapid increase of both the TV2 
and y2-IAE values and also increasing amplitude deviations 
from ideal monotonic shapes at the plant output and 2P 
shapes at the plant input. 

Results achieved by the performance portrait in Fig. 7 
achieved for 2.0;1;1 === ds TwK  over 41x41 points for 

2,05.0;2,05.0 maxmin ∈∈− UU are illustrated by transient 

responses corresponding to 1max =U  and several values of 

minU  in Fig. 8. 

For 5.0min −=U  and 25.0min −=U  the transients are y-

MO and u-2P.  
For 1.0min −=U  some overshooting in y occurs, together 

with the third pulse of the control signal u.   
For 05.0min −=U  the output overshooting increases up to 

the moment when the control collapses and starts to diverge. 
Next, we are going to check properties for different dead 

time values. 
Performance Portrait in Fig. 9 achieved for 

5.0=dT shows almost perfect properties both at the plant 

input and output in whole considered range of constraints.  
Transient response in Fig. 10 explain, why it is possible 

that the y2-IAE values are over whole analyzed area 
practically constant – due to the relatively long dead time the 
controller gains must be relatively low and the control signal 
does mostly not saturate. 

In difference to this the PP in Fig. 11 shows that for 
1.0=dT  the controller gives almost perfect properties over 

whole considered range of control constraints, just for 
2max →U  and 05.0min −→U there occur some deviations 

from ideal shapes. 

 

 
Fig. 8 Transient responses corresponding to 1max =U  and 

several values of 5.0,05.0min −−∈U  for complex poles 

(42-43) and ;1=sK 1=w ; 2.0=dT  

 
Fig. 9 Performance Portrait of the proposed gain-scheduling 
constrained pole assignment controller (34) for complex 
poles (42-43); 41x41 points (from gray to white); ;1=sK  

{ }543 10,10,10,01.0,02.0,05.0,1.0 −−−=== yu εεε ; 1=w ; 

5.0=dT  
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Fig. 10 Transient responses corresponding to 1max =U  and 

several values of 5.0,05.0min −−∈U  for complex poles 

(42-43) and ;1=sK 1=w ; 5.0=dT  

 
Fig. 11 Performance Portrait of the proposed gain-scheduling 
constrained pole assignment controller (34) for complex 
poles (42-43); 41x41 points (from gray to white); ;1=sK  

{ }543 10,10,10,01.0,02.0,05.0,1.0 −−−=== yu εεε ; 1=w ; 

1.0=dT  

 

 
Fig. 12 Transient responses corresponding to 1max =U  and 

several values of 5.0,05.0min −−∈U  for complex poles 

(42-43) and ;1=sK 1=w ; 2.0=dT  

From the control signal transients it is to see slight 
imperfection occurring in the transition from nonlinear to 
linear control algorithm. A question is, if it is due to some 
imperfection of the algorithm, or it is result of limited 
precision in carried out calculations that might also influence 
results achieved for the strongest considered limit values 

05.0min −=U and all analyzed dead time values. 

Repeating the above analysis for controller with tuning 

(44-45) corresponding to 510−=ε  it is possible to see from 
Fig. 13-18 that this relatively more aggressive tuning enlarges 
areas with stronger deviations from ideal shapes at the plant 
input and output and makes the imperfection for large ratio 

10/ minmax >UU  yet more visible. In the acceptable area of 

control that is still sufficiently large and interesting for many 
applications it shows, however, reasonable improvement of 
dynamics, when the IAE values dropped in the area of linear 
control for 5.0=dT from above 2.95 to 2.35. 

In the step responses influence of the more aggressive 
tuning is to observe by enlarged overshooting that appears 
also in situations when the previous tuning gave monotonic 
output responses. These results make the needs on revision of 
the controller design yet more acute. 
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Fig. 13 Performance Portrait of the proposed gain-scheduling 
constrained pole assignment controller (34) for complex 

poles (44-45), ;10 5−=ε  41x41 points (from gray to white);  

{ }543 10,10,10,01.0,02.0,05.0,1.0 −−−=== yu εεε ; ;1=sK  

1=w ; 2.0=dT  

 

 
Fig. 14 Transient responses corresponding to 1max =U  and 

several values of 5.0,05.0min −−∈U  for complex poles 

(44-45), 510−=ε  and ;1=sK 1=w ; 2.0=dT  

 
Fig. 15 Performance Portrait of the proposed gain-scheduling 
constrained pole assignment controller (34) for complex 

poles (44-45), ;10 5−=ε  41x41 points (from gray to white);  

{ }543 10,10,10,01.0,02.0,05.0,1.0 −−−=== yu εεε ; ;1=sK  

1=w ; 1.0=dT  

 

 
Fig. 16 Transient responses corresponding to 1max =U  and 

several values of 5.0,05.0min −−∈U  for complex poles 

(44-45), 510−=ε  and ;1=sK 1=w ; 1.0=dT  
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Fig. 17 Performance Portrait of the proposed gain-scheduling 
constrained pole assignment controller (34) for complex 

poles (44-45), ;10 5−=ε  41x41 points (from gray to white);  

{ }543 10,10,10,01.0,02.0,05.0,1.0 −−−=== yu εεε ; ;1=sK  

1=w ; 5.0=dT  

 

 
Fig. 18 Transient responses corresponding to 1max =U  and 

several values of 5.0,05.0min −−∈U  for complex poles 

(44-45), 510−=ε  and ;1=sK 1=w ; 5.0=dT  

 

8. CONCLUSIONS 

 
Analysis of the previous works dealing with the 

constrained design of SOIPDT system with closed loop 
performance specified by complex closed loop poles enabled 
detailed performance inspection of considered controllers and 
showed several interesting moments. 

The analyzed controller may be interpreted as a variable 
structure one, or a gain scheduled controller with reference 
signal shaping. It does not introduce any new design 
parameter. So, the tuning procedure remains simple. It is 
even simpler to tune than in the linear case, since the closed 
loop poles can be specified directly by given dead time - 
independently from the given constraints! 

Since the design uses just the well-known behavior 
patterns of the linear pole assignment trajectories and of the 
on-off control, which are well established in the engineering 
community, it is to assume that the new controllers will be 
also well accepted in practice. 

Firstly it was shown that the previously used controller 
tuning based on the triple real dominant closed loop pole may 
be enriched by tuning given by the performance portrait 
method and corresponding to limit case of output monotonic 
and input 2P transients with the lowest IAE value of the 
output variable. 

Detailed analysis of influence of constraints shown some 
not yet sufficiently covered areas occurring for 2.0=dT  and 

5.0=dT  and very strong limitation put on the braking 

value 05.0min −=U , while the limit value for acceleration 

remains relatively large (roughly for 10/ minmax >UU ). Next 

research should show if the problem is caused by some 
neglected features of the considered constrained dynamics, or 
it is caused by insufficient precision of carried out 
calculations.  
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Abstract: This paper shows older approach to the design of the minimum time sampled-data control 

algorithms for linear 2nd order systems. Based on the general theory (Desoer and Wing, 1961) and its 

modification for the non-symmetrical amplitude constraints and the fully digital implementation (Huba, 

1992), it enables to deal also with optimal control processes having more than one sign variation of the 

optimal control. Non-uniqueness of the optimal control arising at specific sampling periods in systems 

with complex poles is analyzed. As the main contribution, possibilities for simplification of the minimum 

time (pole assignment) control are pointed out that result from special shape of the band of proportional 

control that enables an easy segmentation and parametrization. 

Keywords: Control system design; minimum time control; optimal control; saturation. 

 

1. INTRODUCTION 

After longer period of dominance of linear approaches, 

last trends in control design reflect the importance of the 

control signal constraints in combination with the discrete 

time essence of control. These can neither be fully replaced 

by the principles of rely (continuous-time) Minimum Time 

Control (MTC), or by those of the linear control extended by 

some anti-windup measures which are still not able to deal 

effectively with all situations, e.g. when the control signal 

hits both the upper and the lower saturation limit (Rönnbäck, 

1996), or they seem to be too complex (Hippe, 2006). The 

impact of this situation is evident e.g. by inflation of different 

“optimal” PID tunings appearing at practically each control 

conference, or in conclusions that the PD controller cannot be 

optimally tuned (Aström and Hägglund, 1995).  

The Model Predictive Control (MPC) developed due to 

the demand of practice on robust reliable controllers 

appropriate for a broad spectrum of industrial applications 

with different performance specifications and offering a 

broad spectrum of functionalities. The overall theoretical 

setting of this approach is much broader than that of the 

minimum time control. The early works on the minimum 

time sampled data systems (Kalman, 1957; Desoer and Wing, 

1961), mentioned yet in some textbooks in 70s (Kuo, 1970) 

have been practically forgotten. But, the key problems, 

principles and solutions investigated in these early papers are 

still included within the problems of the MPC and so it might 

be interesting to recall them in looking for new inspiration 

and ideas. 

The aim of this paper is to show that in the area, where the 

minimum time pole assignment control is not directly 

applicable, the pure minimum time control is not unique and 

relatively not sensitive to the actual choice of the control 

signal. This approves use of simplified control algorithms in 

this area. Simultaneously, simplified interpretation of optimal 

control valid rigorously just for a limited range of initial 

states is formulated, which is easier to implement and also to 

understand. 

In chapters 2-8, basic properties of minimum time control 

systems are summarized based on early works by Desoer and 

Wing (1961), Busa and Huba (1986); Huba (1992); Huba and 

Bistak (2003). Chapters 8 and 9 show properties of minimum 

time control occurring for special sampling periods, which 

explain possibilities of the controller simplification. Chapter 

10 deals with possible nonuniqueness of the vector 

representation and control design. Short summary and one 

possible development of the MTC are discussed in 

Conclusions in Chapter 11. 

2. STATEMENT OF THE PROBLEM 

The paper considers sampled data control of a continuous 

linear system (Ac, bc) described as  

( ) ( ) ∫====

+=

−

++

T

c
T

kkk

deTeT

u

cc

0

11

; ττ
bbbAA

bAxx

AA  (1) 

whereby xk  is the phase vector at time t=kT and 

0;0;, 21211 ><∈+ UUUUuk  (2)  
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is the control over the interval ( )TktkT 1+<≤ . The 

minimum time regulator problem may be stated as follows: 

given any admissible initial state x0, it is required to bring the 

system to the demanded state w=0 with a control constrained 

by (2).  

Applying the control sequence { } 211
,; UUuu i

N

i ∈  for a 

sampling period T one gets series of states 

100
2

112

001

uuu

u

bAbxAbAxx

bAxx

++=+=

+=
 (3) 

M  

120

1

0 −−
− ++++= NN

NN

N uuu bAbbAxAx K  

If after that xN=0, Eqs. (3) can be rearranged by introducing 

vectors 

1,2,....;)()( =−−=−= − kTkTk
k bAbAv  (4) 

into the canonical representation of the initial states 

NN uuu vvvx +++= L22110  (5) 

 

Basic Acronyms 

FAB Full-Acceleration-Boundary 

FBB Full-Acceleration-Boundary 

CPAC  Constrained Pole Assignment Control  

MTC Minimum Time Control 

Pb Zone of Proportional Control 

PD Proportional Derivative 

RN Reachability set from which the 

origin is reachable in N steps 

RBC Reference Braking Curve 

ZC Zero (Critical) Curve 

 

3. SETS RN AND In; BOUNDARY STATES  

 
RN is the set of all initial states that can be brought to the 

origin by the control (2) in N sampling period or less: 













=∈== ∑
=

NiUUuuR

N

i

iiiN ,,2,1;;;|

1

2100 Kvxx   (6) 

Desoer and Wing have shown that RN are convex: 

R1 is the line segment with vertices  

21
2

111
1

1 ; UVUV vv ==  (7) 

R2 is the parallelogram whose edges are parallel to v1 and v2. 

Its vertices (see also Huba, 1992) are: 

2221
22

21221
21

2

2211
12
21211

11
2

;

;

UUVUUV

UUVUUV

vvvv

vvvv

+=+=

+=+=
 (8) 

For N>2, RN is obtained inductively. Suppose RN is known, 

let us construct RN+1. RN being a convex polygon is 

completely described by its vertices. Let us classify these 

vertices in two classes: letδ be an arbitrarily small positive 

number. The class 2

NP  contains all the vertices VN of RN, such 

that NNNV Rv ∉+ +1δ . 1

NP  contains all vertices VN  of RN, 

such that NNNV Rv ∉− +1δ . 

These two classes usually have common vertices 

characterized by the maximum distance from a line going 

through the origin parallel to vN+1. The vertices of RN+1 are 

obtained from those of RN as follows:   

- to each vertex NV  of 1

NP  corresponds the vertex of RN+1: 

11UV NN ++ v . 

- to each vertex NV  of 2

NP  corresponds the vertex of RN+1: 

21UV NN ++ v . 

The boundary of RN+1 is obtained from that of RN by adding 

vectors vk+1Uj in an outward direction. In all linear 2
nd

 order 

systems the origin is surrounded by sets RN with 2N vertices 

of the form 

∑∑
+=

−
=

− +=
N

ki

ij

k

i

ij
j

kNk UUV

1

3

1

, vv  (9) 

corresponding to sequences where: 1) each ui is maximum in 

absolute value (i.e. equal to U1 or U2, respectively); 2) the 

sequence consists of 2 subsequences of ui’s that have the 

same sign and each subsequence has a sign opposite to that of 

the another one, k being the number of steps of the 1
st
 

subsequence with ui=Uj, N-k the number of steps with the 

opposite limit value U3-j. 

In systems with complex poles there are also possible 

sequences consisting of more than 2 subsequences (with 

more than 1 sign variation). A vertex with 2 sign variations 

can then be expressed as 

∑∑∑
++=

+

+=
−

=
−− ++=

N

lki

ij

lk

ki

ij

k

i

ij
j

lkNlk UUUV

11

3

1

,, vvv  (10) 

with k and 1 denoting the number of steps of the 1
st
 or of the 

2
nd

 subsequence, respectively. It is yet convenient to partition 

the set off all initial states into sets In in terms of the number 

of trains of pulses with a constant sign in the optimal control 

sequence. 

From the construction of RN it is obvious that all its edges are 

parallel to one of the vectors. Points of an edge of I2 parallel 

to vm can then be expressed as 

( NmUuNmUUu

UUuUUB

jmm

jNjmmmjmj
j

N

=∈≠∈

++++++=

−

−−+−

,,0;,, 321

33111 vvvvv LL
(11) 

In I3 the boundary states can be expressed as 

21

11

3

1

1

,UUu

UUuUB

m

N

lmi

ij

lm

mi

ijmm

m

i

ij
j

N

∈

+++= ∑∑∑
++=

+

+=
−

−

=

vvvv
 (12) 

( NmUuNmUUu

UuUUB

jmm

N

mi

ijmm

m

ki

ij

k

i

ij
j

N

=∈≠∈

+++= ∑∑∑
+=

−

+=
−

=

,,0;,, 21

1

1

1

3

1

vvvv
(13) 

 

4. UNIQUENESS PROPERTIES 

 

Desoer and Wing (1961) have shown that if 1110 Rvx ∈= u , 

one and only one value of x0 corresponds to each value of u1 

and the canonical representation is unique. If 

222110 Rvvx ∈+= uu , two rows of this vector equation 
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uniquely determine the values u1 and u2 under the condition 

that the vectors v1 and v2 are not parallel, which is equivalent 

to the controllability condition [ ] 0det ≠Abb .  

The expression of the vertices and the points BN on the 

boundary of RN is also unique. The canonical representation 

(6) is, however, not unique in interior states of RN, N>2. For 

these points they have proposed a recursive construction of 

canonical representation, which has seemed to them to be the 

simplest one: An interior point of RN can be obtained from a 

boundary point of RN-1 by adding the vector vNuN in an 

outward direction  

NN
j

N uB vx += −10  (14) 

From (11-14) it follows that an optimal control sequence can 

involve, besides the trains of saturated ui’s, two non-saturated 

steps: the first occurring at the sign change and the second in 

the last control step. However, Desoer and Wing have not 

observed another significant feature of the construction (14): 

It gives min=Nu ! From (3) it immediately follows that the 

control error at the last-but-one sampling instant takes 

minimal possible value:  

( ) ( ) NN uTT 11 vbAx =−−=−  (15) 

The output variable reaches an ε-neighborhood of the origin 

in the minimum time! 

 

5. PROPORTIONAL BAND 

 

In an usual application it is not necessary to produce the 

optimal control sequence all at once at time t=0. Instead, it is 

more advantageous to compute only the control signal u1 for 

the next control interval and to repeat the computation at each 

new sampling instant. This does note change the system 

behavior and at the same time simplifies the computer 

operation and enables registration of unexpected 

disturbances. Let us consider those 20 Ix ∈  for which 

., 211 UUu ∈  From (11) and (14) for m=1 it follows 

( 2,1;,0;, 211

1

2

110

=∈∈

++= ∑
−

=

jUuUUu

uUu

jN

NN

N

i

ij vvvx
 (16) 

Equivalently, for 30 Ix ∈  from (12) and (14) 

( 2,1;,0;, 3211

1

2

3

1

2

110

=∈∈

+++=

−

−

+=
−

+

=
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jUuUUu

uUUu

jN

NN

N

li

ij

l

i

ij vvvvx
 (17) 

The set of all points with 211 ,UUu ∈  is denoted as the 

Proportional Band (Pb). By the second term in (15) and (16) 

denoted as j

Nz , whereby in I2 

( 2,1;,0;

1

2

=∈+= ∑
−

=

jUuuU jNNN

N

i

ij
j
N vvz  (18) 

the Critical or Zero Curve (ZC) is defined, which consists 

of points at which u1=0 (dividing the phase plane according 

to the sign of u1). In I2 this polygonal curve is obtained by 

joining vertices 

2,1;;1, 0

2

==>=











= ∑

=

jZNU
z

z
Z j

N

i

ijj
N

j
Nj

N 0v
&

 (19) 

ZC of Pb in I3 has interior points 

( 2,1;,0; 3

1

2

3

1

2

=∈++= −

−

+=
−

+

=
∑∑ jUuuUU jNNN

N

li

ij

l

i

ij
j
N vvvz  (20) 

and vertices 

2,1;

2

3

1

2

=+= ∑∑
+=

−

+

=

jUUZ

N

li

ij

l

i

ij
j

N vv  (21) 

For u1=Uj in (16) and (17) a new polygonal curve is defined, 

referred originally as the Switching Curve (SC) due to its 

relation to the switching curve of the relay minimum time 

systems. In I2 it has vertices  

2,1;

1

10, ==+== ∑
=

jUUZVX

N

i

ijj
j

N
j

N
j

N vv  (22) 

In I2 SC represents an invariant set, along which the system is 

braked to the origin, it could also be denoted as the 

Reference Braking Curve (RBC). Since the last property 

does not hold in In n>2, in such situations it will be denoted 

as the Full-Braking-Boundary (FBB). In I3 

2,1;

2

3

1

1

1 =+=+= ∑∑
+=

−

+

=

jUUUZX

N

li

ij

l

i

ijj
j
N

j
N vvv  (23) 

Putting u1=U3-j in (16) and (17), vertices of the Full-

Acceleration-Boundary (FAB) are defined  

( ) 2,1;1331
3

1,1 =−+=+== −−
−

− jUUXUZVY jj
j

Nj
j

N
j

N
j

N vv  

 (24) 

Both these polygonal curves represent boundaries of Pb, in 

which the control signal is not saturated and therefore has to 

be computed. Outside of Pb u1=U1 or U2, which depends only 

on the representative point position with respect to the ZC. 

The proportional zone is divided into two parts by a line 

parallel to v1 and crossing the origin 

x = qv1, ( )∞−∞∈ ,q    (25) 

By eliminating q the line equation can be written as 

;0=p   

1

1

v

v
yyp
&

&−=  (26)           

To the left of p, j=1 will be substituted into (17-24) and to the 

right j=2. In order to avoid the ambiguous situation p=0, “j” 

can be determined according to 

if p < 0 then j=1 else j=2 (27) 

 
Fig.1.  Vektors kv  of the oscillating plant; a0= 0.82;  a1=0.2; 

T=1. 
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Now the question is, how long Pb can be constructed 

according to the formulas for I2 and when one has to use 

formulas derived for In, n>2. Let the characteristic 

polynomial of the original system with complex poles be 

( ) 01

2 asassA ++= . Observe that increasing k the length of 

vectors vk (4) is increasing in stable systems (Fig.1) and 

decreasing in unstable systems. Simultaneously, vk also rotate 

in each step by an angle ϕ∆ . If the formula (19) is used for 

1)/int( +∆= ϕπN , int=integer part, the new point belongs to 

RN-1, vNUj points from j

NZ 1−  into RN-1 (the angle between v1 

and vN is greater then π). Therefore, the new vertex j

NZ of ZC 

can only be constructed from the previous one by adding the 

vector vNU3-j pointing in the outwards direction. That holds 

for all vN  having tips to the left of p: The new vertex should 

be constructed using recursion 

iN
j

N
j

N UZZ v+= −1  (28) 

whereby 

if 0)( >Np v     i=j      (29)          

if  0)( <Np v   i=3-j   

Equivalently, points j

N

j

NN ZZ 1−∈z are expressed as  

 

Fig.2. Computation of the control signal u1. 

 

),0(;1 iNNN
j

N
j
N UuuZ ∈+= − vz   (30) 

 

6. CONTROL ALGORITHM 

 

From modified expressions (16-20) 

>∈>∈<

==

++=+=

+
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iN

NN
j

N

UuUUu

jN

uZuux

,0(;,

;2,1;,...3,2

1211

1111110 vvzv

 (31) 

whereby the value Ui is given by (29), it is obvious that the 

value u1 can be determined as the distance of the initial state 

x0 to ZC in the direction of v1.  

The line crossing x0 in direction v1 (Fig.2) is given by the 

equation ( )∞∞−∈+= ,; 111 uuvzx  whereby 

11 +++= NN

j

N uZ vz . Eliminating z and uN yields  

( ) ( ) ( )NryNryNr

vvvvvzvzyvyvu

c

NNNNNNNN

++=

=−−+−= ++++++

&

&&&&&&

10

111111111 )/()(
  

 

 (32) 

7. STRIPS 
j

NS ; DETERMINATION OF N 

 

After limiting the calculated value (32) according to (2), the 

control algorithms can be used in all points of the strip 
j

NS determined by parallel lines j

Np 1+  and j

Np  crossing 

j

NZ 1+  and j

NZ  in direction of v1. 
j

Np  is described as 

( )∞∞−∈+= ,;1 qqZ j

N rx , or after eliminating the 

parameter q by the equation 

( )

( ) ( ) j
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j
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j
Nj

N

j
N

cpz
v

zyv
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p

+=−
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−=
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1

1

;0

&

&&
x

x

  (33) 

The value of the parameter N in (32) is determined for the 

point x0 to be between lines j

Np  and j

Np 1+  ( j

NS∈0x ), which 

can be realized by an iterative procedure, until the 

inequalities 

( ) ( )0.0. 1 ><+
j
N

j
N ppANDpp  (34) 

are fulfilled (Huba, Sovišová and Spurná, 1987). 
 

8. BEHAVIOUR IN I2 
 

Considering an initial point 20 Ix ⊂∈ bP (16) and the applied 

optimal control u1, the representative point takes in the next 

sampling instant value 

( 2,1;,0;1
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 (35) 

This is a point of the line segment j

N

j

N XX 21 −− of the RBC. So, 

from points of Pb the optimal solution tends in the next 

sampling period to RBC!  

 

When expressing the distance of an initial point 

2

3

,0 Ix ∈= −
−
j

kNkV (9) from the RBC by the number k of steps 

with jUu −= 3 , it is clear from  
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 (36) 

that under optimal control with u1=U3-j this distance 

decreases by one sampling period in each control step. So, in 

general, the aim of the optimal control for 20 Ix ∈ can be 

interpreted as: To reach RBC in the minimum time 

possible. This task can be easily solved also without the 

reachibility sets: RBC is traced out by vertices 
j

NX  

computed by N backward steps from the origin under the 

control u=Uj as 

( ) 2,1; =−= jUNTX j
j

N b  (37) 

The control algorithms can be determined by the requirement 

to reach RBC in one control step  

0x  
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j

Np 1+  

 

 

Preprints of the NIL workshop
Jan 10–15, 2011, Bratislava, Slovakia Huba, M., Bisták, P.

230



 

     

 

N
j

N qXu vbAx +=+ −110   (38) 

If the computed control signal exceeds the given constraints 

(2), it has simply to be limited, so that  

[ ][ ] ( ){ }
( ) ( ) ( ){ }NryNryNrsat

Xsatu

c

j
NN

++=

=−= −
−

&10

01

1

1 10 Axbv
 (39) 

 

9. SPECIAL CASE 

 

In the case of an oscillating undamped system with 
2

01 ,0 ω== aa  and the sampling period satisfying 

πω =TK  (40) 

(K being positive integer and Tωϕ =∆  the angle traced out 

by vk  and 1+kv ), Pb acquires a regular shape and all its 

vertices can be expressed in a relatively simple way. As the 

consequence of (40)  

( ) k
i

iKk vv 1−=+  (41) 

It is now convenient to introduce strips
j

mP , j

mN  and 
j

MQ  

(Fig.3): with m denoting the number of begun half rounds of 

vN around the origin and M denoting the begun full rounds of 

vN.  

The strips 
j

mP are defined as a union of all strips 
j

NS in In 

n=m+1 with j

NZ  constructed using Ui=Uj in (28) (vector vN is 

to the right of p) 

( )

( )

U
Km

KmN

j
N

j
m SP

12

122

−

+−=

=  (42) 

The strips 
j

mN  are defined as a union of strips 
j

NS  in In, 

n=m+1 with j

NZ  constructed using Ui=U3-j in (28) (vector vN 

is to the left of  p) 

( )

( )

U
Km

KmN

j
N

j
m SN

22

11

−

+−=

=  (43) 

 

 

Fig.3. Special case: K=3. Pb corresponding to (58c). 

 

The union of all strips
j

NS corresponding to the complete M-

th round of vN will be denoted as the strip 
j

MQ  

( )
UU j

M
j
M

MK

KMN

j
N

j
M NPSQ 212

2

112

−
+−=

==  (44) 

The strips 
j

P1  and 
j

N 2  are separated by a line (33) crossing 

the point  

( ) jKjj
j

K UUUKTZ zvb =−−= 1  (45) 

The lines j

Np  (33) crossing j

NX  in I2 are described by  

( )
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yp
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 (46) 

From (41) and from (28-29) it follows that 

jK
j

K
j
K UZZ −−= 32 z  (47) 

and the constant j

Kc2  of the line crossing j

KZ 2  and separating 

j
N 2  from 

j
P3 and, simultaneously, 

j
Q1 from 

j
Q2  is  
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In general, the strips 
j

MQ  and 
j

MQ 1+  are separated by the 

lines (46) with 
j
K

j
MK Mcc 22 =  (49) 

Putting such a line through a point of a strip j

MQ   

( ) ( ) 02020 =+=+ j
K

j
MK Mcpcp xx  (50) 

and solving it in terms of M results in  

( ) j
KcpM 20 /x−=  (51) 

which takes in 
j

MQ  values ( )1,* +∈ MMM . Hence, the 

index M can be determined as 

( )*int MM =  (52) 

The strips 
j

MQ  are partitioned into the strips 
j

mP  and 
j

mN  

by the lines (46) with constants  

( ) ( ) j
K

j
KMKK

cMcc 212
1−+=−+  (53) 

By evaluating the sign of expression (33) with constant (53) 

one can determine, in which of the two strips the initial point 

is. Then the computation of the parameter N of the actual 

strip can be finished iteratively. But, it is also possible to 

derive an explicit solution based on the solution in jP1 . Here, 

writing equation of line (46) crossing a point 
j

NS∈0x and 

solving it in terms of N gives 
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The control signal can be computed by means of (54) and 

(32) directly, without iterations. The same can be generalized 

for jN 2  with KNN +=  and by determining N  according 

to (54) with ( ) jUp /0x  being replaced by 

( ) ( )[ ]./ 30 jj

j

K UsignUZp −−x . 
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10. NONUNIQUENESS OF CANONICAL 

REPRESENTATION 

 

Choice of the sampling period (40) also varies the shape of 

sets RN. In I3 the edges of RN parallel to v1 can be expressed 

using (12) with m=1 as 

211

2

1

2

311

,UUu

UUUuB

N

Ki

ijjK

K

i

ij
j
N

∈

+++= ∑∑
+=

+
=

− vvvv
 (55a) 

and the edges parallel to vK+1 with m=K+1 as 
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Both these edges have one common vertex 

∑∑
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−−− ++=
N

Ki

ij

K

i

ijj
j

lNl UUUV

12

311,,1 vvv  (56) 

Changing u1 from Uj to U3-j the point (55a) moves from the 

vertex (56) and traces out line segment   (U3-j-Uj)v1. In 

accordance with (41), a motion of the point (55b) with the 

length of (Uj-U3-j)v1 corresponds to equivalent change of 

uK+1. Both edges form together a line segment with the length 

2(U3-j-Uj)v1. The point (56) becomes to be an internal point 

of this line segment. From the relation 

( ) ( )11111K1  ++ +=−=+ Kjjjj uuUUUU vvvv  (57) 

it is obvious that the point (56) can be expressed by any 

couple u1, uK+1. Thus, driving this system from the initial 

point (56) the optimal control is irrelevant to the value 

211 ,UUu ∈ ! 

The canonical representation of interior states of edges (55) is 

also nonunique, but increasing the distance from the point 

(56) the range of possible combinations (u1, uK+1) becomes 

narrower and, finally, the points corresponding to 

u1=uK+1=U3-j have a unique canonical representation. 

The prolongation of edges parallel to v1 (Fig.4) brings some 

degree of freedom into the construction of the proportional 

zone. The rule (29) for constructing the new vertices of 

polygonal curves (28) can be modified by any of the 

possibilities: 

a) putting Ui=Uj; 

b) putting Ui=U3-j; 

c) putting Ui=0;      (58) 

d) determining Ui by means of vN-1; 

e) determining Ui by means of vN+1. 

without changing the shape of the strips S, P, N and Q, since 

the questionable vectors are parallel to v1. 

In Fig.3, Pb is shown for the case (58c) guaranteeing 

continuity of the control over the phase plane. 
 

11. CONCLUSIONS 

 

It was shown that choosing sampling period (40) the 

control algorithm can be expressed explicitly for arbitrary 

initial point, reasonably simplified and speeded up. Of 

course, one could ask, if it has a high practical importance, 

since, in fact, all used functions (like sin, etc.) are internally 

calculated iteratively. So, the only difference between an 

iterative and the explicit controller is that in the 2nd case the 

designer is using already available procedures. Once such 

controller is implemented, the differences are no more 

important.  

 

Two approaches to the minimum time controller design 

have been shown: The 1st one based on the reachability sets 

is generally valid; the 2nd one is restricted just to the initial 

states 20 Ix ∈  consisting of two control intervals. At 

2,0 >∈ nnIx , for the sampling period (40) a nonuniqueness 

of the synthesis occurs. This can be considered as a 

consequence of the fact that in such points the trajectories 

corresponding to various control inputs differ only slightly. 

Such a property holds also in the case of a general sampling 

period, but it is not so easy to demonstrate. Analogically as in 

the continuous-data systems (Athans-Falb, 1966), this can be 

used for the controller simplification based on the 2nd 

approach; even here the convenience of such solution is yet 

more stressed by the effect of the time quantization.  

 

The problem of linear PD controller with constrained 

output and a strip-like proportional band Pb is that it cannot 

sufficiently approximate the optimal Pb traced out by the 

polygonal curves. If it is optimally tuned for the relatively 

small initial conditions, overshoot, or even instability occurs 

for higher initial disturbances. If these are suppressed by 

modified controller setting, sluggish transient occurs in the 

vicinity of demanded state. 

 

For implementation of the MTC algorithms it is important 

that in special cases corresponding to the most important 

plant poles configurations it is possible to determine actual 

segment of the zone of proportional control required for 

computing the control signal analytically. This was firstly 

published by Huba (1986) for the double integrator plant and 

later for all such linear plants in Huba (1992). The analytical 

control algorithms are possible for such 2
nd

 order plants for 

which there exists inverse expression for the parameter N 

from coordinates of vertices of the polygonal curves, e.g. 

from (37).  

It is, however, to remind that the minimum time control 

algorithms are mostly not practically usable in practice. With 

the aim to achieve softer transients considering the always 

present nonmodelled dynamics, the first modifications of 

algorithms inspired by predictive control approaches used the 

so called “premature sampling”, when the minimum time 
-4 -2 0 2 4 

-2 

0 

2 

4 y
 

y
 

Fig.4. Prolongation of edges of RN  parallel to v1. 
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control algorithm was working with the prediction horizon 

used as the sampling period, whereas the real sampling 

period was shortened (Huba and Bistak, 1992; Huba et al., 

1992). This, however, enabled to modify just one of the two 

closed loop poles. 

Modification enabling to change both closed loop poles 

from the minimum time values 02,1 =λ  to 0,0 21 >> λλ  by 

keeping all basic features of the minimum time control was 

then presented   for the double integrator by Huba (1994) and 

extended to other 2
nd

 order plants e.g. in Huba (1998).  The 

minimum time strategy – to reach in one control step the 

RBC from a general initial state and to reach in one step 

origin from point of the RBC was here modified by 

requirement to decrease in one step distance from the RBC 

by 1λ  (from a general initial state) and to decrease the 

distance from the origin by 2λ  (from points of RBC). 

Similarly as in the MTC, the resulting control may be 

interpreted as piecewise linear one with one parameter 

determining the actual segment for control computation 

(Fig.5). 

Later was in Huba (2000) shown that the highest possible 

speed of transients still guaranteeing monotonic responses 

may be achieved by control considering more complicated 

structure of the phase plane with two piecewise linear 

partitions requiring determination of two integer parameters 

(Fig. 6). Later research was then oriented on possibilities of 

practical applications of derived control (see e.g. Ivanov et 

al., 2000) what was leading to necessity to deal with robust 

tuning of achieved controllers. Recent results achieved in this 

area show that it should be possible by the Performance 

Portrait method (Huba, 2010; Huba, 2011a). Although its use 

was up to now demonstrated just for continuous time robust 

control design (Huba, 2011b), it is supposed to be usable also 

for discrete time control.  

 

 

 
Fig. 5 Piecewise linear algorithm of the constrained pole 

assignment control decreasing distance from reference line 

corresponding to one segment of RBC. 

 

 
Fig. 6 Phase plane structure of the constrained pole 

assignment control decreasing distance from with two 

partitions and a piecewise linear control algorithm depending 

on two integer parameters. 

 

 

ACKNOWLEDGEMENTS  

This work was partially supported by the Project VEGA 

1/0656/09: Integration and development of nonlinear and 

robust control methods and their application in controlling 

flying vehicles, by the project KEGA 3/7245/09 Building 

virtual and remote experiments for network of online 

laboratories. It was also supported by the grant NIL-I-007-d 

from Iceland, Liechtenstein and Norway through the EEA 

Financial Mechanism and the Norwegian Financial 

Mechanism. This project is also co-financed from the state 

budget of the Slovak Republic 

 

REFERENCES 

Aström, K. J., T.Hägglund (1995). PID controllers : Theory, 

design, and tuning - 2. ed., ISA, Research Triangle Park, 

NC  

Athans, M. and P.L.Falb (1966). Optimal control. McGraw-

Hill, N.York, pp.569-589. 

Buša,J. und Huba,M. (1986). Entwurf von zeitoptimalen 

Abtastreglern für die Regelstrecke mit  doppeltem 

integralen Verhalten. Automatisierungstechnik 34,  H7, 

287-288. 

Desoer, C.A. and J.Wing (1961). The minimal time regulator 

problem for linear sampled-data systems. J. Franklin 

Inst., 272, 208-228.  

Hippe, P. (2006). Windup in control. Springer, Berlin. 

Huba, M. et al. (1987). Digital time-optimal control of 

nonlinear second-order system. In: Preprints 10th IFAC 

World Congress, Munich, 8, 29-34. 

Huba,M. (1992). Control Algorithms for 2nd Order 

Minimum Time Systems. Electrical Engineering Journal 

43, 233-240. 

(http://www.kar.elf.stuba.sk/~huba/EE92.pdf) 

Preprints of the NIL workshop
Jan 10–15, 2011, Bratislava, Slovakia Huba, M., Bisták, P.

233



 

     

 

Huba,M., Bisták,P. (1992). Premature sampling - an analogy 

to the pole assigment for the saturating minimum time 

systems. 11 European meeting on cybernetics and system 

research, Vienna. 

Huba,M., Bisták, P. and M.Molnár (1992). Control 

Algorithms for Saturating Systems. Preprints of IFAC 

Symposium on Low Cost Automation, LCA’92 Vienna, 

229-234. 

Huba, M. (1994). Saturating Pole Assignment Controller. 

Construction and Geometrical Interpretation in the Phase 

Plane. Preprints 1st IFAC Workshop "New Trends in 

Design of Control Systems" Smolenice,  121-126. 

Huba,M., (1998). Minimum Time Pole Assignment PD 

Controller for Linear 2nd Order Systems with 

Constrained Input. IFAC SSC’98 Nantes. 

Huba, M., Skachová, Z., Bisták, P. (1998). Minimum Time 

Pole Assignment Controllers for I1 and I2 Plants. J. 

Electrical Eng., 49, No.11-12, 289-298. 

Huba, M., et al. (1999). Invariant Sets Based Concept of the 

Pole Assignment Control.  In: ECC'99, Düsseldorf: 

VDI/VDE 

Huba, M., Bisták, P. (1999). Dynamic Classes in the PID 

Control.  In: Proc. 1999 American Control Conference. 

San  Diego: AACC. 

Huba, M. (2000). Proportional Band Structure of 2nd Order 

Systems under the Minimum Time Pole Assignment 

Control. 45th International Scientific Colloquium 

Technical University Ilmenau, October 04 – 06, 2000, 

385-390 

Ivanov,I., Masár, I., Huba, M. and H.Hoyer (2000). 

Minimum Time Pole Assignment Control of a Position 

System Servo-Drive. IFAC Conference Control Systems 

Design, Bratislava, June 2000, 593-598 

Huba, M., Bisták, P. (2003).  Minimum Time PD-Controller 

Design. In: 2nd IFAC Conference on Control Systems 

Design 2003, Bratislava, Slovak republic, 7-10 

September 2003, 65-70. 

Huba, M. (2010). Designing Robust Controller Tuning for 

Dead Time Systems. IFAC Int. Conf. System Structure 

and Control, Ancona, Italy. 

Huba, M. (2011a). Basic Notions of Robust Constrained PID 

Control. In: Selected topics on constrained and nonlinear 

control. M. Huba, S. Skogestad, M. Fikar, M. Hovd, 

T.A. Johansen, B. Rohaľ-Ilkiv Editors, STU Bratislava - 

NTNU Trondheim. 

Huba, M. (2011b). Robust Controller Tuning for Constrained 

Double Integrator. In: NIL Workshop on constrained and 

nonlinear control. M. Huba, S. Skogestad, M. Fikar, M. 

Hovd, T.A. Johansen, B. Rohaľ-Ilkiv Editors, STU 

Bratislava - NTNU Trondheim. 

Kalman, R. E.  (1957). Optimal nonlinear compensation of 

saturating systems by intermittent action, IRE WESCON 

Convention Record, pt. 4, 130-135 

Kuo, B.C. (1970). Discrete-data control systems. Prentice-

Hall, Englewood Clifs, N.Jersey. 

Rönnbäck,S. (1996). Nonlinear Dynamic Windup Detection 

in Anti-Windup Compensators. Preprints CESA '96, 

Lille, 1014-101 

Preprints of the NIL workshop
Jan 10–15, 2011, Bratislava, Slovakia Huba, M., Bisták, P.

234



Comments – Remarks

Preprints of the NIL workshop
Jan 10–15, 2011, Bratislava, Slovakia Huba, M., Bisták, P.

235





Dead Time Compensators for FOPDT
Plants

M. Huba ∗ P. Ťapák ∗∗
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D-58084 Hagen, Germany (e-mail: mikulas.huba@stuba.sk)

∗∗ Institute of Control and Industrial Informatics
Faculty of Electrical Engineering and IT, Slovak University of

Technology
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Abstract: This paper introduces modifications of the Filtered Smith Predictor with primary P-
controller that reasonably simplify treatment of the control constraints. Testing the traditional
and the new solutions by real time experiments on a stable plant fully confirms superiority
of the new controllers in constrained control. It also shows that despite to the formal input-
to-output equivalence of the new and the traditional solutions, by considering limit situation
of the “quasi continuous” implementation, due to different schemes they give responses to the
setpoint and disturbance steps that are different in terms of the speed, monotonicity, as well
as noise attenuation. As a by-product of this paper it is shown that the solutions with the 2nd
order disturbance filter are much more sensitive than those with the 1st order one, what may
be crucial for their practical use.

Keywords: proportional control, dead-time compensators, robustness, predictive control, Smith
predictor

1. INTRODUCTION

The Smith Predictor (SP) Smith (1957) represents one
of the oldest structures of the Dead-Time Compensators
(DTCs). Due to the infinity dimension of dead time sys-
tems, design of DTCs is still surrounded by not sufficiently
explained myths and in focus of current research Guzmán
et al. (2008); Normey-Rico and Camacho (2008); Normey-
Rico et al. (2009); Normey-Rico and Camacho (2009);
Panda (2009); Zhang et al. (2008). Despite that just few of
the known DTCs are interpreted as disturbance observer
(DO) based structures, in fact, all of them may be shown
to include observers for reconstruction of either input or
output disturbances that are then compensated by mod-
ifying output or input of the primary controller. Due to
this the primary controller does not need to include the
integral action that is known to produce windup. The
Filtered Smith Predictor (FSP) Normey-Rico et al. (1997);
Normey-Rico and Camacho (2007, 2008); Normey-Rico
et al. (2009); Normey-Rico and Camacho (2009) using
the parallel plant model (PPM) is based on reconstruc-
tion of the output disturbance. Since the pioneering work
by Smith Smith (1957) and continued later within the
concept of the Internal Model Control (IMC) Lu et al.
(2005) PPP played a key role in several DTC schemes.
Here, it will be shown that the FSP may be further
simplified by replacing the primary PI controller by a two-
degree-of-freedom (2DOF) P-controller, what reasonably
simplifies its use in constrained control without decreasing
its capability in the disturbance rejection. The paper is
structured as follows: Section 2 gives a brief overview of the

FSP design. Modification of the FSP design for the First
Order Plus Dead Time (FOPDT) plants with simplified
primary loop enabling constrained control is described in
Section 3. Comparison of presented solutions by real time
experiments for the relatively short and long dead times is
reported in Sections 5 and 6. Contributions of the paper
and potential for further development are summarized in
Conclusions.

2. THE FSP FOR FOPDT PLANTS

The FSP was originally proposed in Normey-Rico et al.
(1997) for stable FOPDT processes to improve robustness
of the traditional SP. Later, the disturbance filter Fr(s)
has been also proposed to decouple the reference setpoint
and the disturbance response and to stabilize the controller
loop in case of unstable and integral plants Normey-Rico
and Camacho (2009). It may be interpreted as a structure
with the dynamical feedforward control and the reference
plant model Aström and Hägglund (2005); Visioli (2006),
or the 2DOF IMC structure.

The unified approach to designing FSPs for the FOPDT
plants introduced in Normey-Rico et al. (2009); Normey-
Rico and Camacho (2009) considers compensation of an
output disturbance by correction of the reference value,
whereby the disturbance is reconstructed by using the
PPM. However, despite to the proclaimed unification, it
separately presents solutions corresponding to stable, in-
tegral and unstable plants. Thereby, for integral plant P (s)
with the fast and nominal dynamics P0(s) and Pn(s)
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P (s) =
Kve

−θs

s

P0(s) =
Kv0

s

Pn(s) =
Kv0e

−θ0s

s
(1)

the primary controller is proposed as the P-controller

C0(s) = Kc (2)

whereby

Kc = 1/(Kv0Tr) (3)

whereby Tr is the time constant of the fast closed loop
described for Kv0 = Kv by the transfer function

C(s) =
U(s)

E(s)
=

C0

1 + C0P0
=

Kcs

s + KcKv
=

1

Kv

s

1 + Trs
(4)

e(t) = r(t) − y(t) (5)

E(s) = R(s) − Y (s) (6)

are the control error and its Laplace transform, respec-
tively. The nominal (reference) setpoint-to-output transfer
function is

Hr(s) =
Y (s)

R(s)
= C(s)P (s) =

e−θs

1 + Trs
(7)

When extending the disturbance compensation loop by
a disturbance filter, for the primary controller loop the
equivalent controller may be introduced as

Ce(s) =
C

1 − CPFr
(8)

The transfer functions corresponding to the output do and
the input di disturbances and to the measurement noise n
become

Ho(s) =
Y (s)

Do(s)

=
1

1 + CePFr
= 1 − CPFr

= 1 − Fr(s)e
−θs

1 + Trs
(9)

Table 1. Acronyms

2DOF Two Degree of Freedom

DO Disturbance Observer

DTC Dead-Time Compensator

FOPDT First Order Plus Dead Time

PI-F1SP, PI-F2SP Filtered Smith Predictors with PI-
controller and the 1st, or the 2nd order
disturbance filters

P-F1SP, P-F2SP Filtered Smith Predictors with P-
controller and the 1st, or the 2nd order
disturbance filters

IAE Integrated Absolute Error

IMC Internal Model Control

P-controller Proportional controller

PPM Parallel Plant Model

SP Smith Predictor

TV Total Variance

Hi(s) =
Y (s)

Di(s)

=
P

1 + CePFr

= P (s)

(
1 − Fr(s)

e−θs

1 + Trs

)
(10)

Hn(s) =
U(s)

N(s)
=

CeFr

1 + CePFr
= C(s)Fr(s) (11)

For the 2nd order filter with Tf representing time constant
of the disturbance responses

Fr2 =
(1 + Trs)(1 + β12s)

(1 + Tfs)
2 (12)

after substituting (12) into (9,10,11) for Fr one gets

Ho(s) =

(
1 − 1 + β12s

(1 + Tfs)2
e−θs

)
(13)

Hi(s) = P (s)

(
1 − 1 + β12s

(1 + Tfs)2
e−θs

)
(14)

Hi(s) = C(s)
1 + β12s

(1 + Tfs)2
(15)

After determining β12 to fulfill

[
(1 + Tfs)2 − (1 + β12s)e

−θs
]
s=0

= 0

d

ds

[
(1 + Tfs)2 − (1 + β12s)e

−θs
]
s=0

= 0 (16)

the stepwise constant disturbances and the plant pole will
be eliminated by a double zero of Hi at s = 0 , when

β12 = 2Tf + Θ (17)

Similarly, for the stable FOPDT plant represented in the
form

P (s) =
Ke−θs

Ts + 1

P0(s) =
K0

T0s + 1

P (s) =
K0e

−θ0s

T0s + 1
(18)

papers Normey-Rico et al. (2009); Normey-Rico and Ca-
macho (2009) propose the PI primary controller

C0(s) = Kc
1 + Tis

Tis
Ti = T0

Kc =
T0

TrK0
(19)

Then, the primary (fast) closed loop transfer function
becomes

C(s) =
C0

1 + C0P0
=

Kc(1 + T0s)

T0s + KcK0
=

1

K0

1 + T0s

1 + Trs
(20)

Similarly as (4), (20) gives inversion of the fast plant
dynamics P0(s) filtered with the time constant Tr. From
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Hi(0) = 0

Hi(−1/T ) = 0 (21)

for the 2nd order filter (12) one gets according to Normey-
Rico et al. (2009); Normey-Rico and Camacho (2009)

β12 = T
(
1 − (1 − Tf/T )2e−Θ/T

)
(22)

Ho(s),Hi(s) and Hn(s) are then given by (13),(14) and
(15). Besides of this controller denoted in the following
as the PI-F2SP, it is also possible to work with simpler
disturbance filters fulfilling Fr(0) = 1 and (21), as e.g.

Fr1(s) =
1 + β11s

1 + Tfs
(23)

This defines the PI-F1SP controller characterized with

β11 = T
(
1 − (1 − Tf/T )(1 − Tr/T )e−θ/T

)

Hi(s) = P (s)

(
1 − 1 + β11s

(1 + Tfs)(1 + Trs)
e−θs

)

Hn(s) = C(s)
1 + β11s

1 + Tfs
(24)

For unstable FOPDT plants

P (s) =
Ke−θs

Ts − 1

P0(s) =
K0

T0s − 1

P (s) =
K0e

−θ0s

T0s − 1
(25)

papers Normey-Rico et al. (2009); Normey-Rico and Ca-
macho (2009) propose again the primary PI controller (19),
however, its tuning is now

Ti = Tr(2 + Tr/T0)

Kc = (Tr + 2T0)/(TrK0) (26)

This gives

C(s) =
C0

1 + C0P0
=

1

K0

(1 + Tis)(T0s − 1)

(1 + Trs)2
(27)

To decouple the responses and to eliminate the pole s =
1/T the 3rd order filter is proposed

Fr3(s) =
(1 + Trs)

2(1 + β13s)

(1 + Tfs)2(1 + Tis)
(28)

with time constant

β13 = T
(
(1 + Tf/T )2eθ/T − 1

)
(29)

3. MODIFIED FSP FOR FOPDT PLANTS

As it was shown e.g. by Zhang and Jiang (2008), SP with
constrained output of the primary PI controller tend to
produce windup what further complicates the controller
design and represents one of the reasons for not using
this structure much more frequently than today. In Vi-
sioli (2006) the actuator saturation problem in control-
ling FOPDT plant was solved by a variable structure

controller. Simpler P-controllers instead of PI ones were
recommended in a slightly modified setting already in
Liu et al. (2005b); Lu et al. (2005). Here, by simplifying
the primary controller it will be possible to decrease the
controller complexity and in combination with different
disturbance filters to modify the loop properties.

Next, we will firstly show that all three above situations
may be formally unified by considering the 2DOF P-
controller as the primary controller C0. Besides of unifi-
cation and simplification, this will enable to work with
control schemes not generating windup that may rea-
sonably simplify implementation and tuning of achieved
controllers. Furthermore, it will also enable to understand
phenomena related to the nonlinear process character.

3.1 Primary 2DOF P-controller

To describe the FOPDT plants in the form enabling a
unified treatment of stable (a > 0), unstable (a < 0) and
integral plants (a = 0), the pole-zero notation

P (s) =
Ks

s + a
e−θs

Pn(s) =
K+s0

s + a0
e−θ0s

P0(s) =
K+s0

s + a0
(30)

will be used instead of (1), (18) and (25). The 2DOF
controller will be expressed as the P controller with the
gain KP extended by the static feedforward control u0

u = KP e + u0

u0 = a0r/Ks0

KP = (1/Tr − a0)/Ks0 (31)

Thereby, the fast model parameters a0,Ks0 correspond
to the estimates of the plant parameters a and Ks . Tr

represents the reference time constant of the fast primary
loop. In the nominal case with Pn = P and neglected
control signal constraints, the structure in Fig. 1 yields
transfer function between the setpoint and the not delayed
output x

Hr0(s) =
X(s)

R(s)
=

1

Trs + 1

Tr =
1

KP Ks + a
(32)

The dynamics between the setpoint and the control signal

C(s) =
U(s)

R(s)
=

1

Ks

s + a

Trs + 1

Tr =
1

KP Ks + a
(33)

represents filtered inversion of the fast plant dynamics. To
achieve stability of the primary control loop, condition

KP Ks + a > 0 (34)
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Fig. 1. The primary 2DOF P-controller with a static feed-
forward control; the measurable output disturbance
d0 may be compensated by a feedforward to the con-
troller input;

must be fulfilled for all possible loop parameters, what
guarantees monotonic decrease of the control error (5) to
zero.

3.2 Respecting the control signal constraints

Control signal of real plants is always subject to control
constraints expressed e.g. in form of the saturation func-
tion

ur = sat(u) =

{
Umax if u > Umax

u if Umin ≤ u ≤ Umax

Umin u < Umin

(35)

In controlling stable “fast” plant P0 (30) with built in
constraints (35) by the P-controller (31) satisfying to
(34) it may be shown by choosing appropriate Ljapunov
function, by the circle criterion, by the Popov criterion, or
by the passivity approach Föllinger (1993); Glattfelder and
Schaufelberger (2003); Hsu and Meyer (1968) that the loop
remains stable without taking any additional measures for
any transients with the final value y∞ = r satisfying

r ∈ (Ymin, Ymax)

Ymin =
Ks(Umin + di)

a
+ do

Ymax =
Ks(Umax + di)

a
+ do (36)

In controlling unstable plants P0(s), besides of (34), con-
dition (36) must be fulfilled already by the initial plant
output y0 ∈ (Ymin, Ymax)) and by all its subsequent values
during the transient responses what increases the motiva-
tion to achieve monotonic output changes that are con-
nected with the minimal requirements on the admissible
output values. In order to guarantee proper function of
the D/A converters used usually in the digital controller
implementation, already in such simple above mentioned
situation the controller output has to be limited to the
extent not exceeding the admissible range of the converter.
In the much more complicated DTCs for the plant P (s),
one output of the primary loop (33) yields inversion of
the fast dynamics. In order to respect constraints imposed
on the real plant input, this output can not be simply
generated by the transfer function, but the loop must be
implemented by including at least so strong constraints as
those at the plant input. Consequences of not respecting
constraints in the feedforward control design are to find
e.g. in Visioli (2006). Furthermore, in order to guarantee
relevance of information used in the disturbance recon-
struction, the DO used in the disturbance reconstruction

Fig. 2. Modified P-FSP with the primary loop using 2DOF
P-controller with the disturbance filters (12), or (23)

must be supplied with the constrained control signal and
the corresponding predicted output x̂p (x̂p plays in the
structure in Fig. 2 role of the output predicted with re-
spect to the delayed output xd), what again requires work
with constrained primary loop instead of simply using the
corresponding transfer functions. However, for the sake of
simplicity, saturation indicated in Fig. 1 was omitted from
the scheme in Fig. 2. In order not to loose information
about the signals corresponding to the constrained pri-
mary loop, it is also not possible to implement directly
the equivalent controller (8).

3.3 Modified P-F1SP and P-F2SP Controllers

Since the primary controllers (4) and (20) are under
notation

Kv = Ks if a = 0
K = Ks/a; T = 1/a if a > 0

(37)

equivalent to (33), equivalent will also be all transfer
functions (9,10,11), (13,14,15) and (24). This means that
for the nominal tuning (P = Pn) with a chosen setpoint
time constant Tr and without constraining the control
signal, all loops with the controllers (4), (20) and (33) are
fully equivalent and yield for the setpoint step r the IAE
value

IAE/r = θ + Tr (38)

By using requirements (21) and denotation (37), for the P-
F2SP controller with the disturbance filter (12) one gets

β12 =
1

a

(
1 − (1 − aTf)2e−θa

)
(39)

and for the integral plant with a = 0

β12 = lim
a→0

1

a

(
1 − (1 − aTf)2e−θa

)
= 2Tf + θ (40)

For the 1st order filter (23), one gets the P-F1SP with

β11 =
1

a

(
1 − (1 − aTf)(1 − aTr)e

−θa
)
; a 6= 0 (41)

β11 = lim
a→0

1

a

(
1 − (1 − aTf)(1 − aTr)e

−θa
)

= Tf + Tr + θ (42)

For (37), the achieved formulas (41,42) are equal to (24).
In both F1SP alternatives, the disturbance response is
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Fig. 3. Modification of the DO based on the PPM for
compensation of the input disturbance (above) and
the loop with DO-DTC based on the IPM

formally not fully decoupled from the setpoint response,
i.e. Tr influences both the setpoint as well as the distur-
bance response, but still it is possible to tune both these
responses separately.

4. MODIFICATIONS OF THE SMITH PREDICTOR

In order to compensate by analogue means shortage of the
above solutions in controlling unstable and integral plants,
it was e.g. proposed
1, to use a modified plant model that gives an input
controllable state error instead of the not controllable one
(Normey-Rico et al. (1997); Normey-Rico and Camacho
(1999, 2007); Watanabe and Ito (1981))or to use a stable
plant model instead of the nominal unstable plant (DePaor
(1985)).
2, to introduce local stabilization of the unstable plant
model with a corrective signal influencing also the real
plant (Liu et al. (2005b,a); Lu et al. (2005); Majhi and
Atherton (1998); Tan et al. (2003)).
3, to make the input of the unstable plant model indepen-
dent from the input of the unstable plant and to eliminate
work with equivalent unconstrained output disturbance
( Normey-Rico and Camacho (2007, 2008); Normey-Rico
et al. (2009); Normey-Rico and Camacho (2009); Zhong
and Normey-Rico (2002); Zhong (2003)),
4, to introduce loop stabilization (Lu et al. (2005); Majhi
and Atherton (1998); Matausek and Micic (1996, 1999)).

5. COMPARING PI-FSPS WITH P-FSPS: THE LAG
DOMINANT OPTICAL PLANT

The thermo-optical laboratory plant (Fig. 4) offers control
of 8 measured process variables by 3 manipulated (voltage)
variables (0 - 5 V) influencing the bulb (main heat &
light source), the light-diode (disturbance light source)
and the fan (system cooling). Within Matlab/Simulink or
Scilab/Scicos schemes the plant is represented as a single

Fig. 4. Thermo-optical plant
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Fig. 5. Optical channel: the steady state controller output
versus the reference signal and the linear feedforward
control

block and so limiting needs on costly and complicated
software packages for real time control. The (supported)
external converter cards are necessary just for sampling
periods below 60ms. The optical channel used in following
experiments consists of the light intensity measured by a
photodiode and filtered by an analogue low pass filter with
the time constant about 20s.

The input-output characteristic of the plant is reasonably
nonlinear, the steady state gains change significantly over
the range of control. The dependence of the output y on
the control signal u and on the disturbance signal di was
approximated by measuring response to input steps of
different amplitudes and around different working points
as

Y (s) =
Ke−θs

Ts + 1
(U(s) + KiDi(s))

=
Kse

−θs

s + a
(U(s) + KiDi(s)) (43)

As a result, the plant was represented by uncertain model
with

Preprints of the NIL workshop
Jan 10–15, 2011, Bratislava, Slovakia Huba, M., Ťapák, P.
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setpoint

Fig. 6. Testing sequence: large (0-600s) and small (600-
1400s) setpoint steps and disturbance steps ∆d =
±3V (1400-2200s) produced by LED equivalent to
∆di = ±0.78V . Plant output.

Ks ∈ [0.2282, 0.7060]

Ki ∈ [4.31, 4.58]

a ∈ [0.0387, 0.0588]

θ ∈ [0, 0.5]

T ∈ [17.0096, 25.8687] (44)

Obviously, it is lag dominant. The achieved transient
responses correspond to the operating point chosen as

Ks0 = 0.7060

θ0 = 0.34

a0 = 0.0477

T0 = 1/a0 = 20.9644

Tr = T/2 = 10.4822 (45)

and to the quasi-continuous control with the sampling
period Tsamp = 0.1sec. The testing sequences (as shown
in Fig. 6) were evaluated for the disturbance filter time
constants

Tf = Tr/c

c = 1, 2, 8, 16

Tf ∈ [0.6551, 10.4822] (46)

In evaluating transients achieved with particular con-
trollers, speed and duration of the plant output responses
was characterized by the IAE performance index defined
as

IAE =

∞∫

0

|e(t)| dt = r(t) − y(t) (47)

Besides of this, monotonicity of the output responses
has been evaluated. The control effort was character-
ized by the TV criterion (Total Variance Skogestad and
I.Postlethwaite (1996)) defined as
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Fig. 7. Testing sequence: large (0-600s) and small (600-
1400s) setpoint steps and disturbance steps ∆d =
±3V (1400-2200s) produced by LED equivalent to
∆di = ±0.78V . Controller output.
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Fig. 8. Details of the large downward with typical windup
of both PI-FSPs remaining also for shorter Tf

TV =

∞∫

0

|du

dt
| dt ≈

∑

i

|ui+1 − ui| (48)

5.1 Setpoint steps

As it is obvious from Fig. 5, for the chosen operating
point the static feedforward control u0 = a0r/Ks0 used in
(31) yields lower control values than those corresponding
to the static controller characteristic. Due to this, for
a week corrective feedback the setpoint responses will
initially tend to lower output values than required. This
imperfection of the linear static feedforward control may
be interpreted as an internal input disturbance. This may
be eliminated by the DO. For long disturbance filter time
constant Tf ≈ Tr this imperfection will lead to a visible
asymmetry of the setpoint steps: to a slightly slower
output increase for the upwards reference steps and to
undershooting of the downwards steps (Fig. 8).

When speeding up corrective disturbance rejection by
Tf ≤ Tr/8 , both the P-F1SP and the P-F2SP controllers
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Fig. 9. Details of the large downward with typical windup
of both PI-FSPs remaining also for shorter Tf
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Fig. 10. Details of the large downward with typical windup
of both PI-FSPs remaining also for shorter Tf

(immune against windup) yield already monotonic output
responses that are clearly superior over the PI-FSP ones
(influenced by the windup) - as illustrated by the plant
input and output responses in Fig. 6 - 10, or by the IAE
values in Fig. 11. Dependence of the achieved dynamics on
the ratio c = Tr/Tf shows in all cases that decreasing of
the filter time constant Tf (i.e. increasing of c) influences
the resulting IAE values just negligibly, i.e. it confirms
the above expectation of independence of the setpoint
dynamics from the choice of Tf . However, characteristics
of the IAE, TV and IAE*TV values for the small setpoint
steps (Fig. 12-14) that enable already a finer analysis of
the dependence on c = Tr/Tf (not superimposed by the
windup and plant nonlinearity) show that in all cases
decreasing of the filter time constant Tf leads to increased
figures both in IAE as well as TV. Thereby, lower values
correspond to the P- and PI-F1SP controllers with the 1st
order disturbance filter (23) and both P-FSP controllers
are at least equivalent to the PI-FSP ones. The existing
differences may be explained as due to the

1, imperfections of the quasi-continuous implementation
based on continuous transfer functions but depending (a)
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Fig. 11. IAE values corresponding to Tr = T/2 and Tf

(46) for large setpoint steps
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Fig. 12. IAE, TV and IAE*TV values corresponding to
Tr = T/2 and Tf (46) for small setpoint steps

on the chosen sampling period taking values close to the
shortest closed loop time constants and (b) on the level
quantization of the measured signals,
2, imperfections (uncertainty, nonlinearity) of the used
plant models, when the DO is active and influencing the
loop behaviour also in situations with zero external dis-
turbances, whereby the reconstructed disturbances corre-
spond to the plant-model mismatch,
3, statistical character of the measurement noise.

This set of experiments may be concluded by statement
that both P-FSP controllers yield performance similar, or
even superior to the PI-FSP ones whereby they do not
exhibit the windup effect and are easier to interpret.

5.2 Disturbance steps

With respect to the formally equal disturbance responses
of the PI- and P-F2SP corresponding to the filter (12), or
PI- and P-F1SP corresponding to (23) one could expect
confirmation of this fact by the real time experiments.
Example of the measured disturbance responses is in Fig.
15,16. As it is also evident from the characteristics in Fig.
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Fig. 13. IAE, TV and IAE*TV values corresponding to
Tr = T/2 and Tf (46) for small setpoint steps
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Fig. 14. IAE, TV and IAE*TV values corresponding to
Tr = T/2 and Tf (46) for small setpoint steps

17-19 by decreasing the filter time constant Tf the IAE
values decrease, but the required control effort expressed
by the TV values increases. Optimum in the IAE*TV
values indicates that it is possible to look for a compromise
between the achievable speed of responses and the required
control effort. The fastest responses correspond to the
PI-F2SP, but on the cost of the largest TV value. This
controller gives also the lowest IAE*TV value, however,
just for a limited range of the filter time constants Tf .
The P- and PI-F1SP controllers yield practically the same
dynamics that is less depending on the filter time constant
Tf than in the case of F2r.

6. COMPARING PI- AND P-FSP: LONGER DEAD
TIME VALUES

In order to be able to evaluate the closed loop performance
corresponding to longer dead time values and to compare
them with those achieved for the lag-dominated loop, the
natural plant delay θ0 (45) was increased in Simulink by
an additional artificial delay

θa = 20sec (49)

Due to this the total dead time
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Fig. 15. Responses corresponding to the disturbance step

1400 1401 1402 1403 1404 1405 1406 1407 1408

2.9

3

3.1

3.2

3.3

3.4

3.5

3.6

3.7

3.8

Time[s]

B
ul

b 
V

ol
ta

ge
 [V

]
Controller Output:  T

f
=T

r
/8

 

 

P−F1SP
P−F2SP
PI−F1SP
PI−F2SP

Fig. 16. Responses corresponding to the disturbance step
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Fig. 17. IAE, TV and IAE*TV values corresponding to
Tr = T/2 and Tf (46) for disturbance steps
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Fig. 18. IAE, TV and IAE*TV values corresponding to
Tr = T/2 and Tf (46) for disturbance steps
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Fig. 19. IAE, TV and IAE*TV values corresponding to
Tr = T/2 and Tf (46) for disturbance steps

θ = θ0 + θa (50)

was increased from the relatively short plant value θ0 up
to the value close to the time constant T . Increased dead
time values result into the reasonably increased closed loop
sensitivity to the model uncertainty (leading to increased
amount of higher harmonics) and decreased controller
ability to compensate for the model uncertainty, what is
visible especially in the large downward setpoint steps,
when it results in undershooting of all tested controllers
(Fig. 20,21). The increased sensitivity prevents the P- and
PI-F2SP controllers with the 2nd order filters to work with
the time constants Tf < Tr/2 , since already for c = 8 the
resulting transients are practically not acceptable (Fig. 24)
due to permanent oscillation at the controller output and
the not converging plant output. This is accompanied by
the reasonably increased IAE values (see characteristics
in Fig. 25,26) in comparing with those in Fig. 12, 13,14
and Fig. 17, 18,19. This set of experiments could again be
concluded by the statement that the P-FSP controllers
yield performance that is at least comparable, or even
superior to that of the PI-FSP controllers. For longer dead
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Fig. 20. Testing sequence corresponding to long dead time
(50), Tf = Tr,Tr = T/2
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Fig. 21. Testing sequence corresponding to long dead time
(50), Tf = Tr,Tr = T/2
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Fig. 22. Detail of downward step

time values, due to the increased sensitivity is the use of
2nd order filter (12) not recommended.
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Fig. 23. Detail of downward step
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Fig. 24. Testing sequence corresponding to long dead time
(50), Tf = Tr/8,Tr = T/2
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Fig. 25. IAE values corresponding to Tr = T/2 for small
setpoitn steps
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Fig. 26. IAE values corresponding to Tr = T/2 for
disturbance steps

7. CONCLUSION

New formulations of the FSPs were proposed based on
simplified primary loop with the 2DOF P-controller. Two
solutions denoted as P-F1SP and P-F2SP corresponding
to the 1st and the 2nd order filters were considered and
compared with the PI based FSP (Normey-Rico and Ca-
macho (2008); Normey-Rico et al. (2009); Normey-Rico
and Camacho (2009)) with equivalent disturbance filters.
The essential advantage of the new solutions is that, due
to the memoryless controller in the primary loop and
due to the IMC structure (Morari and Zafiriou (1989))
they do not generate the windup effect, in contrast to
the PI-FSP ones that under constrained control tend to
the windup and so they require appropriate anti-windup
measures (Zhang and Jiang (2008)). Therefore, to be fair
in comparing the traditional and the new solutions by
real time experiments, with respect to the PI-FSP it was
not possible to choose arbitrarily fast tuning parameters
Tr (setpoint response time constant) and Tf (disturbance
response time constant) and arbitrarily large steps, even
when the dead time was relatively short and when the rela-
tively low uncertainty enabled to use faster tuning leading
to saturation during more significant setpoint steps. Due
to different implementation schemes and the plant-model
mismatch, the real time experiments corresponding to
particular solutions are different. Thereby, the traditional
solutions based on the primary PI controller give better
performance just for a relatively narrow range of param-
eters for the disturbance response. So, the experiments
confirm attractiveness of the new solutions that is not
restricted just to the case of constrained control. Besides
of this primary advantage they also show interesting prop-
erties in the setpoint response. Experience achieved in the
DTCs tuning shows that there is no principal difference in
dealing with the lag dominant and the dead time dominant
systems. It is just to remember that the closed loop dead
time is limiting speed of the correcting processes within the
loop and so increasing demands on precision of the model
of the plant. In the considered case of the optical plant,
higher requirements on control quality lead in the case of
longer dead time to necessity of considering a more precise
nonlinear plant model. Use of the 2nd order disturbance
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filter (12) that enables formally fully independent tuning of
the setpoint and disturbance responses shows to be much
more sensitive to different loop imperfections and therefore
it has be used very carefully.
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Abstract: This paper is dedicated to issue of approximation of nonlinear functions and
nonlinear dynamical systems by Piecewise Affine (PWA) linear model. The article presents new
identification Matlab toolbox for modelling and simulation of nonlinear systems. Functions of the
toolbox together with GUI application simplified and accelerates identification of so called PWA
OAF model. Identification of nonlinear systems is based on novel method of PWA modelling
by generalized Fourier series. The approach provides identification of nonlinear functions of an
arbitrary number of variables and identification of nonlinear dynamical systems in ARX model
structure fashion from input-output data.

Keywords: PWA systems, Generalized Fourier series, Matlab toolbox, Chebyshev polynomial,
PWA identification.

1. INTRODUCTION

In the recent research many methods were developed for
modelling of hybrid systems and general nonlinear func-
tions at all (Roll et al., 2004; Ferrari-Trecate, 2005; Julian
et al., 1999). Many model structures were developed for
hybrid systems and nonlinear systems. Much attention
is dedicated to system modeling in MLD (Mixed Integer
Dynamical) form (Bemporad and Morari, 1999) and PWA
(Piecewise Affine). In (Bemporad et al., 2000), the formal
equivalence between MLD systems and PWA systems is
established and also effective algorithms were developed
for transformation from one model structure to another
(Villa et al., 2004; Bemporad, 2002). In (Heemels et al.,
2001b,a), the equivalence between the following five classes
of hybrid systems is, under certain conditions, established:
MLD systems, Linear Complementarity (LC) systems,
Extended Linear Complementarity (ELC) systems, PWA
systems and Max-Min-Plus-Scaling (MMPS) systems. The
important result of these equivalences is that derived the-
oretical properties and tools can easily be transferred from
one class to another.
In this paper we present an effective tool for modeling of
nonlinear systems by PWA using novel approach based on
generalized Fourier series (Kozak and Stevek, 2010). This
approach belongs to black-box identification methods of
general nonlinear models (Sjöberg et al., 1995).
We use methodology of generalized Fourier series with
orthogonal polynomials. In Leondes (1997), orthogonal
polynomials were used as activation functions for special
case of neural network with one hidden layer - Orthogonal
Activation Function based Neural Network (OAF NN).
For this type of neural network online and offline training

⋆ This paper was supported by Vega project No. 1/1105/11.

algorithm has been defined with fast convergence proper-
ties. After simple modification of OAF NN it is possible to
use this technique for PWA approximation of a common
nonlinear system.
The paper is divided in six sections. First, we formulate
the identification and linearization problem of nonlinear
function. Next, we present modeling of nonlinear process
by OAF NN, topology of the fourier series (PWA OAF NN)
and network transformation to state space PWA form. In
Section 3 PWA OAF identification toolbox is presented
on three case studies. In Section 3.3 is identified nonlinear
dynamical system from input-output data and designed
explicit mpc control law.

2. PROBLEM FORMULATION

PWA linear approximation of hybrid systems depends
on defining guardlines of the PWA mappping. If guard-
lines are known, the problem of identifying PWA sys-
tems can easily be solved using standard techniques for
linear systems (Roll et al., 2004). The method based on
finding mapping guardlines is suitable for linear system
with nonlinear discrete parts like switches which changes
system behavior in step. Other methods a priori assume
that the system dynamics is continuous (Ferrari-Trecate,
2005). Both mentioned approaches use for identification
clustering-based algorithms.
As will be pointed out, nonlinear identification techniques
can be used under specific conditions in order to obtain lin-
ear PWA model. Many neural network based identification
techniques use nonlinear neuron functions of one variable
which are easier linearizable than whole model of many
variables. The key idea is based on linearization of nonlin-
ear neural network functions of single variable. Similarly as
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Fig. 1. PWA approximation of T2, T3, T4, T5 Chebyshev
polynomials

Taylor series, it is possible to define any nonlinear function
as a series of nonlinear functions. This approach leads to
generalized Fourier polynomial series. Generalized Fourier
series is based on a set of one-dimensional orthonormal
functions ϕ

(N)
i defined as

∫ x2

x1

ϕ
(N)
i (x)ϕ

(N)
j (x) = δij (1)

where δij is the Kronecker delta function and [x1, x2] is
the domain of interest. Several examples of orthonormal
functions are the normalized Fourier (harmonic) functions,
Legendre polynomials, Chebyshev polynomials and La-
guerre polynomials (Leondes, 1997). In this paper only
Chebyshev polynomials will be discussed.
Orthogonal Activation Function based Neural Network
(OAF NN) is employed in the task of nonlinear approx-
imation. PWA approximation of every used orthonormal
polynomial creates Piecewise Affine Orthogonal Activation
Function based Neural Network (PWA OAF NN).

2.1 Chebyshev polynomial

The Chebyshev polynomials of the first kind can be defined
by the trigonometric identity

Tn(x) = cos(n arccos(x)) (2)

with norm defined as follows
∫ 1

−1

1√
1 − x2

(Tn(x))2dx =

{
π n = 0

π/2 n ̸= 1
(3)

Recursive generating formula for Chebyshev polynomials:

T0(x) = 1, (4)

T1(x) = x, (5)

Tn+1(x) = 2xTn(x) − Tn−1(x), (6)

Tn(x) = Un+1(x) − Un−1(x). (7)
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Fig. 2. Adjusted OAF NN structure

where Un is the Chebyshev polynomial of the second kind
generated by the recursive formula:

U0(x) = 1, (8)

U1(x) = 2x, (9)

Un+1(x) = 2xUn(x) − Un−1(x), (10)

The first few Chebyshev polynomials of the first kind are

T0(x) = 1, (11)

T1(x) = x, (12)

T2(x) = 2x2 − 1 (13)

T3(x) = 4x3 − 3x (14)

T4(x) = 8x4 − 8x2 + 1. (15)

The first few Chebyshev polynomials of the second kind
are

U0(x) = 1, (16)

U1(x) = 2x, (17)

U2(x) = 4x2 − 1 (18)

U3(x) = 8x3 − 4x (19)

U4(x) = 16x4 − 12x2 + 1. (20)

It is possible to define Generalized Fourier series with
orthogonal polynomilas by neural network with one hidden
layer. In this work we use a Matlab function framework
for orthogonal activation function based neural networks
which is part of the toolbox. Aftr slight revision it is
possible to use this methodology for modeling the fourier
series. Example of the network for modeling function of
two variables is depicted in Fig. 2.
If we consider general structure of the network in ARX

fashion with na, nb, and nk parameters we get network
output equation:
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Fig. 3. OAF ARX model for na=2, nb=2, nk=0 or nk=1

y = w1
1

π

p

+ . . .

2

πp
(w2T1(y(k|1)) + · · · + wnTn−1(y(k|1)))+

...
2

πp
(wi1T1(y(k|na)) + · · · + wi2Tn−1(y(k|na)))+

2

πp
(wi3T1(u(k|nk)) + · · · + wi4Tn−1(u(k|nk)))+

...
2

πp
(wi5T1(u(k|i7)) + · · · + wi6Tn−1(u(k|i7))).

i1 = (na − 1)(n − 1) + 2
i2 = na(n − 1) + 1
i3 = nb(n − 1) + 2
i4 = (nb + 1)(n − 1) + 1
i5 = (nb + na − 1)(n − 1) + 2;
i6 = (nb + na)(n − 1) + 1;
i7 = nk + nb − 1
p = na + nb

(21)

where y(k|na) denotes y(k − na) and similarly u(k|nk) ≡
u(k−nk). Every Chebyshev polynomial is aproximated by
set of lines (Fig. 1)

T (x) ≈ aix + bi for i = {1, 2, . . . , ndiv} (22)

Then output equation becomes difference equation.
A convenient feature of all Chebyshev polynomial is their
symmetry. All polynomials of even order are symmetri-
cal by vertical axis and all polynomial of odd order are
symmetrical by origin. These properties allow decreasing
number of linearization points to half while keeping preci-
sion. To get the lowest number of shift cases of generated
PWA model we linearized the polynomials in the same
points.The term ’linearization point’ denotes the interval
division point where the PWA function breaks.

2.2 Transformation to state space PWA form

Accuracy of the approximation of nonlinear system is
significantly increased when the function is linearized
around multiple distinct linearization points. State space
PWA structure describes behavior of nonlinear dynamical
systems in multiple linearization points.

x(k + 1) = Aix(k) + Biu(k) + fi

y(k) = Cix(k) + Diu(k) + gi
(23a)

IF

[
x
u

]
∈ Di, i = 1, . . . , nL (23b)

Every dynamic i is active in polyhedral partition (23b)
which can be expressed by inequality

guardXix(k) + guardUiu(k) ≤ guardCi (24)

Fig. 4. PWA OAF ID studio

Difference equation (21) can be easily transformed to state
space form. In Matlab difference equation can be expressed
by discrete transfer function. It is possible to use transfor-
mation function tf2ss. But this policy doesn’t lead to
desired state space PWA form. Desired state space form
has to keep all outputs of difference equation (21) in state
vector. So we can correctly define guard-line inequality
(24).
Here we present transformation example for system with
parameters na=2, nb=2, nk=0 or nk=1, Fig.3 . Dif-
ference equation:

y(k) = c(i) + c(i)
y1

y(k − 1) + c(i)
y2

y(k − 2)+

c(i)
u1

u(k − 1) + c
(i)
u−2u(k − 2)

(25)

In PWA form guard-lines are defined for x1 = u(k −
2), x2 = y(k − 2), x3 = y(k − 1) and u = u(k − 1)
PWA state space model:

x(k + 1) = Aix(k) + Biu(k) + fi (26a)

y(k) = Cix(k) + Di(k) + gi (26b)

Ai =




0 0 0
0 0 1

c(i)
u2

c(i)
y2

c(i)
y1


 (26c)

Bi =




1
0

c(i)
u1


 (26d)

Ci = [ 0 0 1 ] (26e)

Di = 0 (26f)

fi =




0
0

c(i)


 (26g)

gi = 0; (26h)

x ∈ < 3 × 1 > (26i)
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3. PWA OAF IDENTIFICATION TOOLBOX

PWA identification problem has garnered great interest
in the research community. In Matlab enviroment several
toolboxes were developed for identification hybrid and
nonlinear systems (Roll et al., 2004; Ferrari-Trecate, 2005;
Julian et al., 1999). The main aim of the PWA OAF
Identification Toolbox (PWA OAF IT) is to provide ef-
ficient tools for analysis, identification and simulation of
PWA OAF model. In following section we present toolbox
functionality on several identification examples.
In PWA OAF IT the model is represented by the following
fields of the model structure:

model.na - Number of past output terms
model.nb - Number of past input terms
model.nk - Delay from input to the output
model.npoly - Number of Chebys. polynomials
model.ndiv - Division of {0,1} interval
model.Fi - Connection matrix of network
model.w - Network parameters
model.type - Type of polynomials ’Cebys’
model.const - Constant in difference equation
model.yconst - Y-cons in difference equation
model.uconst - U-const in difference equation
model.sysStruct - PWA state space struct
model.ynorm - Normalized output data
model.unorm - Normalized input data
model.u - Input data
model.y - Output data
model.ypar - Normalization param. of output
model.upar - Normalization param. of input

So far PWA OAF ID supports only MISO systems. In
order to obtain identified model, call

>>model = pwaoafid(y,u,modelstruct,param)

Input arguments are in standard notation well known from
PWAID toolbox. For more information type

>>help oafpwaid

For using gui application Fig. 4, call

>> oafpwaid studio

3.1 Identification of 2-D function

2-D function is defined by formula:

y = a1e
−((x−b1)/c1)

2

+ a2e
−((x−b2)/c2)

2

+

a3e
−((x−b3)/c3)

2

+ a4e
−((x−b4)/c4)

2

a1 = 53.4, b1 = 5.165, c1 = 8.815,
a2 = 31.25, b2 = 18.69, c2 = 5.109,
a3 = 20.2, b3 = 13.89, c3 = 2.381,
a4 = 4.316, b4 = 9.864, c4 = 0.992,

(27)

We have made sample data in interval {7, 22} (Fig. 6).
In our example we did approximation in one point, by
two lines. Before parameter estimation it was necessary
to normalize data into the interval {−1, 1} where Cheby-
shev polynomials are orthogonal. We used the first four
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Fig. 5. 2-D function example

Chebyshev polynomials T0÷T3. Mean square error for this
approximation is mse = 5.1947. To choose a best position
of linearization points is a state of art of many algorithms.
Through fast network parameters computation it is possi-
ble to use even genetic approach to get better position of
linearization point and number of chebyshev polynomials.

3.2 Identification of 3-D function

Consider a 3-D nonlinear function defined as

f(x̄) = −.2(sin(x1 + 4x2)) − 2 cos(2x1 + 3x2)
−3 sin(2x1 − x2) + 4 cos(x1 − 2x2)
x1 ∈ {0, 1},
x2 ∈ {0, 1},

(28)

We used the first six Chebyshev polynomials, up to the
fifth order T0 ÷ T5, linearized in 1 point, each polynomial
by two lines. The total number of shifting cases for the
resulting PWA function is nlp+1

u where nu is the number of
neural network inputs and lp is the number of linearization
points. For the 3-D function example (28) we get 22 = 4
shifting cases. The result is plotted in Fig. 6b. For this
approximation mse=0.0144.

3.3 Modeling and control of nonlinear dynamic system

In next example we will try to capture vehicle nonlinear
dynamic from input output data for purpose of predic-
tive control design of automatic cruise control. We used
Simulink vehicle model with automatic transmission con-
troller (Veh, 2006). Input for model is throttle and break
torque signal. Output is vehicle velocity. From the charac-
ter of input signals we can merge throttle and break torque
signal to one input signal (Fig. 7a). Positive part of the
input signal is proportional to accelerator pedal pressing
and negative part of the input signal is proportional to
breaking pedal pressing. Input-output data and identified
system output are captured in Fig. 7. We used following
identification parameters:
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Fig. 6. 3D function

na = 1
nb = 1
nk = 1

npoly = 4 polynomials:T0, T1, T2, T3

ndiv = 1 approximation by two lines

(29)

These parameters leads to state space model with one state
variable and one input. Acquired PWA state space model
has four dynamics (four shifting cases) and it is possible
to design an automatic cruise control for such system.
For control design we used MPT toolbox (Kvasnica et al.,
2004). We designed explicit mpc controller with time
varying reference tracking property. We choosed quadratic
cost control problem:

min
u(0),...,u(N−1)

= x(N)T PNx(N)+

N−1∑

k=1

u(k)T Ru(k) + x(k)T Qx(k)
(30a)

s.t. :





x(k + 1|t) = fdyn(x(k), u(k))
umin ≤ u(k) ≤ umax

∆umin ≤ u(k) − u(k − 1) ≤ ∆umax

ymin ≤ gdyn(x(k), u(k)) ≤ ymax

x(N) ∈ Tset

(30b)

Parameters of control design:

norm: 2
subopt_lev: 0

N: 3
tracking: 1

Q: 100
R: 1
Qy: 700

Thanks to few PWA dynamics it is possible choose higher
prediction horizon to refine control performance. Resulting
control law is defined over 430 regions. It is possible to
get satisfactory performance with control law defined over
fewer number of regions. Designed control law was used in
feedback control with nonlinear vehicle model, Fig. 8b.

4. CONCLUSION

PWA OAF toolbox significantly improves identification
and modeling of nonlinear systems. Transformation to
PWA state space model allows to use existing control

design tools. So far PWA OAF ID supports only MISO
systems. Three studied cases were presented. It was shown
that the proposed approach was effective in model preci-
sion and universal in various input configuration. Com-
putation of network parameters is fast and it allows to
execute identification for various parameters (order of used
Chebyshev polynomials, number of linearization points) to
get better performance or even to use genetic approach.
Accuracy of the PWA OAF NN approximation depends
on the number of linearization points, the highest order of
used Chebyshev polynomials and absolute value of com-
puted parameters of the neural network. More lineariza-
tion points give better precision of the approximation but
complexity of the PWA model increases. It is necessary to
find suitable proportion between the number of lineariza-
tion points and required precision.

ACKNOWLEDGEMENTS

This paper was supported by Vega project No. 1/1105/11.

REFERENCES

(2006). Modeling an automatic transmission controller.
URL http://www.mathworks.com/.

Bemporad, A. (2002). An efficient technique for trans-
lating mixed logical dynamical systems into piecewise
affine systems. In Decision and Control, 2002, Proceed-
ings of the 41st IEEE Conference on, volume 2, 1970 –
1975 vol.2.

Bemporad, A., Ferrari-Trecate, G., and Morari, M. (2000).
Observability and controllability of piecewise affine and
hybrid systems. Automatic Control, IEEE Transactions
on, 45(10), 1864 – 1876.

Bemporad, A. and Morari, M. (1999). Control of systems
integrating logic, dynamics, and constraints. Automat-
ica, 35, 407–427.

Ferrari-Trecate, G. (2005). Hybrid Identification Toolbox
(HIT).

Heemels, W., De Schutter, B., and Bemporad, A. (2001a).
Equivalence of hybrid dynamical models. Automatica,
37(7), 1085–1091.

Heemels, W., De Schutter, B., and Bemporad, A. (2001b).
On the equivalence of classes of hybrid dynamical mod-
els. In Decision and Control, 2001. Proceedings of the
40th IEEE Conference on.

Preprints of the NIL workshop
Jan 10–15, 2011, Bratislava, Slovakia Števek, J., Kozák, Š.

253



0 100 200 300 400 500 600 700
−100

−80

−60

−40

−20

0

20

40

60

80

100

Sample Time [s]

P
ed

al
 in

pu
t [

%
]

 

 

(a) Pedal time response

0 100 200 300 400 500 600 700
0

20

40

60

80

100

120

140

160

Sample Time [s]

V
el

oc
ity

 [k
ph

]

 

 

Velocity − data
PWA OAF
OAF

(b) Vehicle speed time response

Fig. 7. Vehicle identification data

0 20 40 60 80 100 120

−100

−80

−60

−40

−20

0

20

40

60

80

100

Time [s]

P
ed

al
 [%

]

(a) Control and reference input time response

0 20 40 60 80 100 120
0

20

40

60

80

100

120

Time [s]

V
el

oc
ity

 [k
ph

]

(b) Controlled output time response

Fig. 8. Automatic cruise control

Julian, P., Desages, A., and Agamennoni, O. (1999). High-
level canonical piecewise linear representation using a
simplicial partition. Circuits and Systems I: Funda-
mental Theory and Applications, IEEE Transactions on,
46(4), 463 –480.

Kozak, S. and Stevek, J. (2010). Improved piecewise linear
approximation of nonlinear functions in hybrid control.

Kvasnica, M., Grieder, P., and Baotić, M. (2004).
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Abstract: The main aim of this paper is to design a robust output feedback PI controller for Networked 

Control Systems (NCSs) with time-varying delay using discretized Lyapunov-Krasovskii functional 

method and polytopic linear model. In this framework, time delay of NCSs is partitioned into two parts. 

The obtained PI controller will guarantee performance and stability of NCSs for all admissible 

uncertainties and time-varying delays. Finally, one numerical example is given to illustrate the 

effectiveness of the proposed method. 
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

1. INTRODUCTION 

Networked Control Systems (NCSs) is defined as “Feedback 

control systems wherein the loops are closed through real-

time networks” (Ray and Halevi, 1988; Nilson, 1998; Walsh, 

Ye, Bushnell, 1999; Zhang, Branicky and Philips, 2001). 

Advantages of using NCSs in the control area include 

simplicity, cost-effectiveness, ease of system diagnosis and 

maintenance, increased system agility and testability. 

However, the integration of communication real-time 

networks into feedback control loops inevitable leads to some 

problems. As a result, it leads to a network-induced delay in 

networked control closed-loop system. The existence of such 

kind of delay in a network-based control loop can induce 

instability or poor performance of control systems (Jiang and 

Han, 2008).  

There are two approaches for controller designing and 

studying of stability of closed-loop systems in the time 

domain such that Razumikhin theorem and Lyapunov-

Krasovskii functional (LKF) approach. It is well know that 

the LKF approach can provide less conservative results than 

Razumikhin theorem (Friedman and Niculescu, 2008; 

Richard, 2003; Kharitonov and Melchor-AGuilar, 2000). The 

challenge of all approaches using simple LKF is the 

conservatism of algorithms. Indeed, the delay-independent 

stability condition is very conservative if the delay is known. 

Although the simple delay-dependent condition using model 

transformation is intended to improve the situation, it is not 

necessary less conservative in all the situations. And the 

method with implicit model transformation is indeed less 

conservative than two previous methods; however, it seems 

to involve substantial conservatism too and requires the 

system to be stable if the delay is set to zero (Kequin and 

Niculescu, 2000). To reduce the conservatism efficiently, 

there are two techniques used. The first one is discretizing 

scheme of the Lyapunov-Krasovskii matrices (Gu, 

Kharitonov and Chen, 2003). At a price of an increasing 

number of variables to be optimized, the result tends to 

become a necessary and sufficient condition. Another one, 

developed in a Lyapunov and robust frameworks use an 

augmented state vector formulation to construct some new 

LKF for the original system. Hence, a partitioning delay 

scheme is developed in order to construct a LKF which 

depends on a discretizing version of the whole state )(tx  

(Gouaisbaut and Peaucelle, 2006). 

The guaranteed cost control approach has been extended to 

the uncertain time-delay systems, for the state feedback case, 

see (Yu and Chu, 1999; Lee and Gyulee, 1999; Zhang, 

Boukas and Haidar, 2008) and for output feedback (Chen, 

Guan, and Lu, 2004; Vesely and Nguyen, 2010). In the paper 

Vesely and Nguyen, 2010 the authors considered the design 

of robust guaranteed cost PID controller for NCSs. However, 

it seems that there is not close to a necessary and sufficient 

condition of stability any more, and the algorithm also 

involves conservatism. And thus, a partitioning scheme of 

time-varying delay and IQC are used from (Ariba and 

Gouaisbaut, 2008) to overcome these disadvantages. 

Motivated by the above observation, in this article, a new 

discretized Lyapunov-Krasovskii functional method will be 

studied to design a robust output feedback PI controller 

achieving a guaranteed cost such that the NCSs can be 

stabilized for all admissible polytopic-type uncertainties and 

time-varying delays with less conservatism. Sufficient 

condition for existence of a guaranteed cost output feedback 

controller is established in term of matrix inequalities. 
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This paper is organized as follows. Section 2 gives the 

problem formulation. Section 3 explains main results of the 

paper. And in section 4 one numerical example is presented 

to show the effectiveness of the proposed method. 

Notation: Throughout this paper, for real matrix M , the 

notation 0M  (respectively 0M ) means that matrix M 

is symmetric and positive semi-definite (respectively positive 

definite); “*“ denotes a block that is readily inferred by 

symmetry; Matrices, if not explicitly stated, are assumed to 

have compatible dimensions. 

2. PRILIMINARIES AND PROBLEM FORMULATION 

Consider the following linear time-delay system described 

 0,,)()(

)()(

)()())(()()()()(

M

d

tttx

tCxty

tuBttxAtxAtx











       (1) 

where 
nRtx )(  is the state vector, 

mRtu )(  is the 

control input, 
lRty )(  is the controlled output (measured 

output). The matrices SBAA d )(),(),(   belong to 

convex hull, and S  is a polytope with N vertices 
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where idii BAA ,, constant matrices with are appropriate 

dimensions and i  is time-invariant uncertainty; M  is the 

upper bound of time delay and )(t  is a continuously 

differentiable initial function. Note S  is a convex and 

bounded domain.  

We assume that a real-time communication network is 

integrated into feedback control loops of system (1), and the 

network induced delay in NCS )(t  is given by 

Mt   )(0  and the derivative of )(t  is bounded 

as ( ) 1t   .  

And now suppose that the time interval  ttt ,)(  is 

portioned into dN =2  parts. The discretization-like method 

is employed considering the state vector shifted by a fraction 

τ(t)

2
 of the delay. The discretized extended states are 

constructed with signals (Ariba and Gouaisbaut, 2008): 

 i ix (t)=x t (t) ; i=0,1     (3) 

where 

0
0 1

δ (t)τ(t)
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These latter variables can be rewritten as: 

0

0

1 0

t

0

t (t)

t (t) t

1

t (t) t (t)

x (t)=x(t)- x(s)ds

x (t)=x(t)- x(s)ds- x(s)ds



 
               

(6) 

The last component 1x (t) is hardly suitable to describe the 

delayed instantaneous state ( ( ))x t t . In order to clarify 

the relations between these two signals, we introduce an 

additional operator [.]  (Ariba and Gouaisbaut, 2008) from 

2L  to 2L  as 

0
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The 2L - norm of the operator   is defined by: 

0
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Then, following the Cauchy-Schwarz inequality, the operator 

  is bounded as: 
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Consider the substitution ( )u t t    , we obtain 
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The bounded 2L - norm of operator   (11) is used to 

construct an IQC to reduce the conservatism of the proposed 

methodology. 

For system (1), we consider the following PI control 

algorithm 
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t
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where iC  is output matrix for integral output feedback, the 

system (1) can be expanded in the following form 
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Note that dimension of state vector of system integrated PI 

controller is extended to :n n l  . 

Applying the PI control algorithm (4) to system (5) will result 

in the closed-loop feedback system 
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Given positive definite symmetric matrices Q, R we will 

consider the cost function 
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where  P nx3n
Ι = I I I  

Associated with the cost, the guaranteed cost controller is 

defined as follows: 

Definition 1.  

Consider the uncertain system (1). If there exist a controller 

of form (12) and a positive scalar 0J  such that for all 

uncertainties (2), the closed-loop system (16) is 
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asymptotically stable and closed-loop value of the cost 

function (18) satisfies 0JJ   then 0J  is said to be a 

guaranteed cost and the controller (12) is said to be 

guaranteed cost controller. 

Finally we introduce the well known results from LQ theory. 

Lemma 1.  

Consider the continuous-time delay system (14) with control 

algorithm (12). The control algorithm (12) is the guaranteed 

cost control for system (14) if and only if there exists LKF 

 tV ,  and IQC ),( t  such that the following condition 

holds: 
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d
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The objective of this paper is to develop a procedure to 

design a robust PI controller of form (12) which ensure the 

closed-loop system stability and guaranteed cost. 

3. MAIN RESULT 

Theorem 1  

Consider the uncertain linear time-delay system (1) with 

network-induced delay )(t  satisfying 0 ( ) Mt    

, ( ) 1t    and the cost function (18). If there exist a PI 
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matrix inequality 0iW  
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Then the uncertain system (1) with controller (12) is 

parameter-dependent quadratically asymptotically stable and 

the cost function (18) satisfies the following bound 
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Proof 1 

The proof is based on the Lyapunov-Krasovskii approach and 

Integral Quadratic Constraint (IQC). Let us define the 

following Lyapunov-Krasovskii functional candidate: 
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                                                                         (28) 

[.]  is an operator defined as (8).  

Consider 

0,)(
1




i

N

i

ii PPP  ;

1

( ) , 0,

N
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i

Q Q Q 


  0..2k   
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1

( ) , 0, 0,1

N

j i ji ji

i

R R R j 


   ; then ( , ) 0V t  . The 

IQC ( , )t  is positive definite (see proof in Ariba and 

Gouaisbaut, 2008). 

The derivative of the each element of (24) along the 

trajectories of (1) leads to 

)()()(2),(1 tXPtXtV T                                (29) 
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Invoking the Jensen’s inequality ),(3 tV  can be bounded by 
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The derivative of the IQC (30) along the trajectories of (1), 

we obtain 
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    (34) 

where the matrices 
ba QQRRQ MMMMM

11100
,,,, were 

defined as (22). 
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Applying the free-weighting matrices technique, the equation 

(16) is represented in the following equivalent form 
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(35) 

Due to lema1, the closed-loop system (16) is robustly 

asymptotically stable and give an upper bound (a guaranteed 

cost) for the cost function (18) if  
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It is known, that for two arbitrary vectors YX , , the 

following inequality hold: 

TX Y X Y                                                             (37) 
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Applying the inequality (39), to above equation the upper 

bound of cost function (18) 0J  is obtained as (23). 

The theorem 1 is proved. 

4. EXAMPLE 

In this section we present the results of numerical 

calculations of one example to demonstrate the effectiveness 

of proposed method. In this example, we compare results of 

proposed method with PI controller corresponding to 

partitioning of time-delay 1,2dN   and method in (Thuan 

and Vojtech, 2010) through of 1000 generated examples. 

Numerical calculation is realized in PEN-BMI. 

In this case 1000 examples are generated with following 

parameters: the system 2nd order may be unstable 

with   1.0)(max0  eigreal , each system has two inputs 

two outputs with one uncertainty (two vertices are 

calculated), generated time-delay middle 

value ][200 msmiddle  , time-delay rate 5.0)( t . Results 

are in Table 1. 

 

ControllerNd \  PI  

1, (Vesely and Nguyen, 2010) 888 

2 897 

 

The parameters of cost function are , 1;R rI r   

, 0.1Q qI q  . 

5. CONCLUSIONS 

The paper addresses the problem to output feedback 

guaranteed cost controller design for Networked Uncertain 

Control Systems with time-varying delay and polytopic 

uncertainties. Base on partitioning scheme of time-varying 

delay (time delay is partitioned into two parts) and using 

integral quadratic constraint, a new discretized Lyapunov-

Krasovskii functional method is obtained to synthesize a 

robust PI controller achieving a guaranteed cost and 

parameter-dependent quadratic stability such that the NCSs is 

stable for all admissible uncertainties and bounded time-

varying delays. The solution has been obtained using PEN-

BMI script.  
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The obtained numerical results exhibit that when partitioning 

scheme of time-varying delay and IQC are used the robust 

controller design procedure conservatism is decreased. 
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Stabilizing Model Predictive Controller Design with Reduced On-line 
Computation 
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Abstract: The paper studies the problem of output feedback stabilizing model predictive control design 
with guaranteed cost. Considering a prediction horizon N, the proposed control design method is based 
on the idea of step-by-step sequential design for the whole prediction horizon, so that in each step, an 
one-step ahead stable model predictive control is designed. This approach enables to reduce the on-line 
computational load significantly. Numerical examples are given to illustrate the effectiveness of the 
proposed method. 

Keywords: Model predictive control, Guaranteed cost, Lyapunov function, Output feedback, Diophantine 
equation  

 

1. INTRODUCTION 

Model predictive control (MPC) has gained considerable 
attention in control of dynamic systems. The idea of MPC 
can be summarized in following basic points, (Camacho and 
Bordons, 2004; Maciejovski, 2002, Rossiter, 2003):  
 
• Predict the future behaviour of the process state/output over 
the finite time horizon (prediction horizon). 
• Compute the future input signals on line at each step by 
minimizing a cost function under inequality constraints on 
the manipulated (control) and/or controlled variables. 
• Apply on the controlled plant only the first of vector control 
variable and repeat the previous step with new measured 
input/state/output variables. 
 
As indicated above, the presence of the plant model is a 
necessary condition for the development of the predictive 
control. The main criticism related to MPC is that because of 
the finite prediction horizon the algorithm in its original 
formulation does not guarantee stability of closed-loop 
system. Several approaches have been developed in this field, 
robust control issues has been studied in (Kothare et al., 
1996). The excellent survey on stability, robustness 
properties and optimality of MPC are given in (Mayne et al, 
2000).  
 
In this paper, the two MPC design methods are proposed 
based on the idea of sequential design for prediction horizon 
N, using one step ahead model predictive stabilizing control 
design approach. First sequential design method is based on 
classical LQ state feedback and solution of diophantine 
equation. The second method is based on the Lyapunov 
function approach with guaranteed cost which is adapted to 
design model predictive control with output feedback control 
for prediction horizon N and constraints on input variables.  

The proposed sequential design strategy significantly reduces 
the problem size which enables to solve the resulting bilinear 
matrix inequality (BMI) even for longer prediction horizon.  
For both design approaches, the respective BMI is solved, its 
feasible solution provides corresponding output feedback 
gain matrices.  
 
The paper is organized as follows. Section 2 gives a problem 
formulation and some preliminaries about a predictive 
output/state model. In Section 3, two sequential design 
methods are proposed to design output feedback predictive 
control for prediction horizon N. Section 4 provides examples 
to illustrate the design procedure results for several exaples. 
 

2. PROBLEM FORMULATION AND PRELIMINARIES 

Consider a time invariant linear discrete-time system 
 

)()(
)()()1(

tCxty
tButAxtx

=
+=+

 (1) 
 

where lmn RtyRtuRtx ∈∈∈ )(,)(,)(  are state, control and 
output variables of the system, respectively; A, B, C are 
known matrices of corresponding dimensions.  
 
The following quadratic cost function is considered for 
prediction horizon N 
 

[ ]∑
−

=

++=
1

0

)()()()())(()(
N

tt

TT tRututQxtxNxFtJ  (2) 

 

where ))(( NxF  is a given terminal constraint at time N  and 
mmTnnT RRRRQQ ×× ∈>=∈≥= 0,0  are corresponding 

weighting matrices. 
 
The problem studied in this paper is to design a model 
predictive control with the following control algorithm  
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)1()()( 1211 ++= tyFtyFtu  (3) 
 

and, in the second design step, a model predictive control for 
a given prediction horizon N is designed in the form 
 

NkityFktu
k

i
ki ,...,3,2,)1()1(

1

1
=−+=−+ ∑

+

=

 (4)  
 

where NkRF lm
ki ,...,2,1, =∈ × . 1,...,2,1 += ki  is output 

(state) feedback gain matrix to be determined so that the 
given cost function (2) is minimized with respect to given 
constraint. 
 

3. MODEL PREDICTIVE CONTROL DESIGN 

The MPC sequential design procedure is described in this 
section, basically it includes two steps: design of one step 
ahead model predictive control, considering the measured 
output variable; design of MPC for prediction horizon N to 
obtain predicted model outputs for the whole prediction 
horizon. 
  
Substituting from system model (1) to (3), the control law (3) 
can be rewritten as 
 

)()()( 1211 tCxFtCxFtu +=  ⇒  

)()()()()( 11211
1

12 txKtxCAFCFCBFItu =+−= −   (5) 
 

where )()( 1211
1

121 CAFCFCBFIK +−= − , I is identity matrix 
of corresponding dimension. 
 
The respective closed-loop system is then described by 
 

)()()()1( 11 txDtxBKAtx =+=+   (6) 
 

where 11 BKAD += . 
  
The control objective is usually to steer the state to the origin 
or to an equilibrium state rx  for which the output 

wCxy rr == , where w is the constant reference. A suitable 
change of coordinates reduces the latter problem to the 
former one which is therefore considered in the sequel.  
 
To design the state feedback matrix 1K for system (6), the 
cost function (2) for this step is in the form 
 

)())(( 1111 tJNxFJ +=  (7) 
 
 

)()()()()( 1

1

11

1

0

tuRtutxQtxtJ T
N

tt

T∑
−

=

+=  

 

where ))(( 11 NxF  is a given terminal constraint at time 1N   

and mmTnnT RRRRQQ ×× ∈>=∈≥= 0,0 1111  are 
corresponding weighting matrices. 
 
 

Definition 1 
Consider the system (1). If there exists a control law *u given 
by (5) and a positive scalar *

1J  such that the closed-loop 
system (6) is stable and the value of the closed-loop cost 

function (7) satisfies *
11 JJ ≤ , then *

1J  is said to be 

guaranteed cost and *u  is said to be guaranteed cost control 
law for system (1). 
 
Consider the constraints on the maximal value of state and 
control input respectively: ))()((max txtxT

t , ))()((max tutuT
t  

are given in the form 
 

ρ=
))()((max
))()((max

txtx
tutu

T
t

T
t . (8) 

 

Then, for the worst case, the following linear matrix 
inequality (LMI) constraint for matrix 1K  can be formulated 
 

0
1

1
≥

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡

IK

KI Tρ
 (9) 

 

Inequality (9), cost function (7) and system (1) are basical for 
a calculation of gain matrix 1K . This can be done through 
several approaches. If the constraint (8) is omitted, the 
classical LQ design approach may be used; if ∞→1N  and 

0))(( 1 =NxF , bilinear matrix inequality could be formed 
which can be transformed using linearization approach, (de 
Oliveira et al, 2000), into the linear (LMI) one with respect to 
unknown matrix 1K . For the choice of different terminal 
constraint ))(( 1NxF , the different approaches for the 
calculation of 1K  can be used, see (Mayne et al, 2000). As 
soon as the state feedback gain matrix 1K  is known, using 
(5), the following diophantine equation with respect to 
matrices 1211, FF is obtained 
 

112111 CDFCFK +=   (10) 
 

Note, that if (A,B) is controllable for given 11, RQ , there 
exists a matrix 1K  which guarantees minimum of cost (7) 
and stability of the closed-loop system (6). Moreover, if there 
exists a solution to diophantine equation (10) with respect to 
matrices 1211, FF , the proposed one-step ahead predictive 
control algorithm (5) for closed-loop with output feedback 
guarantees the same properties as the closed-loop system 
obtained by state feedback and gain matrix 1K . Note, that 
according to receding horizon strategy, only u(t) is applied to 
plant. This complete the one-step ahead design procedure is 
completed. 
 
Consider now the case N = 2. Model predictive control 
algorithm and system are 
 

)2()1()()1(
)1()1()2(

232221 ++++=+
+++=+

tyFtyFtyFtu
tButAxtx

 
 

or after some manipulation 
 

)()1( 2 txKtu =+  
 

where 
 

)()( 12312221
1

232 CADFCDFCFCBFIK ++−= −  
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and the respective closed-loop system 
 

)()()()()2( 221 txtDtxBKADtx =+=+  (11) 
 

The closed-loop system (11) is stable with respect to state 
)2( +tx  if and only if the matrix 2D  is stable, i.e. 

0))(( 2 <Dreal iλ , ni ,...,2,1= . The matrix 2K can be 
calculated using the same approaches as used for matrix 1K . 
Control objective for calculation of 2K may be the same as 
for calculation of 1K  or the new control objective can be 
defined 
 

)())(( 2122 tJNxFJ +=  
 

where 
 

)1()1()()()( 222

1

0

+++= ∑
=

tuRtutxQtxtJ T
N

tt

T  

 

Note, that control input )1( +tu is applied for a calculation of 
future output )2( +ty  by predictive model (11). The 
constraints (9) for 2K  calculation need not be used, since the 
respective control input is used only in model prediction and 
is not directly applied to the real process. 
 
Sequentially, for the case of "k" step prediction, the following 
closed-loop system is obtained 
 

)()()()()( 1 txtDtxBKADktx kkk =+=+ −   (12) 
 

where 
 

kkk BKADDID +== −10 ,  
 

Nk ,...,2,1= . The respective diophantine equation for a 
calculation of output feedback matrices (4) is 
 

∑
=

+− +=
k

j
kkkjkjk CDFCDFK

1
11   (13) 

 

The obtained results are summarized in the following 
theorem. 
 

Theorem 1 
Consider the closed-loop system (12), control algorithm (3) 
and (4) and receding horizon N. The respective closed-loop 
system is stable with guaranteed cost if the following 
conditions hold: pair ( )BADk ,1−  is controllable for 

Nk ,...,2,1= , that is, there exists a matrix kK  which 
guarantees the closed-loop system matrix stability with 
guaranteed cost and for a given kK there exists solution of 
diophantine equation (13) with respect to output feedback 
matrices kjF , Nk ,...,2,1= , .1,...,2,1 += kj  Note that some 
matrices kjF  ; Nk ,...,2,1= , 1−≤ kj  may be equal to zero. 
 
To find a solution to diophantine equation (13), the following 
way is proposed. Introduce the following control algorithm 
 

)()1()1( 1 ktyFktyFktu kkkk ++−+=−+ +  (14) 
 

Nk ,...,2,1= . For model prediction k,  the closed-loop system 
(12) is  
 

)()()()( 11 ktCxBFtxDCBFAktx kkkkk +++=+ +−  (15) 
 

The aim of the proposed second-step predictive control 
design procedure is to design gain matrices 1, +kkkk FF , 

Nk ,...,2,1= such that closed-loop system (15) is stable with 
guaranteed cost when 0))(( 1 =NxF , ∞→1N . The following 
theorem gives sufficient conditions to design the above 
output feedback matrices. 
 

Theorem 2 
Closed-loop system (15) is stable for Nk ,...,2,1=  with 
guaranteed cost if there exist matrices 

nn
k

nn
k RNRN ×× ∈∈ 21 , , 1, +kkkk FF  and a positive definite 

matrix nnRP ×∈ such that the following bilinear matrix 
inequality holds 
 

0
2212

1211
≥

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡

k
T
k

kk

GG

GG
 (16) 

 

where 
 

21

121122

2111112

111111

k
T
ck

T
k

kck
T
kkkkk

T
kk

TT
kkk

ck
T
kk

T
ck

T
kkkk

T
kk

TT
k

T
k

kkk
T

kk
T

k
T
ckck

T
kk

NAD

DANCDFRFCDPQG

MNNADCFRFCDG

PCFRFCNMMNG

−

−−−

−+−

++

+

+++−=

++=

+++=

 

 

for Nk ,...,2,1=  
where 
 

kkk

kkck

kkck

BKADD
CBFAA

ICBFM

+=
+=

−=

−

+

1

1

 

11
1

1 )()( −+
−

+ +−= kkkkkkkk DCAFCFCBFIK  
 

If there exists a feasible solution of (16) with respect to 
matrices 1, +kkkk FF , 21, kk NN , Nk ,...,2,1=  and positive 
definite matrix P, then the proposed model predictive 
algorithm (14) guarantees the stability of the closed-loop 
system with guaranteed cost. 
 

Note, that for the case of N + 1 one-step ahead predictive 

control and polytopic systems ∑
=

=
S

i
iiAA

1
α , parameter 

dependent Lyapunov function ∑
=

=
S

i
iiPP

1
α , for more details 

see (deOliveira et al, 2000), (Kothare et al, 1996), a feasible 
solution of (16) guarantees the robustness properties of the 
respective closed-loop model predictive control. 
 

4. EXAMPLES 

Example 1 
This example serves as a benchmark. Continuous-time model 
of double integrator has been converted to a discrete-time one 
with sampling time 0.1s, the model turns to (1) where 
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[ ]4.008.0
0.0

125.0
,

0.02

5.02

=

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
=

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡ −
=

C

BA  

 

Eigenvalues of matrix A are { }1,1 . For prediction horizon 
3=N  and cost function matrices ,,5 11 IRIQ ==  

IRIQ == 22 ,10  and ,, 33 IRIQ ==  the following results 
are obtained. 
Gain matrices for state feedback 
 

]727.22747.8[1 −=K  
]0169.12454.2[2 −=K  
]3645.01934.0[3 −=K  

 

Solution of diophantine equations (10) for output feedback 
gain matrices are: 
 

for )(tu : 
0251.104985.6 1211 =−= FF  

for )1( +tu : 
7097.11255.18969.1 232221 ==−= FFF  

for )2( +tu : 
0608.08204.0 3231 −=−= FF  

7
3433 10.2098.12495.0 −== FF  

 

Eigenvalues of the closed-loop system for N=3 are 
{ }i3329.0035.0 ±− .  
 
Example 2 
Consider the following 5th order model with four outputs and 
two control inputs 
 

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

−

−=

100488.00003.00001.0

010004.00002.00488.0

0046.001.00047.0

000049.09754.0012.0

000143.00097.06.0

A  

 

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

=

0012.00

0001.00011.0

0474.00024.0

01.00052.0

0053.00425.0

B  

 

⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

=

10000

01000

00100

00001

C  

 

For the case of 1=N , ,,5 11 IRIQ ==  the following results 
are obtained. 
State feedback matrix 1K obtained by LQ method 
 

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡ −
=

1947.21361.03362.06707.00536.0

154.01971.20091.04052.04642.0
1K  

 

Solution of diophantine equation for output feedback 
 

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡

−

−
=

1941.09085.00884.116108.6

3642.15663.1514.64269.4
11F  

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡

−−−−

−−−−
=

5298.03284.08367.236202.11

3201.01983.042.140219.7
12F  

 

Eigenvalues of the closed-loop system are 
{ }9923.0,9874.0,9627.0,4541.0,5909.0 . It is interesting to 
note that for prediction horizon N = 3, eigenvalues of the 
respective closed-loop system are changed into 
{ }9814.0,9768.0,9100.0,0941.0,208.0 . 
 
Example 3 
The same system as in Example 2 is considered. The design 
problem is reformulated into decentralized one. 
Design two PS (PI) decentralized controllers for control of 
input variable )(tu ; N = 5, when cost functions are defined 
by IQQQ === 321 ; IRRR === 321 ; IQQ 5.054 ==  

IRR == 54 .  
The obtained output feedback gain matrices (solution of (16)) 
are : 
 

)1()()( 1211 ++= tyFtyFtu  

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡

−−

−−
=

3435.00269.00

04353.002512.0
11F  

 

where the decentralized controller consists of two subsystem 
controllers: the first one has proportional gain 

2512.01 =pK and integral gain 4353.01 =iK 0 and 
parameters of the second controller are 269.02 =pK ; 

3435.02 =iK . Because output )1( +ty  is obtained from a 
predictive model, there is no need to use decentralized 
structure for 12F  
 

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡

−−−−

−−−
=

6476.00547.02268.02024.0

1095.05957.01198.02253.0
12F  

 

and finally for 
 

)5()4()4( 5655 +++=+ tyFtyFtu  
 

where output feedback gain matrices are 
 

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡

−−−−

−−−
=

0841.00044.00054.00102.0

0099.00874.00046.00046.0
55F  
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⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡

−−−−

−−−
=

1051.00141.00479.00134.0

0024.01067.0006.000437.0
56F  

 

Eigenvalues of the respective closed-loop system for N = 5 
are 
{ }9883.0,9838.0,8864.0,0196.0,074.0 . 
 
The above examples illustrates that the proposed sequential 
design procedure for model predictive control guarantees the 
closed-loop system stability and guaranteed cost. 
 

5. CONCLUSION 

The paper addresses the problem of the sequential design of 
model predictive control. Sequential design consists of N 
steps, respective to prediction horizon N. Firstly, one-step 
ahead model predictive control is designed by either of two 
design approaches proposed in the paper. Repeating the one-
step ahead design procedure to N steps, one obtains the 
results – model predictive control for a prediction horizon N. 
The proposed design procedures guarantee the stability of the 
closed-loop system and guaranteed cost corresponding to a 
minimization of cost function given for each step. The results 
of design procedure are the output feedback gain matrices for 
model predictive control and real plant control input u(t) for 
the given prediction and control horizon. 
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Abstract:  Fuzzy controllers have found popularity in many practical situations. Many complex plants have 

been controlled very well using fuzzy controllers without any difficult analysis common in classical 

control design. Fuzzy controllers are general nonlinear ones and their benefits are well-known. The paper 

presents a fuzzy control based on parallel distributed fuzzy controllers for a heat exchanger. First, 

a Takagi-Sugeno fuzzy model is employed to represent a system. Each subcontroller is LQR designed and 

provides local optimal solutions. The simulation results are compared with classical PID control and 

illustrate the validity and applicability of the presented approach. 

 

1. INTRODUCTION 

Fuzzy controllers have found popularity in many practical 

situations. Many complex plants have been controlled very 

well using fuzzy controllers without any difficult analysis 

common in classical control design. Fuzzy controllers are 

general nonlinear ones and their benefits are well-known 

(Slotine and Li, 1991). In spite of these advantageous 

properties of fuzzy controllers, the main crisis of them was 

the absence of a formal method for proving the system's 

stability. However, after introducing the fuzzy plant 

modelling (Takagi and Sugeno, 1985), some methods for 

stable controller design have arisen. 

The described approach is based on fuzzy modelling of a 

nonlinear plant as a sum of nonlinear-weighted linear 

subsystems (Wang and Tanaka, 1996). Following this 

approach, one can design a linear controller for each 

subsystem and satisfying some constraints expressible as 

linear matrix inequalities (LMIs), stability of the whole 

system can be proved (Lam et al., 2001; Tanaka et al., 1997; 

Volosencu 2008). The idea is similar to traditional gain 

scheduling method in which controlling gains change 

according to the state of the controlled system ( Alata, 2001; 

Packard, 1994). The ability of converting linguistic 

descriptions into automatic control strategy makes it 

a practical and promising alternative to the classical control 

scheme for achieving control of complex nonlinear systems.  

Many real systems can be represented by TS fuzzy models 

(Lagrat et al., 2008; Takagi and Sugeno, 1985; Tanaka et al., 

1997). A TS fuzzy model approximates the system using 

simple models in each subspace obtained from the 

decomposition of the input space. The dynamic TS models 

are easily obtained by linearization of the nonlinear plant 

around different operating points. After the TS fuzzy models 

are obtained, linear control methodology can be used to 

design local state feedback controllers for each linear model. 

Aggregation of the fuzzy rules results in a generally nonlinear 

model (Wang and Tanaka, 1995). 

Stability and optimality are the most important requirements 

for any control system (Lam et al., 2001). Most of the existed 

works are based on Takagi–Sugeno type fuzzy model 

combined with parallel distribution compensation concept 

and applying Lyapunov's method to do stability analysis 

(Tanaka and Wang, 2001). Tanaka and co-workers reduced 

the stability analysis and control design problems to the 

linear matrix inequality (LMI) problems.  

The state feedback gain design method was developed in 

(Chang et al., 2001; Tanaka et al. 1997; Tanaka and Hori, 

1999; Wang and Tanaka, 1996) and it is based on assigning 

a common positive definite matrix P in accordance with the 

Lyapunov stability concept. It is important to find a suitable 

P such that the stable feedback gains exist. Some theorems 

will be presented to find the suitable P. After assigning 

a suitable common positive definite matrix P, one can obtain 

the feedback gains for each rule of the TS type fuzzy system. 

A heat exchanger is a device in which energy is transferred 

from one fluid to another across a solid surface. Heat 

exchanger analysis and design therefore involve both, 

convection and conduction. The heat exchangers are widely 

used in many industrial power generation units, chemical, 

petrochemical, and petroleum industries and they are robust 

units that work for wide ranges of pressures, flows and 

temperatures (Taborek, 1983).  

In this paper, a stable nonlinear fuzzy controller based on 

parallel distributed fuzzy controllers is proposed.  Each 

subcontroller is LQR designed and provides local optimal 

solution. The Takagi-Sugeno fuzzy model is employed to 

approximate the nonlinear model of the controlled plant. 

Based on the fuzzy model, a fuzzy controller is developed to 
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guarantee not only the stability of fuzzy model and fuzzy 

control system for the heat exchanger but also control the 

transient behaviour of the system. The design procedure is 

conceptually simple and natural. Moreover, the stability 

analysis and control design problems are reduced to LMI 

problems. Therefore, they can be solved very efficiently in 

practice by convex programming techniques for LMIs. 

Simulation results shows that the proposed control approach 

is robust and exhibits a superior performance to that of 

established traditional control methods. 

2   PROBLEM FORMULATION 

Fuzzy modelling is a framework in which different modelling 

and identification methods are combined, providing a 

transparent interface with the designer or operator and. It is a 

flexible tool for nonlinear system modelling and control too. 

The rule-based character of fuzzy models allows for a model 

interpretation in a way that is similar to the one humans use 

to describe reality.   

Using fuzzy systems it is possible to define very general 

nonlinearities. In order to be able to derive any analytical 

useful results it is necessary to constrain the classes of 

nonlinearities that one consider. The class of systems that has 

achieved most attention is linear and affine Takagi-Sugeno 

systems on state-space form. For these systems both stability 

and synthesis results are available based on Lyapunov theory. 

Quadratic Lyapunov functions are wery powerful if they can 

be found. In many cases it is very difficult to find a common 

global Lyapunov function. The feasible solution is to use a 

piecewise quadratic Lyapunov function that is tailored to fit 

the cell partition of the system (Johansson and Rantzer, 

1997). The search for piecewise quadratic Lyapunov function 

can also be formulated as an LMI-problem. 

2.1 Fuzzy Plant Model 

Consider a nonlinear controller. We can assume that the plant 

can be represented by a fuzzy plant model. Our goal is 

designing a nonlinear state feedback controller. 

The continuous fuzzy dynamic model (Takagi and Sugeno, 

1985) is described by fuzzy if-then rules. It can be seen as 

a combination of linguistic modelling and mathematical 

regression, in the sense that the antecedents describe fuzzy 

regions in the input space in which consequent functions are 

valid. The i
th 

rule  is of the following form (Tanaka, K. and 

M. Sugeno, 1992).  

Plant Rule i: 

if z1(t) is iM1 and ... and zs(t) is i
sM then  

 
     

   txC=ty

tuB+txA=tx

i

ii


 i=1,.., N  (1) 

where x(t)=[x1(t), x2(t), ..., xn(t)]
TRn is the state vector, 

u(t)=[u1(t), u2(t), ..., um(t)]
TRm

 is the control input, 

y(t)=[y1(t), y2(t), ..., yp(t)]
TRp

 is the controlled output, 

i
jM are fuzzy sets, z(t)=[z1(t), z2(t), ..., zs(t)] are the premise 

parameters, Ai  R
nxn

 is the state transition matrix, Bi R
nxm

 is 

input matrix, Ci R
pxn

 is output matrix. Let us use product as 

t- norm operator of the antecedent part of rules and the center 

of mass method for defuzzification. The final output of the 

fuzzy system is inferred as follows (Tanaka and Sugeno, 

1992): 

 

 

       

  

       tuB+txAtzh=

tzμ

tuB+txAtzμ

=tx

ii

N

=i

i

N

=i

i

ii

N

=i

i








1

1

1

 (2) 

  

     

  

     txCtzh=

tzμ

txCtzμ

=ty i

N

=i

iN

=i

i

i

N

=i

i






1

1

1  (3) 

where 

   
 

 tzμ

tzμ
=tzh

N

=i

i

i
i


1

  (4) 

     tzM=tzμ j

s

=j

j
ii 

1

  (5) 

    1

1

=tzh

N

=i

i   (6) 

2.2 Quadratic Stability 

After defining the model, the conditions are found under 

which the system is stable.  

Theorem 1. The continuous uncontrolled (u=0) fuzzy system 

of (1) - (3) is globally quadratically stable if there exists a 

common positive definite matrix P=P
T such that  

 N,=i<PA+PA i
T
i 1,...0,   (7) 

This is equivalent to saying that one must find a single 

function   Pxx=xV T  as a candidate for Lyapunov function.  

Finding a common P can be considered as linear matrix 

inequality (LMI) problem. Matlab LMI toolbox presents 

simple appliance for solving this problem (Gahinet et al., 

1995).      

2.3 Parallel distributed compensation 

Having TS plant model, it can be used parallel distributed 

compensation control defined as follows: 

Control  Rule j: 

 if z1(t) is iM1 and ... and zs(t) is i
sM then  
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    txK=tu j  j=1 ,.., N (8) 

Hence, the fuzzy controller is given 

       txKtzh=tu j

N

=j

j
1

 (9) 

in which Kj are state feedback gains. We can see it as local 

gains of gain scheduling design which overall control signal 

is made from combining each local control signal with 

different weights according to the closeness to the each rule's 

region.     

The closed loop system can be expressed by combining (2) 

and (7) as following system 

 

 

          

    

       

















N

=i

N

=j

jiij
ji

ij

N

=j

i

N

=i

jijj

N

=j

i

tx
G+G

tzhtzh

+txGtzh=

=txKBAtzhtzh=tx

1 1

1

2

1 1

2



 (10) 

where jiiij KBA=G  . 

It is easy to obtain the following result using Theorem 1: The 

fuzzy system (2), (3) with fuzzy control of (9) is globally 

stable if there exists  
TP=P such that  

        

N ,1,=j

N ,1,=i

<
G+G

P+P
G+G jiij

T

jiij

...

...

0,
22 




























 (11) 

2.4 Locally optimal design 

Since the local fuzzy system (i.e., fuzzy subsystem) is linear, 

its quadratic optimization problem is the same as the general 

linear quadratic (LQ) issue (Alata and Demirli, 2001; Burl 

1999; Kim and Rhee, 2001; Slotine and Li, 1991). Therefore, 

solving the optimal control problem for fuzzy subsystem can 

be achieved by simply generalizing the classical theorem 

from the deterministic case to fuzzy case. 

       dt(t)Ru(t)u+(t)Qx(t)x=tu,txJ TT




0

    (12) 

where Q is a real symmetric positive semidefinite weighting 

matrix and R is a real symmetric positive definite weighting 

matrix. Solution of the optimization problem, i. e. 

minimization of J for any x0 satisfies the feedback control 

law   

 )()( tKxtu   (13) 

where PBRK T1 .  

The optimal gain is K in which P is a symmetric positive 

semidefinite solution of the matrix Ricatti equation (Botan 

and Ostafia, 2008) 

 01   PBPBRQPAPA TT (13) (14) 

If the matrix (A - BR
-1

B
T
 P) is stable, i.e. (A - BK) is stable, 

the closed-loop system is stable. 

 

3   SIMULATIONS AND RESULTS 

3.1 Shell heat exchangers 

Consider two heat exchangers shown in Fig. 1.  

The measured and controlled output is temperature from 

second exchanger. The control objective is to keep the 

temperature of the output stream close to a desired value 353 

K. The control signal is input volumetric flow rate of the 

heated liquid. Assume ideal liquid mixing and zero heat 

losses. We neglect accumulation ability of exchangers walls. 

Hold-ups of exchanger as well as flow rates and liquid 

specific heat capacity are constant.  

 
 

Fig.1. Two shell heat exchangers in series 

Under these assumptions the mathematical model of the 

exchangers is given as 

    1
1

1
10

1

TT
ρCV

kA
+TT

V

q
=

dt

dT
p

p

1    (15) 

    2
2

2
21

2

TT
ρCV

kA
+TT

V

q
=

dt

dT
p

p

2    (16) 

where T1 is temperature in the first exchanger, T2 is 

temperature in the second exchanger, T0 is liquid temperature 

in the inlet stream of the first tank, q is volumetric flow rate 

of liquid,  is liquid density,  V1, V2 are liquid volumes, A1, A2 

are heat transfer areas, k is heat transfer coefficient, Cp is 

specific heat capacity. The superscript s denotes the steady-

state values in the main operating point. 

Parameters and inputs of the exchangers are enumerated in 

Table 1.  

Table 1. Parameters and inputs of heat exchangers 

Variable Unit Value 

q
 

V1
 

V2
 

Cp
 

A1
 

m
3
min

-1 

m
3 

m
3 

kJ kg
-1

K
-1 

m
2 

1
 

5
 

5
 

3.84
 

16
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Variable Unit Value 

A2 m
2
 16 

k
 



T0
s
 

Tp
s
 

T1
s
 

T2
s
 

kJ m
-2

min
-1

K
-1 

kg m
-3 

K 

K 

K 

K 

72
 

900
 

293 

373 

313 

328 

3.2 Takagi-Sugeno fuzzy model and LQ control design 

The system  was approximated by nine fuzzy models 

 if x is iM1 and u is iM2 then   

      tuB+txA=tx ii
  i=1,..., 9      (17)  

The bell curve membership functions for the premise 

variables x and u in each rule are adopted:  

   
 

1
2b

1
























 





 

a

cx
+=cb,a,x;f   (18) 

The parameters a, b and c for bell shaped membership 

functions are listed in the Table 2 and membership functions 

are shown in Figures 2, 3. The consequent parameters are 

given in Table 3 and the resulting plot of the output surface of 

a described fuzzy inference system is presented in Figure 4.  

 

 

 

 

 

 

 

 

 

 

 

Fig. 2. Bell curve membership functions for x 

 

 

 

 

 

 

 

 

Fig. 3. Bell curve membership functions for u 

Table 2. Bell curve membership functions  parameters 

x u 

ai bi ci ai bi ci 

6 2 55 0.13 2 0.34 

6 2 67 0.14 2 0.62 

6 2 79 0.14 2 0.91 

Table 3. Consequent parameters  

Ai Bi 

0.73 -13.41 

0.27 -4.94 

-0.33 9.44 

0.01 0.22 

0.13 -3.04 

-0.37 11.11 

-0.25 0.72 

2.33 -74.17 

2.05 -59.04 

 

 

 

 

 

 

 

 

 

 

Fig. 4. Output surface of a fuzzy inference system  ux,f=x'  

After obtaining Ai, Bi, gains Kj were calculated of each 

subsystem using LQR design and then tested for stability of 

the system.  

The problem was solved using LMI optimization toolbox in 

Matlab software package.  

The results for different performance measures are compared 

in Table 4. 

Table 4. Fuzzy LQR controllers performance comparison  

performance  

measure 

set-point 

tracking 

disturbance 

rejection 

K=-0.1803 

Q=1*I(2,2) 

R=1 

K=-1.1858 

Q=100*I(2,2) 

 R=1 

K=-0.1803 

Q=40*I(2,2) 

 R=40 

K=-3.5888 

Q=100*I(2,2) 

 R=0.1 

 

iae = 0.41 e3 

ise = 2.67 e3 

 

iae = 0.19 e3 

ise = 1.91 e3 

 

iae = 1.41 e3 

ise = 2.67 e3 

 

iae = 0.16 e3 

ise = 1.88 e3 

 

iae = 0.46 e3 

ise = 2.54 e3 

 

iae = 0.18 e3 

ise = 1.56 e3 

 

iae = 0.46 e3 

ise = 2.54 e3 

 

iae = 0.14 e3 

ise = 1.54 e3 
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3.3 PID control 

For feedback controller tuning, the approximate model of a 

system with complex dynamics can have the form of a first-

order-plus-time-delay transfer function (19). The process is 

characterised by a steady-state gain K, an effective time 

constant T and an effective time delay D.  

   Ds
P e

+Ts

K
=sG 

1
 (19) 

The transfer function describing the controlled heat 

exchangers was identified from step response data in the form 

(19) with parameters: K = -38.57, T = 11.3 min, D = 2 min. 

These parameters were used for feedback controller tuning. 

The feedback PID controllers were tuned by various methods 

(Ogunnaike and Ray,1994). Two controllers were used for 

comparison: PID controller (20) tuned using Rivera-Morari 

method with parameters KC = -0.1063, TI = 12.3, TD = 0.91 

and PID controller tuned using Ziegler-Nichols method with 

parameters KC = -0.17, TI = 4, TD = 1. The transfer function 

of the used PID controller is following 

    









sT+

sT
+K=sG D

I
CC

1
1  (20)  

The step changes of the reference yr were generated and the 

fuzzy LQR and PID controllers were compared. Figure 5 

presents the comparison of the simulation results obtained by 

fuzzy LQR controller and PID controllers tuned using 

Rivera-Morari and Ziegler-Nichols methods. Figure 6 

presents the comparison control inputs generated by above 

mentioned controllers. Figure 7 presents the simulation 

results of the fuzzy LQR and PID control of the heat 

exchanger in the case when disturbances affect the controlled 

process. Disturbances were represented by temperature 

changes from 373 K to 353 K at t=25 min, from 353 K to 383 

K at t=75 min and from 383 K to 368 K at t=125 min.  The 

comparison of the controllers output is shown in Figure 8.   

 

Fig. 5. Comparison of the temperature of the output stream 

from second heat exchanger: PID controllers: Rivera-Morari 

(...... ), Ziegler-Nichols (- - - ), fuzzy LQR ( __ ), reference 

trajectory ( __ )  
 

 

Fig. 6. Comparison of the control inputs 

 

Fig. 7. Control responses in the presence of disturbances: PID 

controllers: Rivera-Morari (...... ),  Ziegler-Nichols (- - - ),  

fuzzy LQR ( __ ), reference trajectory ( __ ) 

 

Fig. 8. Comparison of control inputs in the presence of 

disturbances 

The comparison of the fuzzy LQR controller with PID 

controllers was made using iae and ise criteria described as 

follows: 
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   dte=iae

T


0

 (21) 

 dte=ise

T


0

2     (22) 

The iae and ise values are given in Table 5. 

Table 5. Comparison of the simulation results by integrated 

absolute error iae and integrated square error ise 

control  

method 

set-point 

tracking 

disturbance 

rejection 

fuzzy LQR:  

K =-3.5888 

PID (Rivera-

Morari) 

PID (Ziegler-

Nichols) 

iae = 0.16 e3 

ise = 1.88 e3 

iae = 0.36 e3 

ise = 4.09 e3 

iae = 0.52 e3 

ise = 5.79 e3 

iae = 0.14 e3 

ise = 1.54 e3 

iae = 0.40 e3 

ise = 3.64 e3 

iae = 0.50 e3 

ise = 5.48 e3 

 

Used fuzzy is simple, and it offers the smallest values iae and 

ise. The disadvantage of the fuzzy LQR controllers is, that 

using these controllers can lead to nonzero steady-state 

errors, but without overshoots practically. In the case of the 

heat exchanger control in the presence of disturbances, the 

control responses with fuzzy LQR controllers do not show 

any overshoots and undershoots.  

Comparison of the LQR simulation results with classical PID 

control demonstrates the effectiveness and superiority of the 

proposed approach. 
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Abstract: This paper present the control design via the combination of the neural predictive controller and 
neuro-fuzzy controller type of ANFIS. The ANFIS works in parallel with the predictive controller. The 
performance of our proposal is demonstrate on the Continuous Stirred-Tank Reactor control problem with 
disturbances. Simulation result demonstrate the effectiveness and robustness of the proposed approach. 

 

 

1. INTRODUCTION 

The aim of process control is to achieve the target value of 
given variable. This is mainly the task of the properly 
designed controller. The controller should also provide some 
flexibility in the case of unexpected failure or change of 
condition, etc. 

This paper describes the above mentioned combination of 
two methods of intelligent system controlling. By the parallel 
connection of predictive and neural-fuzzy controller, we 
aimed to obtain better results of the reference variable in 
terms of lowering its overshooting and reducing the control 
time. The designed system with two connected controllers 
was tested using the chemical reactor in the nominal state and 
in the perturbed state (disturbances were in the input 
concentrate of substance A, input temperature of reaction 
mixture, input temperature of coolant and flow rate of 
reaction mixture). The chemical reactor introduces one of the 
complex types of the chemical-technological process where 
full sailed control without expressive overshooting is needed. 

2. PREDICTIVE CONTROL 

MBPC (Model-Based Predictive Control) is a name of a 
several different control techniques (Vasičkaninová et al., 
2008). All are associated with the same idea. The prediction 
is based on the model of the process (Fig.1). 

 
Fig.1. Model-based predictive control scheme 

 

 

The controller uses a neural network model to predict future 
plant responses to potential control signals. An optimization 
algorithm then computes the control signals that optimize 
future plant performance. The neural network plant model is 
trained offline, in bath form, using some of the training 
algorithms. 

The controller, however, requires a significant amount of 
online computation, because an optimization algorithm is 
performed at each sample time to compute the optimal 
control input. The model predictive control method is based 
on the receding horizon technique. The neural network model 
predicts the plant response over a specified time horizon. The 
predictions are used by a numerical optimization program to 
determine the control signal that minimizes the following 
performance criteria over the specified horizon. 

∑∑ −∆−
uN

=i1N=i
rm ))i+u(t(λ+

N
i))+(tyi)+(t(y=u(k))J(t,

1

22 2 1          (1) 

where N1, N2 and Nu define the horizons over the tracking 
error and the control increments are evaluated. The u’ 
variable is the tentative control signal, yr is the desired 
response and ym is the network model response. The λ value 
determines the contribution of the sum of squares of the 
control increments and the performance index. 

The controller consists of the neural network plant model and 
the optimization block. The optimization block determines 
the values of u that minimize J, and then the optimal u is 
input to the plant. 

Equation (1) is used in combination with input and output 
constraints: 

maxmin

maxmin

∆y∆y∆y
yyy
∆u∆u∆u

uuu

≤≤
≤≤

≤≤
≤≤

maxmin

maxmin

            (2) 
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3. NEURO-FUZZY CONTROLLER 

The neural predictive controller can be extended with neuro-
fuzzy controller, connected in parallel (Fig.2).  

 
Fig.2. Neuro-fuzzy control scheme 

 

Neuro-fuzzy systems, which combine neural networks and 
fuzzy logic, have recently gained a lot of interest in research 
and application. A specific approach in neuro-fuzzy 
development is the ANFIS (Adaptive Network-based Fuzzy 
Inference System) (Agil et al., 2007). ANFIS uses a feed 
forward network to search for fuzzy decision rules that 
perform well on a given task. Using a given input-output data 
set, ANFIS creates a Fuzzy Inference System for which 
membership function parameters are adjusted using a 
combination of a back propagation and least square method. 
The ANFIS architecture of the first-order Takagi-Sugeno 
inference system is shown in Fig.3. 

 
Fig.3. System architecture ANFIS 

4. EXPERIMENTAL 

4.1  Continuous Stirred-Tank Reactor (CSTR) 

Consider CSTR (Mikleš et al., 2007) with first-order 
irreversible parallel reaction according to the scheme (3). 

CA

BA
k

k

⎯→⎯

⎯→⎯
2

1

            (3) 

The simplified dynamical mathematical model of CSTR is: 

AAAAv
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The rate of reaction is a strong function of temperature: 

ϑR
E

ek=k
i

ii

−

∞              (9) 

For reaction heat gives: 

( ) ( )21 H∆Vck+H∆Vck=Q rA2rA1r −−         (10) 

 
Fig.4. Signification scheme of chemical reactor 

Temperature of reaction mixture ϑ is controlled variable and 
volume flow rate of coolant qc is input variable. The process 
state variables are molar concentration of A, B and C (cA, cB 
and cC) and temperatures of reaction mixture ϑ and coolant 
ϑc. The model parameters are summarized in Table 1. 

 

Table 1. Parameters of the chemical reactor 

Variable Unit Value 

cvA kmol m-3 4,22 

cvB kmol m-3 0 

cvC kmol m-3 0 

Q m3min-1 0,015 

ϑv K 328 

Ρ kg m-3 1020 

cp kJ kg-1K-1 4,02 

V m3 0,23 

qvc m3min-1 0,004 

ϑvc K 298 

ρc kg m-3 998 

cpc kJ kg-1K-1 4,182 

Vc m3 0,21 
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A m2 1,51 

K kJ min-1m-2K-1 42,8 

E1/R K 9850 

∆rH1 kJ kmol-1 -8,6.104 

k1∞ min-1 1,55.1011 

E2/R K 22019 

∆rH2 kJ kmol-1 -1,82.104 

k2∞ min-1 4,55.1025 

 

4.2  Process Control in the Nominal State 

Firstly, CSTR was simulated with neural predictive controller 
(NNPC). To set this controller neural network process model 
was needed. Neural network model of CSTR was trained 
offline based on nonlinear process input and output data by 
Levenberg-Marquardt back propagation method. When 
optimization parameters were adjusted, CSTR was further 
controlled by NNPC controller. 

  

 
Fig.5. Membership functions for input variables e and de 

 

Secondly, CSTR was controlled with neuro-fuzzy controller 
(NFC) formed from neural predictive controller and ANFIS 
controller. ANFIS was trained by PID controller. PID 
parameters were designed by Smith-Murrill method in five 
training periods. ANFIS have two inputs: set-point error e 

and derivation of set-point error de. Twelve membership 
function bell shape were chosen for ANFIS input: seven for 
variable e and five for variable de (Fig.5). 

The neural predictive and the neuro-fuzzy controller were 
tested in MATLAB/SIMULINK ® environment using neural 
network toolbox and fuzzy logic toolbox. This experiment 
was designed to compare a neural predictive controller with 
neuro-fuzzy controller performance while controlling a 
nominal process. 

In Fig.6, set-point changes of the desired temperature profile 
were tracked with satisfactory results in both considered 
cases. However, it can be seen, that the controlled variable 
(ϑ) profiles exhibit differences for both controllers compared. 
The neuro-fuzzy controller had more fainting performance 
that the neural predictive controller. 

 

 
Fig.6. Comparison of NNPC and NFC performance for 
nominal plant 

 
Fig.7. Comparison of NNPC and NFC performance for 
perturbed state – step change of cvA + 10 % from the nominal 
value, ϑv – 8K from the nominal value and q – 15% from the 
nominal value. 
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4.3  Process Control in the Perturbed State 

Besides the good regulatory performance tested above, 
tracking abilities of controllers proposed in the presence of 
disturbances is of utmost importance. Disturbances were 
applied during the control curse and they were set as step 
change of input concentration of substance A (cvA), input 
temperature of reaction mixture (ϑv), input temperature of 
coolant (ϑcv) and flow rate of reaction mixture (q). Input 
concentration of substance A (cvA) was change in range ± 
10% from the nominal value. Input temperature of reaction 
mixture (ϑv) was change in range ± 8K from the nominal 
value. Input temperature of coolant (ϑcv) was change in range 
± 8K from the nominal value. Flow rate of reaction mixture 
was change in range ± 15% from the nominal value.  

 
Fig.8. Comparison of NNPC and NFC performance for 
perturbed state – step change of ϑcv + 8K from the nominal 
value, ϑv – 8K from the nominal value and cvA - 10 % from 
the nominal value.  

 
Fig.9. Comparison of NNPC and NFC performance for 
perturbed state – step change of cvA - 10 % from the nominal 
value, q + 15% from the nominal value and ϑv +8K from the 
nominal value. 

 

A comparison of the neural predictive controller and the 
neuro-fuzzy controller performance tested in the presence of 
process parameter perturbation is demonstrate in Fig.7, 8 and 
9 (the arrows are to show the time instants when disturbances 
were applied).  

 

5.  CONCLUSION 

In this paper, we present intelligent control system of a 
continuous stirred-tank reactor. This intelligent control 
system is composed from two individual controllers: neural 
predictive controller and ANFIS controller.  

The main goal of the resulting control system was to enhance 
a profile of temperature of reaction mixture in the CSTR by 
manipulating the volume flow rate of coolant. Experimental 
results obtained demonstrated the usefulness and robustness 
of the proposed control system, and general advantages of the 
innovative technique in control application. 
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Abstract: : The paper deals with synthesis of MPC feedback laws for Takagi-Sugeno fuzzy
systems. The procedure is based on constructing time-optimal controllers for the class of
piecewise affine (PWA) systems with parametric uncertainties. It is shown that the fuzzy
system can be embed into the PWA framework where the membership activation coefficients are
represented as parametric uncertainties. A robust MPC controller is then derived which is able
to utilize on-line measurements of the unknown parameters to further optimize for performance.

Keywords: Model Predictive Control, real-time control, parametric optimization

1. INTRODUCTION

Takagi-Sugeno fuzzy systems represent a popular modeling
framework due to their ability to act as universal approx-
imators of general nonlinear systems (Tanaka and Wang,
2002). Following the original contribution by (Takagi and
Sugeno, 1985), fuzzy systems have garnered increased at-
tention by the control community (Feng, 2006). This was
mainly to their ability to model complex nonlinear behav-
ior in a human-friendly way. MPC is one of the frequently
used methodologies for control of fuzzy systems (Mollov
et al., 2004; Vasičkaninová and Bakošová, 2007). The
approach is based on optimizing the predicted process
behavior while taking constraints into account. However,
most available MPC techniques for fuzzy systems are based
on solving nonlinear optimization problems on-line, which
has implications on the minimal admissible sampling rate
of the closed-loop system. Issues with solving the MPC
problem to global optimality could also arise.

Therefore in this work we propose to over-approximate
TS models by PWA models, for which rigorous globally
optimal control schemes can be synthesized using the MPC
framework, see e.g. (Bemporad et al., 2002; Borrelli, 2003;
Grieder et al., 2005). In addition, as shown in the refer-
enced works, the MPC problem for PWA models can be
solved off-line parametrically, which leads the control law
in a form of a look-up table, which allows for very fast on-
line implementation of MPC-based controllers. Similarly
to TS systems, PWA systems (Sontag, 1981) can also be
efficiently employed to describe the dynamical behavior
of nonlinear systems by utilizing the concept of multiple
linearization. Although PWA systems are still nonlinear
due to the presence of “IF-THEN” switching rules, the
underlying piecewise linearity allows for simpler control
synthesis compared to full nonlinear setups. Motivated by
these upsides and following the ideas of (Johansson et al.,

1999), this paper is aimed at establishing a bridge between
fuzzy TS models and the PWA modeling framework.

In this paper, we show how TS models with trapezoidal
membership functions can be embedded into the PWA
framework. The influence of the membership functions on
state evolution is captured by means of an unknown (at
the time of the synthesis of the control law), but bounded
variation of the system matrices. The control synthesis
is based on solving an MPC problem with a minimum-
time objective. We show that if the value of the variation
is measured on-line, the evolution of the PWA model
mirrors the one of the TS model. We also illustrate how
the minimum-time problem can be solved parametrically
such that the control law is obtained in the form of
a look-up table, allowing fast implementation and easy
analysis of the closed-loop system. The main advantage
of the proposed method is that satisfaction of input and
state constraints, as well as time-optimal performance is
achieved by construction.

2. TAKAGI-SUGENO FUZZY SYSTEMS

We consider the class of discrete-time Takagi-Sugeno mod-
els described by fuzzy “IF . . . THEN” rules where the
dynamical behavior is driven by an affine state-space dy-
namics. Generally, the ith TS rule can be expressed as

IF x1,k is µi1 and . . . xn,k is µin (1)

THEN xk+1 = Aixk + Biuk + fi

where xk ∈ Rn is the state vector, uk ∈ Rm is the input
vector, and µij are input fuzzy sets for i = 1, . . . , r rules.
In addition, Ai ∈ Rn×n, Bi ∈ Rn×m, fi ∈ Rn are the
matrices which are used to obtain the successor state xk+1

with k ≥ 0 denoting the sampling instance. The dynamics
of the aggregated system can be written in a more compact
way as
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µ1 µ2 µ3

P1 P2 P3

xk

µ(xk)

Fig. 1. Fuzzy membership functions.

xk+1 =

∑r
i=1 (wi(xk)(Aixk + Biuk + fi))∑r

i=1 wi(xk)
(2)

with

wi(xk) =

n∏

j=1

µij(xj,k), (3)

where the membership function µij(xj,k) measures the
activation of the fuzzy set j in the rule i. Using the
definition

αi(xk) =
wi(xk)∑r
i=1 wi(xk)

, (4)

the overal system model can be described by

xk+1 =

r∑

i=1

αi(xk)(Aixk + Biuk + fi). (5)

Each membership function µij is defined over a region of
the state space which, if the function is defined by linear
hyperplanes, can be described as a convex polytope

Pi = {xk ∈ Rnx | wi(xk) > 0}. (6)

Depending on the shape of the membership functions,
all such polytopes Pi can either be disjoint or they can
overlap. From the aggregation rule (2) it is clear that
the interpolation of different dynamics occurs only in the
overlapping parts, as illustrated in Fig 1. In the next
section we show how to transform a given Takagi-Sugeno
model into a PWA form with parametric uncertainties,
which allows for synthesis of MPC feedback laws in explicit
form. The control synthesis is based on the following two
assumptions.

Assumption 2.1. The membership functions in (3) are
trapezoidal functions, i.e.

∑

i

wi(xk) = 1, ∀i ∈ [1, . . . , r] (7)

Assumption 2.2. In the TS model (1), the matrices Bi and
fi are constant ∀i ∈ [1, . . . , r], i.e. (5) can be written as

xk+1 =
( r∑

i

αi(xk)Ai

)
xk + Buk + f (8)

Although these assumptions may be restrictive in practice,
they are vital for performing a control synthesis which
features three strong points: constraint satisfaction, time-
optimal performance and cheap implementation of the
control law.

µ1

µ2

µ3

µ4

µ5

D1 D2 D3 D4 D5

xk

µ(xk)

Fig. 2. Intersections of several membership functions de-
fines the PWA partitioning.

3. TRANSFORMATION OF TAKAGI-SUGENO
MODELS INTO PWA FORM

The aim of this section is to transform the TS model (1)
into a corresponding Piecewise Affine form such that
convenient MPC approaches could be used for control
synthesis. Discrete-time PWA systems with an uncertain
system matrix can be described by

xk+1 := fPWA(xk, λk, uk) (9)

:= Ad(λk)xk + Bduk + fd, ifxk ∈ Dd,

where λk represents a vector of parameters whose entries
are unknown, but are assumed to be bounded. The domain
D := ∪ND

d=1Dd of fPWA(·, ·) is a non-empty compact set in
Rnx with ND < ∞ elements represented as a union of
polytopes in hyperplane representation:

Dd :=
{
xk| Dx

dxk ≤ D0
d

}
(10)

The system matrices Ad(λk) in (9) can be expressed
as a convex combination of a total of md vertices
Ad,1, . . . , Ad,md

, i.e.

Ad(λk) = λk,1Ad,1 + . . . + λk,md
Ad,md

(11)

with
∑

j λk,j = 1 and 0 ≤ λk,j ≤ 1. For the PWA system to

be well-posed (Bemporad and Morari, 1999), it is required
that the regions Dd do not overlap, i.e.

Dp ∩ Dq = ∅ ∀p 6= q, p = 1, . . . , ND. (12)

This non-overlapping property represents the main dif-
ference between Takagi-Sugeno models (8) and the PWA
description (9). Therefore in order to transform the TS
model into a PWA form, we first need to identify such
overlapping regions and then, in the second step, assign
a unique dynamics to each such intersection. As sketched
in Fig. 2, if the membership functions are given by linear
hyperplanes (which is true for trapezoidal functions con-
sidered in Assumption 2.1), the intersecting parts can be
obtained by defining new regions for each intersection of
the neighboring fuzzy sets. Formally, we are looking for
a non-overlapping polyhedral partitioning D of the set P
such that (12) holds and

⋃
d Dd =

⋃
i Pi. The partitioning

can be obtained in two steps. In the first stage, the regions
corresponding to subsets of P over which only one mem-
bership function µi takes a non-zero value are found by a
set-difference operation:

Da = Pi�
⋃

j 6=i

Pj , ∀i = 1, . . . , r (13)

Such sets are represented by D1, D3, and D5 in Figure 2.
Then, in the second step, the regions in which multiple

Preprints of the NIL workshop
Jan 10–15, 2011, Bratislava, Slovakia Kvasnica, M., Herceg, M., Čirka, L’., Fikar, M.
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membership functions overlap can be found by another
set-difference operation:

Db = P�
⋃

Da. (14)

For the case in Figure 2, regions D2 and D4 are an example
of Db. The resulting partitioning Dd is thus given as a
union of Da and Db:

Dd = {xk | xk ∈ Da ∨ xk ∈ Db}. (15)

Once the strictly separated regions Dd are obtained, the
next task is to associate one local model to each such
region. This can be done, for each d, by transforming the
dynamics (8) into the form of (9) in such a way that the
cross-term αi(xk)Ai is replaced by the linear combination
of the form of (11). The vertices Ad,1, . . . , Ad,md

of the
uncertainty set (11) can be easily obtained from (8) by
evaluating αi(xk) for all vertices of the region Dd for all i
such that Dd ∩ Pi 6= ∅.

Once the non-overlapping regions Dd and the correspond-
ing vertices Ad,1, . . . , Ad,md

of (11) are computed, the
PWA model (9) is an over-approximation of the TS
model (8). However, if the value of λk in (11) is expressed
as λk,i = αi(xk), value of which can be measured at each
time since xk is assumed to be measurable and αi are
known, the one-step equivalence between the two models
can be established:

Lemma 3.1. The PWA model (9) is equivalent to the TS
model (8), for one time step, if

λk,i = αi(xk) (16)

can be measured at each time k.

Proof. Follows directly from Assumptions 2.1 and 2.2 and
from the definition of Ad(λk) as in (11) since Dd given
by (15) satisfies

⋃
d Dd =

⋃
i Pi. This one-step equivalence

allows to synthesize an MPC feedback law by applying
the concept of dynamic programming, i.e. by solving one-
step problems backwards in time. In the next section we
show how an MPC controller for PWA systems of the form
of (9) can be designed by considering λk as a parametric
uncertainty. The value of λk is not known at the time
of the synthesis, but its assumed to be bounded. The
control policy will be parameterized in the influence of λk,
such that the optimal control action could be recovered
once the particular value of λk = α(xk) becomes known
when the controller is implemented on-line. Therefore the
feedback policy could be viewed at as an optimization-
based adaptive controller which takes into account the
knowledge of the activation of individual fuzzy rules.

4. CONTROL SYNTHESIS

The problem which we aim at solving can be stated as
follows:

Problem 4.1. For the PWA system (9), find a feedback
policy of the form

uk = g(xk, λk), (17)

which takes into account measurements of the current
state xk and the measurements of the vector λk, and
drives all system states towards a given terminal set in
the minimal admissible number of time steps, i.e. finds the
smallest integer Nmax satisfying 0 ≤ Nmax < ∞ such that
xNmax ∈ Tset for all admissible values of the vector λk with
Tset representing a user-defined terminal set.

Problem 4.1 is commonly referred to as a minimum-time
problem, a problem frequently tackled in the literature,
see e.g. (Keerthi and Gilbert, 1987; Grieder et al., 2005;
Raković et al., 2004). However, the cited approaches can-
not be applied to solve Problem 4.1 directly, as (9) is
nonlinear in the bi-product between xk and λk (cf. (11))
even if a particular mode d is fixed.

However, it is easy to observe that the state-update
equation of the PWA system (9) for a fixed mode d is
linear in the joint product Ai(λk)xk. Following the ideas
of (Baric et al., 2008) and (Besselmann et al., 2008) we
propose to introduce an auxiliary information variable zk

to convert the bi-linear PWA form (9) into a linear one:

xk+1 = fPWA(zk(xk, λk, d), uk)

= zk(xk, λk, d) + Buk + f, (18)

where the information variable zk(·) given by

zk(xk, λk, d) = Ad(λk)xk (19)

captures both the knowledge of the mode d active at the
time instance k as well as the state contribution Ad(λk)xk

for the actually measured value of the parameter vector
λk.

Remark 4.1. Important to notice is that the augmented
PWA system (18) is equivalent, for one time step, to the
original form of (9) if the current state xk, the current
value of the parameter vector λk, and the active mode d
are known such that zk(·) can be evaluated per (19). This
is not a restrictive requirement, but a direct consequence
of the adaptive control strategy. As for any other state-
feedback policy, the current state xk has to be measured
(or estimated), and the values of the parameters λk can be
directly calculated from µi(xk) per the equivalence (16).
The active mode d is uniquely determined by (10) for each
xk. At the next time step, a new value of zk+1(·) will
be calculated from xk+1 and the whole procedure can be
repeated.

This equivalence allows to re-formulate Problem 4.1 as
follows:

Problem 4.2. For the augmented PWA system (18) with
zk(·) defined as in (19), find a feedback policy of the form

uk = g(zk(xk, λk, d)), (20)

which takes into account the measurements of the infor-
mation variable zk(·) and minimizes the number of time
steps needed to push all system states towards the ter-
minal set, i.e. find the smallest integer Nmax satisfying
0 ≤ Nmax < ∞ such that xNmax ∈ Tset for all admissible
values of λk.

Even though the augmented PWA system (18) is now
linear in all variables, Problem 4.2 is still not trivial to
solve as the solution has to robust against all possible
variations of λk ∈ Λ entering the system matrices Ad(λ).
We remind the reader that only the bounds Λ are known at
the time of control synthesis, λk will only become available
once the controller is calculated and implemented on-line.

The idea of the proposed control synthesis is based on
solving Problem 4.2 parametrically, such that the optimal
solution is “pre-calculated” for all admissible values of
the information variable zk(xk, λk, d). Once the feedback
strategy is obtained in a form of a look-up table, the on-
line implementation procedure then consists of identifying
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the values of the parameter vector λk, evaluating the infor-
mation variable zk(xk, λk, d), and evaluating the feedback
policy u∗

k = g(zk(·)) for the respective value of zk(·) in
order to obtain the optimal control action.

As was shown in (Grieder et al., 2005) for PWA systems
with no parametric uncertainties, a minimum-time con-
troller could be found by solving a series of horizon-1
optimization problems for each feasible switching sequence
(i.e. for each allowed change of d). In this paper we extend
the synthesis procedure to cover PWA systems with para-
metric uncertainties. To do so, we propose to solve a series
of d = 1, . . . , ND problems of the form

min
uk

|Qxk+1|1 + |Ruk|1 (21a)

s.t. uk ∈ U , (21b)

xk ∈ X , (21c)

Dx
dxk ≤ D0

d, (21d)

xk+1 = zk(xk, λk, d) + Buk + f, (21e)

xk+1 ∈ Tset, (21f)

A1
dxk + Buk + f ∈ Tset (21g)

...

Amd

d xk + Buk + f ∈ Tset, (21h)

with X and U representing, respectively, the polyhedral
state and input constraints sets. Constraints (21g)–(21h)
enforce that the resulting control law will push all system
states in one step to a given terminal set for all admis-
sible values of the parametric uncertainty λk. We remark
that the value of λk is unknown at the time of control
synthesis, therefore one has to consider all vertices of
the parametric uncertainty in (21g)–(21h). The objective
function (21a) also takes λk into account through the use
of the information variable zk(xk, λk, d) via the definition
of xk+1 as in (18). Therefore the resulting control law will
be parameterized in the influence of λk and its on-line
measurements can be used to adjust the control action
accordingly.

The optimal solution to the linear programming prob-
lem (21) can be obtained for all feasible initial conditions
xk (or zk(·)) using techniques of parametric programming
as summarized by the following theorem.

Theorem 4.1. ((Borrelli, 2003)). The solution to the prob-
lem (21) for all admissible initial conditions yk ≡ xk or
yk ≡ zk(·) is a piecewise affine state feedback optimal
control law of the form

u∗
k(yk) = F k

r yk + Gk
r if yk ∈ Rk

r , (22)

where Rk
r =

{
yk ∈ Rn|Hk

r yk ≤ Kk
r

}
, r = 1, . . . , Rk is a

set of polyhedral (or polytopic) regions. Moreover, the
set Pk =

⋃
r Rk

r of initial parameters yk for which prob-
lem (21) is feasible at time k is a convex set.

The important implication of Theorem 4.1 is that one
can find, simultaneously, (i) the closed-form expression
for the optimizer u∗

k to the the problem (21) and (ii)
the set of feasible initial values of the parameters. We
can freely choose whether we want to solve the problem
by considering xk or zk(·) as the free parameter. The
parametric solution can be easily obtained e.g. by using

the freely available Multi-Parametric Toolbox (Kvasnica
et al., 2004).

We can now state the main result of the paper, which is
an algorithm for synthesis of an adaptive MPC feedback
strategy which solves Problem 4.2 parametrically in a
dynamic programming fashion, i.e. by solving a series of
one-step problems backwards in time.

(1) Choose the initial terminal set Tset ⊂ X .
(2) Set the iteration counter k = 0 and set Sk = Tset.
(3) For each mode d ∈ [1, . . . , ND] of the PWA sys-

tem (9):
(a) Solve the optimization problem (21) parametri-

cally by considering zk(·) as the parameter. Store
the optimizer u∗

k(zk(·)) and the corresponding
regions Rd,k

r .
(b) Solve the optimization problem (21) parametri-

cally by considering xk as the parameter. Store
the set Pd,k of states xk, for which (21) was
feasible for the mode d.

(4) Denote the feasible set of ND problems (21) for d =
1, . . . , ND by Sk+1 =

⋃
d Pd,k.

(5) If Sk+1 = Sk, stop, the algorithm has converged.
(6) Increase k by 1 and jump back to Step 3.

At every run of Step 3a of the algorithm above, a control
law of the form (22) is obtained as a look-up table
parameterized in the information variable zk(xk, λk, d).
Moreover, since zk(·) enters the objective function of
the optimization problem (21a), the obtained feedback
policy will be optimal for any measured value of λk via
zk(xk, λk, d). By construction, the feedback law pushes
all system states one step closer to the initially chosen
terminal set for all choices of λ. The union of the sets
calculated in Step 3b is then used at the next iteration as
a new terminal set constraint.

Remark 4.2. To attain stability, Tset along with a feedback
law u∗

set active for all x ∈ Tset must be chosen such that
the terminal set is invariant. Finding such terminal set
along with the terminal controller is, however, outside of
the scope of this work.

Note that, in general for PWA systems, the sets Sk for
k > 0 will be non-convex unions of a finite number
of convex polytopes, even when a convex terminal set
Tset is used initially. In such a case one would need to
solve a series of problems (21) by employing individual
components of Sk as a terminal set in (21g)–(21h).

The iterative nature of the algorithm guarantees that once
the procedure converges, for all feasible initial conditions
there will exist a feedback law such that the terminal set
will be reached in the minimal possible number of time
steps (Grieder et al., 2005) for all admissible realizations
of the uncertain parameter vector λ in (9). Moreover, the
k∗ for which Algorithm 4 converges, defines the lowest pos-
sible value of Nmax in Problem 4.2 (Grieder et al., 2005).
The on-line implementation of the resulting feedback law
can then be performed as follows. First, the quantity zk =
(
∑

i αi(xk)Ai)xk is calculated based on the measurements
of xk and the knowledge of the corresponding values of
µi(x) entering αi as in (4). Then, in the second step, the
look-up table (22) is evaluated for the respective value of
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z to obtain the optimal control action u∗
k(zk). This is done

by selecting from the sets Si the lowest value of the index i
such that xk ∈ Si, i.e. finding the set with the lowest “step
distance” wrt. the initial terminal set. Once the index i
is known, u∗

k(zk) can be extracted from the i-th look-up
table Ri

r, cf. (22). Therefore the control law calculated by
Algorithm 4 acts as a minimum-time controller for the TS
fuzzy system (1) when implemented on-line.

5. EXAMPLE

We have applied the proposed synthesis scheme to design
a minimum-time controller for a continuously stirred tank
reactor (CSTR), where the reaction A → B takes place. By
considering the normalized conversion rate as x(1) and the
normalized mixture temperature as x(2), and the coolant
temperature as the system input u, the model of the
reactor is given by (Cao and Frank, 2000)

ẋ(1) = f1(x) +

(
1

ρ
− 1

)
x(1) (23a)

ẋ(2) = f2(x) +

(
1

ρ
− 1

)
x(2) + βu (23b)

where

f1(x) = − 1

ρ
x(1) + Da(1 − x(1))e

(
x(2)

1+x(2)/γ0

)

f2(x) = − (1/ρ + β)x(2)+

+ HDa(1 − x(1))e

(
x(2)

1+x(2)/γ0

)

γ0 =20, H = 8, β = 0.3, Da = 0.072, ρ = 0.8.

The states are subject to constraints 0 ≤ x(1) ≤ 1 and
0 ≤ x(2) ≤ 10, respectively. The control signal is bounded
by −20 ≤ u ≤ 20.

The nonlinear model (23) can be approximated (Cao and
Frank, 2000) by a Takagi-Sugeno fuzzy system with three
membership functions. Assuming the sampling time Ts =
0.1 minutes, the TS model (8) is given by

xk+1 =

(
3∑

i=1

αi(xk)Ai

)
xk + Buk (24)

where αi(xk) can be calculated from µi(xk) by (4). The
numerical values of Ai and B are given by

A1 =

(
0.866 0.006

−0.126 0.909

)
, A2 =

(
0.802 0.038

−0.627 1.162

)
,

A3 =

(
0.604 0.026

−2.193 1.065

)
, B =

(
0.0001
0.0286

)
.

Dynamics A1 and A3 capture the stable operating points of
the CSTR, while dynamics A2 corresponds to the unstable
mode of the reactor. The membership functions µ1(x),
µ2(x), and µ3(x) are given as trapezoidal functions with
centers around respective linearization points:

µ1(x) =





1 if 0 ≤ x(2) ≤ 2.5

1 − x(2) − 2.5

2.652 − 2.5
if 2.5 ≤ x(2) ≤ 2.652

0 otherwise

µ2(x) =





x(2) − 2.5

2.652 − 2.5
if 2.5 ≤ x(2) ≤ 2.652

1 if 2.65 ≤ x(2) ≤ 2.85

1 − x(2) − 2.852

3 − 2.852
if 2.852 ≤ x(2) ≤ 3

0 otherwise

µ3(x) =





1 if x(2) ≥ 3

x(2) − 2.852

3 − 2.852
if 2.852 ≤ x(2) ≤ 3

0 otherwise.

In order to synthesize the minimum-time controller for
such a TS system, we first need to convert the TS
model (24) into a corresponding PWA form (9) by using
the procedure described in Section 3. The partitioning Dd

results directly from the respective domains of individual
µi’s, i.e.

D1 :={x ∈ R2 | 0 ≤ x(2) ≤ 2.5}
D2 :={x ∈ R2 | 2.5 ≤ x(2) ≤ 2.652}
D3 :={x ∈ R2 | 2.652 ≤ x(2) ≤ 2.852} (26)

D4 :={x ∈ R2 | 2.852 ≤ x(2) ≤ 3}
D5 :={x ∈ R2 | 3 ≤ x(2) ≤ 10}.

Dynamics assigned to each element of Dd is represented
by

xk+1 =





A1xk + Buk if x(2) ∈ D1(x)

{A1, A2}xk + Bu if x(2) ∈ D2(x)

A2xk + Buk if x(2) ∈ D3(x)

{A2, A3}xk + Buk if x(2) ∈ D4(x)

A3xk + Buk if x(2) ∈ D5(x)

(27)

where {A1, A2} represents a system matrix A as a convex
combination of the vertices A1 and A2.

To perform the controller synthesis, we have implemented
Algorithm 4 using the Multi-Parametric Toolbox (Kvas-
nica et al., 2004) and YALMIP (Löfberg, 2004). The con-
trol objective was to drive the system states towards the
terminal set Tset = {x | 2.652 ≤ x(2) ≤ 2.852} in the min-
imal possible number of time steps, while minimizing the
objective function J = |uk|1 + |10(xk+1 − 2.751)|1 at each
step k. This operating range corresponds to the unstable
mode of the reactor. Our implementation of Algorithm 4
resulted in a PWA feedback law of the form (22) defined
over 34 regions in the two-dimensional z(·) space. The
proposed Algorithm 4 was compared with a standard par-
allel distributed compensation (PDC) approach of (Wang
et al., 1996). Input constraints have been incorporated into
PDC design using LMI techniques and PDC controller was
computed via YALMIP interface. For the initial condition
x0 = [0.6, 9]T , Figure 3 shows the closed-loop evolution
of system state x(2) for both controllers. While PDC
controller reacts on the initial condition conservatively,
minimum-time (MT) controller is significantly faster it
drives system states towards the chosen terminal set in
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291



a minimum-time fashion. The corresponding values of the
control actions are shown in Figure 4.
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Fig. 3. Closed-loop evolutions of the dimensionless tem-
perature.
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Fig. 4. Values of the control actions.
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Abstract: : The paper shows how to design model predictive controllers which are robust
against parametric uncertainties of the prediction models. It is illustrated that the feedback
controller can be obtained in a closed-loop form, represented by a piecewise affine (PWA)
function. Such controllers can then be easily implemented in real-time by converting the PWA
function into a look-up table. Given a prediction model which includes a-priori unknown
parameters, the procedure described in the paper shows how to construct robust time-optimal
MPC controllers which are able to utilize on-line measurements of the parameters to optimize
for performance. Closed-loop stability and constraint satisfaction is maintained for all values of
the parameters from a given range.

Keywords: Model Predictive Control, real-time control, parametric optimization

1. INTRODUCTION

PWA systems represent a powerful tool to describe the
evolution of hybrid systems (Sontag, 1981) and can be
shown to be equivalent to many other hybrid system
classes (Heemels et al., 2001) such as mixed logical dynami-
cal systems, linear complementary systems, and max-min-
plus-scaling systems and thus form a very general class
of linear hybrid systems. Moreover, PWA systems can be
used to identify or approximate generic nonlinear systems
via multiple linearizations at different operating points
(Sontag, 1981). Although hybrid systems (and in particu-
lar PWA systems) are a special class of nonlinear systems,
most of the nonlinear system and control theory does
not apply because it usually requires certain smoothness
assumptions. For the same reason we also cannot simply
use linear control theory in some approximate manner to
design controllers for PWA systems.

Model predictive control of PWA systems has garnered
increasing interest in the research community because it
allows optimal control inputs for discrete-time PWA sys-
tems to be obtained by solving mixed-integer optimization
problems on-line (Bemporad and Morari, 1999; Mayne and
Raković, 2003), or as was shown in (Baotić et al., 2003;
Borrelli et al., 2003; Kerrigan and Mayne, 2002; Borrelli,
2003), by solving off-line a number of multi-parametric
programs. By multi-parametric programming, a linear
(mpLP) or quadratic (mpQP) optimization problem is
solved off-line for a range of parameters. The associated
solution (the explicit representation of the optimal control
law) takes the form of a PWA state feedback law. In
particular, the state-space is partitioned into polyhedral

regions in which the optimal control law is given as an
affine function of the state. In the on-line implementation
of such controllers, input computation reduces to a simple
set-membership test. Even though the benefits of this pro-
cedure in terms of cheap implementation are self evident,
one major drawback of the parametric approach to MPC
is the solution itself. Once calculated off-line, the solution
is, so to say, “set in stone” and it can only be changed by
repeating the off-line calculation. This might be necessary
e.g. when the knowledge of plant model used to formulate
the underlying optimization problem is updated. This is a
frequent requirement in control of real plants, because the
precise values of some (or all) model parameters are not
known exactly and they often fluctuate in time.

This issue is usually tackled by adopting the framework
of adaptive control (Bitmead et al., 1990; Mosca, 1995;
Dostál et al., 2004). In this policy, the values of unknown
parameters are measured, estimated or identified on-line
and the process model is updated accordingly. For the
newly obtained model, a new control problem is formu-
lated and solved to take the updated knowledge into ac-
count. This repetitive parameter estimation and control
optimization is particularly suitable in classical on-line
MPC. However, it goes against the spirit of parametric
solutions to MPC problems, where the solution is calcu-
lated just once for a fixed process model. To circumvent
this problem and to keep the advantages of the off-line
MPC approach, (Baric et al., 2008) and (Besselmann et al.,
2008) proposed, for linear and LPV systems, respectively,
a method of solving a max-min control problem paramet-
rically while providing (i) robust feasibility and (ii) opti-
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mal performance in terms of minimizing a given objective
function over a fixed prediction horizon.

In this paper we first extend these ideas to PWA systems,
whose dynamics is affected by a some time-varying pa-
rameters. Parameter values are not known at the time of
the synthesis of the control law, but will become available
when the controller is evaluated on-line. The goal is to
synthesize a control policy which drives all system states
towards a given terminal set in the least possible number
of time steps, i.e. in a minimum time fashion with respect
to the system dynamics and constraints on states and
control inputs. We illustrate how this problem can be
solved off-line to obtain the feedback law in a form of a
look-up table, hence mitigating the on-line implementation
effort. As will be shown later, this boils down to a non-
convex problem. Therefore, in this article we also provide a
new methodology of synthesizing feedback laws under the
circumstances that the terminal sets are non-convex unions
of convex polytopes. Once the closed-form representation
of the control law is obtained off-line, robust feasibility and
guaranteed convergence towards a chosen terminal set for
any variation of the unknown system parameters within a
given range is provided. Moreover, since the influence of
the parameters is consider in the optimization objective,
on-line measurements of these parameters can be used to
update the control policy. Hence the proposed strategy
acts as a robust minimum-time adaptive controller, where
the control inputs are time-optimal for all values of the
parametric uncertainty. Therefore, the updated knowledge
of the process model can be taken into account by the
controller at each time step.

2. PROBLEM STATEMENT

In this work we consider discrete-time PWA systems of the
following form

xk+1 = fPWA(xk, λk, uk)

= Ad(λk)xk + Bduk + fd if xk ∈ Dd, (1)

where xk ∈ Rnx is the system state, uk ∈ Rnu is the
manipulated input, k ≥ 0 denotes the sampling instant,
and Ad(λk), Bd, fd are matrices of appropriate dimensions.
Variable d ∈ [1, . . . , nD] denotes the mode of the PWA
system, with nD being the total number of modes. The
system states and inputs are assumed to be bounded by,
respectively, xk ∈ X ⊂ Rnx and uk ∈ U ⊂ Rnu where X
and U are nonempty convex and compact sets. We assume
that the system matrices Ad(λk) depend on an unknown,
but bounded parameter vector λk ∈ Λ. Furthermore we
assume that Λ is a convex and compact set and that the
unknown parameters λk enter Ad(λk) in a linear fashion

Ad(λk) =

nλ∑

j=1

λk,jA
j
i , (2)

with
∑

j λk,j = 1 and 0 ≤ λk,j ≤ 1 for j ∈ [1, . . . , nλ] and

the total of nλ vertices A1
d, . . . , A

nλ

d being given.

If the whole state space domain is denoted by D, then the
overall PWA model is built by

⋃nD

d=1Dd regions, whereas
one local model is valid in each region. Formally Dd is a
nonempty compact set, defined in the state space, and it
is given by a set of linear inequalities of the form

Dd =
{
xk | Dx

dxk ≤ D0
d

}
(3)

where Dx
d and D0

d are matrices of suitable dimensions
specifying the borders of the d-th region Dd.

For the PWA system (1) this paper shows how to solve the
following problem:

Problem 2.1. For the PWA system (1), find a feedback
policy of the form

u = g(x, λ), (4)

which takes into account measurements (or estimates) of
the current state x and measurements (or estimates) of the
parameter vector λ, and drives all system states into Tset
in the least possible number of steps for all possible values
of the parameter vector λ ∈ Λ while respecting input and
state constraints.

Problem 2.1 is commonly referred to as a minimum-
time problem (Keerthi and Gilbert, 1987; Blanchini, 1992;
Mayne and Schroeder, 1997; Grieder et al., 2005; Raković
et al., 2004). As shown e.g. in (Grieder et al., 2005), if the
PWA system (1) is not subject to the parametric uncer-
tainty (2) (i.e. for nλ = 1), the minimum-time problem can
be solved using dynamic programming (DP), i.e. by solving
1-step problems backwards in time. At each iteration of the
DP procedure the feedback law u∗

k(xk) minimizing a given
performance measure J(xk, uk) is obtained, explicitly, by
solving a multi-parametric program. The feedback is such
that for all xk ∈ Sk the one-step predicate xk+1 is pushed
“one step closer” to the given initial terminal set, i.e.
fPWA(xk, u∗

k(xk)) ∈ Sk−1.

There are two reasons why these standard approaches
cannot be directly applied to solve Problem 2.1: (i) λk

and xk are optimized parameters, thus the PWA dynamics
is nonlinear due to their bi-product in (1), and (ii) the
resulting variations of the parameter vector λk in the
set Λ. This is equivalent to solution of a non-convex
minimum-time problem for a PWA system with state-
dependent disturbances. Both issues make Problem 2.1 far
from trivial.

3. SYNTHESIS OF AN ADAPTIVE MINIMUM-TIME
CONTROLLER

In this section we show how to solve Problem 2.1 para-
metrically, i.e. we obtain an explicit representation of the
function g(xk, λk) for all admissible values of xk and λk.
Solving the problem faces following challenges:

C1: Deal with the fact that the PWA dynamics (1) is bi-
linear in xk and λk.

C2: Give a procedure for computing robust one-step reach-
able sets for PWA systems with parametric uncertain-
ties, i.e. find

Pre(Sk) ={xk | ∃uk ∈ U , s.t. (5)

fPWA(xk, λk, uk) ∈ Sk, ∀λk ∈ Λ}.
C3: Find an explicit representation of the feedback law (4)

in such a way that measurements of λk are taken into
account when minimizing

J(xk, λk, uk) = ‖Qxxk+1‖1 + ‖Quuk‖1, (6)

allowing (4) to adapt the control action to the cur-
rently available value of λk. Here, xk+1 = fPWA(xk, λk, uk),
cf. (1), ‖·‖1 denotes a standard 1-norm of a vector and
Qx, Qu are weighting matrices of suitable dimensions.
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Challenge C1 can be attacked by observing that (1) is
linear in the joint product Ad(λk)xk for a fixed mode d.
Following the ideas of (Baric et al., 2008) and (Besselmann
et al., 2008) we propose to introduce an auxiliary informa-
tion variable zk to convert the bi-linear PWA form into a
linear one:

xk+1 = fPWA(zk, uk)

= zk + Bduk + fd. (7)

The information variable zk given by

zk(xk, λk, d) = Ad(λk)xk (8)

captures both the knowledge of the mode d active at the
time instance k as well as the state contribution Ad(λk)xk

for the actually measured value of the parameter vector
λk.

Remark 3.1. Important to notice is that the augmented
PWA system (7) is equivalent to the original form of (1),
for one time step, if the state xk, the value of the parameter
vector λk, and the active mode d are known at time k such
that zk(·) can be evaluated per (8). This is not a restrictive
requirement, but a direct consequence of the adaptive
control strategy. As for any other state-feedback policy,
the current state xk has to be measured (or estimated),
and the values of the parameters λk will either be directly
measured, or obtained e.g. using recursive identification
techniques at each discrete time instance k. For a given
xk, the active mode d is uniquely determined by (3).

To illustrate solution to C2, we denote by Sk =
⋃nS

i=1 Sk,i

the (possibly non-convex) union of nS convex polytopes
Sk,i. Then we get the following result.

Lemma 3.2. For the PWA system (1) the set of states xk

which can be steered into Sk by some uk ∈ U in one time
step for all possible values of λk ∈ Λ is given as a (possibly
non-convex) union of convex polytopes

Pre(Sk) =

nS⋃

i=1

nD⋃

d=1

projx(Zk,i,d) (9)

with

Zk,i,d =
{

[ xk
uk

]
∣∣∣ uk ∈ U , xk ∈ Dd,

Aj
dxk + Bduk + fd ∈ Sk,i,

∀j ∈ [1, . . . , nλ]
}

(10)

where projx(Zk,i,d) denotes the orthogonal projection of
the set Zk,i,d onto x.

Algorithm 3.3. Notice that Aj
dxk + Bduk + fd ∈ Sk,i ∀j ∈

[1, . . . , nλ] can be written in an expanded form as

A1
dx + Bdu + fd ∈ Sk,i,

...

Anλ

d x + Bdu + fd ∈ Sk,i

which enforces that fPWA(xk, λk, uk) ∈ Sk,i holds for all
λk ∈ Λ. As Sk,i, U , and Dd are assumed to be convex,
the set Zk,i,d will be a convex polytope and its projection
therefore also will be a polytope (Ziegler, 1995). Hence
Pre(Sk) will be a collection of convex polytopes.

Optimal control action uk minimizing the cost (6) in C3
can be found by solving the following horizon-1 non-convex
optimization problem:

min
uk

J(xk, λk, uk) (11a)

s.t. uk ∈ U (11b)

xk ∈ D (11c)

xk+1 ∈ Sk (11d)

xk+1 = fPWA(zk(xk, λx, d), uk) (11e)

Remark 3.4. By Lemma 3.2 and Remark 3.1 the set of xk

for which (11b)–(11e) is feasible is given by Pre(Sk). By
considering the augmented PWA model (7) in (11e), the
influence of the measured parameters λk on J(·) is taken
into account when optimizing for the values of uk.

Non-convexity of (11) stems from two reasons. First, the
PWA state-update equation in (11e) is nonlinear due to the
presence of “IF-THEN” rules in (1). Secondly, Sk in (11d)
is, in general, given as a non-convex union of convex
polytopes, i.e. Sk =

⋃
i Sk,i. However, if the performance

measure J(·) in (11) is as in (6), and for a fixed d and fixed
i, problem (11) boils down to a convex linear programming
(LP) problem in variables uk and zk. If zk is considered
as a parameter, feedback law (4) can be obtained, for all
admissible values of zk, by solving (11) as an mpLP:

Theorem 3.5. ((Borrelli, 2003)). The optimal solution to (11)
for all admissible values of zk(·) is, for a fixed i and d,
a piecewise affine state-feedback control law and a PWA
representation of the optimal cost in the form

u∗
k,i,d(zk(·)) = F r

k,i,dzk(·) + Gr
k,i,d if zk(·) ∈ Rr

k,i,d, (12)

J∗
k,i,d(zk(·)) = Lr

k,i,dzk(·) + M r
k,i,d if zk(·) ∈ Rr

k,i,d, (13)

whereRr
k,i,d =

{
zk(·) | Hr

k,i,dzk(·) ≤ Kr
k,i,d

}
, r = 1, . . . , Rk,i,d

is a set of polyhedral (or polytopic) regions. Moreover, the
set Pk,i,d =

⋃
rRr

k,i,d of all zk for which (11) is feasible at
time k is a convex set.

Theorem 3.6. ((Borrelli, 2003)). If (11) is solved consec-
utively ∀i ∈ [1, . . . , nS ], ∀d ∈ [1, . . . , nD], an explicit
representation of the optimal feedback law u∗

k(zk(·)) given
by

u∗
k(zk(·)) = argmin

i,d
J∗

k,i,d(zk(·)) (14)

is also a PWA function of zk(·), i.e.

u∗
k(zk(·)) = F r

k zk(·) + Gr
k if zk(·) ∈ Rr

k (15)

with Rr
k = {zk(·) | Hr

kzk(·) ≤ Kr
k}.

Theorem 3.6 suggests that an explicit representation of
u∗

k(zk(·)) solving C3 can be found by solving nS · nD

mpLP’s and subsequently by taking the minimum among
the same number of PWA optimal costs J∗

k,i,d.

Remark 3.7. Multi-parametric linear programs can be
solved e.g. using the freely available Multi-Parametric
Toolbox (MPT) (Kvasnica et al., 2004), which also pro-
vides calculation of the minimum among several PWA cost
functions in (14).

We can now state the main result of the paper, which
is a procedure for designing an adaptive controller which
will utilize the measurements of the parameter vector λ
to update the control policy. The problem is solved para-
metrically, which means that the whole control synthesis
can be performed off-line. On-line implementation of such
a controller will reduce to a simple set-membership test.
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The computation of the controller is carried out using
Algorithm 1.

Algorithm 1 The minimum-time adaptive algorithm

INPUT: PWA system (1), weighting matrices Qx, Qu

of (6), initial terminal set Tset.
OUTPUT: Integer k∗, sets Sk, PWA feedback laws

u∗
k(zk(·)).

1: k ← 0, Sk ← Tset.
2: repeat
3: Obtain u∗

k(zk(·)) in the form of (15) by solving (11)
as nS · nD mpLPs.

4: Compute Pre(Sk) by Lemma 3.2.
5: Sk+1 ← Pre(Sk).
6: k ← k + 1.
7: until Sk+1 6= Sk

8: k∗ ← k.

Theorem 3.8. The feedback laws u∗
k(zk(·)), k = [0, . . . , k∗]

calculated by Algorithm 1 are such that the PWA sys-
tem (1) can be robustly pushed to Tset ∀λ ∈ Λ in, at most,
k∗ steps for any x ∈ Pre(Sk∗). Moreover, measurements of
λ are taken into account by u∗

k(zk(·)) to further optimize
for performance.

Algorithm 3.9. At iteration k for any x0 ∈ Sk the feedback
law obtained in Step 3 is such that the one-step predicate
x1 = fPWA(x0, λ0, u

∗
k(x0)) is pushed into Sk−1 in one time

step ∀λ0 ∈ Λ by construction (cf. (11d)). Robustness is en-
sured by taking Sk = Pre(Sk−1) computed by Lemma 3.2.
The iterative nature of the algorithm guarantees that for
any x1 ∈ Sk−1 we have x2 = fPWA(x1, λ1, u

∗
k−1(x1)) ∈

Sk−2, ∀λ1 ∈ Λ again by Step 3. By consecutively applying
the feedback laws u∗

k−2(x2), u
∗
k−3(x3), . . . , u

∗
0(xk) we there-

fore get xk+1 ∈ S0 (note that S0 = Tset by Step 1). Hence
all states of the PWA system (1) are pushed towards Tset
in, at most, k∗ steps due to the stopping criterion in Step 7.
By employing (8) in the performance objective (11a) we
have that the knowledge of λk is taken into account when
optimizing for u∗

k at each iteration.

Remark 3.10. To attain stability, Tset along with a feed-
back law u∗

set active for all x ∈ Tset must be chosen such
that the terminal set is invariant, i.e. xk ∈ Tset ⇒ xk+j ∈
Tset, ∀j > 0. Finding such terminal set along with the
terminal controller is however, outside of the scope of this
work.

Remark 3.11. The minimal number of steps k∗ in which
all system states can be steered into Tset is automatically
identified in Step 8 upon convergence of Algorithm 1. This
quantity is governed by feasibility of problem (11).

Remark 3.12. It should be noted that, at each iteration k,
multiple control actions uk might exist such that (11b)–
(11e) hold. In such a case the performance index (11a) is
used to select a unique solution in (14).

Remark 3.13. Complexity of the look-up table can be
further reduced at each iteration k of Algorithm 1 in Step 3
by merging together regions whose union is convex and
they share the same control law, see e.g. (Geyer et al.,
2004). Efficient algorithms to perform such a reduction
are included in (Kvasnica et al., 2004).

In general, for PWA systems the sets Sk would overlap,
i.e. there are multiple k’s for which x ∈ Sk. Therefore,
the consecutive application of different feedback laws at

different steps must be performed such that a proper value
of the index k is chosen for each x. Such a procedure is
captured by Algorithm 2, which shows how the minimum-
time adaptive controller is implemented on-line.

Algorithm 2 On-line implementation

INPUT: Measurements of the current state x and the
parameter vector λ, sets Pre(Sk), feedback laws
u∗

k(zk(·)), ∀k = [0, . . . , k∗].
OUTPUT: Optimal value of the control action u∗.
1: Find the minimal value of the index j for which x ∈

Pre(Sj).
2: Calculate z(·) from (8) by utilizing the knowledge of λ

and x.
3: From the j-th feedback law of the form of (15) find

the region index r for which z(·) ∈ Rr
j .

4: Calculate optimal control action by u∗ = F r
j z(·)+ Gr

j .

Theorem 3.14. The minimum-time adaptive controller cal-
culated by Algorithm 1 and applied to a PWA system (1)
in a receding horizon control fashion according to Algo-
rithm 2 guarantees that all states are pushed towards Tset
in the minimal possible number steps.

Algorithm 3.15. Assume the initial state x is contained in
the set Pre(Sj) from which it takes j steps to reach Tset
according to Theorem 3.8. The control law identified by
Algorithm 2 will drive the states into the set Pre(Sj−1)
in one time step. Therefore, the states will enter Tset in j
steps when Algorithm 2 called repeatedly at each sampling
instance.

Therefore, the control law calculated by Algorithm 1 acts
as an adaptive controller when implemented on-line and
the measurements of λk can be used to update the process
model. The controller is calculated off-line in a form of a
look-up table, reducing the on-line implementation effort
to a sequence of simple set-membership tests.

4. EXAMPLE

In this section we illustrate the application of Algorithm 1
to a modified version of the periodic PWA system of (Be-
mporad and Morari, 1999). The dynamics of such a system
is given by

xk+1 =

{
A1xk + Buk IF x

(1)
k < 0

A2xk + Buk IF x
(1)
k ≥ 0,

(16)

where x
(1)
k denotes the first coordinate of the state vector

xk. State-update matrices for each of the two modes of the
PWA system are given by

Ai = w

[
cos(αi) − sin(αi)
sin(αi) cos(αi)

]
, B =

[
0
1

]
, (17)

with α1 = −π/3 and α2 = π/3, respectively. We assume
that the value of the parameter w is unknown at the time
of the synthesis of the control law, but it is bounded by
0.7 ≤ w ≤ 1. The vertices A1

i , A2
i in (2) can be obtained

by evaluating Ai from (17) for boundary values of this
interval.

We have then implemented Algorithm 1 by employing
the Multi-Parametric Toolbox (Kvasnica et al., 2004) to
calculate projections in Lemma 3.2 and to solve (11)
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Fig. 1. Regions Rk of the PWA feedback laws u∗
k(z(·)). By

the same colors are depicted regions from the same
iteration k. More reddish regions correspond to lower
values of k.

parametrically. YALMIP (Löfberg, 2004) was used to
formulate (11) in a user-friendly fashion. Problem 2.1 was
then solved with X = {x | − 5 ≤ x ≤ 5}, U = {u | −
1 ≤ u ≤ 1}, and Tset = {x | − 0.5 ≤ x ≤ 0.5}.
Algorithm 1 has converged at iteration 8 after 235 seconds,
generating 5 PWA feedback laws of the form (14), which
are parameterized in the information variable z(x, λ, d).
Regions over which these control laws are defined are
depicted in Figure 1.

In the spirit of adaptive control we have investigated the
behavior of the proposed minimum-time scheme when the
value of the uncertainty w fluctuates over time. To do that
we have generated a random sequence of wk satisfying
0.7 ≤ wk ≤ 1 and subsequently performed closed-loop
simulations starting from the initial state x0 = [0, −
5]T . Profile of the uncertainty, together with the optimal
control moves and the closed-loop evolution of system
states are depicted, respectively, in Figures 2, 4, and 3. As
can be seen from the plots, the minimum-time controllers
adapts itself to the current measurements of the parameter
w and drives all system states towards the terminal set
despite quite substantial variations of the value of the
uncertainty.

5. CONCLUSIONS

The paper showed how to synthesize robust adaptive
minimum-time controllers for the class of PWA systems
affected by parametric uncertainties. The control policy is
synthesized in such a way that all system states are pushed
towards a prescribed terminal set in the least possible
number of time steps for all admissible values of the
uncertainty. The controller is calculated using parametric
optimization which results in a feedback law in a form
of a look-up table, parameterized in the influence of
the uncertain parameters. On-line measurements of the
uncertainty can thus be used to further optimize for
performance when the controller is implemented in the
receding horizon fashion.
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M. Baotić, F. J. Christophersen, and M. Morari. A
new Algorithm for Constrained Finite Time Optimal
Control of Hybrid Systems with a Linear Performance
Index. In European Control Conference, Cambridge,
UK, September 2003.

M. Baric, Sasa V. Rakovic, Th. Besselmann, and
M. Morari. Max-Min Optimal Control of Constrained
Discrete-Time Systems. In IFAC World Congress, July
2008.

A. Bemporad and M. Morari. Control of systems integrat-
ing logic, dynamics, and constraints. Automatica, 35(3):
407–427, March 1999.
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Separation Functions used in Simplification
of Explicit MPC Feedback Laws
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Abstract:
In this paper we focus on the problem of memory storage reduction. We consider explicit MPC
feedback laws for linear systems. A controller defined by a continuous Picewise Affine (PWA)
function is simplified using separation function. In case that state lies within a saturated region,
optimal control value is given by the sign of the separator. Therefore, it is enough to store and
evaluate only the unconstrained regions and separator. Construction efficiency of such separators
is provided on a large number of problems, even on very complex explicit MPC solutions.

Keywords: model predictive control, constrained control, parametric optimization

1. INTRODUCTION

Real-time implementation of MPC in the Receding Hori-
zon fashion (RHMPC) boils down to repetitively solving
a given optimization problem for a given value of the
initial condition x. Alternatively, as shown in Bemporad
et al. (2002), one can precompute the explicit RHMPC
optimizer u∗ = κ(x) as a PWA function which is defined
over a set of polytopic regions. Computing u∗ on-line
then reduces to a mere function evaluation. However, the
number of regions of κ(x), which is problem-dependent,
tends to be large, easily exceeding the storage capacity
of a selected implementation platform. Therefore it is
important to keep the number of regions as low as possible.

One approach is to construct a sub-optimal replacement
function κ̃(x) ≈ κ(x) of substantially lower complexity,
see e.g. Bemporad and Filippi (2003); Johansen and Gran-
charova (2003); Cychowski and O’Mahony (2005); Scibilia
et al. (2009). Another line of research is concerned with
finding the replacement κ̃(x) which is simpler than the
original function, but maintains the equivalence κ(x) =
κ̃(x) for all points x of interest. In Geyer et al. (2008)
regions are merged if they share the same expression for
the control law. If the PWA function κ(x) is convex (or if
there exists a convex function η(x), defined over the same
regions), then the method of Baotic et al. (2008) can be
used to reduce the required memory storage. If κ(x) is non-
convex, but continuous, its lattice representation (Wen
et al., 2009) can be built, again decreasing the memory
consumption.

In our previous work (Kvasnica and Fikar, 2010), the
performance-lossless replacement κ̃(x) was constructed by
only considering the regions of κ(x) where the control
action is not saturated. This can considerably reduce the
complexity as the number of unsaturated regions is usually
significantly smaller compared to the total number of
underlying polytopes over which κ(x) is defined.

1 Corresponding author, e-mail: michal.kvasnica@stuba.sk

In this paper we improve our previous method and propose
to use separation functions. At first, we divide the regions
of κ(x) into three categories: unsaturated regions RIunsat

where umin < κ(x) < umax, regions RImax where κ(x) =
umax, and regions RImin where κ(x) = umin. We then
search for a function p(x) which separates the sets RImax

and RImin . When found, the on-line implementation of
u∗ = κ(x) can be substantially simplified by only requiring
the storage of unsaturated regions. If x /∈ RIunsat for a
given x, the function p(x) is evaluated, and its sign then
governs whether u∗ = umax or u∗ = umin. The problem
then becomes to find a simple separator p(x), such that it
is easy to evaluate on-line and requires small amount of
memory for its storage. Two choices are proposed: p(x) is
either a continuous multivariate polynomial, or a (possibly
discontinuous) PWA function encoded as a binary tree.
The challenge of finding p(x) stems from the fact that
the sets to be separated are in general non-convex. We
show how to solve such a separation problem by either
solving linear or mixed-integer linear problems. In the
case of polynomial separation, additional certification is
needed, which can be implemented by finding the roots of
a given polynomial. Existence of the separator p(x) then
guarantees that the replacement feedback κ̃(x) will always
consists of the unsaturated regions of κ(x) only. Such a
direct guarantee cannot be given for the clipping-based
method of Kvasnica and Fikar (2010). A large case study
is provided to confirm viability of the approach.

2. DEFINITIONS

A finite set of n elements I := {I1, . . . , In} will be denoted
as {Ii}n

i=1 and its cardinality by |I|. A polytope is the
bounded convex intersection of c closed affine half-spaces,
i.e. R := {x ∈ Rnx | Fx ≤ g}. We call the collection
of polytopes {Ri}R

i=1 the partition of a polytope R if

R =
⋃R

i=1 Ri, and int (Ri) ∩ int (Rj) = ∅ for all i 6= j.
Each polytope Ri will be referred to as the region of the
partition. Function κ(x) : Rnx 7→ Rnz with x ∈ R ⊂
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Rnx , R being a polytope, is called piecewise affine over
polytopes if {Ri}R

i=1 is the partition of R and

κ(x) := Kix + Li ∀x ∈ Ri, (1)

with Ki ∈ Rnz×nx , Li ∈ Rnz , and i = 1, . . . , R. PWA
function κ(x) is continuous if Kix + Li = Kjx + Lj holds
∀x ∈ Ri ∩ Rj , i 6= j.

3. EXPLICIT MODEL PREDICTIVE CONTROL

We consider the class of discrete-time, stabilizable linear
time-invariant systems

xk+1 = Axk + Buk, (2)

which are subject to polytopic constraints x ∈ X ⊂ Rnx

and u ∈ U ⊂ Rnu . Assume the following constrained finite-
time optimal control problem:

min
UN

N−1∑

k=0

xT
k+1Qxxk+1 + uT

k Quuk (3a)

s.t. xk+1 = Axk + Buk, xk ∈ X , uk ∈ U , (3b)

where xk and uk denote, respectively, state and input pre-
dictions over a finite horizon N , given the initial condition
x0. It is assumed that Qx = QT

x � 0, Qu = QT
u ≻ 0 in (3a),

i.e. that (3) is a strictly convex QP. The receding horizon
MPC feedback then becomes u∗(x0) = [1 0 · · · 0]U∗

N ,
where the optimal vector U∗

N := [uT
0 , . . . , uT

N−1]
T can be

found by solving (3) as a QP for a given value of the initial
condition x0. For problems of modest size (typically for
nx < 5), it is also possible to characterize the optimal
feedback u∗(x0) explicitly as a PWA function of x0 (Bem-
porad et al., 2002) by solving (3) as a parametric quadratic
program (pQP).

Theorem 3.1. (Bemporad et al. (2002)). The RHMPC
feedback u∗(x0) for problem (3) is given by u∗(x0) =
κ(x0) where: (i) the set of feasible initial conditions Ω :=
{x0 | ∃u0, . . . , uN−1 s.t. (3b) hold} is a polytope; (ii)
κ(x0) : Ω 7→ U is a continuous PWA function defined over
R regions Ri, i = 1, . . . , R; (iii) Ri are full-dimensional
polytopes Ri = {x | Fix ≤ gi}; and (iv) {Ri}R

i=1 is a
partition of Ω.

In the next section we show how to replace the feedback
law u∗(x0) = κ(x0) by a different function κ̃(x0) which
requires significantly less memory for its implementation
in real-time arrangement and maintains the equivalence
κ̃(x0) ≡ κ(x0) ∀x ∈ Ω. The procedure is applicable to
generic PWA functions κ(x) as long as they are continuous
and all their regions Ri are full-dimensional polytopes.
The scope of this work therefore extends to cases where 1-
or ∞-norms are used in (3a), or when tracking of a non-
zero reference is achieved by a suitable augmentation of
the state vector.

4. COMPLEXITY REDUCTION VIA SEPARATION

By Theorem 3.1 we have that κ(x) is a continuous PWA
function defined over convex regions Ri, union of which is
the convex polytope Ω. Denote by κ and κ the maximal
and minimal values which κ(x) attains over its domain Ω

κi = max{Kix + Li | x ∈ Ri}, i = 1, . . . , R, (4a)

κi = min{Kix + Li | x ∈ Ri}, i = 1, . . . , R, (4b)

with κ = max{κ1, . . . , κR}, κ = min{κ1, . . . , κR}. Then
the regions of κ(x) can be classified as follows.

(1) If Ki = 0 and Li = κ, then region Ri is saturated at
the maximum,

(2) if Ki = 0 and Li = κ, then region Ri is saturated at
the minimum,

(3) otherwise the i-th region is unsaturated.

Denote by Imax and Imin the index lists of regions sat-
urated at the maximum and minimum, respectively, and
by Iunsat the index list of unsaturated regions. With this
classification, the RHMPC feedback κ(x) can be written
as

κ(x) =





Kix + Li if x ∈ RIunsat ,

κ if x ∈ RImax ,

κ if x ∈ RImin .

(5)

Evaluation of κ(x) for any x ∈ Ω is therefore a two-stage
process. First, the index r of region Rr which contains x
needs to be identified. Then, the function value of κ(x) is
either computed by Krx + Lr if r ∈ Iunsat, or κ(x) = κ
(κ(x) = κ) if r ∈ Imax (r ∈ Imin). Identification of
the index r can either be done by searching through all
regions Ri, i = 1, . . . , R sequentially, or by traversing a
corresponding binary search tree (Tøndel et al., 2003). In
either case, the required memory storage is proportional
to the total number of regions R.

If the number of saturated regions is non-zero, a simpler
representation of κ(x) can in fact be obtained. Notice
that, since the regions Ri are non-overlapping due to
Theorem 3.1, for any x ∈ Ω, x /∈ RIunsat , κ(x) can only
take two possible values: either κ(x) = κ, or κ(x) = κ. This
fact can be exploited to derive a new PWA function κ̃(x)
which maintains the equivalence κ̃(x) = κ(x) for all x ∈ Ω,
and requires less memory for its description compared to
the memory footprint of κ(x).

Proposition 4.1. Let a function p(x) : Rnx 7→ R which
satisfies p(x) > 0 for all x ∈ RImax and p(x) < 0 for all
x ∈ RImin be given. Define

κ̃(x) =





Kix + Li if x ∈ RIunsat ,

κ if p(x) > 0,

κ if p(x) < 0.

(6)

Then, for all x ∈ Ω, κ̃(x) = κ(x).

Proof. Follows directly from (5) and from the definition
of p(x).

Given p(x), u∗ = κ(x) can be evaluated by only looking
at the unsaturated regions RIunsat . If x ∈ Rr, r ∈ Iunsat,
then u∗ = Krx+Lr. Otherwise, based on the sign of p(x),
one either takes u∗ = κ or u∗ = κ.

If κ(x) is a continuous PWA function, then a possibly
discontinuous separating function p(x) always exists. Un-
der continuity, the convex regions Rj and Rk cannot be
adjacent for any j ∈ Imax, k ∈ Imin, and therefore they can
always be separated. As will be evidenced later, a typical
explicit RHMPC feedback laws κ(x) contains a signifi-
cantly smaller number of unsaturated regions as compared
to the number of saturated ones, i.e. |Iunsat| ≪ |Imax| +
|Imin|. Therefore κ̃(x) will require significantly less mem-
ory than κ(x), and will be faster to evaluate too, if p(x)
is a “simple” separator of the two sets RImax and RImin.
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Various types of p(x) can be considered, either continuous
(e.g. linear or polynomial), or discontinuous (e.g. piecewise
linear or piecewise polynomial). In this work we have opted
for the polynomial type of p(x) and the problem which we
aim at solving is formally stated as follows.

Problem 4.2. Given a RHMPC feedback law u∗ = κ(x)
with κ(x) as in (5), construct the replacement function (6)
by finding the multivariate polynomial

p(x) :=
∑

i1+···+in≤δ

αi1,...,iδ
xi1

1 · · ·xin
n , (7)

of minimum degree δmin such that p(x) strictly separates
the sets of regions RImax and RImin, i.e. p(x) > 0 ∀x ∈
RImax and p(x) < 0 ∀x ∈ RImin.

Solving Problem 4.2 is, however, nontrivial, since the
unions of polytopes, i.e. RImax = {x | x ∈ ∪iRi, i ∈ Imax}
and RImin = {x | x ∈ ∪jRj , j ∈ Imin}, can be non-convex,
in general. Even deciding whether they are convex or not
is hard (Bemporad et al., 2001).

4.1 Polynomial separation

Given are the (non-convex) sets RImax and RImin , each of
which consists of a finite number of polytopes Rk. Denote
by Vk the vertices of Rk and fix some integer δ ≥ 1
in (7). Then the necessary condition for the existence of a
polynomial p(x) which strictly separates RImax and RImin

is that the following optimization problem is feasible:

ǫ∗ = max
ǫ,αi

ǫ (8a)

s.t. p(vi) ≥ ǫ, ∀vi ∈ VImax , (8b)

p(vj) ≤ −ǫ, ∀vj ∈ VImin. (8c)

ǫ ≥ 0. (8d)

The optimal value ǫ∗ then denotes the maximal separation
gap between the two sets of points VImax and VImin .
Important to notice is that (8) is a linear program (LP)
since, for some fixed argument x = vk, vk ∈ Vk, p(x)
in (8b)–(8c) are linear functions of the coefficients αi. If
the LP (8) is infeasible, then no polynomial separator p(x)
of the form of (7) exists for a given degree δ.

If δ = 1 in (8) then having ǫ∗ > 0 is also sufficient for the
linear function p(x) := α0 + α1x to strictly separate the
sets RImax and RImin (Boyd and Vandenberghe, 2004).
Consider therefore δ > 1. If (8) is feasible with ǫ∗ > 0,
then one of the two possible scenarios can occur. In an
ideal case, solving for p(x) from (8) by only considering
separation of VImax and VImin will also provide a separator
for the sets RImax and RImin , as shown in Fig. 1(a). In
a more general case, though, strict separation of vertices
is not sufficient for p(x) to separate all points from the
associated sets, cf. Fig 1(b).

An additional certification step therefore has to be per-
formed. At this point we remind that all regions of RImax

and RImin are polytopes described by Ri = {x | Fix ≤ gi}.
Consider the k-th facet of Ri, i.e. {x | fi,kx − gi,k = 0}
where fi,k and gi,k are the k-th rows of the respective
matrices Fi and gi. Denote by x̃i,k all (or some) solutions
to the polynomial equation p(x) = fi,kx − gi,k on domain
x ∈ Ri:

x̃i,k = {x | p(x) − fi,kx + gi,k = 0, x ∈ Ri}. (9)

RImax

RImin

p(x)

(a) Strict separation
of vertices can some-
times imply strict
separation of the as-
sociated sets.

RImax

RImin

p(x)

x̃1

x̃2

(b) In general,
separation of VImax

and VImin
does not

imply separation of
RImax from RImin

.

RImax

RImin

p(x)

(c) Adding offend-
ers x̃i to VImax and
resolving (8) leads
to a new separating
polynomial p(x).

Fig. 1. Sets RImax and RImin , vertices VImax (circles) and
VImin (squares), polynomial separator p(x).

Clearly, if x̃i,k = ∅ ∀i ∈ Imax ∪ Imin and ∀k, then p(x)
as a solution to (8) strictly separates RImax and RImin

(cf. Figure 1(a)). On the other hand, the situation in
Figure 1(b) corresponds to the case where there exist some
points x̃i,k for which the polynomial p(x) intersects the k-
th facet of the i-th region, i.e. when x̃i,k 6= ∅ for some i
and k. In such a case, the existence of any such point x̃i,k

provides a certificate that p(x) does not separate RImax

from RImin .

When at least one offending point x̃i,k exists, it can be
added to the corresponding set of vertices in (8b)–(8c). I.e.,
if x̃i,k 6= ∅ for some i ∈ Imax, then VImax = VImax ∪ x̃i,k.
Otherwise, if i ∈ Imin, then VImin = VImin ∪ x̃i,k. Resolving
the LP (8) with the updated list of vertices will then give a
new polynomial p(x) for which the certification is repeated,
cf. Figure 1(c). If more offenders are found, they are
added to the list of vertices and the procedure is repeated.
Otherwise, an empty solution to (9) provides a certificate
that p(x) strictly separates RImax from RImin, whereupon
the procedure terminates. The discussed mechanism can
be formally stated as Algorithm 1, reported next.

Algorithm 1 Construction of a polynomial separator p(x)

INPUT: Sets RImax and RImin , polynomial degree δ.
OUTPUT: Separating polynomial p(x) as in (7).
1: Get the lists of vertices VImax and VImin.
2: repeat
3: Solve the LP (8) and obtain coefficients αi.
4: if ǫ∗ > 0 then
5: Compute the list of offending points x̃ from (9).
6: Insert x̃ to VImax or VImin .
7: else
8: No strict separator p(x) of degree δ exists, abort.
9: end if

10: until x̃ 6= ∅.
Remark 4.3. Vertex enumeration in Step 1 of Algorithm 1
is considered a hard problem in general. However, for
the type of small-dimensional problems considered here,
enumerating V does not pose any significant technical
difficulty and the vertices can be easily computed e.g. by
CDD (Fukuda, 1997) in a matter of seconds.

Remark 4.4. There is no theoretical guarantee that the
iterations between Steps 2–10 will terminate in finite time.
However, for more than 400 random problems reported in
Section 5.2, the number of iterations newer exceeded 4.

Remark 4.5. The list of offending points x̃ in Step 5 can
be obtained by solving (9) in several ways. One option
is to compute the real roots of the polynomial p(x) −
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fi,kx + gi,k = 0 numerically e.g. by using the package
of Zeng (2004). Since such a method does not allow to
restrict the offenders to a particular domain, the roots
which violate x̃i,k ∈ Ri need to be excluded. Another
option is to consider (9) as a feasibility problem with
a nonlinear constraint. Nonlinear optimization routines,
such as fmincon of MATLAB, can then be used to find
at least one such offender for each region Ri, provided it
exists.

Solving Problem 4.2 involves finding a strict separator p(x)
of the minimum degree δmin. This can be achieved e.g. by
using bisection, i.e. by running Algorithm 1 multiple times
for various values of δ until a feasible solution is obtained
and δ is minimized.

4.2 Separation via binary trees

An another alternative is to separate the sets RImax and
RImin by a (possibly discontinuous) PWA function p(x),
as shown in different context by Fuchs et al. (2010). There
the authors search for a separator p(x) represented as a
binary search tree. Each node k of the tree represents one
linear separator of the form pk(x) := αk,1x + αk,0. The
task then becomes to find the coefficients such that pk(x)
correctly separates as many elements of RImax and RImin

as possible. The misclassified elements are then treated
in a recursive fashion while building the tree. The search
for pk(x) is then formulated and solved as a mixed-integer
linear program

min
∣∣∣
∑

Ri −
∑

Lj

∣∣∣ +
∑

|Ri + Lj − 1| (10a)

s.t. Ri = 1 ⇔ {pk(x) ≥ ǫ ∀x ∈ Ri, i ∈ Imax}, (10b)

Lj = 1 ⇔ {pk(x) ≤ −ǫ ∀x ∈ Rj , j ∈ Imin},(10c)

where ǫ > 0 is a given minimal separation gap introduced
to avoid the trivial solution αk,1 = αk,0 = 0. Binary vari-
ables Ri (Lj) denote whether or not the corresponding re-
gion of RImax (RImin) is correctly classified by pk(x), while
minimizing the number of incorrectly separated regions
by (10a). The logic equivalence rules in (10b)–(10c) can be
cast as mixed-integer inequalities. The key advantage over
the polynomial separation method discussed previously
stems from the fact that, by using duality theory, the
classification does not require enumerating the vertices of
the corresponding regions. The technical details can be
found in Fuchs et al. (2010).

Moreover, since a linear separator is sought in each node,
no a-posteriori certification step is necessary and hence
there is a theoretical guarantee of a finite-time conver-
gence of the tree-building procedure. The crucial downside,
however, is that a total of |Imax| + |Imin| binaries needs
to be introduced. If the number exceeds ∼ 700 (which is
considered a small case by our standards), the size of the
MILP (10) becomes prohibitive to be solved even using
state-of-the-art solvers, such as CPLEX.

4.3 Multi-input case

So far we have considered replacing the RHMPC feedback
law κ(x) by a different function κ̃(x) of the form of (6),
which consists of the unsaturated regions of κ(x) and the

separator p(x). If κ(x) : Rnx 7→ Rnu is such that nu > 1
in (2), then one can proceed by decomposing κ(x) into
individual PWA functions κj(x) := ki,jx + li,j if x ∈ Ri,
where ki,j , li,j are the j-th rows of Ki and Li, respectively.
Then a set of j = 1, . . . , nu polynomial separators pj(x)
can then be obtained by running Algorithm 1 nu times
for different polytopic sets RImax,j and RImin,j . Here, the
index sets Imax,j and Imin,j are obtained based on the
scalarized version of (4), i.e.

κi,j = max{ki,jx + li,j | x ∈ Ri}, i = 1, . . . , R, (11a)

κi,j = min{ki,jx + li,j | x ∈ Ri}, i = 1, . . . , R, (11b)

with κj = max{κi,j}R
i=1, κj = min{κi,j}R

i=1. Naturally,
different index sets of unsaturated regions, i.e. Iunsat,j,
will be obtained for different values of j. Even though the
total number of regions of κ̃(x) is then

∑nu

j=1 |Iunsat,j|,
significant reduction of complexity can still be achieved if
|Iunsat,j| ≪ R for all j ∈ [1, . . . , nu].

4.4 Complexity analysis

Evaluation of κ̃(x) as in (6) for a given value of the vector
x first requires to asses whether x ∈ RIunsat . Searching
through the regions RIunsat sequentially can answer this
query in O(|Iunsat|) time, while the binary search tree
approach of Tøndel et al. (2003) can provide the answer in
O(log2 |Iunsat|) time. Both approaches require the storage
of the unsaturated regions, hence their memory footprint
is O(|Iunsat|). If x ∈ RIunsat , the index r of region Rr

is returned, whereupon the value of κ̃(x) is given by
Krx + Lr. If x /∈ RIunsat , then the value of the separator
p(x) is obtained and its sign is used in (6). The memory
and computation requirements associated with storing and
evaluating p(x) online is insignificant compared to the
description of regions RIunsat .

Other approaches can be used to derive the replacement
function κ̃(x). The lattice representation (LR) of Wen
et al. (2009) converts the original function κ(x) into a
series of min/max operations over the functions Kix+Li,
eliminating the need to store the underlying regions Ri.
Evaluation of such a lattice description requires O(R2

unique)
operations, where Runique is the number of regions where
the feedback law is unique. The memory storage is also
proportional to O(R2

unique), however the constant term in
the big-O formulation is small due to the fact that only
the matrices Ki and Li need to be stored. The clipping-
based procedure (Kvasnica and Fikar, 2010) removes all
saturated regions and replaces them by “extensions” of
the unsaturated ones. In the best case, κ̃(x) is then defined
over |Iunsat| regions, while in the worst case the number of
regions remains unchanged. On average, κ̃(x) consists of
1.3|Iunsat| regions. The memory and runtime requirements
of such a scheme are proportional to this figure.

5. EXAMPLES

5.1 Illustrative example

Consider a 2-state 1-input system given by

x+ =

[
0.755 0.680
0.651 −0.902

] [
x1

x2

]
+

[
0.825

−0.139

]
u, (12)
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which is subject to constraints X = {[ x1
x2

] | − 10 ≤ [ x1
x2

] ≤
10} and U = {u ∈ R | −1 ≤ u ≤ 1}. The MPC problem (3)
was formulated with prediction horizon N = 10, Qx = 1
and Qu = 1 and solved as a parametric QP according to
Theorem 3.1. Using the MPT Toolbox (Kvasnica et al.,
2004), the explicit RHMPC feedback κ(x) was obtained in
4 seconds 2 as a PWA function defined over 225 regions
shown in Fig. 2. The partition of κ(x) consists of 29
unsaturated regions, 98 regions where κ(x) = 1, and 98
regions where κ(x) is saturated at −1.

As can be clearly see from the shape of the sets in
Figure 2(a), no linear separation between RImax and RImin

can be found. A polynomial separator p(x) = −x1 −
x2 − 0.0011x3

1 − 0.254x3
2 of the minimal degree δmin =

3 was then found by applying bisection in conjunction
with Algorithm 1. The algorithm converged within of
two iterations. The vertices in Step 1 were computed
by CDD in 0.01 seconds. Coefficients of the polynomial
were obtained by solving the LP (8), which only took 0.1
seconds using CPLEX. The subsequent certification check
in Step 5 was implemented by solving (9) using fmincon,
which took 1.1 seconds.

A binary separation tree can also be constructed by
recursively solving MILP problems (10). For the sets
depicted in Figure 2, the procedure has generated a tree
consisting of three nodes: p1(x) = 0.084x1 − x2 − 0.049,
p2(x) = 0.428x1−x2−1.393, p3(x) = 0.428x1−x2 +1.393.
The tree is rooted at p1(x), with p2(x) visited if p1(x) < 0.
Otherwise, p3(x) is evaluated and its sign is used in (6).
The total runtime of MILPs (10) was 9.1 seconds using
CPLEX.

The total memory footprint of κ(x) (which consists of the
regions Ri and the feedback laws Kix + Li) with 225
regions is 27 kilobytes. On the other hand, by devising
the polynomial or a tree separator p(x), the storage
requirements of κ̃(x) is a mere 3.5 kiloytes. Here, the
unsaturated regions RIunsat contribute by 2.8 kB, the
associated feedback laws by 0.7 kB, and the memory
footprint is just 16 bytes for the polynomial separator, and
36 bytes for the binary tree. It follows that complexity of
the on-line implementation of the RHMPC feedback law
can be reduced by a factor of 7.7 when using the modified
feedback κ̃(x) instead of the original function κ(x).

Enlarging the prediction horizon to N = 15 leads κ(x)
with 489 regions, 39 of which are unsaturated. For this
larger case, the minimal degree of the separating polyno-
mial p(x) is again δmin = 3 and its coefficients can be found
by Algorithm 1 in 1.5 seconds. The tree-type of separator
which guarantees a minimal separation gap ǫ = 1 · 10−3

in (10) consists of 11 nodes and the total runtime of the
11 MILPs (10) was 522.7 seconds. This time, the memory
footprint of κ(x) is 58.2 kB, while κ̃(x) only occupies 4.8
kB, a reduction by factor of 12.

5.2 Large-scale analysis

Next, we have analyzed a large number of random RHMPC
feedback laws κ(x) generated by solving problem (3) for
randomly selected LTI systems with 2 to 3 states, and 1 to

2 On a 2.4 GHz CPU with 2GB of RAM using MATLAB 7.8 and
MPT 2.6.3

−5 0 5

−3

−2

−1

0

1

2

3

x1

x
2

(a) Polynomial separator of
degree 3.

−5 0 5

−3

−2

−1

0

1

2

3

x1

x
2

(b) PWA separator en-
coded as a binary tree with
3 nodes.

Fig. 2. Sets RIunsat (yellow), RImax (red), RImin (green),
and two possible separators p(x).

2 inputs. 100 random cases were considered for each nx/nu

category. For each PWA function κ(x) we have constructed
the replacement κ̃(x) as in (6). Polynomial (7), as well as
tree-type separators p(x) were considered.

Purpose of such a large-scale analysis is to confirm the
main two assertions behind this work. First, it verifies that
the number of unsaturated regions is indeed considerably
smaller compared to the number of saturated ones, i.e. that
|Iunsat| ≪ |Imax| + |Imin| often holds in practice. Second,
it shows that low degrees of the polynomial separator
p(x) are typically sufficient to obtain a strict separation.
Moreover, the analysis also shows how Algorithm 1 and
the MILP procedure of Section 4.2 scale with increasing
dimension of the problem size.

Based on the 400 random scenarios, Table 1 shows for how
many cases a polynomial separator p(x) of a given minimal
degree δmin could be found by Algorithm 1. Although only
degrees δ ≤ 5 were considered due to practical reasons, the
overall success was 99.5%. Important to notice is that a
linear separator exists in a majority of cases. Such a p(x)
can be found by solving the LP (8) without the need to
further certify the separation in Step 5. We remark that for
all cases where δ = 1 was sufficient, it never took more than
10 seconds to compute p(x) by Algorithm 1, regardless of
problem size, as reported in Table 2. CPLEX was used to
solve the LPs (8).

Instances where higher-order polynomials p(x) were nec-
essary are further elaborated in Table 3, which also shows
how the computation scales with increasing number of
regions. In addition, the reported results confirm the con-
clusions of Remark 4.4, i.e. that the number of iterations in
Algorithm 1 is minor in practice. Majority of the runtime
of Alg. 1 consists of the time spent in Step 5, which was
implemented using fmincon. The results show that the
polynomial separation approach scales significantly better
than the tree separation. Moreover, size of the MILP (10)
quickly becomes of prohibitive for larger number of re-
gions.

Finally, Table 4 reports the minimal, maximal, and aver-
age values of the achievable complexity reduction ratio,
which is defined as ratio between the total number of
regions of κ(x) to the number of unsaturated regions, i.e.
∆ = R

|Iunsat| . The results show that the number of unsat-

urated regions is indeed significantly smaller in practice.
Therefore, the replacement function κ̃(x) (6), which only
requires the storage of unsaturated regions, will typically
be considerably simpler compared to the original RHMPC
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Table 1. Likelihood of existence of a polyno-
mial separator p(x) of degree δmin (100 cases

in each category).

nx/nu δmin = 1 δmin = 3 δmin = 5 Σ

2/1 94 6 − 100
2/2 90 9 1 100
3/1 83 15 − 98
3/2 63 37 − 100

Table 2. Complexity of construction of a linear
separator p(x) = α0 +α1x for largest scenarios

in respective categories.

nx/nu
No. of Runtime of Alg. 1 [sec]
regions Step 1 Step 3

2/1 505 0.3 0.1
2/2 865 0.4 0.1
3/1 5643 3.7 0.2
3/2 12651 8.2 0.2

Table 3. Complexity of construction of the
separator p(x) with δmin > 1. The symbol †
denotes that the MILP was too complex to be

solved in 2 hours.

nx/nu
No. of

δmin
No. of Runtime [sec]

regions iterations Alg. 1 MILP (10)

2/1

225 3 1 1.0 2.9
283 3 1 1.2 4.6
493 3 1 1.7 35.1
495 3 1 1.3 991.3

2/2

297 3 1 3.2 1.1
541 3 2 17.3 7.7
787 5 1 9.2 30.2
949 3 1 20.1 †

3/1

384 3 2 22.1 14.2
527 3 4 20.6 †
1275 3 1 14.4 †
2513 3 1 35.8 †

3/2

191 3 3 7.5 5.9
449 3 2 13.5 63.6
1396 3 4 73.3 †
3933 3 1 40.8 †

Table 4. Minimal, average, and maximal values
of the complexity reduction ratio.

nx/nu ∆min ∆avg ∆max

2/1 2.3 13.0 31.0
3/1 2.1 7.1 21.0
2/2 1.8 5.9 14.5
3/2 1.9 3.6 10.2

feedback law κ(x). We remark that the additional memory
due to the storage of p(x) usually amounts to less that 100
bytes.

6. CONCLUSIONS

Given an explicit RHMPC feedback function κ(x), we
have shown how to construct its simpler replacement
κ̃(x) which maintains the equivalence κ(x) = κ̃(x) for
all x ∈ domκ(x). The mechanism was based on devising
a function p(x), which separates the regions over which
κ(x) attains a saturated value. The replacement κ̃(x)
then requires only the storage of the unsaturated regions
of κ(x), along with the separator p(x). We have shown
how to build a polynomial separator by solving linear

optimization problems, followed by a certification step
which requires solution to a polynomial equation. By
means of a large case study we have demonstrated that
the procedure scales well with increasing problem size, and
that significant reduction of complexity can be achieved in
general.
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Abstract:
Model Predictive Control (MPC) represents one of the control concepts used in the process
industry. The main advantage of the framework is ability to optimize behavior of the process
while respecting physical and economical constraints. Implementing MPC in real time on low-
cost hardware is challenging due to the inherent computational complexity. One way of solving a
given MPC problem is to use parametric programming, which encodes the optimal control moves
as a lookup table. Such tables can be processed with low computation resources and therefore
allow MPC to be employed on low cost devices. Aim of this paper is to show a unique software
tool which requires low human effort to design MPC problems and is capable to automatically
generate real-time executable code for various target platforms.

Keywords: model predictive control, controller design, real-time implementation

1. INTRODUCTION

Model predictive control (MPC) is an attractive ap-
proach widely used in industry and academia to control
a broad range of systems due to its ability to provide
optimal performance while taking process constraint into
account Maciejowski (2002). In their industrial survey, Qin
and Badgewell (1997) report successful applications of
MPC which are commercially available. In order to in-
troduce feedback, MPC is traditionally implemented in
the Receding Horizon fashion (RHMPC). Here, the MPC
setup is first converted into a suitable optimization prob-
lem, which has the plant state x as a free parameter. Then,
once new measurements of the state arrive, the optimiza-
tion problem is solved and the optimized control input
u∗ is applied to the plant. The procedure then repeats
at the next time steps with fresh state measurements.
Therefore it is of crucial importance to be able to solve
the optimization problem within of time frame bounded by
the sampling time of the plant. Not being able to perform
the optimization on time can result, in a better case, to
loss of optimality, or, in the worse case, even to constraint
violation and instability, with possible catastrophic con-
sequences on the controlled plant. Therefore MPC was
traditionally used only for slow processes where the time
frame for the optimization to terminate is large enough.

If the sampling time decreases, or if less powerful control
platforms are employed to perform the optimization on-
line, additional care has to be taken to respect the hard
real-time constraints. One approach to decrease the com-
putational burden involved in obtaining the optimal con-
trol action u∗ for a particular value of x is to“pre-compute”
the optimal solution to a given optimization problem for

1 Corresponding author, e-mail: michal.kvasnica@stuba.sk

all possible values of the state x using parametric program-
ming. If all constraints of the optimization problem are
linear, it can be shown Bemporad et al. (2002) that the
optimal control can be found as an explicit function u∗(x)
mapping the states to the control inputs. This calculation
is performed off-line and just once. Since the solution can
be interpreted as a lookup table, the optimal control action
to be obtained, on-line for various values of x, by a simple
table lookup, which can be implemented efficiently even
with low computational resources.

A successful application of such an approach to design
of real-time control systems is determined by three main
factors: (i) whether it is possible to construct the table off-
line in an automated fashion; (ii) whether the table is rea-
sonably large as not to exceed the memory capabilities of
the control device; (iii) whether one can traverse the table
for a particular value of x within one sampling instance;
and (iv) whether the table lookup can be implemented
using programming instructions which the control device
understands.

In this paper we present a new version of the Multi-
Parametric Toolbox (MPT) Kvasnica et al. (2004), and
illustrate how it can be used for designing MPC controllers
in lookup-table form in a user-friendly fashion. We discuss
several methods which the toolbox implements in order
to reduce the table size. These approaches allow one
to export the lookup tables to target control devices
with low memory storage. In addition, we present an
overview of novel algorithms developed to speed up the
table traversal and hence allow MPC to be applied to
processes with fast dynamics. Finally, it is illustrated how
the toolbox can be used to deploy MPC-based controllers
by directly generating a real-time executable code. Control
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platforms supported by the toolbox range from DSP
processors to programmable logic controllers (PLC). The
primary objective of the toolbox is to make MPC control
design and deployment an intuitive process which can
be used by control engineers who do not necessarily
posses full theoretical MPC expertise. By automating
heavy computation and code generation tasks, the toolbox
allows for a considerably simpler control design for real-life
applications.

2. PARAMETRIC APPROACH TO MPC

We consider the class of discrete-time, stabilizable linear
time-invariant systems given by the state-space represen-
tation

x(t + 1) = Ax(t) + Bu(t), (1a)

y(t) = Cx(t). (1b)

Here, x(t) is the state vector at time t, x(t + 1) is the
successor state, u(t) denotes the control input, and y(t)
is the system output. It is assumed that the variables are
subject to lower/upper limits

x ≤ x(t) ≤ x, u ≤ u(t) ≤ u, y ≤ y(t) ≤ y. (2)

For the system (1) consider now the constrained finite-time
optimal control problem

min
UN

ℓN (xN ) +

N−1∑

k=0

ℓk(xk, yk, uk) (3a)

s.t. x0 = x(t), (3b)

xk+1 = Axk + Buk, (3c)

yk = Cxk, (3d)

x ≤ xk ≤ x, u ≤ uk ≤ u, y ≤ yk ≤ y, (3e)

where xk, uk and yk denote, respectively, the state, input,
and output predictions at time instance t+k, initialized by
the measurements of the current state x(t). The prediction
is carried out over a finite prediction horizon N . The aim
is to find the vector UN := [uT

0 , uT
1 , . . . , uT

N−1]
T of optimal

control inputs which minimizes the cost function (3a). The
form of the terminal state penalty ℓN and a stage cost ℓk(·)
depends on the particular control objective.

Different setups can be considered in practice Mikleš and
Fikar (2007). Regulation problems have the aim to control
the system such a way that the distance between the
predicted states xk (or the predicted outputs yk) and the
origin of the system is minimized, while simultaneously
minimizing the control effort. This requirement can be
translated to using ℓN = ‖QNxN‖p and ℓk = ‖Qxxk‖p +
‖Quuk‖p for state regulation, or to ℓN = 0 and ℓk =
‖Qyyk‖p + ‖Quuk‖p for output regulation. Here, QN , Qx,
Qy and Qu are penalty matrices used to tune for perfor-
mance. Moreover, ‖ · ‖p represents a standard weighted
vector p-norm, i.e. ‖Pz‖1 =

∑
i |Pizi|, ‖z‖2 = zT Pz, and

‖Pz‖∞ = maxi |Pizi| for some vector z and a matrix P .

In tracking problems the aim is to control the system such
a way that the distance between the predicted states xk (or
outputs yk) and a pre-scribed reference point is minimized,
while simultaneously minimizing the increments of the
control effort, i.e. ℓN = ‖QN(xN − xref)‖p and ℓk =

‖Qx(xk−xref)‖p +‖Qu∆uk‖p for state tracking, or ℓN = 0
and ℓk = ‖Qy(yk− yref‖p + ‖Qu∆uk‖p for output tracking
where ∆uk = uk − uk−1. Minimizing over this quantity is
often recommended because it introduces integral action
and hence mitigates the steady-state offset.

In RHMPC, the optimal sequence U∗
N is calculated by

solving (3) for a given value of x(t). Subsequently, only
u∗

0 is extracted from U∗
N and it is applied to the plant.

At the next time instance the procedure is repeated again
for a fresh measurements x(t), hence introducing feedback
into the MPC scheme. Since only u∗

0 is required at each
time step, the RHMPC feedback is given by

u∗
0(x(t)) = [Inu 0nu · · · 0nu ]UN . (4)

Since all constraints in (3) are linear, the optimization
problem can be translated (see e.g. Bemporad et al.
(2002)) into Quadratic Program (QP) if p = 2 or to a
Linear Program (LP) if p = 1 or p =∞. In order to speed
up the task of obtaining u∗

0(x(t)) for a given value of the
measurements x(t), it is nowadays a standard practice to
pre-compute the optimal solution for all possible initial
conditions x(t) by solving problem (3) as a parametric QP
(pQP) or a parametric LP (pLP).By exploiting the fact
that x(t) enters the constraints linearly, the optimal solu-
tion u∗

0(x(t)) is a lookup table, which encodes a piecewise
affine (PWA) dependence of the optimal control input on
the state x(t):

Theorem 2.1. (Bemporad et al. (2002)). The RHMPC feed-
back u∗

0(x(t)) for problem (3) is a continuous PWA func-
tion

u∗
0(x(t)) = Fix(t) + Gi, if x(t) ∈ Ri, (5)

which consists of a finite number R of affine feedback
laws. The i-th law is valid if x(t) is contained in a convex
polyhedral region Ri = {x | Hix(t) ≤ Ki}.

Theorem 2.1 suggests that the RHMPC feedback u∗
0(x(t))

can be constructed off-line as a lookup table and will
henceforth be called the explicit RHMPC feedback law.
The advantage of such an approach is that value of u∗

0
for a particular value of x(t) can be obtained by simply
evaluating the table, as captured by Algorithm 1 The algo-

Algorithm 1 Sequential table traversal

INPUT: Regions Ri, feedback laws Fi, Gi, number of
regions R, state measurement x(t)

OUTPUT: Optimal RHMPC control input u∗
0(x(t))

1: for r = 1, . . . , R do
2: if Hrx(t) ≤ Kr then
3: u∗

0(x(t)) = Frx(t) + Gr

4: return
5: end if
6: end for

rithm traverses through the regions sequentially, stopping
once it finds a region which contains x(t). In such case the
optimal control action is calculated by evaluating the cor-
responding control law and returned back. Clearly, in the
worst case, the algorithm has to search through all regions.
But since the operations performed in Steps 2 and 3 only
consist of simple matrix multiplications and additions, for
a large class of problems running Algorithm 1 is faster com-
pared to obtaining u∗

0(x(t)) by solving the optimization
problem (3) on-line as an LP or a QP. The second benefit is
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that the number of floating point operations performed by
the sequential search is known exactly, regardless of x(t).
Therefore given a table with R regions, one can a-priori
say whether the given computational device will execute
Algorithm 1 within of one sampling instance. For generic
LP and QP problems such bounds could also be obtained,
but they are very often too conservative to actually have
a practical meaning.

3. MPC DESIGN WITH THE MULTI-PARAMETRIC
TOOLBOX

MPT is a MATLAB-based toolbox which allows for user-
friendly design and synthesis of MPC controllers using
parametric programming. To illustrate capabilities of the
toolbox, we consider a laboratory apparatus consisting
of two liquid storage tanks placed one on top of the
other Honc and Dušek (2006). Liquid inflow to the upper
tank is governed by a pump, throughput of which is to
be controlled. The liquid then accumulates in the tank
and flows out through an opening to the lower tank. The
outflow of the lower tank is then collected and recycled.
Such a system can be described by a linearized model
with two states (the deviations of liquid levels from chosen
linearization points), one measured output (liquid level in
the bottom tank), and one control signal (deviation of the
pump volumetric flowrate from a stationary point). The
control objective is to operate the pump such that the
output reaches a given reference, while respecting input
and state constraints.

MPC synthesis in MPT consists of several intuitive steps.
First, the plant model is defined and converted into the
discrete-time domain using a sampling time Ts:

>> A = [-0.0315, 0; 0.0315, -0.0315];
>> B = [0.0769; 0]; C = [0, 1]; D = 0;
>> tanks = ss(A, B, C, D);
>> Ts = 5;
>> model = mpt_sys(tanks, Ts);

Next, constraints on states, inputs and outputs are defined:

>> model.umin = -16.9811; model.umax = 3.0189;
>> model.xmin = [-21.44; -21.44];
>> model.xmax = [3.56; 3.56];
>> model.ymin = -21.44; model.ymax = 3.56;

Notice that the constraints are imposed on the deviation
variables (i.e. x1 = h1−hs

1, x2 = h2 = hs
2, u = q−qs, where

h1, h2 are physical liquid levels, q is the liquid flowrate, and
hs

1, hs
2 and qs are linearization points). The toolbox also

allows to define generic linear constraints of the form

Lxxk + Luuk + Lyyk ≤M,

and/or to use constraint softening. We refer the reader
to the MPT manual Kvasnica et al. (2006) for a detailed
description of these advanced features.

Subsequently, parameters of the MPC optimization prob-
lem (3) have to be specified. These include the prediction
horizon N , penalty matrices Qy and Qu, norm p, and
reference signals.

>> mpc.N = 6; % prediction horizon
>> mpc.yref = 0; % output reference
>> mpc.Qy = 100; % penalty on (y_k - y_ref)
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(a) Regions of the lookup table
consisting of 31 regions. Re-
gions which share the same ex-
pression for the optimizer are
depicted with identical colors.
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(b) Simplified version of the
lookup table where the ORM
method merges together re-
gions which have the same ex-
pression of the optimizer.

Fig. 1. Regions of the lookup table for the two tanks
example.

>> mpc.R = 1; % penalty on u_k
>> mpc.norm = 2; % use quadratic cost

Finally, the parametric solution to problem (3) can be
calculated as a lookup table using the following simple
command:

>> controller = mpt_control(model, mpc)

Result of the computation is, in this case, a lookup table
consisting of 31 regions in a 2D state-space. One can
inspect the table graphically by plotting its regions by
calling

>> plot(controller)

which produces the output as shown in Figure 1(a). In
order to obtain the optimal control action for a particular
value of x(t), MPT provides the following easy-to-use
notation:

>> x = [3; -4.5];
>> u = controller(x)

which will run Algorithm 1 using the provided initial
state and the data stored in the controller variable. In
subsequent sections we show how to generate real-time
executable code and deploy it to selected control platforms.
Having real-time implementation in mind, by executing

>> info(controller)

the toolbox provides a detailed information about the size
of the table (expressed in bytes) and the worst-case number
of operations the sequential search would perform. This
information helps the control engineer to decide whether or
not further post-processing of the table is necessary using
some of the methods described in the next section. For
the controller with 31 regions, the total memory footprint
of the lookup table, as reported by the info function, is
3988 bytes, and the worst-case number of floating points
operations Algorithm 1 performs is equal to 653 FLOPS.

4. CONTROLLER POST-PROCESSING

Since typical DSP processors can perform tens to hun-
dreds of millions of FLOPS per second and posses sev-
eral megabytes of memory, the computational burden of
implementing MPC in a lookup table form in real-time
is minute. However, moving to less powerful platforms,
such as PLCs, poses a challenge on whether the memory
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footprint of the table (which is proportional to the number
of its regions) can be further reduced and whether the
table can be traversed using less operations. To highlight
importance of these issues, take into account that low-
cost PLCs only contain 2-8 kilobytes of memory and their
computational power is also restricted.

Several methods have been developed to address these
challenges. In general, they can be divided into two cat-
egories: reduction of the table size (e.g. Johansen and
Grancharova (2003); Grieder et al. (2004); Cychowski and
O’Mahony (2005); Scibilia et al. (2009)), and develop-
ment of faster algorithms for table evaluation (e.g. Jones
et al. (2005); Christophersen et al. (2007); Kvasnica et al.
(2008)). The MPT toolbox implements two of such strate-
gies which are generally useful from practical point of view:
the optimal region merging (ORM) method of Geyer et al.
(2008) for reduction of the table size, and the binary search
tree (BST) algorithm of Tøndel et al. (2003) for faster table
traversal.

To illustrate the ORM method, it should first be noted
that it is a frequent case in parametric MPC that there
are multiple regions of the table in which the expression
for u∗ is the same (i.e. Fi = Fj and Gi = Gj for some index
i and j), cf. Fig. 1(a). The idea of ORM is to merge the
regions which share the same expression for the optimizer
into larger convex objects. While there are multiple ways
of achieving this goal, the method of Geyer et al. (2008)
utilizes boolean minimization to achieve a table defined
over the least possible number of regions. In MPT, the
optimal merging can be calculated by calling the following
command:

>> simple = mpt_simplify(controller, ’optimal’)

which produces a new lookup table stored in the variable
called simple. The new object is still a valid parametric
MPC controller, and therefore it can be processed as
described in the previous section. For instance, calling u =
simple(x) will return the optimal control action for state
x, and plot(simple)will plot the regions of the simplified
controller, cf. Fig. 1(b). For the two tanks example, the
optimal merging was able to decrease the number of
regions from 31 to 9, which reflects to a decrease of required
memory storage from 4 kB to 1 kB. Simplification of the
table also directly influences its evaluation time. Therefore
the worst-case number of FLOPS which Algorithm 1 needs
to perform to traverse the simplified table is now only
198 operations (compared to 653 FLOPS for the original
table).

The BST algorithm allows the table to be traversed faster
compared to the sequential approach of Algorithm 1.
The basic idea is to hierarchically organize the controller
regions into a tree structure where, at level of the tree,
the number of regions to consider is decreased by a factor
of two. Therefore the table traversal can be performed
in time logarithmic in the number of regions (note that
complexity of the sequential search is linear in R). The tree
is constructed in an iterative fashion. At each iteration an
optimal separating hyperplane hix(t) ≤ ki is selected such
that the set of all regions processed at the i-th iteration
is divided into two smaller subsets: regions R+

i residing
on one side of the hyperplane, and R−

i on the other side.
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1
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4 5
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Fig. 2. Illustration of how a binary search tree is built for a
table consisting of 5 regions. The optimal separating
hyperplanes are depicted by red dashed lines.

A new node in the tree is then created which contains
information about the hyperplane and two pointers to
child nodes. The left child is created by recursively calling
the algorithm for regions R+

i , and the right child for
regions R−

i . The exploration of a given tree branch stops
when no further subdivision can be achieved. In such a
case a leaf node is created which points to the region
which contains x(t). The resulting tree is then composed
of the set of separating hyperplanes linked to the actual
regions through a set of pointers. The BST algorithm
is illustrated graphically in Figure 2. BST trees can be
constructed for arbitrary lookup tables using the following
MPT command:

>> tree = mpt_searchTree(controller)

The output of the function is a new controller object,
which behaves the same way as previously. This implies
that obtaining u∗ for a particular value of x reduces to
simply calling u = tree(x), which traverses the BST tree
using Algorithm 2.

Algorithm 2 Table traversal via binary search tree

INPUT: BST tree composed of linked nodes and sepa-
rating hyperplanes hix(t) ≤ ki, i = 1, . . . , M , state
measurements x(t)

OUTPUT: Optimal RHMPC control input u∗(x)
1: r ← 1
2: repeat
3: if hrx(t) ≤ kr then
4: r ← index of the left child node
5: else
6: r ← index of the right child node
7: end if
8: until r is a leaf node
9: u∗

0(x(t)) = Frx(t) + Gr

If the mpt_searchTree function applied to the lookup ta-
ble with 31 regions, it generates 14 separating hyperplanes
and organizes them into a tree with 29 nodes at 5 levels.
Therefore, in the worst case, Algorithm 2 would need to
go through Steps 2–8 at most 5 times before terminating.
The only calculations are actually carried out on Steps 3
and 9, the remaining steps just perform a simple memory
transfer. This constitutes that the total effort is equal to 28
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FLOPS, a significant reduction from 653 FLOPS needed
by Algorithm 1.

5. CODE GENERATION AND DEPLOYMENT

As outlined in the previous sections, MPC can be imple-
mented in real time by first constructing a suitable lookup
table off-line, and then traversing the table on-line for a
particular value of the state measurements. Specifically,
we have illustrated how to do the traversal either sequen-
tially (Algorithm 1) or by evaluating a binary search tree
(Algorithm 2). As both algorithms only execute trivial
arithmetic operations and do not involve any high-level
optimization, they can be easily implemented, by hand,
using any high- or low-level programming language and
linked with the custom control application.

The MPT toolbox goes even further as it allows real-
time executable code to be generated automatically. The
first option is to let the toolbox generate plain C-code
implementation of Algorithms 1 and 2 together with the
necessary data (matrices Hi and Ki defining the table
regions and the feedback laws Fi and Gi). A C-code version
of Alg. 1 can be generated by calling

>> mpt_exportC(controller, ’target_filename’)

The function generates the files target_filename.c and
target_filename.hwhich contain, respectively, the table
evaluation code and the table data. The code can be
subsequently linked to any application written in the
C language. Code and data for the binary search tree
representation of the lookup table can be obtained by
executing

>> mpt_exportST(tree, ’target_filename’)

which again generates a plain C-code implementation
which can be compiled directly for most typical control
platforms.

Another option is to use the Real-Time Workshop (RTW),
which is a de-facto standard code generation tool support-
ing different types of digital signal processors and other
CPUs. MPT provides a RTW-compatible C-code imple-
mentation of the sequential search algorithm, which makes
code generation and deployment a single click operation.
To use this option, the controller is first embedded into
the Simulink environment using a provided block and
it is subsequently connected to signals from A/D and
D/A convertors to close the control loop as shown in
Figure 3. Then, one simply clicks on the respective icon
in the Simulink window to initiate RTW, which compiles
the overall control scheme including the lookup table and
then automatically downloads it to any supported target
CPU. We have applied this procedure to deploy the MPC
controller for the two tanks system of Section 3 to the
dSPACE DS 1104 control platform, which then took care
of signal conversion, state estimation and table traversal.
Closed-loop profiles of states and control inputs obtained
during the experiment are shown in Figure 4.

Finally, the new of MPT also supports code generation
and deployment specifically tailored to Siemens Simatic
programmable logic controllers. The export, which can be
initiated by calling

Fig. 3. Control loop setup in Simulink using MPT control
block which implements the lookup table.

Fig. 4. Signals acquired during real-time control of the two
tanks system.

Fig. 5. Short excerpt of the LAD implementation of
Algorithm 2.

>> mpt_exportPLC(controller, ’target_filename’)

produces two files – the PLC version of Algorithm 2 and
a data file containing description of the binary search
tree which encodes a given lookup table. The tree traver-
sal code, implemented using the Ladder Logic (LAD)
programming language, is universal and can process any
kind of lookup tables described by binary search trees.
If needed, a corresponding Statement List version of the
algorithm can be generated as well. The code and the
data are subsequently downloaded to the PLC, which then
executes the table traversal at every sampling instances
based on the measurements of the states. As the LAD code
only uses standard blocks like multiplications, additions,
comparisons and memory access, it can be easily adapted
to other types of PLCs as well. A short excerpt of the LAD
code is shown in Figure 5.
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6. CONCLUSIONS

In this paper we have shown how MPC can be imple-
mented using low computational resources. The approach
is based on pre-calculating the solution to a given MPC
optimization problem just once, for all possible initial con-
ditions. The result is then given as a lookup table, which
can be easily implemented in C or PLC languages and
deployed to standard control platforms. We have presented
a new version of the Multi-Parametric Toolbox, which
automates the control design and code generation, and
provides efficient means for reducing the table complexity.
The new version will be available shortly at the project’s
web site http://control.ee.ethz.ch/~mpt.
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∗ Institute of Information Engineering, Automation, and Mathematics,
Slovak University of Technology in Bratislava,

81237 Bratislava, Slovakia
e-mail : {michal.kvasnica,alexander.szucs,miroslav.fikar}@stuba.sk

Abstract: : Successful application of model-based control synthesis and analysis methods
usually depends on availability of a good process model. Recently, the concept of hybrid models
was introduced as a good compromise between accuracy and complexity. Hybrid models feature
a collection of local linear models accompanied with logic conditions which enforce switching
of the local dynamics. The problem which we address in this paper is the following: given a
nonlinear dynamical model and a fixed complexity of its hybrid approximation, how should one
design the hybrid model of maximal accuracy? The answer is first provided in terms of optimally
approximating nonlinear functions in one variable. The best approximation is found by solving
a nonlinear optimization problem. Subsequently, the procedure is extended to approximation of
functions in n variables and we show that this problem boils down to solving n problems of the
former kind.

Keywords: hybrid systems, approximation, nonlinear optimization

1. INTRODUCTION

Mathematical models of physical plants play a vital role
in many areas, such as in rigorous simulations, analysis, or
control synthesis. Typically, high model accuracy is usually
desired while keeping the model complexity on an accept-
able level. Traditionally, nonlinear models were preferred
from simulations, while most of available control tech-
niques are based on a local approximation around a single
operating point. The concept of hybrid systems (Branicky,
1995) can be viewed as a compromise solution between
accuracy of the model and its complexity. Hybrid models
feature a collection of local models accompanied with logic
IF-THEN conditions which enforce switching of the local
dynamics. When all local models are linear (or affine),
such systems are referred to as linear hybrid systems.
Although still nonlinear due to the presence of switches,
the underlying piecewise linearity allows for somewhat
easier control synthesis and analysis compared to using
full nonlinear models. Several mathematical frameworks
capable of capturing the relation between logic rules and
linear dynamics can be used: Piecewise Affine (PWA) mod-
els (Sontag, 1981), Mixed Logical Dynamical (MLD) sys-
tems (Bemporad and Morari, 1999), Linear Complemen-
tarity systems (Heemels et al., 2000) and max-min-plus-
scaling models (De Schutter and Van den Boom, 2001).
Under mild assumptions, all these frameworks are equiva-
lent to each other and it is possible to transform e.g. the
MLD system into a PWA model and vice-versa (Heemels
et al., 2001). For the purpose of this work we consider PWA
models, which use the concept of multiple linearization
to approximate a given nonlinear system with arbitrary
accuracy.

The problem which we address in this paper is the follow-
ing: given a nonlinear dynamical model x+ = f(x, u) and

a fixed complexity of its PWA approximation f̃(x, u) ≈
f(x, u), how should one design f̃ which minimizes the

approximation error
∫
(f(x, u) − f̃(x, u))2? The answer is

non-trivial even putting optimality of the approximation
aside. Traditionally, two distinct approaches for deriving
PWA approximations are used. When the mathematical
formulation of the original nonlinear system is known, one
can design the approximation by hand. This is usually
done by employing human knowledge and experience to
devise several linearization points around which the origi-
nal nonlinear model should be linearized. Needless to say,
placement of such points has a crucial impact on the accu-
racy of the approximation. The HYSDEL (Hybrid Systems
Description Language) tool (Torrisi and Bemporad, 2004;
Kvasnica and Herceg, 2010) can be used to accelerate
this line of development. Formally, HYSDEL transforms
a linguistic description of a hybrid system into the cor-
responding MLD model, which can then be converted
into the PWA form. The language allows to define IF-
THEN switching rules which, based on whether some logic
condition is satisfied or not, enforce certain continuous
dynamics. Another option is to use hybrid identification
techniques (Ferrari-Trecate et al., 2001; Roll et al., 2004;
Ferrari-Trecate, 2005) to construct the PWA approxima-
tion from the input-output measurements. The crucial
advantage is that the model of the original nonlinear
system is not required to be fully available. The downside,
however, is that the approximation is only accurate in the
interval captured by the identification data. Moreover, the
procedure is computationally expensive and suited mainly
to low-dimensional problems.
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In this work we propose to use an optimization-based
approach to derive PWA approximations of nonlinear sys-
tems whose vector field is an a-priori known function of
multiple variables. After formally stating the problem in
Section 2, we show in Section 3 that an optimal PWA ap-
proximation of generic nonlinear functions in one variable
can be formulated and solved as a nonlinear programming
problem. Several non-trivial illustrative cases are discussed
to show that the approach is both efficient and computa-
tional tractable. Subsequently, the approach is extended to
deriving PWA approximations of multivariable functions
in Section 4. We show that, under a certain assump-
tion, the problem boils down to solving a series of one-
dimensional approximations. The algorithmic and software
implementation of the approximation procedure are then
discussed in Section 5. Specifically, we introduce a new
software tool which is capable of exporting the obtained
optimal PWA approximations into the HYSDEL language.
This brings two crucial advantages. First, the HYSDEL
compiler can be used to convert the PWA approximation
into a mathematical form, which is then suitable e.g. for
control design. Second, since the exported approximation
is described in a human-readable format, it can be further
fine-tuned by hand. Finally, in Section 6 we illustrate the
procedure on a case study involving a highly non-linear
chemical reactor.

2. PROBLEM STATEMENT

We consider generic dynamic systems in discrete-time

x+ = f(x, u), (1)

where the vector field f(·, ·) is assumed to be continuous
in the state variables x ∈ Rnx and in the inputs u ∈ Rnu .
System states and inputs are assumed to be constrained
to connected and closed domains X ⊂ Rnx and U ⊂ Rnu ,
respectively.

The objective is to approximate (1) by a different dynamic

system x+ = f̃(x, u) whose vector field f̃(x, u) is a PWA
function which consists of a pre-specified number N of
local linear dynamics:

f̃(x, u) =





A1x + B1u + c1 if [ x
u ] ∈ R1

...
...

ANx + BNu + cN if [ x
u ] ∈ RN .

(2)

Here, Ai ∈ Rnx×nx , Bi ∈ Rnx×nu , ci ∈ Rnx , are the state-
update matrices of the i-th local linear approximation,
and Ri ⊂ Rnx×nu is the region of validity of the i-th
local model satisfying Ri 6= ∅, Ri ∩ Rj = ∅, ∀i 6= j, and
∪iRi = X × U .

Formally, the problem which we aim at solving can be
stated as follows:

Problem 2.1. Given a nonlinear vector field f(x, u) of
system (1), find the PWA approximation (2) of pre-
specified complexity which minimizes the approximation
error

eaprx :=

∫
(f(x, u) − f̃(x, u))2 dxdu, (3)

where the integral is evaluated over the whole region of
validity of (1), i.e. over X × U .

In the sequel we show how to solve Problem 2.1 provided
that the vector field f(z), z = [x, u]T satisfies the following
assumption.

Assumption 2.2. The function f(z1, . . . , zn) can be writ-

ten as
∑n

i=1 αi

(∏qi

j=pi
fj(zj)

)
.

As an example, the function z1e
z2 satisfies such an as-

sumption, while the function ez1z2 does not. Although
the assumption is somewhat restrictive, the gained ad-
vantage is that approximating any multivariable function
f(z1, . . . , zn) boils down to solving a series of 1D problems,
as evidenced in the following two sections.

Remark 2.3. Since the approximation procedure discussed
in the sequel considers only the vector field in the right-
hand-side of (1), continuous-time systems ẋ = f(x, u) can
be treated as well.

3. FUNCTIONS IN ONE VARIABLE

First, we consider the one-dimensional case, i.e. approxi-
mating a nonlinear function f(z) : R 7→ R, with domain

Z ⊂ R, by a PWA function f̃(z) = aiz + ci if z ∈ Ri.
Since Z is assumed to be connected and closed, it is a line
segment [z, z]. Regions Ri define the partition of such
a line into N non-overlapping parts, i.e. R1 = [z, r1],
R2 = [r1, r2], . . ., RN−1 = [rN−2, rN−1], RN = [rN−1, z]
with ∪iRi = [z, z]. Solving Problem 2.1 then becomes to
find the slopes ai, offsets ci and breakpoints ri such that
the approximation error is minimized, i.e.

min
ai,ci,ri

∫ z

z

(f(z) − f̃(z))2 dz (4a)

s.t. f̃(z) =





a1z + c1 if z ∈ [z, r1]
...

...

aNz + cN if z ∈ [rN−1, z]

(4b)

z ≤ r1 ≤ · · · ≤ rN−1 ≤ z, (4c)

airi + ci = ai+1ri + ci+1, i = 1, . . . , N − 1,(4d)

where (4d) enforces continuity of f̃(z) along the break-
points ri. The IF-THEN based nonlinear constraint (4b)
can be eliminated by observing that, by definition, regions
Ri are non-overlapping, and the integral in (4a) can hence
be written as
∫ z

z

(
f(z) − f̃(z)

)2
=

N∑

i=1

(∫ ri

ri−1

(
f(z)−(aiz+ci)

)2
)
, (5)

with r0 = z and rN = z. The NLP (4) can therefore be
written as

min
ai,ci,ri

N∑

i=1

(∫ ri

ri−1

(
f(z) − (aiz + ci)

)2
dz

)
(6a)

s.t. z ≤ r1 ≤ · · · ≤ rN−1 ≤ z, (6b)

airi + ci = ai+1ri + ci+1, i = 1, . . . , N − 1.(6c)

For simple functions f(z), the integral in (6a) can be
expressed in an analytical form in unknowns ai, ci, ri,
along with the corresponding gradients. For more complex
expressions, the integrals can be evaluated numerically,
e.g. by using the trapezoidal rule. In either case, prob-
lem (6) can be solved to a local optimality e.g. by using
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Fig. 1. Graph of f(z) = z3 (blue line) and the PWA

approximations f̃(z) (red dashed lines).

Table 1. Value of the objective (6a) and run-
time of the NLP (6) as a function of N for

Example 3.1.

N Value of (6a) Runtime of (6)

3 3.1 · 10−2 0.05 sec
4 1.9 · 10−2 0.20 sec
5 5.2 · 10−3 0.21 sec
6 3.5 · 10−3 0.33 sec
7 1.6 · 10−3 0.37 sec

the fmincon solver of MATLAB. Alternatively, one can
use global optimization methods (Adjiman et al., 1996;
Papamichail and Adjiman, 2004; Chachuat et al., 2006)
which guarantee that an ǫ-neighborhood of the global
optimum can be found.

Example 3.1. Consider the function f(z) = z3 on domain
−1.5 ≤ z ≤ 1.5. The analytic form of the integral (6a) is

N∑

i=1

(
c2
i (ri + ri−1) + aici(r

2
i − r2

i ) +
a2

i

3
(r3

i − r3
i−1) −

−ci

2
(r4

i − r4
i−1) − 2ai

5
(r5

i − r5
i−1) +

1

7
(r7

i − r7
i−1)

)
,

with r0 = −1.5 and rN = 1.5. The PWA approximation
of f(z) with N = 3 regions was obtained by solving the
NLP (6) using fmincon, which only took 0.05 seconds on
a 2.4 GHz CPU running MATLAB 2009b. The obtained
PWA approximation is then given by

f̃(z) =





4.1797z + 3.1621 if − 1.5 ≤ z ≤ −0.8423

0.4257z if − 0.8423 ≤ z ≤ 0.8423

4.1797z − 3.1621 if 0.8423 ≤ z ≤ 1.5

Naturally, quality of the approximation can be improved
by increasing the complexity of the PWA function, i.e. by
enlarging N , as documented in Table 1. As can be seen
from the reported results, accuracy of the approximation
increases by roughly a factor of two for each additional
degree of freedom. Two PWA approximations with N =
3 and N = 5 are shown, respectively, in Figures 1(a)
and 1(b).

Example 3.2. Consider the function f(z) = |z| + 0.5z2 −
sin (z3) on domain −1 ≤ z ≤ 2.5, graph of which is
shown in Figure 2(a). Since no analytic expression of the
integral in (6a) could be obtained, we have opted for
numeric integration of the cost while solving the NLP
problem (6) by fmincon. Again, we have investigated PWA
approximations with N = 3, . . . , 7 regions. Accuracy of the
approximation, along with the runtime of the associated
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),
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(a) PWA approximation with
N = 3 regions.
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(b) PWA approximation with
N = 7 regions.

Fig. 2. Graph of f(z) = |z|+0.5z2−sin (z3) (blue line) and

the PWA approximations f̃(z) (red dashed lines).

Table 2. Value of the objective (6a) and run-
time of the NLP (6) as a function of N for

Example 3.2.

N Value of (6a) Runtime of (6)

3 0.753 1.2 sec
4 0.652 1.6 sec
5 0.504 1.4 sec
6 0.470 2.8 sec
7 0.022 4.9 sec

NLP problem (6), are reported in Table 2. The PWA
approximations for N = 3 and N = 7 are shown in
Figures 2(a) and 2(b).

4. MULTIVARIABLE FUNCTIONS

The task is to approximate a given multivariable function
f(z1, . . . , zn) : Rn 7→ R with domain Z ⊂ Rn by a PWA

function f̃(z1, . . . , zn), defined over the same domain, such
that the approximation error (3) is minimized.

Definition 4.1. (Williams (1993)). Function f(z1, . . . , zn)
is called separable if it can be expressed as the sum of
functions of a single variable, i.e. f(z1, . . . , zn) = f1(z1) +
· · · + fn(zn).

If f(z1, . . . , zn) is readily separable (e.g. when f(z1, z2) =
ez1 + sin (z2)), its optimal PWA approximation can be
obtained by applying the 1D scenario of Section 3 to the

individual components of the function, i.e. f̃(z1, . . . , zn) =

f̃1(z1) + · · · + f̃n(zn). The total number of regions over

which the PWA approximation f̃(·) is defined is hence
given by

∑n
j=1 Nj , where Nj is the pre-specified complex-

ity of the j-th approximation f̃j(zj).

A surprisingly large number of non-separable functions can
be converted into the separable form by applying a simple
trick, elaborated in more details e.g. in Williams (1993). To
introduce the procedure, consider a non-separable function
f(z1, z2) = z1z2 with domain Z := [z1, z1] × [z2, z2].
Define two new variables

y1 = (z1 + z2), y2 = (z1 − z2). (7)

Then it is easy to verify that 1/4(y2
1 − y2

2) = z1z2.
The coordinate transformation therefore transforms the
original function into a separable form, where both terms
(y2

1 and y2
2) are now functions of a single variable. The

procedure of Section 3 can thus be applied to compute
PWA approximations of fy1(y1) := y2

1 and fy2(y2) :=
y2
2 , where the function arguments relate to z1 and z2
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via (7). Important to notice is that fy1(·) and fy2(·) have
different domains, therefore their PWA approximations

f̃y1(y1) ≈ y2
1 and f̃y2(y2) ≈ y2

2 will, in general, be
different. Specifically, the domain of fy1(·) is [y

1
, y1] with

y
1

= min{z1 + z2 | z1 ≤ z1 ≤ z1, z2 ≤ z2 ≤ z2} and

y1 = max{z1+z2 | z1 ≤ z1 ≤ z1, z2 ≤ z2 ≤ z2}. Similarly,
the domain of fy2(·) is [y

2
, y2], whose boundaries can

be computed by respectively minimizing and maximizing
z1 −z2 subject to the constraint [z1, z2]

T ∈ Z. The overall

PWA approximation f̃(z1, z2) ≈ z1z2 then becomes

f̃(z1, z2) = 1/4(f̃y1(z1 + z2) − f̃y2(z1 − z2)). (8)

The value of f̃(z1, z2) for any points z1, z2 is obtained

by subtracting the value of the PWA function f̃y2(·)
evaluated at the point z1 − z2 from the function value of

f̃y1(·) evaluated at z1 + z2, followed by a linear scaling.

The procedure naturally extends to multivariable func-
tions represented by the product of two nonlinear functions
of a single variable, i.e. f(z1, z2) = f1(z1)f2(z2). Here, the
transformation (7) becomes

y1 = f1(z1) + f2(z2), y2 = f1(z1) − f2(z2). (9)

Therefore, 1/4(y2
1 − y2

2) = f(z1, z2) still holds. Let
fy1(y1) := y2

1 and fy2(y2) := y2
2. The domain of fy1(·)

is [y
1
, y1] and dom fy2(·) = [y

2
, y2] with

y
1
= min{f1(z1) + f2(z2) | [z1, z2]

T ∈ Z}, (10a)

y1 = max{f1(z1) + f2(z2) | [z1, z2]
T ∈ Z}, (10b)

y
2
= min{f1(z1) − f2(z2) | [z1, z2]

T ∈ Z}, (10c)

y2 = max{f1(z1) − f2(z2) | [z1, z2]
T ∈ Z}, (10d)

which can be computed by solving four NLP problems.
Finally, since all expressions are now functions of a sin-

gle variable, the PWA approximations f̃1(z1) ≈ f1(z1),

f̃2(z2) ≈ f2(z2), f̃y1(y1) ≈ fy1(y1), and f̃y2(y2) ≈ fy2(y2)
can be computed by solving the NLP (6). The overall

optimal PWA approximation f̃(z1, z2) ≈ f(z1, z2) then
becomes

f̃(z1, z2) = 1/4

(
f̃y1

(
f̃1(z1)+f̃2(z2)

)
−f̃y2

(
f̃1(z1)−f̃2(z2)

))
.

(11)
The evaluation procedure is similar as above. I.e., given

the arguments z1 and z2, one first evaluates z̃1 = f̃1(z1)

and z̃2 = f̃2(z2). Subsequently, one evaluates ỹ1 = f̃y1(·)
with the argument z̃1 + z̃2, then ỹ2 = f̃y2(·) at the point

z̃1 − z̃2. Finally, f̃(z1, z2) = 1/4(ỹ1 − ỹ2).

Example 4.2. Consider a non-separable function given as
the product of the two functions discussed in Examples 3.1
and 3.2, i.e. f(z1, z2) = f1(z1)f2(z2) with f1(z1) = z3

1 ,
f2(z2) = |z2| + 0.5z2

2 − sin (z2)
3 on domain [−1.5, 1.5] ×

[−1, 2.5]. Graph of the function is shown in Figure 3(a). In
order to convert f(z1, z2) into a separable form, we intro-
duce variables y1 and y2 as per (9). The PWA approxima-

tion f̃(z1, z2) ≈ f(z1, z2) is then given by (11). Here, f̃1(z1)
was obtained by approximating f1(z1) by a PWA function

with 3 regions as shown in Figure 1(a), while f̃2(z2) ≈
f2(z2) was approximated by 7 regions as depicted in Fig-
ure 2(b). Subsequently, the domains [y

1
, y1] and [y

2
, y2]

(a) Graph of f(z1, z2). (b) Approximation f̃(z1, z2)

Fig. 3. Graph of f(z1, z2) and its PWA approximation (11)
in Example 4.2.

were computed via (10), which resulted into dom y1 =
[−3.374, 9.095] and dom y2 = [−9.095, 3.374]. Finally, the

PWA approximations f̃y1(y1) ≈ y2
1 and f̃y2(y2) ≈ y2

2 were
obtained by solving the NLP (6) with N = 2. Graphs
of y2

1 , y2
2 and their respective PWA approximations are

presented in Figure 4. The overall approximation f̃(z1, z2)
therefore consists of 14 regions. Despite a rather crude
approximation of the square functions, the combined PWA
function (11), shown in Figure 3(b), features only a minor
average approximation error of 3% and a worst-case error
of 15%. By increasing the number of linearizations for
y2
1 and y2

2 from N = 2 to N = 4 (hence increasing the

complexity of f̃(z1, z2) from 14 to 18 regions), the average
and worst-case errors can be further reduced to 1% and
8%, respectively.
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(b) y2
2

Fig. 4. Functions y2
i (blue) and their PWA approximation

f̃yi(yi) (red dashed lines) in Example 4.2.

Separation of multivariable functions with more than two
terms can be performed in an inductive manner. Consider
f(z1, z2, z3) = f1(z1)f2(z2)f3(z3). First, approximate the
product f1(z1)f2(z2) by a PWA function of the form
of (11), which requires four PWA approximations

f̃1(·) ≈ f1(·), f̃2(·) ≈ f2(·), f̃y1(·) ≈ y2
1 , f̃y2(·) ≈ y2

2 ,

with y1 and y2 as in (9). Let fa(z1, z2) := f1(z1)f2(z2).
Then f(z1, z2, z3) = fa(z1, z2)f3(z3), which can again be
approximated as a product of two functions. Specifically,
define

y3 = fa(·) + f3(z3), y4 = fa(·) − f3(z3), (12)

and hence fa(z1, z2)f3(z3) = 1/4(y2
3 − y2

4). The domains
over which y2

3 and y2
4 need to be approximated are,

respectively, [y
3
, y3] and [y

4
, y4] with

Preprints of the NIL workshop
Jan 10–15, 2011, Bratislava, Slovakia Kvasnica, M., Szücs, A., Fikar, M.

322



y
3
= min{f1(z1)f2(z2) + f3(z3) | z ∈ Z}, (13a)

y3 = max{f1(z1)f2(z2) + f3(z3) | z ∈ Z}, (13b)

y
4
= min{f1(z1)f2(z2) − f3(z3) | z ∈ Z}, (13c)

y4 = max{f1(z1)f2(z2) − f3(z3) | z ∈ Z}, (13d)

and z = [z1, z2, z3]
T . Subsequently, three additional

PWA approximations

f̃y3(y3) ≈ y2
3 , f̃y4(y4) ≈ y2

4 , f̃3(z3) ≈ f3(z3)

need to be computed over the corresponding domains. The

aggregated optimal PWA approximation f̃(z1, z2, z3) ≈
f(z1)f(z2)f(z3) consists of 7 individual approximations
and is given by

f̃(·) = 1/4

(
f̃y3

(
f̂a + f̃3(z3)

)
︸ ︷︷ ︸

ŷ3

− f̃y4

(
f̂a − f̃4(z3)

)
︸ ︷︷ ︸

ŷ4

)
. (14)

Here, f̂a is the function value of f̃a(z1, z2) ≈ f1(z1)f2(z2)

at z1 and z2, where f̃a(·) is obtained from (11), i.e.:

f̂a = 1/4

(
f̃y1

(
f̃1(z1) + f̃2(z2)

)
︸ ︷︷ ︸

ŷ1

− f̃y2

(
f̃1(z1) − f̃2(z2)

)
︸ ︷︷ ︸

ŷ2

)
.

(15)

The overall PWA approximation f̃(z1, z2, z3) can then be
evaluated, for any z1, z2, z3 ∈ Z, by computing the
function values of the respective approximations in the
following order:

Step 1: ŷ1 = f̃y1(f̃1(z1) + f̃2(z2)),

Step 2: ŷ2 = f̃y2(f̃1(z1) − f̃2(z2),

Step 3: ŷ3 = f̃y3(1/4(ŷ1 − ŷ2) + f̃3(z3)),

Step 4: ŷ4 = f̃y4(1/4(ŷ1 − ŷ2) − f̃3(z3)),

Step 5: f̃(z1, z2, z3) = 1/4(ŷ3 − ŷ4).

Such an inductive procedure can be repeated ad-infinitum
to derive PWA approximations of any multivariable func-
tion which satisfies Assumption 2.2. In general, the
PWA approximation will consists of 2p + n individual
PWA functions, where n is the number of variables in
f(z1, . . . , zn) and p is the number of products between
individual subfunctions fj(zj). As an example, for f(·) :=
α1f1(z1)f2(z2)f4(z4) + α2f3(z3)f5(z5) we have p = 3. We
remark that inclusion of scalar multipliers αj into the
PWA description of the form (14)–(15) is straightforward
and only requires linear scaling of the corresponding terms.

5. SOFTWARE IMPLEMENTATION

An algorithmic implementation of the inductive separation
procedure of Section 4 is discussed next, provided that
all functions are given in their symbolic representation.
The procedure relies on two basic building blocks. The
first one, represented by Algorithm 1, constructs the PWA
approximation of a product of two functions, i.e. computes

f̃(zi, zj) ≈ fi(zi)fj(zj). Strictly speaking, the algorithm
differentiates between two scenarios. If either fi or fj are
PWA functions which approximate the product of some

other functions (say fi ≈ fpfq), then f̃ ≈ fifj is computed
as shown in (12)–(15). Otherwise the procedure evidenced
by (7)–(11) is followed.

Algorithm 2 then utilizes this block to construct a parse
tree which defines the PWA approximation of the product

f̃1 f̃2

f̃a

(a) Step 1.

f̃1 f̃2

f̃a

f̃3

f̃b

(b) Step 2.

f̃1 f̃2

f̃a

f̃3

f̃b

f̃4

f̃c

(c) Step 3.

Fig. 5. Parsing tree T built by Algorithm 2.

of multiple functions, i.e.
∏n

i=1 fi(zi). To illustrate the pro-
cedure, consider f(z1, z2, z3, z4) = f1(z1)f2(z2)f3(z3)f4(z4).
First, the stack of “unexplored” functions S = {f4, f3, f2, f1}
is formed. In the first pass of the while cycle, f1 and f2

are popped from the stack and the PWA approximation

f̃a ≈ f1f2 is computed by Algorithm 1. Subsequently, f̃a is

pushed back to S (which then becomes S = {f4, f3, f̃a}),
and new nodes of the parse tree T are created as shown
in Figure 5(a). The procedure then repeats from Step 4.

I.e., f3 and f̃a are popped from S, f̃b ≈ f3fa is computed,
and the parse tree is updated as illustrated in Figure 5(b).

Due to Step 6, S = {f4, f̃b}, and the algorithm therefore

performs one more pass at which f̃c ≈ f4fb is created
and inserted into the tree, which finally looks like in
Figure 5(c). The algorithm thereupon terminates since

S = {f̃c} contains a single element.

If the function to be approximated contains sums of
products, e.g. when f(z1, z2, z3, z4) = α1f1(z1)f2(z2) +
α2f3(z3)f4(z4), separate parsing trees have to be built by
Algorithm 2 for each component of the summation. We
remark that treating the scaling factors αi only involves
scaling the bottom-most node of the corresponding tree by
the respective αi.

Algorithm 1 PWA approximation of fi(zi)fj(zj)

INPUT: Functions fi(zi), fj(zj).

OUTPUT: Approximation f̃(zi, zj) ≈ fi(zi)fj(zj).

1: Obtain the PWA approximations f̃i(zi) ≈ fi(zi) and

f̃j(zj) ≈ fj(zj) by solving two NLPs (6).
2: Get y

i
, yi, y

j
, and yj from (10) or (13).

3: Compute the PWA approximations f̃yi(yi) ≈ y2
i and

f̃yj(yj) ≈ y2
j on domains [y

i
, yi] and [y

j
, yj ] by solving

two NLPs (6).

4: return f̃i(zi), f̃j(zj), and the symbolic representation

of f̃(zi, zj).

The parsing tree generated by Algorithm 2 can be readily

used to convert the PWA approximation f̃(z1, . . . , zn) ≈∑
i αi

∏
j fj(zj) into a suitable mathematical model, which

can subsequently be used for simulations, analysis, or
control synthesis. Therefore we have created a software
tool which takes a parsing tree T (or several such trees
to accommodate for sums of products of functions), and
automatically generates the corresponding HYSDEL rep-
resentation of such a PWA approximation.
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Algorithm 2 PWA approximation of
∏n

i=1 fi(zi)

INPUT: Functions fi(zi).

OUTPUT: f̃(z1, . . . , zn) ≈ ∏n
i=1 fi(zi).

1: Create an empty last-in-first-out stack S and an empty
tree T .

2: Push fi(zi), i = n, . . . , 1 to the stack S.
3: while S has more than one element do
4: Pop two elements fj(zj) and fk(zk) from S.

5: Obtain f̃j(zj), f̃j(zj), and f̃(zj , zk) ≈ fj(zj)fk(zk)
by calling Algorithm 1.

6: Push f̃(zj , zk) to S.

7: Create nodes f̃j(zj), f̃k(zk) and insert them to T .

8: Create a node f̃(zj , zk) and append it as a child of

nodes f̃j(zj) and f̃k(zk).
9: end while

10: return Tree T representing f̃(z1, . . . , zn) ≈∏n
i=1 fi(zi).

Formally, HYSDEL is a tool which transform a linguistic
description of a hybrid system into the corresponding
mathematical form. The language allows to define IF-
THEN switching rules which, based on whether some logic
condition is satisfied or not, set the value of certain contin-
uous variables. This is achieved by modeling the rules as
mixed-integer inequalities. This mechanism therefore al-
lows to encode the IF-THEN rules of a PWA function (2),
as illustrated on the following example. Consider a PWA
function f(z) : R 7→ R with 3 regions:

f(z) =





a1z + c1 if z ≤ r1,

a2z + c2 if r1 < z ≤ r2,

a3z + c3 if z > r2.

(16)

Then the automatically generated HYSDEL representa-
tion of f(z) is as follows.

1 SYSTEM f {

2 INTERFACE {

3 INPUT { REAL z; }

4 OUTPUT { REAL f; }

5 PARAMETER {

6 REAL a1, a2, a3, c1, c2, c3, r1, r2;

7 }

8 }

9 IMPLEMENTATION {

10 AUX { BOOL d1, d2; REAL f1, f2, f3; }

11 AD {

12 d1 = (z <= r1);

13 d2 = (z <= r2);

14 }

15 DA {

16 f1 = { IF d1 THEN a1*z + c1 };

17 f2 = { IF ~d1 & d2 THEN a2*z + c2 };

18 f3 = { IF ~d2 THEN a3*z + c3 };

19 }

20 OUTPUT { f = f1 + f2 + f3; }

21 }

22 }

Here, the INTERFACE section defines the input and output
variables of the function, along with symbolic parameters
ai, ci, and ri. The AUX section then defined additional
variables necessary to model the IF-THEN rules. The
binary threshold detectors d1 and d2 used in the AD section

will be set to true if and only if the analog condition
on the right-hand-side of lines 12 and 13 is satisfied.
The translation of these two lines into the corresponding
mixed-integer inequalities will therefore ensure that d1=1
and d2=1 if z ≤ r1, then. For some z satisfying r1 < z ≤ r2,
the model will set d1=0 and d2=1. Finally, if z > r2 holds,
HYSDEL will transform the AD statements into mixed-
integer inequalities which will enforce d1=0 and d2=0.

The binary indicators are subsequently used in the DA sec-
tion which relates their truth value into the corresponding
assignment. Here, we exploit the fact that the domain of
f(z) is connected, i.e. (−∞, r1] ∪ (r1, r2] ∪ (r2, ∞) = R,
therefore each z will belong to exactly one region. If d1=1,
then we know that z ≤ r1, and therefore f1 = a1z + c1.
Implicitly, if the logic condition does not hold, f1 = 0.
Similarly, if d1=0 & d2=1 is true, then z belongs to the
second region and hence f2 = a2z + c2. Again, if d1=0
& d2=1 does not hold, then f2 = 0 is the implicit value.
Therefore, for any value of z, exactly one of the variables
f1, f2, f3 will take a non-zero value. Therefore f1 + f2 + f3

always gives the correct value of the PWA function f(z).
This relation is encoded on line 20.

The HYSDEL compiler will then take the source code and
convert it into the Mixed Logical Dynamical (MLD) math-
ematical model. The MLD model can then be converted
into the form of (2) e.g. by using the Multi-Parametric
Toolbox (Kvasnica et al., 2004). The same toolbox can also
be used to synthesize model predictive control strategies
based either on MLD or PWA prediction models.

6. CASE STUDY

Consider a continuous stirred tank reactor (CSTR) where
the reaction A → B takes place. The source compound
is pumped into the reactor at a constant inflow with a
constant concentration. The chemical reaction is exother-
mic and a coolant liquid is therefore pumped into the
reactor’s jacket to prevent overheating. The input tem-
perature of the coolant is constant, while its flow rate qc

can be manipulated and is considered an exogenous input.
Concentration of the reactant cA inside of the reactor,
temperature of the reactor mixture ϑ, and temperature of
the cooling liquid in the jacket ϑc are the state variables of
the CSTR. The normalized material and energy balances
of such a reactor are then given by

ċA = α1 − α2cA − α3cAe−β/ϑ,

ϑ̇ = α4 − α5α2cAe−β/ϑ + α6ϑ + α7ϑc, (17)

ϑ̇c = α8qc + α9(ϑ − ϑc) − α10ϑcqc,

with constants αi and β. The state and input variables are
considered to belong to intervals cA ∈ [4, 4.2] mol · m−3,
ϑ ∈ [300, 320] K, ϑc ∈ [290, 310] K, and qc ∈ [0.002, 0.02]

m3 · h−1.

The model features two nonlinearities: ϑcqc and cAe−β/ϑ,
both of which satisfy Assumption 2.2. Since the first one
involves a direct product of two variables, its PWA ap-

proximation f̃a ≈ ϑcqc can be obtained as in (8) by first
defining y1 = ϑc + qc, y2 = ϑc − qc, followed by approx-

imating the functions y2
1 and y2

2 by f̃y1(y1) and f̃y2(y2),
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respectively. Hence, the approximation f̃1(ϑc, qc) ≈ ϑcqc

is represented by

f̃1(ϑc, qc) = 1/4
(
f̃y1(ϑc + qc) − f̃y2(ϑc − qc)

)
. (18)

The second nonlinearity can be approximated as in (11).
First, the PWA approximation g̃(ϑ) ≈ e−β/ϑ is computed
by solving (6). Then, y3 = cA + e−β/ϑ, y4 = cA − e−β/ϑ

are defined, followed by computing the respective PWA

approximations f̃y3(y3) ≈ y2
3 and f̃y4(y4) ≈ y2

4 . f̃2(cA, ϑ) ≈
cAe−β/ϑ is thus given by

f̃2(cA, ϑ) = 1/4

(
f̃y3

(
cA + g̃(ϑ)

)
− f̃y4

(
cA − g̃(ϑ)

))
(19)

The overall PWA approximation of the original nonlinear
system ẋ = f(x, u) with x = [cA, ϑ, ϑc]

T and u = qc is
thus

ċA ≈ α1 − α2cA − α3f̃2(cA, ϑ)
)
,

ϑ̇ ≈ α4 − α5α2f̃2(cA, ϑ) + α6ϑ + α7ϑc + ϑ, (20)

ϑ̇c ≈ α8qc + α9(ϑ − ϑc) − α10f̃1(ϑc, qc),

which can be easily converted into the general PWA
form (2) as described in the previous section.

To assess approximation accuracy, we have investigated
the open-loop evolution of the original nonlinear model (17)
and compared it to the behavior of its PWA approxima-
tion (20). To derive the PWA model, we have chosen 3

regions for f̃y1(·), f̃y2(·) in (18) and f̃y3(·), f̃y4(·) in (19),

and N = 2 for g̃(θ) ≈ e−β/ϑ. The simulation results
are shown in Figure 6. To better illustrate advantages
of the PWA approximation, the simulation scenario also
shows evolution of linearized version of (17) around the
nominal steady state cs

A = 4.13, ϑs = 304, ϑs
c = 297, and

qs
c = 0.006. As can be seen from the results, the PWA

approximation clearly outperforms the model based on a
single linearization. Specifically, the model (20) provides
a 15 times more accurate tracking of the nonlinear profile
compared to the linear model. Important to notice is that
the PWA model consists of 14 local linear models. By in-

creasing N to 7 when approximating f̃y1(·), f̃y2(·) in (18)

and f̃y3(·), f̃y4(·) in (19), the approximation accuracy is
60 times better compared to the linear model. The cost
to be paid is the increased model complexity, which would
then consist of 30 regions.

The HYSDEL version of the PWA model (20) is pro-
vided next. Since HYSDEL only allows modeling of dy-
namical system in discrete time, we have used the Eu-
ler approximation of the continuous-time model (17), i.e.
x+ ≈ ∆tf(x, u) + x with sampling time ∆t = 1 minute.
Simulations have shown that, due to a relatively slow
dynamics of (17), evolution of the discrete-time approx-
imation is almost undistinguishable from its continuous-
time counterpart. The comments wrapped in /* */ have
been manually included to increase readability.

1 SYSTEM cstr {

2 INTERFACE {

3 STATE {

4 /* state variables with bounds */

5 REAL ca [4.0, 4.2]; /* concentration of A */

6 REAL v [300, 320]; /* reactor temperature */

7 REAL vc [290, 310]; /* jacket temperature */
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Fig. 6. Simulation results for the CSTR. Red line: nonlin-
ear model (17), blue dashed line: PWA model (20),
black dotted line: linear approximation.

8 }

9 INPUT {

10 /* input signal with bounds */

11 REAL qc [0.002, 0.02]; /* coolant flowrate */

12 }

13 PARAMETER {

14 /* approximation of exp(-beta/v) by 2 regions */

15 REAL g_a1, g_a2, g_c1, g_c2, g_r;

16 /* approximation of y_1^2 with 3 regions */

17 REAL y1_a1, y1_a2, y1_a3;

18 REAL y1_c1, y1_c2, y1_c3;

19 REAL y1_r1, y1_r2;

20 /* approximation of y_2^2 with 3 regions */

21 REAL y2_a1, y2_a2, y2_a3;

22 REAL y2_c1, y2_c2, y2_c3;

23 REAL y2_r1, y2_r2;

24 /* approximation of y_3^2 with 3 regions */

25 REAL y3_a1, y3_a2, y3_a3;

26 REAL y3_c1, y3_c2, y3_c3;

27 REAL y3_r1, y3_r2;

28 /* approximation of y_4^2 with 3 regions */

29 REAL y4_a1, y4_a2, y4_a3;

30 REAL y4_c1, y4_c2, y4_c3;

31 REAL y4_r1, y4_r2;

32 /* parameters alpha_i */

33 REAL a1, a2, a3, a4, a5;

34 REAL a6, a7, a8, a9, a10, beta;

35 /* sampling time */

36 REAL Ts;

37 }

38 }

39 IMPLEMENTATION {

40 AUX {

41 /* logic threshold detectors */

42 BOOL g_d, y1_d1, y1_d2, y2_d1, y2_d2;

43 BOOL y3_d1, y3_d2, y4_d1, y4_d2;

44 /* auxiliary continuous variables */

45 REAL g, f1, f2;

46 REAL y1, y1_f1, y1_f2, y1_f3;

47 REAL y2, y2_f1, y2_f2, y2_f3;

48 REAL y3, y3_f1, y3_f2, y3_f3;

49 REAL y4, y4_f1, y4_f2, y4_f3;
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50 }

51 /* approximation of exp(-beta/v) */

52 AD {

53 g_d = (v <= g_r);

54 }

55 DA {

56 /* special case for 2 regions */

57 g = { IF g_d THEN g_a1*v + g_c1

58 ELSE g_a2*v + g_c2 };

59 }

60 /* approximation of vc*qc */

61 AD {

62 y1_d1 = ( vc + qc ) <= y1_r1;

63 y1_d2 = ( vc + qc ) <= y1_r2;

64 y2_d1 = ( vc - qc ) <= y2_r1;

65 y2_d2 = ( vc - qc ) <= y2_r2;

66 }

67 DA {

68 y1_f1 = { IF y1_d1 THEN y1_a1*v + y1_c1 };

69 y1_f2 = { IF ~y1_d1 & y1_d2 THEN y1_a2*v + y1_c2 };

70 y1_f3 = { IF ~y1_d2 THEN y1_a3*v + y1_c3 };

71 y2_f1 = { IF y2_d1 THEN y2_a1*v + y2_c1 };

72 y2_f2 = { IF ~y2_d1 & y2_d2 THEN y2_a2*v + y2_c2 };

73 y2_f3 = { IF ~y2_d2 THEN y2_a3*v + y2_c3 };

74 }

75 LINEAR {

76 /* function value of \tilde{f}_{y_1} */

77 y1 = y1_f1 + y1_f2 + y1_f3;

78 /* function value of \tilde{f}_{y_2} */

79 y2 = y2_f1 + y2_f2 + y2_f3;

80 /* function value of \tilde{f}_1(y_1, y_2) */

81 f1 = 1/4*(y1 - y2);

82 }

83 /* approximation of ca*exp(-beta/v) */

84 AD {

85 y3_d1 = ( ca + g ) <= y3_r1;

86 y3_d2 = ( ca + g ) <= y3_r2;

87 y4_d1 = ( ca - g ) <= y4_r1;

88 y4_d2 = ( ca - g ) <= y4_r2;

89 }

90 DA {

91 y3_f1 = { IF y3_d1 THEN y3_a1*v + y3_c1 };

92 y3_f2 = { IF ~y3_d1 & y3_d2 THEN y3_a2*v + y3_c2 };

93 y3_f3 = { IF ~y3_d2 THEN y3_a3*v + y3_c3 };

94 y4_f1 = { IF y4_d1 THEN y4_a1*v + y4_c1 };

95 y4_f2 = { IF ~y4_d1 & y4_d2 THEN y4_a2*v + y4_c2 };

96 y4_f3 = { IF ~y4_d2 THEN y4_a3*v + y4_c3 };

97 }

98 LINEAR {

99 /* function value of \tilde{f}_{y_3} */

100 y3 = y3_f1 + y3_f2 + y3_f3;

101 /* function value of \tilde{f}_{y_4} */

102 y4 = y4_f1 + y4_f2 + y4_f3;

103 /* function value of \tilde{f}_2(y_3, y_4) */

104 f2 = 1/4*(y3 - y4);

105 }

106 CONTINUOUS {

107 /* discrete-time state-update equations */

108 ca = (a1 - a2*ca - a3*f2)*Ts + ca;

109 v = (a4 - a5*a2*f2 + a6*v + a7*vc)*Ts + v;

110 vc = (a8*qc + a9*(v-vc) - a10*f1)*Ts + vc;

111 }

112 }

113 }

7. CONCLUSIONS

We have shown that a large class of dynamical sys-
tems with nonlinear vector fields can be approximated by
PWA systems of fixed complexity in an optimal manner.

The procedure boils down to solving a series of one-
dimensional problems for which efficient solution methods
exist. Derivation of the approximation can be easily au-
tomated and the HYSDEL variant of the hybrid approx-
imation can be generated, hence allowing for subsequent
control synthesis based on the hybrid model. An experi-
mental version of the automatic translator is available for
free download at http://www.kirp.chtf.stuba.sk/∼sw/.
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Abstract: This paper is devoted to finding an optimal control of a diafiltration process which
is designed to purify and to concentrate human albumin in given albumin-ethanol solution. This
process can be controlled by time-dependent adding of diluant (water). We address the control of
diluant utilization in a more general and fundamental form than any previous attempts. Instead
of considering arbitrarily constructed schemes, we determine the optimal time-dependent profile
of the diluant flow for the entire process by employing dynamic optimization methods. The paper
addresses two problems of optimal process operation: (1) the minimization of process time, and
(2) the minimization of applied diluant volume. Control vector parametrization approach is
applied considering different parametrized forms of the control function such as constant, linear,
and piece-wise constant schemes.

Keywords: Optimal Control, Albumin Separation, Diafiltration.

1. INTRODUCTION

Albumin has a great pharmaceutical value and its produc-
tion from human plasma is realized in industrial-scale. In
the production line, a process stream is generated that is
a ternary system containing ethanol, water, and albumin.
This stream is then to be further processed to meet certain
technological requirements. Namely, the albumin has to be
concentrated, and simultaneously to that, the ethanol level
has to be reduced. These dual objectives can be achieved
employing diafiltration.

Diafiltration is known as an effective membrane filtration
technique to separate a macro-solute from a micro-solute
on the basis of their molecular size differences. It usually
consists of a sequence of three operational modes. These
are the concentration mode (C), the constant-volume dilu-
tion mode (CVD), and the variable-volume dilution mode
(VVD). They differ from each other in the utilisation

⋆ The first author and the second author gratefully acknowledge the
contribution of the Scientific Grant Agency of the Slovak Republic
under the grants 1/0071/09, 1/0537/10, 1/0095/11, and the Slovak
Research and Development Agency under the project APVV-0029-
07. This work was also financed by a grant (No. NIL-I-007-d)
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The third author would like to thank the Hessen State Ministry of
Higher Education, Research and the Arts for the financial support
within the Hessen initiative for scientific and economic excellence
(LOEWE-Program).

of diluant. The actual operational regime then combines
these three modes.

The traditional diafiltration (TD) technique consists of
three consecutive steps including a pre-concentration, a
constant-volume dilution mode, and a post-concentration
step. Conventionally, as it is also described in detail
by Jaffrin and Charrier (1994), this strategy is applied in
albumin production.

In order to minimize diafiltration process time, a num-
ber of optimization strategies have recently been intro-
duced (Asbi and Cheryan, 1992, Foley, 1999, Yazdanshenas
et al., 2005) that usually consider traditional diafiltration
and optimize switching times between steps. For this par-
ticular problem of ethanol/albumin separation, Jaffrin and
Charrier (1994) have proposed VVD process. It utilizes the
diluant at a rate that is less than the permeate flow rate,
thus, this process enables a simultaneous concentration
of macro-solute and removal of micro-solute in one single
step. Most recently, Takači et al. (2009) have introduced
another diafiltration approach. Instead of a stepwise water
utilization strategy, the authors have considered the ratio
of diluant flow to permeate flow as a continuous function of
the operational time. Linear, logarithmic, and exponential
functions have been studied, and their impact on the re-
quired diafiltration time was simulated. It has been found
that the diafiltration process time improved around 10 per-
cent in comparison with the strategy suggested by Jaffrin
and Charrier (1994).

Preprints of the NIL workshop
Jan 10–15, 2011, Bratislava, Slovakia Paulen, R., Fikar, M., Kovács, Z., Czermak, P.

329



It should be mentioned that the previous attempts have
considered arbitrarily pre-defined schemes of water uti-
lization. It has been indicated in previous works (Foley,
2006, Takači et al., 2009) that the problem of finding the
optimal wash-water utilization strategy is still open. In
this paper, we apply dynamic optimization methods that
can significantly improve solution of the time minimiza-
tion problem. Moreover, we employ the same methods to
analyze a diluant minimization problem that can attract
the attention of industrial sector as well.

2. ENGINEERING PROBLEM STATEMENT

The schematic representation of membrane diafiltration
process is shown in Fig. 1. In a batch operation, the

permeateretentatediluant

feed tank

membrane

module

q(t)u(t)

Fig. 1. Schematic representation of diafiltration process.

retentate stream is recirculated to the feed tank, and the
permeate stream q(t) is collected separately. During the
operation, fresh solute-free diluent stream u(t) (i.e. wash-
water) can be added into the feed tank to replace solvent
losses.

We consider an ultrafiltration (UF) application that is ex-
perimentally investigated by Jaffrin and Charrier (1994).
The UF apparatus, the experimental conditions, the mem-
brane properties, and the sample analysis have been de-
scribed in detail in their work. In brief, a cellulose acetate
membrane with 20 kDa cut-off was used for albumin ul-
trafiltration. The permeate flux was monitored at various
albumin and ethanol concentrations using a recirculation
flowrate of 300 L/h and a transmembrane pressure of 4
bar. It was found that the membrane is freely permeable
to ethanol, but no albumin can pass through it. The ex-
perimental investigation has also shown that both albumin
concentration c1 and ethanol concentration c2 consider-
ably affects the permeate flow q. In the following, we use
the relation computed and validated in their study given
as

q(c1, c2) =
1

b1 + b2c1 + b3c2 + b4c1c2 + b5c2
1 + b6c2

2

(1)

where the constants bi can be found in Table 1. In this
study, normalized process time is being used, that enables
straightforward scale-up calculations. Normalized process
time is defined as the time necessary to process an initial
feed solution of 0.0666 m3 which corresponds to 1 kg of
albumin (initial albumin concentration is 15 kgm−3) being
separated with 1 m2 membrane. We investigate different

Table 1. Permeate volumetric flowrate rela-
tion constants (Data taken from Takači et al.

(2009)).

Constant Value

b1 2.877
b2 1.698E-01
b3 1.874E-02
b4 5.708E-04
b5 -2.394E-04
b6 9.334E-05

Table 2. Initial and final conditions on macro-
/micro-solute concentrations.

Case
c1,0 c1,f c2,0 c2,f

[kgm−3] [kgm−3] [kgm−3] [kgm−3]

1 15 80 98.35 0.1
2 15 80 146.3 0.1
3 15 80 194.3 0.1
4 15 120 98.35 0.1
5 15 120 146.3 0.1
6 15 120 194.3 0.1
7 15 240 98.35 0.1
8 15 240 146.3 0.1
9 15 240 194.3 0.1

cases of initial concentration of ethanol (c2,0) and of
restriction for final concentration of albumin (c1,f ). These
are summarized in Table 2.

3. PROCESS MODEL

In our previous study (Kovács et al., 2009), we have pro-
posed a comprehensive mathematical model in a compact
form for batch diafiltration processes. The process dynam-
ics can be described by the following first-order ordinary
differential equations (ODE) with their corresponding ini-
tial conditions

V̇ = u − q(c1, c2), V (t0) = V0 (2)

ċ1 =
c1

V
[q(c1, c2)R1(c1, c2) − u] , c1(t0) = c1,0 (3)

ċ2 =
c2

V
[q(c1, c2)R2(c1, c2) − u] , c2(t0) = c2,0 (4)

where V represents feed tank solution volume, u is fresh
solute-free diluant volumetric flowrate, and q stands for
permeate volumetric flow rate. R1 and R2 denote the
rejection of macro-solute and micro-solute, respectively. It
should be mentioned that, in a general case, the actual
value of both q and R depends on the concentrations of
macro-solute c1 as well as on micro-solute concentration
c2. In this specific application, however, the rejection of the
macro-solute (i.e. albumin) is found to be unity, while the
rejection of the micro-solute (i.e. ethanol) to be zero. Thus,
the model reduces to the following initial value problem

V̇ =u − q, V (t0) = V0 (5)

ċ1 =
c1

V
(q − u), c1(t0) = c1,0 (6)

ċ2 = − c2

V
u, c2(t0) = c2,0 (7)

Control of diafiltration processes is traditionally operated
using a dimensionless variable α(t) which is defined as a
fraction between inflow and outflow
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α(t) =
u(t)

q(t)
(8)

Introducing α(t) into Equations (5)–(7) yields

V̇ =(α − 1)q, V (t0) = V0 (9)

ċ1 =
c1

V
(1 − α)q, c1(t0) = c1,0 (10)

ċ2 = − c2

V
αq, c2(t0) = c2,0 (11)

4. PROCESS OPTIMIZATION

In this section, two different process optimization prob-
lems are introduced and solved. The first one represents
a traditional minimum time problem. In this problem,
optimal trajectories of function α(t) are computed in order
to minimize running time of a batch diafiltration process.
The second problem takes a different approach to enhance
process performance. Here, the minimization of diluant
consumption during the diafiltration process is considered.
This is an important issue especially in pharmaceutical
industry. In such applications, the diafiltration water has
to meet strict quality regulations to avoid contamination of
the process stream, and thus, is available at a considerably
high price.

4.1 Minimum Time Problem

The objective of this optimization task is to find the time
dependent function α(t) which uses minimum time to drive
the process from initial state to a prescribed terminal state.
Mathematical formulation of this dynamic optimization
problem is as follows

J1 = min
α(t)

tf (12a)

s.t.

V̇ = (α − 1)q, V (t0) = V0, V (tf ) = V0
c1,0

c1,f
(12b)

ċ1 =
c1

V
(1 − α)q, c1(t0) = c1,0, c1(tf ) = c1,f (12c)

ċ2 = −c2

V
αq, c2(t0) = c2,0, c2(tf ) = c2,f (12d)

Note that solution volume at the final time Vf is fully de-
termined from the desired final macro-solute concentration
value c1,f and follows from its material balance.

4.2 Minimum Diluant Problem

The second problem addresses minimization of total
amount of diluant u(t) = α(t)q(t) used to drive the process
from initial state to a prescribed terminal state assuming
that the final time tf is a free variable. Mathematical
formulation (12) remains unchanged in this case except
for the cost function

J2 = min
α(t)

∫ tf

t0

α(t)q(t)dt (13)

4.3 Optimization Strategy

Presented optimization problems can be solved using
various approaches of dynamic optimization. Most pop-
ular are methods based on discretization of original

infinite-dimensional problem to a finite-dimensional prob-
lem which can be then treated by a nonlinear programming
(NLP) tools. Even if the solution is not truly optimal in
the sense of the original formulation, methods are numer-
ically robust and computed solutions converge to infinite-
dimensional formulation.

According to the applied discretization, the methods can
be based on discretization of control, e.g. control vec-
tor parametrization (CVP) method (Balsa-Canto et al.,
2001, Fikar and Latifi, 2002, Goh and Teo, 1988, Vassil-
iadis et al., 1994) and on complete (controls and states)
discretization, e.g. orthogonal collocation (OC) (Avraam
et al., 1998, Cuthrell and Biegler, 1987, Logsdon and
Biegler, 1989). Both groups possess certain advantages
and drawbacks. In general, OC produces a large sparse
NLP formulation and is of infeasible type, where solution
is obtained only if optimum is found. On the other hand,
CVP spends a large fraction of time in solution of dif-
ferential equations even for a combination of optimized
parameters that is far from the optimum. However, CVP
methods can exploit robustness and efficiency of modern
ODE solvers. Some of these are capable to provide sensi-
tivity information used for evaluation of a more accurate
gradient information (Hirmajer and Fikar, 2006).

There are numerous software packages (commercial or
free) for solving dynamic optimization problems imple-
mented in various programming environments. MATLAB
packages such as OC based Dynopt (Čižniar et al., 2005)
or CVP based DOTcvp (Hirmajer et al., 2008) are among
those available freely.

In this paper we apply CVP approach where the control
variable α(t) is considered to be parametrized as a com-
bination of various time dependent terms. We consider
function α(t) to be

(1) constant α(t) = α0

(2) linear α(t) = α0 + α1t
(3) N×piece-wise constant (PWC)

α(t) =

N∑

k=1

αkχk(t) (14)

where αk are values of α(t) at respective time inter-
vals with

χk(t) =

{
1 if t ∈ [tk−1, tk],

0 otherwise
(15)

The constant α(t) formulation represents VVD strat-
egy whereas linear α(t) formulation has been proposed
in Takači et al. (2009).

If we assume that α(t) can be a function of time, we
can approximate it by a trajectory that is piece-wise
constant. Approximation with a low value of N (say 2–
3) can produce results that are compatible with known
diafiltration strategies as TD and VVD. As N becomes
larger, we can decide whether traditional strategies are
sufficient or if there is some room for improvement using
more advanced α(t) trajectories.
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5. RESULTS AND DISCUSSION

Optimization problems (12) and (13) were solved using
CVP method with gradient information determined using
sensitivity equations approach.

We found that proposed problems are strongly similar to
each other in a certain sense, since the solutions are almost
the same for both studied problems. At first we discuss
results for constant and linear α(t).

5.1 Constant and Linear Time Dependent α(t)

The same optimum has been observed for both optimiza-
tion problems. The improvement using linear compared to
constant α(t) is in average 9.7% for the minimum time
operation and 42.3% for the minimum diluant problem.
The results obtained are given in Table 3 and optimal
control profiles for Case 9 in Fig. 2.

Table 3. Minimum operation times and min-
imum diluant consumptions for constant and

linear α(t).

Case
constant α(t) linear α(t)

J∗
1 [h] J∗

2 [m3] J∗
1 [h] J∗

2 [m3]

1 2.40 0.223 2.19 0.152
2 2.63 0.236 2.42 0.160
3 2.85 0.245 2.64 0.166
4 2.37 0.193 2.13 0.116
5 2.60 0.204 2.36 0.123
6 2.81 0.212 2.59 0.126
7 2.31 0.155 2.00 0.071
8 2.54 0.164 2.24 0.075
9 2.75 0.171 2.47 0.076

Note that if the target albumin concentration c1(tf ) in-
creases, faster process operation is obtained. This confirms
the finding of Takači et al. (2009). Similarly, it has been
observed in Asbi and Cheryan (1992) that minimum time
does not depend on concentration monotonously and can
increase as well.
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Fig. 2. Optimal trajectories of α(t), Case 3. Left: constant
α, right: linear α.

5.2 Piece-wise Constant α(t) for Minimum Time Problem

We have chosen 2, 3, and 40 PWC segments in order to
investigate the impact of choosing PWC control strategy
to minimize the total time of process operation. Table 4
summarizes results obtained by several PWC functions
α(t). Starred cost function J∗

1 represents the minimum
time attained, whereas the unstarred cost function J2

Table 4. Minimum operation times and diluant
consumptions for different N× PWC α(t).

Case
2×PWC α(t) 3×PWC α(t) 40×PWC α(t)

J∗
1 [h] J2[m3] J∗

1 [h] J2[m3] J∗
1 [h] J2[m3]

1 2.04 0.086 2.04 0.086 2.04 0.088
2 2.30 0.104 2.30 0.104 2.29 0.103
3 2.54 0.118 2.54 0.123 2.54 0.124
4 1.98 0.058 1.98 0.058 1.98 0.059
5 2.24 0.075 2.24 0.075 2.24 0.076
6 2.49 0.088 2.48 0.095 2.48 0.096
7 1.84 0.030 1.84 0.030 1.84 0.030
8 2.11 0.044 2.11 0.044 2.11 0.047
9 2.36 0.055 2.35 0.067 2.35 0.063

means evaluation of the corresponding total diluant con-
sumption.

Compared to constant or linear case, advantages of using
PWC profiles are evident. The average gain is 64.8% for
diluant problem and 14.3% for minimum time problem in
comparison with constant α.

If treating α(t) as a PWC function, obtained results show
that there is a similarity in trajectories of optimal α(t) for
cases 1,4,7; cases 2,5,8; and for cases 3,6,9.

When cases 1,4,7 are considered, two and three PWC
segments produce the same optimal operation charac-
terised as the traditional diafiltration (TD) process with
α(t) = {0, 1} for appropriate time lengths.

For other cases, two and three PWC segments produce
similar solutions that are a combination of VVD and TD
processes with α(t) = {α0, 1} where α0 > 0.

Although a finer PWC approximation (forty PWC seg-
ments) exhibits a different optimal α(t) trajectory, mini-
mum operation time stays almost unchanged and differ-
ences in final time between 3 and 40 segments are negli-
gible. Hence, minimum is in this case flat, i.e. final time
value is not strongly influenced by shifting α(t) trajectory
from the optimal to traditional diafiltration operation.
Figure 3 shows optimal control trajectory and its differ-
ences for 2 and 40 segments in Case 9. Corresponding
state trajectories for 40 segments are shown in Figure 4.
Thus, some of the results support claims of Jaffrin and
Charrier (1994) that VVD operation is time optimal for
this process. However, if the concentration c2,0 is smaller
(Cases 1,4,7), TD operation can be used.

If our results are compared with those obtained in Takači
et al. (2009), we can see that the proposed approach
performs significantly better since we do not consider pre-
defined functions of α(t) (linear, logarithmic, exponential)
but we permit it to behave arbitrarily. This results in lower
minimum operation times obtained.

5.3 Piece-wise Constant α(t) for Minimum Diluant Problem

We have again chosen 2, 3, and 40 PWC segments in
order to investigate the impact of choosing PWC control
strategy to minimize the diluant comsumption. Table 5
summarizes the results.

Starred cost function J∗
2 represents the minimum diluant

consumption attained, whereas the unstarred cost function
J1 means the corresponding total time.
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Fig. 3. Optimal minimum time trajectories of α(t), Case
3. Left: 2 PWC segments, right: 40 PWC segments.
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Fig. 4. Optimal minimum time state trajectories, Case
3, 40 PWC segments. Left: concentrations, right:
volume.

Table 5. Operation times and minimum diluant
consumptions for different N× PWC α(t).

Case
2×PWC α(t) 3×PWC α(t) 40×PWC α(t)

J1[h] J∗
2 [m3] J1[h] J∗

2 [m3] J1[h] J∗
2 [m3]

1 2.04 0.086 2.04 0.086 2.04 0.086
2 2.31 0.091 2.31 0.091 2.31 0.091
3 2.59 0.095 2.59 0.095 2.55 0.095
4 1.98 0.057 1.98 0.057 1.98 0.057
5 2.26 0.061 2.26 0.061 2.24 0.061
6 2.55 0.063 2.55 0.063 2.52 0.063
7 1.84 0.029 1.84 0.029 1.85 0.029
8 2.13 0.030 2.13 0.030 2.13 0.030
9 2.42 0.032 2.42 0.032 2.42 0.032

The average gain in the minimum diluant consumption
is 69% comparing to constant α(t) case. TD process
operation was proved to be optimal in all cases. For
different number of PWC segments, obtained minimum
final times differ only slightly from these computed in
previous case. Thus, the minimum diluant consumption
and minimum time operation is the same in Cases 1,4,7.
If concentration c2,0 is increased, it is possible to obtain
optimal operation with substantially less diluant as in
the minimum time problem but at the expense of longer
processing times. Figure 5 shows optimal control and state
trajectories in Case 9 with 40 PWC segments.

It is possible to compare minimum time and minimum
diluant optimal trajectories. If minimum time is consid-
ered, α(t) forces both concentrations to be taken towards
desired terminal state as soon as possible. If the minimum
diluant case is considered, the volume is reduced to its
terminal condition as soon as possible.

Albumin diafiltration has been considered as a time mini-
mization problem in previous studies (Jaffrin and Charrier,
1994, Takači et al., 2009). We would like to highlight
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Fig. 5. Optimal minimum diluant trajectories, Case 3, 40
PWC segments. α, concentrations, volume.

that the computed minimal time is relatively insensitive
to changes of the optimized control profile. Such changes,
however, might dramatically influence the diluant con-
sumption. Table 4 and 5 indicate that operation time
cannot be decreased without an increase in the diluant
consumption.

Obviously, decision makers face a trade-off problem be-
tween diluant consumption and operational time. In fact,
the most economical process can be determined as min-
imization of a mixed objective involving the operational
cost of the pump and the cost of the utilized dilution
water. In such a complex cost function, the operational
cost of the pump is a product of the operational time, the
power consumption of the pump, and the electricity price.
Furthermore, the cost of the diluant depends on the unit
price of the utilized diafiltration water. Such cost-benefit
analysis is out of the scope of this paper since it relies on
information on these cost factors of the industrial settings.
However, this type of complex problem can also be solved
in a similar manner with dynamic optimization tools as
shown by Fikar et al. (2010).

6. CONCLUSIONS

In this work, a diafiltration process for albumin purifi-
cation is considered. To optimize the process, we have
proposed dynamic optimization framework suitable to
deal with different optimization strategies as well as
different considered control trajectories. Control vector
parametrization approach was used to obtain optimal con-
stant, linear and piece–wise constant profiles of function
α(t).

We have demonstrated the power of the proposed opti-
mization method on two selected problems: minimum time
and minimum diluant consumption problem, and investi-
gated whether conventionally used diafiltration techniques
can be considered as optimal. We found that two-step
TD process, involving a pre-concentration and a constant-
volume dilution mode step, is optimal in case of minimiza-
tion of overall diluant consumption. However, obtained
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optimal trajectories can differ from the traditionally used
operation in case of time minimization.
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Abstract: This work examines an optimal process control of batch processes with process
uncertainty. Assuming that the batch process is repeated several times then the run-to-run
framework can be used. We propose an intergated control approach that computes a new control
input to meet terminal constraints, between batches, and that improves this control input for
model-mismatch, within batches. The simulation results show better convergence with proposed
control scheme over an individual schemes dealing with either run-to-run adaptation or with
in-batch neighbouring-extremal (NE) control.

Keywords: dynamic optimisation, neighbouring-extremal control, optimal control, integrated
control scheme, run-to-run adaptation

1. INTRODUCTION

Chemical processes are subject to large uncertainty during
their operation. Common sources of uncertainty include
measurement noise, inaccurate kinetic rate parameters,
feed impurities, and fouling. This usually give rise to a
lower production quality and quantity along with opera-
tional constraint violations. Optimal control has the ability
to mitigate the effect of uncertainty on process perfor-
mance, especially in the presence of constraints (Kadam
and Marquardt, 2007).

A number of methodologies for dealing with uncertainty
and disturbances in batch process can be found in the
literature. Model predictive control (MPC) (Allgöwer
and Zheng, 2000; Garcia et al., 1989) implements a re-
optimisation strategy and uses measurements to update
the current state of the model. This strategy suffers two
important deficiencies: i) the presence of constraints may
result in an infeasible solution; ii) the re-optimisations may
not be tractable in real-time. Clearly, the time needed
to re-optimise the system depends on both the problem
complexity and the computing performance. Too large a
computation time may lead to performance loss, or worse
constraint violations, especially in chemical processes that
exhibit fast process dynamic. In the so-called explicit
MPC approach (Bemporad et al., 2002), multi-parametric
programming is used to pre-compute off-line all possible
control actions for a given range of the state variables.
The control inputs are then adjusted by simply selecting
the control law that corresponds to the actual state of the
process, as given by the latest measurements. Although
this method can accommodate fast sampling times, its
foremost limitation comes from the curse of dimensionality
and from the quality of the linearisations. This currently
limits the application of explicit MPC to problems having

no more than a few state variables as well as piece-wise
linear dynamics.

This paper presents a two-time-scale approach, whereby
a run-to-run adaptation strategy (Bonvin et al., 2006)
is implemented at the slow time scale (outer loop) and
is integrated with a (constrained) neighbouring-extremal
(NE) controller (Bryson and Ho, 1975) that operates at
the fast time scale (inner loop). More specifically, run-
to-run adaptation of the terminal constraints (Marchetti
et al., 2007) is considered for the outer loop. In its original
form, this scheme proceeds by re-optimising the batch
operation between each run and adapting the terminal
constraints based on the mismatch between their predicted
and measured values; but no adaptation is made within a
run. In order to reject disturbances within each run and
at the same time promote feasibility and optimality, a
NE controller is here considered as the inner loop. The
theory of NE control, which has been developed over the
last 4-5 decades to avoid the costly re-optimisation of
(fast) dynamic systems, is indeed well-suited for batch
process control. The integration between the outer- and
inner-loops occurs naturally since the NE controllers are
recalculated after each run based on the solution to the
outer-loop optimization problem. The resulting integrated
two-time-scale optimization scheme thus offers promise to
enhance performance and tractability.

The paper is organised as follows. Theoretical background
on NE control and run-to-run optimization is provided in
Section 2. The proposed integrated two-times-scale optimi-
sation scheme is described in Section 3 and demonstrated
on the case study of a semi-batch reactor example in
Section 4. Finally, Section 5 concludes the paper.
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2. THEORETICAL BACKGROUND

2.1 Problem Formulation

Throughout the paper, the following dynamic optimisation
problem with control and terminal bound constraints is
considered:

min
u

J = φ(x(tf )) +

∫ tf

0

L(x(t),u(t))dt (1)

s.t. ẋ = F (x(t),u(t)), 0 ≤ t ≤ tf (2)

x(0) = x0 (3)

ψ(x(tf ), tf ) ≤ ψref (4)

uL ≤ u(t) ≤ uU . (5)

In (1)–(5), t ≥ 0 denotes the time variable, with tf the final
time; u ∈ Rnu the control vector; x ∈ Rnx the state vector,
with initial value x0; J , φ and L the scalar cost, terminal
cost, and integral cost, respectively; and ψ the vector of
nψ terminal constraints. All the functions in (1)–(5) are
assumed to be continuously differentiable with respect to
all their arguments.

2.2 Necessary Conditions for Optimality

Following Bryson and Ho (1975), the Hamiltonian function
H is defined as follows:

H(x,u,λ,µL,µU ) = L(x,u) + F (x,u)Tλ+ (6)

+ µL(uL − u) + µU (u− uU ), (7)

λ ∈ Rnx denotes the so-called adjoint (or costate) vector
which satisfies

λ̇ = −Hx = −F Txλ −Lx, 0 ≤ t ≤ tf , (8)

with the terminal conditions given by

λ(tf ) =
[
φx + νTψx

]
t=tf

, (9)

µL(t),µU (t) ∈ Rnu are Lagrange multiplier vector func-
tions satisfying

µL
T

(uL − u) = 0; µL ≥ 0 (10)

µU
T

(u − uU ) = 0; µU ≥ 0, 0 ≤ t ≤ tf . (11)

and ν ∈ Rnψ are Lagrange multipliers for the terminal
constraints such that

0 = νkψk, νk ≥ 0, for each k = 1, . . . , nψ. (12)

Provided that the optimal control problem is not abnor-
mal, the first- and second- order necessary conditions for
optimality (NCO) read:

Hu = Lu + F Tuλ− µL − µU = 0 (13)

Huu ≥ 0 (14)

This latter determines the set of active terminal con-
straints at the optimum, which is denoted by the vector ψ̄
of dimension nψ̄ and by complementary multiplier ν̄∗. The
constraints are inactive when the crresponding Lagrange
multiplier is equal to zero. (The subscript such as y for a
given variable denotes partial derivatives of that variable
with respect to y.)

2.3 Neighbouring-extremal Control

Let’s assume that the optimal control trajectory u∗(t) for
the optimisation problem (1)–(5) consists of a sequence of
constrained and unconstrained arcs. The optimal solution

then comprises x∗(t), λ∗(t), ν̄∗,µL,µU , 0 ≤ t ≤ tf .
For the control sequence, it is also assumed that the
uncertainty is sufficiently small for the perturbed optimal
control to have the same sequence of constrained and
unconstrained arcs as the nominal solution.

The constrained optimal control problem obtained with
a small variation in the initial condition x(0) = x0 +
δx0 and in active terminal constraints ψ̄(x(tf ), tf ) = δψ̄
produces variations in optimal control vector δu(t), state
vector δx(t), adjoint vector δλ(t) and Lagrange multiplier
vector δν̄ (for the active terminal constraints ψ̄). Along
unconstrained arcs, these variations can be calculated from
the linearisation of the first-order NCO (10)–(12) around
the extremal path (Bryson and Ho, 1975):

δẋ = F ∗
xδx+ F ∗

uδu (15)

δλ̇ = −H∗
xxδx− F ∗T

x δλ−H∗
xuδu (16)

0 = H∗
uxδx+ F ∗T

u δλ+H∗
uuδu (17)

δx(0) = δx0 (18)

with additional conditions:

δλ(tf ) =
[(
φ∗

xx + ν̄∗T ψ̄∗
xx

)
δx+ ψ̄∗T

x δν̄
]
t=tf

(19)

δψ̄ =
[
ψ̄∗

xδx
]
t=tf

. (20)

A superscript ∗ indicates that the corresponding quantity
is evaluated along the extremal path u∗(t), 0 ≤ t ≤ tf , and
corresponding states, adjoints and Lagrange multipliers.

Let us assume that the Hamiltonian function is regular,
so that H∗

uu is invertible along 0 ≤ t ≤ tf . The control
variation δu(t) for these unconstrained arcs µL = µU = 0
is then given from (17):

δu(t) = −(H∗
uu)−1

[
F ∗T

u δλ(t) +H∗
uxδx(t)

]
. (21)

Overall, along constrained arcs, the control variation is
equal to zero δu(t) = 0. Then, δx(t) and δλ(t) satisfy the
following multi-point boundary value problem (MPBVP):(

δẋ(t)

δλ̇(t)

)
= ∆(t)

(
δx(t)
δλ(t)

)
,

δx(0) = δx0, δψ̄ =
[
ψ̄∗

xδx
]
t=tf

,

δλ(tf ) =
[(
φ∗

xx + ν̄∗T ψ̄∗
xx

)
δx+ ψ̄∗T

x δν̄
]
t=tf

(22)

where:

∆(t) =





(
α(t) −β(t)
−γ(t) −α(t)T

)
along unconstrained arcs

(
F ∗

x 0
−H∗

xx −F ∗T
x

)
along constrained arcs

(23)

and

α(t) := F ∗
x − F ∗

u(H∗
uu)−1H∗

ux (24)

β(t) := F ∗
u(H∗

uu)−1F ∗T
u (25)

γ(t) := H∗
xx −H∗

xu(H∗
uu)−1H∗

ux. (26)

Clearly, at each switching point between an unconstrained
and a constrained arcs, a continuity of control, state and
adjoint profiles must be preserved. For example, at a
switching point between a lower bound and an interior arc,
the value of control on lower bound matches the value of
control in the interior arc uH = uL. Here, uH represents
the control obtained from solving the condition Hu = 0.
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In addition, state and adjoint trajectories are continuous
at this point, too:

x∗(t+k ) = x∗(t−k ), λ∗(t+k ) = λ∗(t−k ) (27)

Variations in switching times are difficult to determine and
complicate the calculation of the NE control. To make
this implementable, it is considered that the switching
points are constant at their nominal times. The control
values are then updated only between the fixed times. In
practice, performance loss is negligible for small variations
of switching times.

2.4 Numerical Computation of Neighbouring Feedback
Control

The linear MPBVP (22) can be used to calculate the
neighboring-extremal control correction δu(t), 0 ≤ t ≤ tf ,
in either one of two situations:

i. The initial state and (active) terminal constraint
variations δx0 and δψ̄ are available at discrete time
instants, in which case the discrete feedback control
can be obtained by directly re-solving the MPBVP.
This can be done via a shooting method as described
in Pesch (1989);

ii. The variations δx0 and δψ̄ are available continu-
ously in time, in which case the backward sweep
method (Bryson and Ho, 1975) can be used to derive
an explicit feedback control law. This approach is
closely explained by Bryson and Ho (1975).

In this paper, we consider the first approach.

2.5 Run-to-run Constraint Adaptation

The principle behind run-to-run optimization is similar
to MPC. But instead of adapting the initial conditions
and moving the control horizon as is done in MPC, the
adaptation is performed on the optimization model (e.g.,
model parameters or constraint biases) before re-running
the optimizer. In run-to-run constraint adaptation, more
specifically, the terminal constraints (5) in the optimiza-
tion model are adapted after each run as (Marchetti et al.,
2007):

ψ(x(tf ), tf ) ≤ δψ, (28)

where δψ stands for the terminal constraint bias. Such a
bias can be directly updated as the difference between the
available terminal constraint measurements, ψmeas, at the
end of each run and the predicted constraint values. This
simple strategy may however lead to excessive correction
when operating far away from the optimum, and it may
also exacerbate the sensitivity of the adaptation scheme to
measurement noise. A better strategy consists of filtering
the bias, e.g., with a first-order exponential filter:

δψk+1 = [I −W ] δψk +W [ψmeas
k −ψ(xk(tf ), tf )] ,

(29)

with k the run index, and W a gain matrix—typically, a
diagonal matrix.

The constrained dynamic optimisation problem uses the
available nominal process model. It is solved between each
run, using any numerical procedure, such as the sequential
or the simultaneous approach of dynamic optimisation.
The optimal control trajectory u∗

k(t), 0 ≤ t ≤ tf , is

computed and applied to the plant during the kth run.
The predicted optimal response is denoted by x∗

k(t). The
discrepancy between the measured terminal constraint
values ψmeas

k and the optimizer predictions ψ(x∗
k(tf ), tf ) is

then used to adjust the constraint bias as described earlier,
before re-running the optimizer for the next run.

Of course, optimal control trajectory calculated between
runs is suboptimal as the real process is never known
perfectly.

3. TWO-TIMES-SCALE OPTIMISATION SCHEME

Run-to-run constraint adaptation was shown to be a
promising technology in Marchetti et al. (2007). This ap-
proach provides a natural framework for handling changes
in active constraints in dynamic process systems and it is
quite robust towards model mismatch and process distur-
bances. Moreover, its implementation is simple. Inherent
limitations of this scheme, however, are that (i) it does not
perform any control corrections during the runs, and (ii)
it typically leads to suboptimal performance.

On the other hand, neighbouring-extremal control is able
to correct small deviations around the nominal extremal
path in order to deliver similar performance as with re-
optimisation. Since no costly on-line re-optimisation is
needed, this approach is especially suited for processes
with fast dynamics. However, the performance of NE
control typically decreases dramatically in the presence
of large model mismatch and process disturbances, and
it requires a full-state measurement. This leads to sub-
optimality or, worse, infeasibility when constraints are
present or limited measurements are available.

Our proposal is to combine the advantages of these two
approaches: Run-to-run constraint adaptation is applied
at a slow time scale (outer loop) to handle large model
mismatch and changes in active constraints, based on run-
end measurements only. Further, NE control is applied
at a fast time scale (inner loop) and uses measurement
information available within each run, in order to enhance
convergence speed and mitigate sub-optimality. It need to
be stated that full-state measurement is required even in
case of integrated scheme. The proposed integrated two-
time-scale optimization scheme is depicted in Figure 1.

The implementation procedure is as follows:

Initialisation:
(0) Initialise the constraint bias δψ = 0, select a gain

matrix W and set the run index to k = 1
Outer Loop:

(1) Determine u∗
k by solving the optimal control prob-

lem (1)–(5), then obtain the corresponding states
x∗
k and adjoints λ∗

k, with the active terminal con-
straints ψ̄ and Lagrange multipliers ν̄∗

k, and to-
gether with Lagrange multipliers for boundary con-
straints µL and µU that satisfy NCO (10)–(12).

(2) Design a NE controller around the extremal path
u∗
k, either by using the backward sweep approach

(continuous measurements), or by applying the
shooting method (discrete measurements).

(3) Inner Loop:
Implement the NE controller during the kth run in
order to calculate the corrections δuk(t) to u∗

k(t)
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u∗
k[0, tf ]

x∗
k[0, tf ]

λ∗
k[0, tf ]

ν∗
k

µL

µU

ψ(x∗
k(tf ), tf )

ψmeas
k

δψk+1

δψk

u∗
k[0, tf ]

x∗
k[0, tf ]

λ∗
k[0, tf ]

ν∗
k

δuk(t)

u∗
k(t) u∗

k(t) + δuk(t) xmeas
k (t)

x∗
k(t)

δxk(t)

Fig. 1. Two-times-scale optimisation scheme employing
NE control in the inner loop and run-to-run constraint
adaptation in the outer loop.

based on the available (continuous or discrete) pro-
cess measurements.

(4) Update the constraint bias δψk+1 as the filtered dif-
ference between the measured values of the terminal
constraints and their predicted counterparts.

(5) Increment the run index k ← k + 1, and return to
Step 1.

4. CASE STUDY

4.1 Semi-Batch reactor model

A semi-batch reactor example taken from Chen and Hwang
(1990) is considered to illustrate the proposed integrated
two-times-scale approach. The goal is to maximise the
yield of ethanol using the feed rate u(t) as the control
variable, while keeping the liquid volume below some max-
imum threshold. Simple bound constraints are imposed
on the feed rate. The mathematical formulation of this
problem is:

max
u

J = cE(tf )V (tf )− 0.1

∫ tf

t0

u2dt (30)

s.t.

ċMS(t) = p1(t)cMS(t)− u(t)
(
cMS(t)

V (t)

)
(31)

ċS(t) = −10p1(t)cMS(t) + u(t)

(
150− cS(t)

V (t)

)
(32)

ċE(t) = p2(t)cMS(t)− u(t)
(
cE(t)

V (t)

)
(33)

V̇ (t) = u(t) (34)

where:

p1(t) =

(
0.408

1 + cE
16

) (
cS

0.22 + cS

)
(35)

p2(t) =

(
1

1 + cE
71.5

) (
cS

0.44 + cS

)
. (36)

The state values cMS(t), cS(t), cE(t) and V (t) are the cell
biomass, substrate, and ethanol concentrations [g/L], and
the volume [L]. The final time is set to tf = 60 h. The
reactor container is initially fed by V (0) = 10 L of re-
action mixture with biomass and substrate concentrations
cMS(0) = 1 g/L and cS(0) = 150 g/L. No ethanol is initially
present in the reaction mixture. The feed rate [L/h] is
bounded as:

0 ≤ u ≤ 12 [L/h]. (37)

The liquid volume is limited by V max = 200 L, so the
terminal condition reads:

V (tf ) ≤ V max [L]. (38)

Note that the integral term
∫ tf
t0
u2dt augments the original

objective function in order to make the control problem
non-singular. This wayHu depends on the control variable
and Hamiltonian H is regular.

4.2 Open-loop optimal control

Solving the optimisation problem (30)–(38), with the se-
quential method (Edgar and Himmelblau, 1988; Guntern
et al., 1998), the piecewise constant control profile (see
Figure 2) shows the presence of one interior arc and two
boundary arcs. Further analysis of this solution indicates
that optimal control consists of a lower bound, an inte-
rior arc and another short lower bound. As the problem
is regular, the control action along interior arc can be
explicitly determined from the necessary conditions of
optimality. Note that along boundary arcs, the control
action is determined by a lower bound hence the control
variations are simply δu = 0. The switching times t1 and t2
between these arcs are not explicitly known and they need
to be estimated, too. The switching times from piecewise
constant control profile give good initial guess for these
switching times. Overall, the optimal control solution is
given as:

(1) t ∈ (t0, t1), the control remains on its lower bound
u∗(t) = 0

(2) t ∈ (t1, t2), the control is given as a solution of a
differential-algebraic system of equations:
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Fig. 2. Nominal control solution
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Fig. 3. Nominal state trajectory for liquid volume
(solid line) and maximum value (dotted line)

ẋ = (31)–(36); δx(0) = δx0 (39)

λ̇ = −Hx; λ(tf ) =
[
φx + νTψx

]
t=tf

(40)

0 = Hu (41)

(3) t ∈ (t1, tf ), the control remains on its lower bound
u∗(t) = 0, again.

(39)–(41) is a non-linear multi-point boundary value prob-
lem. The optimal control profile is obtained by com-
puting the switching times t1 and t2, the initial condi-
tions for adjoints λ0, and the Lagrange multiplier for
terminal constraint ν, according to the indirect shooting
method (Bryson and Ho, 1975). It is checked that the
performance index J∗ = 20689 matches the objective value
obtained with the sequential method J = 20699. Also see
in Figure 3 that this optimal control profile satisfies the
terminal constraint (38).

4.3 Closed-loop optimal control

The case study compares the performance of the two-
time-scale integrated solution with a pure constraint adap-
tation control scheme and a pure neighbouring-extremal
controller.

The integrated two-time-scale scheme is applied using a
nominal model perturbed by varying the initial values
and adding measurement noise. While the NE controller
is designed using the nominal mathematical model, the
simulations are performed for measured outputs from the
perturbed model. It is also considered that full-state mea-
surements are presented. The measured outputs are states
with addition of white noise. Measurement noise is con-
sidered with the following variations in initial conditions
δx = [0.17 −6 0.9 0.8]. These variations are chosen to
cause a performance loss and terminal constraint violation,
when applying the open-loop control profile. Run-to-run
constraint adaptation is initialised with a constraint bias
of δψ = 0 and considers a filter gain of W = 0.2. The
filter parameters were chosen so as to achieve the terminal
constraint as fast as possible while avoiding oscillations
during the adaptation.

Figure 4 compares the evolution of the performance during
the first 20 batches. The evolution of the terminal con-
straint is presented in the left plot. Observe that the pure
NE controller does not violate the terminal constraint,
but on the other hand this constraint is inactive in all
batches. In contrast, pure constraint adaptation violates

the terminal constraint in the most of the batches. In last
5 batches, the method almost reaches terminal constraint.
Note that this approach seems to be more sensitive to mea-
surement noise then the other approaches. The integrated
scheme starts in close proximity of terminal constraint.
In the following batches, this result is slowly enhenced
to meet the terminal constraint. Due to the fact that
control corrections are applied during each batch as well,
this approach is able to correct the control profile with
lower sensitivity to measurement noise. The middle plot of
Figure 4 shows the evolution of terminal constraint bias.
This bias varies a little for the integrated scheme, because
the NE controller in the inner loop is able to recover a large
portion of optimality loss. In contrast, constraint adapta-
tion requires heavier bias adaptation since no correction is
made during the batch. The right plot shows evolution of
the performance index. The worst average case is for pure
NE control. In contrast, the pure constraint adaptation
exhibits the highest values of performance indices. The
cost function of the proposed integrated approach stays
betwen these to extremes and is the closest to optimimal
solution for perturbed system.

The resulting control profile after adaptation within 20
batches is shown in right plot in Figure 5. The control still
consists of the tree same arcs, but the switching times
have changed compared to nominal solution displayed
in Figure 2, as a result of the constrained adaptation.
The corresponding measured output of liquid volume is
presented in the left plot in Figure 5. It can be seen
that the measured output of perturbed process is in good
agreement with re-optimised solution.

5. CONCLUSIONS

In this paper, an integrated two-times-scale control scheme
for batch processes has been proposed. It improves the
performance of dynamic real-time optimisation applied
to batch processes. The combination of two approaches,
namely run-to-run adaptation and neighbouring-extremal
control, allows to complement the benefits of each other,
while mitigating some of their deficiencies. On the other
hand, run-to-run adaptation allows to deal with large
model mismatch and handles better terminal constraints.
Advantages of the integrated scheme have been demon-
strated on the case study for a semi-batch reactor. As
part of future work, an extension of the current scheme to
singular control problems is currently under investigation,
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integrated two-time-scale scheme control. Left plot: Evolution of the terminal constraint; Middle plot: Evolution
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Fig. 5. Performance with perturbed initial conditions after 20 run of adaptation. Left plot: Converged solution of
control trajectory; Right plot: Converged solution of measured output of liquid volume; Solid line: Perturbed
system with two-time-scale integrated scheme; Dashed line: Optimal solution for perturbed system;

as well as the ability to handle problems with state path
constraints.
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Bemporad, A., Morari, M., Dua, V., and Pistikopoulos,
E.N. (2002). The explicit linear quadratic regulator for
constrained systems. Automatica, 38(1), 3–20.

Bonvin, D., Srinivasan, B., and Hunkeler, D. (2006). Con-
trol and optimization of batch processes: Improvement
of process operation in the production of specialty chem-
icals. IEEE Control Systems Magazine, 26(6), 34–45.

Bryson, A.E. and Ho, Y.C. (1975). Applied Optimal
Control – Optimization, Estimation and Control. Hemi-
sphere publishing corporation.

Chen, C.T. and Hwang, C. (1990). Optimal control com-
putation for differential-algebraic process systems with
general constraints. Chemical Engineering Communica-
tions, 1(97), 9–26.

Edgar, T.F. and Himmelblau, D.M. (1988). Optimization
of Chemical Processes. McGraw-Hill, New York.

Garcia, C.E., Prett, D.M., and Morari, M. (1989). Model
Predictive Control: Theory and Practice – A Survey.
Automatica, 25(3), 335–348.

Guntern, C., Keller, A., and Hungerbuhler, K. (1998).
Economic Optimization of an Industrial Semi-batch Re-
actor Applying Dynamic Programming. Industrial and
Engineering Chemistry Research, 37(10), 4017–4022.

Kadam, J.V. and Marquardt, W. (2007). Integration of
economical optimization and control for intentionally
transient process operation. Lecture Notes in Control
and Information Sciences, 358, 419–434.

Marchetti, A., Chachuat, B., and Bonvin, D. (2007).
Batch process optimization via run-to-run constraints
adaptation. In European Control Conference. Kos,
Greece.

Pesch, H.J. (1989). Real-time computation of feedback
controls for constrained optimal control problems. Part
II: A correction method based on multiple shooting.
Optimal Control Applications & Methods, 10, 147–171.

Preprints of the NIL workshop
Jan 10–15, 2011, Bratislava, Slovakia Podmajerský, M., Chachuat, B., Fikar, M.

342



Comments – Remarks

Preprints of the NIL workshop
Jan 10–15, 2011, Bratislava, Slovakia Podmajerský, M., Chachuat, B., Fikar, M.

343





Robust control of a CSTR
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Abstract: The paper presents a method for design of robust PI controllers for systems with
interval uncertainty. The proposed method is combination of the method based on plotting the
stability boundary locus in the (kp,ki)-plane with the pole-placement method. The method
is implemented for design of robust PI controller for the continuous stirred tank reactor
(CSTR) with hydrolysis of propylene oxide to propylene glycol. The reactor has three uncertain
parameters: the reaction enthalpy, the pre-exponential factor and the overall heat transfer
coefficient. The control input is the volumetric flow rate of the coolant and the controlled output
is the temperature of the reacting mixture. Mathematical model of the reactor has been obtained
in the form of the 4th order transfer function with interval polynomials in the numerator and
the denominator.

1. INTRODUCTION

Chemical reactors are ones of the most important plants
in chemical industry, see e.g. Mikleš and Fikar (2007).
Their operation, however, is corrupted with various un-
certainties. Some of them arise from varying or not ex-
actly known parameters, as e.g. reaction rate constants,
reaction enthalpies or heat transfer coefficients. In others
cases, operating points of reactors vary or reactor dy-
namics is affected by various changes of parameters of
inlet streams. All these problems (uncertainties) can cause
poor performance or even instability of closed-loop control
systems. Application of robust control approach can be
one of ways for overcoming all these problems, see e.g.
Alvarez-Ramirez and Femat (1999), Gerhard et al. (2004),
Bakošová et al. (2009).

In this paper, a simple method for design of robust
PI controllers is presented (Tan and Kaya (2003)). The
method is based on plotting the stability boundary locus
in the (kp,ki)-plane and then parameters of a stabilizing
PI controller are determined from the stability region, see
e.g. Závacká et al. (2009). The PI controller stabilizes a
controlled system with interval parametric uncertainties,
when the stability region is found for sufficient number of
Kharitonov plants (Barmish (1994)).

The pole-placement method is used to specify controller
parameters in the robust stability area such that they
assure certain quality of the control performance. The
closed loop characteristic equation is created for controlled
system and PI controller, and the closed loop characteristic
equation is also obtained by the choice of the poles of the
closed loop or the relative damping of the control response
or the natural frequency of the control response.

The approach is used for design of a robust PI controller
for the continuous stirred tank reactor with hydrolysis of
propylene oxide to propylene glycol that can be modeled
in the form of a transfer function with parametric interval

uncertainty. The reactor has three uncertain parameters:
the reaction enthalpy, the pre-exponential factor in the
reaction rate constant and the overall heat transfer coeffi-
cient. The control input is the volumetric flow rate of the
coolant and the controlled output is the temperature of the
reacting mixture. The mathematical model of the reactor
has been derived in the form of the 4th order transfer
function with interval polynomials in the numerator and
the denominator.

2. ROBUST PI CONTROLLER DESIGN

Consider a single-input single-output (SISO) control sys-
tem shown in Fig. 1, where

G(s)C(s)
-ej -u y-

−
-w

6

Fig. 1. Control system

G(s) =
N(s)

D(s)
(1)

is the plant to be controlled and C(s) is a PI controller in
the form

C(s) = kp +
ki

s
=

kps + ki

s
(2)

The problem is to find the parameters of the PI controller
(2) that stabilize the system in Figure 1, where w is the
set point, e – the control error, u – the control input and
y – the controlled output.

Decomposing the numerator and the denominator poly-
nomials in (1) (Tan and Kaya (2003)) into their even and
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odd parts, and substituting, where s = jω is the frequency,
gives

G(jω) =
Ne(−ω2) + jωNo(−ω2)

De(−ω2) + jωDo(−ω2)
(3)

The closed loop characteristic polynomial can be written
as

∆(jω) = [kiNe(−ω2) − kpω
2No(−ω2)−

−ω2Do(−ω2)] + j[kpωNe(−ω2)+
+kiωNo(−ω2) + ωDe(−ω2)] = 0

(4)

Then, equating the real and imaginary parts of ∆(jω) to
zero, one obtains

kp(−ω2No(−ω2)) + ki(Ne(−ω2)) =
= ω2Do(−ω2)

(5)

and

kp(Ne(−ω2)) + ki(No(−ω2)) =
= −De(−ω2)

(6)

Let

F (ω) = −ω2No(−ω2)
G(ω) = Ne(−ω2)
H(ω) = Ne(−ω2)
I(ω) = No(−ω2)
J(ω) = ω2Do(−ω2)
K(ω) = −De(−ω2)

(7)

Then, (5) and (6) can be written as

kpF (ω) + kiG(ω) = J(ω)
kpH(ω) + kiI(ω) = K(ω)

(8)

From (8), parameters of the PI controller (2) are

kp =
J(ω)I(ω) − K(ω)G(ω)

F (ω)I(ω) − G(ω)H(ω)
(9)

and

ki =
K(ω)F (ω) − J(ω)H(ω)

F (ω)I(ω) − G(ω)H(ω)
(10)

Solving these two equations simultaneously for ω ≥ 0,
the set of parameters kp and ki is obtained. Then, it
is possible to plot the dependence of ki on kp, and the
stability boundary locus l(kp, ki, ω) in the (kp, ki)-plane
is obtained. The stability boundary divides the parameter
plane into stable and unstable regions. The stability region
is found by the choice of testing points inside the regions.

The method is very fast and effective, however, frequency
rating becomes important. An efficient approach to avoid
frequency rating can be obtained by using the Nyquist
plot. It is only necessary to find real values of ω that satisfy

Im[G(s)] = 0 (11)

Consider a feedback system (Figure 1) with the PI con-
troller (2) and the interval plant

G(s, b, a) =
N(s, b)

D(s, b)
=

=
bmsm + bm−1s

m−1 + . . . + b0

ansn + an−1sn−1 + . . . + a0

(12)

where bi ∈ [b−
i , b+

i ], i = 0, 1, 2, . . . , m and ai ∈ [a−
i , a+

i ],
j = 0, 1, 2, . . . , n. Let the Kharitonov polynomials associ-
ated with N(s, b) and D(s, a) are (Barmish (1994)):

N1(s, b) = b−
0 + b−

1 s + b+
2 s2 + b+

3 s3 + . . .
N2(s, b) = b+

0 + b+
1 s + b−

2 s2 + b−
3 s3 + . . .

N3(s, b) = b+
0 + b−

1 s + b−
2 s2 + b+

3 s3 + . . .
N4(s, b) = b−

0 + b+
1 s + b+

2 s2 + b−
3 s3 + . . .

(13)

and

D1(s, a) = a−
0 + a−

1 s + a+
2 s2 + a+

3 s3 + . . .
D2(s, a) = a+

0 + a+
1 s + a−

2 s2 + a−
3 s3 + . . .

D3(s, a) = a+
0 + a−

1 s + a−
2 s2 + a+

3 s3 + . . .
D4(s, a) = a−

0 + a+
1 s + a+

2 s2 + a−
3 s3 + . . .

(14)

By taking all combinations of the Ni(s, b) and Dj(s, a) for
i, j = 1, 2, 3, 4, the following family of sixteen Kharitonov
plants can be obtained

GK(s) = Gij(s) =
Ni(s)

Dj(s)
(15)

where i, j = 1, 2, 3, 4; K = 1, . . . , 16. Define the set
Sij(C(s)Gij(s)), which contains all values of the param-
eters of the controller C(s) which stabilizes Gij(s). Then
the set of all the stabilizing values of parameters of a PI
controller, which stabilizes the interval plant of (12) can
be written as

S(C(s)GK(s)) = S(C(s)G11(s))∩
∩S(C(s)G12(s)) ∩ . . . ∩ S(C(s)G44(s))

(16)

3. POLE-PLACEMENT METHOD

The pole-placement control design Mikleš and Fikar (2007)
belongs to the class of well-known analytical methods
where transfer function of the controlled process is known.
In this method Vaneková et al. (2010), only the closed-
loop denominator that assures stability is specified. The
advantage of this approach is its usability for a broad range
of systems. If the controller is of PID structure then the
characteristic equation can be one of the following

s + ω0 = 0 (17)

s2 + 2ξω0s + ω2
0 = 0 (18)

(s + α)(s2 + 2ξω0s + ω2
0) = 0 (19)

or the combination of (18) and (19), where ξ is the relative
damping, ω0 the natural undamped frequency, and −α is a
closed-loop pole. Specifying suitable values of parameters
ξ, ω0, α in (17) - (19) leads to the controller which
can assure the desired quality of the control responses.
To obtain unique solution, the system of equations for
calculation of controller parameter has to be the system
with zero degree of freedom. If higher order characteristic
polynomial is considered, then any of parameters ξ, ω0 or
α can be added to known variables.

4. DESCRIPTION OF CONTROLLED PROCESS

The continuous stirred tank reactor for hydrolysis of
propylene oxide to propylene glycol, see e.g. Molnár et al.
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(2002), Vaneková et al. (2010) was chosen as a controlled
process. The reaction is described as follows

C3H6O + H2O −→ C3H8O2 (20)

The reactor is fed with propylene oxide, methanol and
water. Methanol is added to improve the solubility of
propylene oxide in water. The excess of water provides
higher selectivity to propylene glycol and eliminates con-
secutive reactions of propylene oxide as a key component.
Dependence of the reaction rate constant on the reacting
mixture temperature is described by the Arrhenius equa-
tion

k = k∞e− E
RTr (21)

where k∞ is the pre-exponential factor, E is the activation
energy, R is the universal gas constant, and Tr is the
temperature of the reacting mixture.

Assuming ideal mixing in the reactor, constant reacting
volume, and the same volumetric flow rates of the inlet
and outlet streams, the mass balance for any species in
the system is

Vr
dcj

dt
= qr(cj0 − cj) + Vrνjr (22)

where j = 1, 2, 3 and Vr is the reacting volume, cj is
the molar concentration of the j-th component, cj0 is
the feed molar concentration of the j-th component, qr

is the volumetric flow rate of the reacting mixture, νj

is the stoichiometric coefficient of the j-th component,
r = kcC3H6O is the molar rate of the chemical reaction.

It is assumed further that the specific heat capacities,
densities and volumetric flow rates do not depend on
temperature or mixture composition, and also the heat
of mixing and the mixing volume can be neglected. The
simplified enthalpy balance of the reacting mixture used
as a standard in reactor design Ingham et al. (2007) is

Vrρrcpr
dTr

dt
= qrρrcpr(Tr0 − Tr)−

−UA(Tr − Tc) + Vr(−∆rH)r
(23)

and the simplified enthalpy balance of the cooling medium
is

Vcρccpc
dTc

dt
= qcρccpc(Tc0 − Tr)+

+UA(Tr − Tc)
(24)

where T is the temperature, ρ is the density, cp is the
specific heat capacity, ∆rH is the reaction enthalpy, U
is the overall heat transfer coefficient, A is the heat
exchange area. The subscripts denote: 0 the feed, c the
cooling medium, and r the reaction mixture. The values of
constant parameters and steady-state inputs of the reactor
are summarized in Table 1. Model uncertainties of the
reactor follow from the fact that there are three physical
parameters in this reactor: the pre-exponential factor, the
reaction enthalpy and the overall heat transfer coefficient,
the values of which vary within certain intervals (Table 2).
Nominal values of these parameters are the mean values
of the intervals and they are used to derive the reactor
nominal model.

Table 1. Constant parameters and steady-state
inputs of the chemical reactor

Parameter Value

Vr [m3] 2.407

Vc [m3] 2.000

ρr [kg.m−3] 974.19

ρc [kg.m−3] 998

cpr [kJ.kg−1.K−1] 3.7187

cpc [kJ.kg−1.K−1] 4.182

A [kJ.min−1.K−1] 8.695

Steady-state input Value

(E/R) [K] 10183

qr[m3.min−1] 0.072

qc[m3.min−1] 0.6307

Trf [K] 299.05

Tcf [K] 288.15

cf,C3H6O [kmol.m−3] 0.0824

cf,C3H8O2
[kmol.m−3] 0

Table 2. Uncertain parameters in the CSTR

Parameter Minimal Maximal

∆rH [kJ.mol−1] −5.52 × 106 −5.40 × 106

k∞ [min−1] 2.6467 × 1011 3.0067 × 1011

U [kJ.min−1.K−1] 13.2 14.4

Parameter Nominal

∆rH [kJ.mol−1] −5.46 × 106

k∞ [min−1] 2.8267 × 1011

U [kJ.min−1.K−1] 13.8

5. APPLICATION OF ROBUST PI CONTROLLER
AND POLE-PLACEMENT METHOD FOR CONTROL

OF THE CSTR

For controller design, the mathematical model of the con-
tinuous stirred tank reactor with three uncertain param-
eters (Table 2) is obtained in the linearized form of a
transfer function

G(s, b, a) =
b2s

2 + b1s + b0

s4 + a3s3 + a2s2 + a1s + a0
(25)

where coefficients in the numerator polynomial and the de-
nominator one lie in following intervals: b2 ∈ [−0.0291, −0.0245],
b1 ∈ [−0.0199, −0.0127],
b0 ∈ [−0.0005740, −0.0003549], a3 ∈ [0.5801, 0.9030],
a2 ∈ [0.1002, 0.2299], a1 ∈ [0.0062, 0.0142] and a0 ∈
[0.0001094, 0.0002412].Then sixteen Kharitonov plants are
created for the reactor and described approach is used for
robust PI controller design.

Equations for calculation of PI controller parameters 9, 10
lead to

ki =
−a3ω

4 + a1ω
2 + b1ω

2
(

−a4ω4+a2ω2−a0

b0−b2ω2

)

−b2ω2 +
b21ω2

b0−b2ω2 + b0

(26)

and

kp =
−a4ω

4 + a2ω
2 − a0 − b1ki

b0 − b2ω2
(27)

After a suitable choice of ω ∈ (0, 0.2407) (11), the stability
boundary locus as the dependence of ki on kp is plotted. In
Fig. 2 are shown the stability regions of sixteen Kharitonov
plants, where intersection of these regions represents the
stability region. Fig. 2 shows stability region for sixteen
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Kharitonov plants and Fig. 3 represents zooming of the
intersection of these regions.

−60 −40 −20 0
−10

−8

−6

−4

−2

0

k
p

k i

Fig. 2. Stability regions for sixteen Kharitonov plants
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Fig. 3. Zooming of the intersection of stability regions

5.1 Pole-placement method for the system of the fourth
order

Suppose that for controlled system (25) is necessary to find
PI controller (2). The closed loop characteristic equation
can be written as

(s + α1) (s + α2)(s + α3)
(s2 + 2ξω0s + ω2

0) = 0
(28)

The closed loop characteristic equation for the controlled
system (25) and PI controller (2) has also the form

s3 +
a3

a4
s4 +

a2 + b2kp

a4
s3+

+
a1 + b2ki + b1kp

a4
s2+

+
a0 + b1ki + b0kp

a4
s +

b0ki

a4
= 0

(29)

After comparison of coefficients in (28) and (29), parame-
ters of the PI controller can be computed from (30) - (34)

0 = 2ξω0a4 + α3a4 + α2a4 + α1a4 − a3 (30)

Table 3. Controller parameters

ξ kp ki

C1 1.3 −0.2980 −0.0105

C2 1.3 −1.1265 −0.0069

C3 0.85 −1.583 −0.0900

−α1 −α2 −α3

C1 0.4929 0.3053 0.0294

C2 0.4929 0.3207 0.0294

C3 0.0297 0.4918 0.0619

b2kp = ω2
0a4 + 2ξω0α3a4 + 2ξω0α2a4+

+α2α3a4 + 2ξω0α1a4+
+α1α3a4 + α1α2a4 − a2

(31)

b2ki + b1kp = ω2
0α3a4 + ω2

0α2a4+
+2ξω0α2α3a4 + 2ξω0α1α3a4+
+ω2

0α1a4 + 2ξω0α1α2a4+
+α1α2α3a4 − a1

(32)

b1ki + b0kp = α2α3ω
2
0a4 + α1α3ω

2
0a4+

+α1α2ω
2
0a4 + 2ξω0α1α2α3a4 − a0

(33)

b0ki = α1α2α3ω
2
0a4 (34)

It is clear that unique solution kp, ki is obtained if only
two of parameters ξ, ω0 or α1, α2 and α3 are chosen. Now
is the pole-placement method used for reasonable choice of
the controller from the robust stability region Fig. 3. The
quality of the control response can be prescribed by the
choice of the relative damping ξ and the natural undamped
frequency ω0 (28). The natural undamped frequency ω0 is
chosen in the same interval as the frequency ω. For plotting
of curves system Gmax with maximum values of interval
coefficients (25) was used. The more important parameter
from our point of view is the relative damping ξ and PI
controllers were designed for ξ = 1.3 for the aperiodic
and ξ = 0.85 for the periodic control response. After
calculation of kp and ki from (30) - (34) for chosen ξ and
ω, the curves representing the location of PI controllers are
plotted and signed by stars (Fig. 4). Three PI controllers

−1.5 −1 −0.5 0 0.5

−0.12

−0.1

−0.08

−0.06

−0.04

−0.02

0

k
p

k i

C1

C3

C2

Fig. 4. Stability regions with curves (ξ = 1.3 blue, ξ = 0.85
red) from pole-placement method

were chosen on the curves obtained using pole-placement
method (Table 3).
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6. SIMULATION RESULTS

The designed PI controllers (Table 3) for control CSTR
(25) are verified by simulations.

Control responses of the closed loop with model (25) and
different PI controllers (C1, C2, C3) are shown in Figs.
5, 6, 7 where w is the setpoint, y the controlled output
and Gmin, Gmax are systems (25) with the minimum and
maximum values of interval coefficients. Controllers C1,
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Fig. 5. Control responses for controller C1
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Fig. 6. Control responses for controller C2

C2 (ξ = 1.3) were able to assure the aperiodic control
responses . For controller C1 the setting time is smaller
than for controller C2, because parameters of poles α1,2,3

for controller C1 are nearer to poles of the controlled
system as poles α1,2,3 for controller C2. The controller C3
(ξ = 0.85) was able to assure the periodic control response.
The setting time for Gmax was even smaller then it was
in the cases with controllers C1 and C2. But the control
response for Gmin is oscilating and it leads to the longer
setting time in comparison with with using controllers C1
and C2.
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Fig. 7. Control responses for controller C3

7. CONCLUSION

In this paper, robust PI controllers were designed by
combination of two methods. First is based on the plotting
the stability boundary locus in the (kp,ki)-plane and
second is pole-placement method for choice a specific
controller. Further, PI controllers were designed for two
values of ξ. These controllers were used for control CSTR
with three uncertain parameters. Presented simulation
experiments confirm that all designed robust PI controllers
were able to control the reactor with three uncertainties.
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