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Preface
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2.1.2011 Project coordinator

iii





Acknowledgements

The authors and editors are pleased to acknowledge the financial support the
grant No. NIL-I-007-d from Iceland, Liechtenstein and Norway through the
EEA Financial Mechanism and the Norwegian Financial Mechanism. This
book is also co-financed from the state budget of the Slovak Republic.

v





Contents

1 Measurement Polynomials as Controlled Variables . . . . . . . . 1
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Chapter 1

Measurement Polynomials as Controlled
Variables

Johannes Jäschke, Sigurd Skogestad

Abstract In this chapter we present a method for finding controlled vari-
ables, which are nonlinear combinations of measurements. The procedure
extends the concept of the null-space method (Alstad and Skogestad, 2007)
to processes described by polynomial equations. The method consists of three
main steps. First, the active constraints are determined. If the disturbance
causes the set of active constraints to change, regions of constant active con-
straints are defined in the disturbance space. Second, optimally invariant
variable combinations are determined for the remaining unconstrained de-
grees of freedom in each region. Third, unknown internal variables (states)
and disturbances are eliminated to obtain new invariant variable combina-
tions containing only known variables (measurements). Furthermore we show
that if the disturbance causes the active constraints to change, the invariants
may be used to identify, and switch to the right region. This makes the
method applicable over a wide disturbance range with changing active sets.
The procedure is applied to a case study, a four component isothermal CSTR.

1.1 Introduction

For continuous processes, which are operated in steady state most of the
time, an established method to achieve optimal operation in spite of varying
disturbances is real-time optimization (RTO) (Marlin and Hrymak, 1997).
The real-time optimizer generally uses a nonlinear steady state model in

Johannes Jäschke
Department of Chemical Engineering, NTNU Trondheim, Norway, e-mail: jaschke@
chemeng.ntnu.no

Sigurd Skogestad
Department of Chemical Engineering, NTNU Trondheim, Norway, e-mail: skoge@
chemeng.ntnu.no
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order to recompute new optimal setpoints for the controlled variables in the
control layer below. This concept has gained acceptance in industry and is
increasingly used for improving plant performance. However, installing an
RTO system and maintaining it generally entails large costs.

A second approach for optimizing plant performance is to use a process
model off-line to find a self-optimizing control structure. The basic concept of
self-optimizing control was conceived by Morari et al (1980), who write that
we“want to find a function c of the process variables which when held constant
leads automatically to the optimal adjustments of the manipulated variables”,
but they did not provide any method for identifying this function. The idea
is to use this function as a controlled variable and keep it at a constant
setpoint by simple control structures, e.g. PID controllers, or by more complex
model predictive controllers (MPC). Using this kind of controlled variables
disburdens the real-time optimizer, or may even make it unnecessary (Jäschke
and Skogestad, 2010).

The term“self-optimizing control”was defined in the context of controlled
variable selection with the purpose of describing the practical goal of finding
“smart” controlled variables c. Skogestad (2000) writes:

Self-optimizing control is achieved if a constant setpoint policy results in an
acceptable loss L (without the need to re-optimize when disturbances occur).

Many industrial processes are operated using self-optimizing control, al-
though it is not always called that. For example, optimally active constraints
may be viewed as self-optimizing variables, e.g. maximum cooling of an air
stream before entering a compressor. However, the more difficult problem
is to identify self-optimizing control variables associated with unconstrained
degrees of freedom. In most cases, engineering insight and experience leads to
the choice of self-optimizing controlled variables, and the optimization prob-
lem is not formulated explicitly. An example for the unconstrained case is
is controlling the air/fuel ratio entering a combustion engine at a constant
value.

It has been noted previously (Halvorsen and Skogestad, 1997; Bonvin et al,
2001; Cao, 2003; Halvorsen et al, 2003), that the gradient of the cost func-
tion with respect to the degrees of freedom u would be the ideal controlled
variable, c = Ju. However, the gradient Ju is usually not directly measur-
able, and analytical expressions for the gradient generally contain unknown
disturbances. Therefore, the methods in self-optimizing control theory can be
thought of as an approximation (in some “best” way) of the gradient using a
measurement model.

In the last decade, several contributions have been made on the sys-
tematic search of controlled variables which have self-optimizing properties
(Halvorsen et al, 2003; Alstad and Skogestad, 2007; Kariwala et al, 2008; Al-
stad et al, 2009; Heldt, 2009), but to the authors knowledge, self-optimizing
control has only been considered locally, that is, using linear process models
and a quadratic approximation of the cost function. This results in linear
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measurement combinations c = Hy as controlled variables. In cases where
a strong curvature is present at the optimum, the loss imposed by using lin-
ear measurement combinations may not be acceptable any more, and the
controlled variables are not self-optimizing.

The main contribution of this work is to extend the ideas of self-optimizing
control, in particular the concept of the null-space method (Alstad and Sko-
gestad, 2007) to constrained systems described by multivariable polynomials.
This results in controlled variables which are polynomials in the measure-
ments, c = c(y).

Second, we show that under some assumptions, the controlled variables
can be used to determine when the set of active constraints changes and
which set to change to.

1.2 Overview

The procedure for achieving optimal operation is summarized in Fig. 1.1. In
steps 1 and 2 we formulate the optimization problem and determine regions
of constant active constraints, also called critical regions. This is done by
offline calculations, for example, by gridding the disturbance space with a
sufficiently fine grid and optimizing the process for each grid point.

In step 3, for each critical region, the optimality conditions are formulated,
and the Lagrangian multipliers are eliminated. Then the unknown variables,
i.e. the disturbances and the internal state variables are eliminated from
the optimality conditions to obtain an invariant variable combination which
contains only measured variables and known parameters.

Optimal operation is achieved in each critical region by controlling the
active constraints and the invariant measurement combinations.

Finally, we monitor the active constraints and the invariants of the neigh-
bouring regions to determine when to switch to a new region.

1.3 Achieving Optimal Operation using Measurement
Invariants

1.3.1 Problem Formulation

Optimal operation is defined as minimizing a scalar cost index J(u,x,d)
subject to satisfying the model equations, g = 0, and operational constraints,
h ≤ 0:

min
u,x

J(u,x,d) s.t

{
g(u,x,d) = 0
h(u,x,d) ≤ 0

(1.1)
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1. Formulate optimization problem
2. For the expected set of disturbances, find all regions with different sets of active

constraints Ai

3. For each region of active constraints Ai

i Formulate optimality conditions
ii Eliminate:

a Lagrangian multipliers λ from optimality conditions to obtain invariants
Jz,red (reduced gradient)

b Unknown variables to obtain measurement invariants c(y), such that

c(y) = 0 ⇐⇒ Jz,red = 0

iii In each region Ai, control the
a Active constraints
b Invariants c(y)

4. Use controlled variables and measured constraints for changing regions

Fig. 1.1 Procedure for finding nonlinear invariants as controlled variables

Here u, x, d denote the manipulated input variables, the internal state
variables, and the unmeasured disturbance variables, respectively. We as-
sume that, in addition, we have measurements y satisfying the relation,
m(u,x,d,y) = 0, which provide information about internal states, inputs,
and disturbances. To simplify notation, we combine state and input variables
in a vector z = [u ,x]T .

This is the same problem which is solved online at given sample times when
using RTO. In this work, however, we do not wish to solve the optimization
problem online, instead, we analyse the problem using offline calculations, in
order to find good controlled variables which yield optimal operation when
controlled at their setpoints.

1.3.1.1 Optimality Conditions

Let z∗ be a feasible point of the optimization problem (1.1), and assume that
all gradient vectors∇zgi(z

∗,d) and∇zhi(z
∗,d) associated with gi(z

∗,d) = 0
and the active constraints, hi(z

∗,d) = 0, are linearly independent. Then z∗ is
locally optimal if there exist Lagrangian multiplier vectors λ and ν, such that
the following conditions, known as the KKT conditions are satisfied (Nocedal
and Wright, 2006):
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∇zJ(z
∗,d) + [∇zg(z

∗,d)]T λ+ [∇zh(z
∗,d)]T ν = 0

g(z∗,d) = 0

h(z∗,d) ≤ 0

[h(z∗,d)]νT = 0

λ, ν ≤ 0

(1.2)

The condition that the Jacobian of the active constraints has independent
rows (has full rank) is called the linear independence constraint qualification
(LICQ) and guarantees that the Lagrangian multipliers λ and ν are uniquely
defined at the optimum z∗.

When optimizing nonlinear systems, such as polynomial systems, there
are several complications which may arise. The optimality conditions, (1.2),
will in general not have a unique solution. There may be multiple maxima,
minima and saddle points, so finding the global minimum is not an easy task
in itself. When a solution to (1.2) is found, it has to be checked whether it
indeed is the desired solution (minimum). In addition, there may be solutions
which are not physical (complex). So before controlling c(y) to zero, it has
to be assured that the process actually is at the desired optimum.

This and other issues from nonlinear and polynomial optimization are not
addressed in this work, the focus of this paper is rather to present a method
which gives a controlled variable c(y) which is zero for all points that satisfy
the KKT conditions, and which is nonzero whenever the KKT conditions are
not satisfied.

1.3.2 Partitioning into Sets of Active Constraints

Generally, the set of inequality constraints hi(z,d) ≤ 0 that are active varies
with the value of the elements in d. The disturbance space can hence be
partitioned into regions which are characterized by their individual set of
active constraints. These regions will be called critical regions.

The concept of critical regions allows one to decompose the original opti-
mization problem (1.1) into a sequence of equality constrained optimization
problems, which are valid in the corresponding critical region. This idea is
also applied in multi-parametric programming (Pistikopoulos et al, 2007).
However, we do not search for an explicit expression for the inputs u∗, as in
multi-parametric programming. We rather use each subproblem to find good
controlled variables c for the corresponding critical region.

In order to obtain a fully specified system in each region,

1. the active constraints need to be controlled, and
2. a controlled variable has to be controlled for each unconstrained degree

of freedom, nc = nDOF .
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The number unconstrained degrees of freedom, nDOF is calculated according
to

nDOF = nz − ng − nh,active (1.3)

where nz, ng, nh,active denote the number of variables z, the number of model
equations, g, and the number of constraints from h which are active (hi = 0).

In the rest of the paper, by abuse of notation, all active constraints
hi(z,d) = 0 are included in the equality constraint vector g(z,d) = 0. Then
in every critical region, the optimization problem (1.1) can be written as:

min J(z,d)

s.t.

g(z,d) = 0

(1.4)

The KKT first order optimality conditions, (1.2), simplify for problem
(1.4) in each critical region, to

∇zJ(z,d) + [∇zg(z,d)]
Tλ = 0,

g(z,d) = 0.
(1.5)

These expressions cannot be used for control yet, because they still contain
unknown variables, in particular x (in z = [u,x]), d, and the Lagrangian
multipliers λ, which have to be eliminated.

1.3.3 Eliminating the Lagrangian Multipliers λ

We consider one equality constrained sub-problem (1.4) at a time. Every
control structure that gives optimal operation has to satisfy (1.5). Recall that
the LICQ holds, i.e.∇zg(z,d) has full row rank for every value of d within the
critical region. In addition, we assume that we have strict complementarity
(either the constraint is active, or the corresponding value in λ is zero).

Proposition 1.1. Let N(z,d) ∈ R(nz−ng)×ng be a basis for the null space
of ∇zg(z,d). Controlling the active constraints g(z,d) = 0, and the vari-
able combination [N (z,d)]T∇zJ(z,d) = 0 results in optimal steady state
operation.

Proof. Select N(z,d) such that N (z,d)∇zg(z,d) = 0. Since the LICQ are
satisfied, the constraint Jacobian ∇zg(z,d) has full row rank and N(z,d)
is well defined and does not change dimension within the region. The first
equation in (1.5) is premultiplied by [N (z,d)]T to get:
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[N (z,d)]T
(

∇zJ(z,d) + [∇zg(z,d)]
T
λ
)

= [N (z,d)]T∇zJ(z.d) + 0λ

= [N (z,d)]T∇zJ(z,d)

(1.6)

Since N(z,d) and has full rank, we have that (1.5) are satisfied whenever
g(z,d) = 0 and N (z,d)∇zJ(z,d) = 0.

We introduce Jz,red = N (z,d)∇zJ(z,d), and call Jz,red the reduced gra-
dient. By construction, the reduced gradient has nDOF = nz − ng elements.
Controlling

Jz,red = [N(z,d)]T∇zJ(z,d) = 0 (1.7)

together with the active constraints, g(z,d) = 0, fully specifies the system
at the optimum and is equivalent to controlling the first order optimality
conditions (1.5). However, Jz,red cannot be used for control directly because it
still depends on unknown variables, d and x (x enters through z = [u ,x]T ).
For this purpose, the disturbance and the internal states have to be eliminated
from the expression (1.7).

A first naive approach would be to solve the measurement model equations
m(x,u,d,y) = 0 and the active constraints g(z,d) = 0 for the unknowns d
and x, and substitute the solution into Jz,red. As we show, this is straightfor-
ward in case of linear equations, but it becomes significantly more complicated
when working with polynomials of higher degree.

1.4 Elimination for Systems of Linear Equations (Zero
Loss Method)

In this section we describe the basic concept of how the unknowns are elimi-
nated form Jz,red. Our procedure is demonstrated step by step for minimizing
a quadratic cost function subject to linear constraints and a linear measure-
ment model. Solving the model and measurement equations for the unknowns
and substituting into Jz,red is avoided, because this is difficult to extend to
the polynomial case. Instead, we search for necessary and sufficient conditions
which guarantee that the measurement model m(x,u,d,y) = 0, the active
constraints and the model g(z,d) = 0, and the reduced gradient Jz,red = 0
are are satisfied at the same time. We require that the necessary and sufficient
condition is a function of measurements y and known parameters, only.

The optimization problem we consider is

J(z,d) = min
[

zT dT
]
[

Jzz Jzd

Jzd
T Jdd

] [
z

d

]

s.t.

Az − b = 0,

(1.8)
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and the linear measurement model is

m(z,d,y) = y − [Gy G
y
d]

[
z

d

]

= 0

= y − G̃
y
[
z

d

]

= 0.

(1.9)

We consider [z ,d]T as unknown and we assume that (1.8) has a solution,
Jzz is positive definite, and A has full row rank. In addition, we assume that
the measurements are linearly independent, and G̃y = [Gy G

y
d] invertible.

The null space of the constraint gradient, N , is a constant matrix which
is independent of z, such that AN = 0. The first order necessary optimality
conditions require that at the optimum

Jz,red = NT∇zJ(z,d) = NT
[
Jzz Jzd

]
[
z

d

]

= 0. (1.10)

If the number of independent measurements (ny) is equal to the number
of unknown variables variables (nz + nd), the measurement relations (1.9)
can be solved for the unknowns and substituted into the gradient expression
(1.10) to obtain

c(y) = NT
[
Jzz Jzd

] [

G̃y
]−1

y. (1.11)

Controlling c(y) = and Az − b to zero, then results in optimal operation.
In the case of polynomial equations of higher degrees, it is generally not

possible to solve for the unknown variables. Therefore, we consider the prob-
lem from a slightly different perspective. Suppose ny = nz +nd, then for any
output and disturbance pair (y,d), there exist a unique z, which satisfies
the measurement equations (1.9). However, an arbitrary pair (y,d) will fail
to satisfy the first order optimality condition (1.10). More accurately, since
Jzz > 0, only one pair (y,d) satisfies the first order optimality conditions.

Consider the elements of the reduced gradient vector (1.10), one at a time,
together with all the measurement equations (1.9). Let the superscript (i)
denote the i-th row of a matrix or a vector. We write the reduced gradient
together with the measurements as a sequence of square linear systems

[
[NJzz]

(i) [NJzd]
(i) 0

Gy G
y
d y

]

︸ ︷︷ ︸

M(i)





z

d

−1



 = 0 (1.12)

Here M (i), i = 1..nDOF are square matrices of size (ny + 1)× (ny + 1).
We want to find a solution [z,d] which satisfies (1.12). For this system to

have a solution for [z,d]T , we must have rank(M (i)) = ny = nz + nd.
The submatrix [Gy G

y
d y] already has rank ny, irrespective of the value of

y (or the control policy that generates the input u which in turn generates
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y). This follows because [Gy G
y
d y] has more columns than rows, and because

rank([Gy G
y
d]) = ny. Therefore, the condition for a common solution is:

det(M (i)) = 0 for all i = 1..nDOF . (1.13)

This condition guarantees that a common solution to (1.12) exists, so the
elements of the controlled variable c are selected as ci = det(M (i)).

It remains to show that controlling the determinants ci = det(M (i)) gives
the inputs which lead to the optimum. Since the system is linear and the
rank of the measurement equations is ny, there is a unique linear invertible
mapping between the measurements y and the vector [z d]T . Therefore every
value of y corresponds uniquely to some value in z.

In the case with more measurements, ny > nz + nd, any subset of nz + nd

measurements may be chosen such that rank([Gy G
y
d])=nz + nd.

Remark 1.1. Actually, in the case of (1.8), we can use the constraint equations
to eliminate the unmeasured internal states x. Then we only ny = nu + nd

measurements, and the matrices (1.12) become:

M (i) =





(NJzz)
(i) (NTJzd)

(i) 0
A 0 b

Gy G
y
d y



 , (1.14)

and we must require, that

rank(

[
A 0
Gy G

y
d

]

) = nz + nd (1.15)

Remark 1.2. When there are no constraints, we have that z = u, and this
method results in the null space method (Alstad and Skogestad, 2007). In
this case, N may be set to any nonsingular matrix, for example the identity
matrix N = i. Then we have that

cNullspace = [Juu Jud][G̃y]−1y, (1.16)

as has been derived in Alstad et al (2009).
The null space method was originally derived by Alstad and Skogestad

(2007) using the optimal sensitivity matrix F = ∂yopt

∂d . However, it escaped
the authors notice then, that controlling c = Hy with H selected such that
HF = 0, is indeed the same as controlling the gradient to zero.

Example 1.1. Consider a system from Alstad (2005). The cost to minimize is

J = (u− d)2, (1.17)

and the measurement relations (model equations) are
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y1 = Gy
1u+Gd,1d

y2 = Gy
2u+Gy

d,2d
(1.18)

where the variables u, d, y denote the input, the disturbance and the mea-
surements, respectively. The values of the gains are given in table 1.1. We are

Variable Value

Gy
1

0.9
Gy

d,1
0.1

Gy
2

0.5
Gy

d,2
-1.0

Table 1.1 Gain values for small example

searching for a condition on y1 and y2 such that the optimality condition is
satisfied. The gradient is ∇uJ = 2(u− d) and Juu = 2, Jud = −2. It is easily
verified that measurements are independent. This gives an equation system
of 3 equations in 2 unknowns:

M





u
d
−1



 = 0 (1.19)

where

M =





Juu Jud 0
Gy

1 Gy
d,1 y1

Gy
2 Gy

d,2 y2



 (1.20)

Equation (1.19) has a solution





u
d
−1



 if and only if

det(M ) = 0 (1.21)

Therefore the necessary and sufficient condition for the existence of a non-
trivial solution is

det









Juu Jud 0
Gy

1 Gy
d,1 y1

Gy
2 Gy

d,2 y2







 = −y1(JuuGy
d,2 −Gy

2Jud) + y2(JuuG
y
d,1 −Gy

1Jud)

= 0

(1.22)

On inserting the parameter values from table 1.1, we obtain

c = det(M ) = y1 + 2y2. (1.23)
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Controlling c = y1 + 2y2 to zero therefore yields optimal operation. This the
same variable combination as found by applying the null-space method in
Alstad (2005).

Even though obtaining the invariants via the determinant may seem cum-
bersome, it eliminates the necessity of inverting the measurements and solving
for the unknowns. While this is of little advantage for systems of linear equa-
tions, the concept can be extended to systems of polynomial equations which
cannot easily be solved for the right set of unknowns.

1.5 Elimination for Systems of Polynomial Equations

Let d̂ now denote the vector of all unmeasured variables, d̂ = [x,d], not only
including disturbances, but also unknown states and unknown inputs, and let
y include all measurements and known inputs. Thus, every variable belongs
either to d̂ or y, and we write the optimality conditions as

Jz,red(y, d̂) = 0

g(y, d̂) = 0,
(1.24)

and the measurement relations as

m(y, d̂) = 0. (1.25)

To be able to use the reduced gradient Jz,red for control, all unknown vari-

ables d̂ have to be eliminated from it. For polynomial equations, this is not
as straightforward as in the linear case. Even for the case of a univariable
polynomial of degree 5 and higher, for example d5 − d + 1 = 0, there exist
no general analytic solution formulas, as was proven by Abel (1826). There-

fore we are interested in finding a way to eliminate the unknown variables d̂
from Jz,red(y, d̂) = 0 without solving g and m for them first. This is exactly
what was done in the previous section, where we used the determinant of a
carefully constructed coefficient matrix, which characterizes the existence of
a common solution in d, to replace Jz,red. The determinant is a function of
the known variables only, that is, the measurements y and the parameters
G̃y, Jzz and Jzd.

The generalization of the determinant to systems of polynomial equations
is called resultant. According to Emiris and Mourrain (1999),“the resultant of
an overconstrained polynomial system characterizes the existence of common
roots as a condition on the input coefficients”.

To be more specific, we consider multivariate polynomials f ∈ R[y, d̂],
that is real polynomial functions with coefficients in R, and variables y =
[y1, y2, . . . , yny ] and d̂ = [x,d] = [d̂1, d̂2, . . . , d̂nd̂

]. Given a nd̂-tuple, αi,j =
(
αi,j(1), αi,j(2), . . . , αi,j(nd̂)

)
, we use the shorthand notation
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d̂
αi,j

= d̂
αi,j(1)
1 d̂

αi,j(2)
2 . . . d̂

αi,j(nd̂)
nd̂

.

Then we can write a system of n polynomials in compact form

fi(y, d̂) =

ki∑

j=0

ai,j(y)d̂
αi,j

, i = 1..n (1.26)

where the coefficients aij(y) 6= 0 are polynomials in R[y], that is polynomials
in y with coefficients in R.

We consider the functions ai,j(y) as polynomial coefficients, and d̂ as vari-
ables. For every polynomial fi, we collect the exponent vectors in the set
Ei = {αi,1, . . . , αi,ki}. This set is called support of the polynomial fi.

The support of the polynomial f = d21 + d1d2 − 1, for example, is E =
{(2, 0), (1, 1), (0, 0)}. We denote as Qi the convex hull of the support of a
polynomial, Qi = conv(Ei).

Further, we denote the set of complex numbers without zero as C∗ (that
is C∗ = C \ 0).

Next present some basic concepts from algebraic geometry taken from Cox
et al (2005).

Definition 1.1 (Affine variety). Consider f1, . . . , fn polynomials in C[d̂1, . . . d̂nd̂
].

The affine variety defined by f1, . . . , fn is the set

V (f1, · · · , fn) =
{

(d̂1, . . . , d̂nd̂
) ∈ C

nd̂ : fi(d̂1, . . . d̂nd̂
) = 0 i = 1 . . . n

}

(1.27)

Casually speaking, the variety is the set of all solutions in Cnd̂ .

Definition 1.2 (Zariski closure). Given a subset S ⊂ Cm, there is a small-
est affine variety S̄ ⊂ Cm containing S. We call S̄ the Zariski closure of S.

Let L(Ei) be the set of all polynomials whose terms all have exponents in
the support Ei:

L(Ei) =
{

ai,1d̂
αi1

+ · · ·+ ai,ki d̂
αiki : ai,j ∈ C

}

(1.28)

Then the coefficients ai,j of n polynomials define a point in Cn×ki .
Now let

Z(E1, . . . En) ⊂ L(E1)× · · · × L(En) (1.29)

be the Zariski closure of the set of all (f1, . . . fn) for which (1.26) has a
solution in (C∗)nd̂ (that is the Zariski closure of all coefficients ai,j ∈ C for
which (1.26) has a solution).

For an overdetermined system of nd̂ + 1 polynomials in nd̂ variables we
have following result:
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Theorem 1.1 (Sparse resultant (Gelfand et al, 1994; Cox et al,
2005)). Assume that Qi = conv (Ei) is an nd̂-dimensional polytope for
i = 1, . . . , nd̂ + 1. Then there is an irreducible polynomial R in the coeffi-
cients of the fi such that

(f1, . . . , fnd̂+1) ∈ Z(E1, . . . , End̂+1
) ⇐⇒ R(f1, . . . , fnd̂+1) = 0. (1.30)

In particular, if

f1(d1 . . . dnd̂
) = · · · = fnd̂+1(d1 . . . dnd̂

) = 0 (1.31)

has a solution (d̂1, . . . , d̂nd̂
) in (C∗)nd̂ , then

R(f1, . . . , fnd̂+1) = 0. (1.32)

Remark 1.3. The requirement that Qi has to be nd̂-dimensional is no restric-
tion and can be relaxed, (Sturmfels, 1994). However, for simplicity, we chose
to present this result here.

Depending on the allowed space for the roots, there are other resultant
types (e.g. Bezout resultants and Dixon resultants for system of homoge-
neous polynomials), with different algorithms to generate the coefficient ma-
trix. Generally they will be conditions for roots in the projective space with
homogeneous (or homogenized) polynomials. For more details on different re-
sultants, we refer to Gelfand et al (1994); Sturmfels (1994); Cox et al (2005).
An overview of different matrix constructions in elimination theory is given
in Emiris and Mourrain (1999).

We choose to use the sparse resultant, because most polynomial systems
encountered in practice are sparse in the supports. That means, for example,
a polynomial of degree 5 in two variables x, y will not contain all 21 possible
combinations of monomials x5, y5, x4y, xy4, . . . , x4, y4, x3y, . . . , y, x, 1. Just as
in linear algebra, this sparseness can be exploited for calculating the resultant.
Another reason for using the sparse resultant is that it gives the necessary
and sufficient conditions for toric roots, that is roots in (C∗)nd̂ , such that the
input polynomials need not be homogeneous (or homogenized), as in other
resultants.

Finally, the sparse resultant enables us to work with Laurent polynomials,
that is polynomials with positive and negative integer exponents.

Generally, resultant algorithms set up a matrix in the coefficients of the
system. The determinant of this matrix is then the resultant or a multiple
of it. Generating the coefficient matrices and their determinants efficiently
is a subject to ongoing research, but there are some useful algorithms freely
available. In this work, we use the maple software package multires Busé
and Mourrain (2003), which can be downloaded from the internet1.

1 http://www-sop.inria.fr/galaad/logiciels/multires
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For more details on the theory of sparse resultants, we refer to Gelfand
et al (1994); Emiris and Mourrain (1999); Sturmfels (2002); Dickenstein and
Emiris (2005).

1.5.1 Finding Invariant Controlled Variables for
Polynomial Systems

After introducing the concepts above, we are ready to apply them in the
context of controlled variable selection and self-optimizing control. As in the
linear case above, we assume that the active constraints and the model equa-
tions, g(y, d̂) = 0, and the measurement relations, m(y, d̂) = 0, are satisfied.

Let J
(i)
z,red denote the i-th element in the reduced gradient expression. To

obtain the nc controlled variables needed for the unconstrained degrees of
freedom we have:

Theorem 1.2 (Nonlinear measurement combinations as controlled

variables). Given d̂ ∈ (R∗)nd̂ , and ny + ng = nd̂, independent relations

g(y, d̂) = m(y, d̂) = 0 such that the system

g(y, d̂) = 0

m(y, d̂) = 0
(1.33)

has finitely many solutions for d̂ ∈ (C∗)nd̂ . Let R(J
(i)
z,red, g,m), i = 1 . . . nc

be the sparse resultants of the nc polynomial systems composed of

J
(i)
z,red(y, d̂) = 0, g(y, d̂) = 0, m(y, d̂) = 0 i = 1 · · ·nc, (1.34)

then controlling the active constraints, g(y, d̂) = 0, and ci = R(J (i), g,m) i =
1, . . . , nc, yields optimal operation throughout the region.

Proof. The active constraints are controlled, so g(y, d̂) = 0 and m(y, d̂) = 0
are satisfied always, and there is no condition on the parameters for this part
of the system.

The system g(y, d̂) = 0,m(y, d̂) = 0 has only finitely many solutions for

d̂, so the set of possible d̂ is fixed. Moreover, we know that a real solution to
the subsystem g(y,d) = m(y,d) = 0 exists, since it is the given disturbance.

From Theorem 1.1, the sparse resultant gives the necessary and sufficient
conditions for the existence of a solution for (1.34) in d ∈ (C∗)nd . Therefore,

whenever J
(i)
z,red = 0, the resultant is zero (necessary condition). On the other

hand if R(Jz,red, g,m) = 0 then the system (1.34) is satisfied, too (sufficient
condition).

This holds for any solution d̂ ∈ (C∗)nd̂ , and in particular the “actual”

values of d̂. Because there are as many resultants as unconstrained degrees of
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freedom, controlling R(J
(i)
z,red, g,m) for i = 1, . . . , nu satisfies the necessary

conditions of optimality in the region.

Remark 1.4. In cases where the d̂ /∈ (C∗)nd̂ , we may apply a variable trans-

formation to formulate the problem such we get d̂ ∈ (C∗)nd̂ . For example a
translation d = d̃− 1.

Remark 1.5. By partitioning the overall optimization problem into several
regions of active constraints, we assume that we have obtained well behaving
systems for each region. In particular it is assumed that there are no base
points (values of ai,j(y), where a polynomial in g or m vanishes for all values

of d̂).

Remark 1.6. In some cases, the matrix of coefficients may be singular, yield-
ing an identically zero determinant. These cases can be handled by a pertur-
bation of the system at that point. This is a standard method of handling
degeneracies in resultants Canny (1990); Rojas (1999).

Example 1.2 (Case with one disturbance). Consider the system of two polyno-
mials in one unknown variable d, with one measurement relationm(y, d) = 0.
At the optimum we must have:

Jz,red = N∇zJ(y, d) = a1,1(y) + a1,2(y)d = 0

m(y, d) = a2,1(y) + a2,2(y)d+ a2,3(y)d
2 = 0

(1.35)

This system of univariate polynomials in d is overdetermined, and does not
have a common solution d∗ for arbitrary coefficients a1,1, a1,2, a2,1, a2,2, a2,3.
The sparse resultant coincides in the case of univariate polynomials with the
classical resultant, which is the determinant of the Sylvester matrix (Cox
et al, 1992), and the vanishing of the resultant is the necessary and sufficient
condition for the existence of a common root. We construct the Sylvester
matrix

Syl =





a1,2(y) a1,1(y) 0
0 a1,2(y) a1,1(y)

a2,3(y) a2,2(y) a2,1(y)



 , (1.36)

and the resultant is (where we omit writing the dependence on y explicitly):

R (Jz,red,m(y, d)) = det(Syl) = a21,2a2,1 − a1,2a1,1a2,2 + a2,3a
2
1,1 (1.37)

For a common root d∗ to exist, the polynomial in the coefficients, Res(f1, f2)
must vanish. Since the model m(y, d) is chosen such that it is always satisfied,
m(y, d) = 0 for any disturbance d ∈ R, controlling the resultant to zero
is the condition for the reduced gradient Jz,red to become zero. So for a
particular given exogenous d ∈ R, the optimality conditions will be satisfied,
and operation will be optimal.
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1.6 Switching Operating Regions

In this section, we present a pragmatic approach for detecting when to change
the control structure, because of changes in the active set. This task is a
research field in itself (Baotić et al (2008) has worked on linear systems with
quadratic objectives), and an exhaustive study is outside the scope of this
paper. However, we would like to present a procedure, which may be used
as starting point for a more thorough investigation of this problem in future
work.

From a pure optimization perspective, there is no difference between a
constraint and a controlled variable c(y), as the controlled variable may be
simply seen as an active constraint, and, similarly, an active constraint may
be considered a variable which is controlled at its constant setpoint. From
this perspective, there is no difference between an active constraint and the
model equations, either.

However, from an implementation point of view, there are differences be-
tween the model, the active constraints, and the controlled variables c(y).
First of all, the active constraints and the controlled variables c(y) = 0 are
not satisfied automatically, that is one has to control them to their setpoints.
Secondly, since their values are known (or calculated using known measure-
ments) they may be used for detecting when to switch control structures. The
basic idea is to monitor the controlled variables and the active constraints of
all neighbouring regions.

The main assumptions are that the regions are adjacent, that the distur-
bance moves the system continuously from one region to another, and that
the system cannot jump over regions. In addition, we assume that controlling
c(y) = 0 is equivalent to controlling the gradient to zero, as shown in the pre-
vious section. To determine when the control structure should be switched,
we propose two rules:

1. (A new constraint becomes active) When a new constraint becomes ac-
tive, change the control structure to the corresponding region

2. (A constraint becomes inactive) As soon as the controlled variable c in one
of the neighbouring regions becomes zero (reaches its optimal setpoint),
change the control structure to the corresponding region.

However, since we are working with systems of polynomial equations, there
are some potential pitfalls here. The first one is that we are assuming that the
regions of active constraints are adjacent, and that a changing disturbance
moves the system continuously to from one region into another. Although
this is the case for many systems in practice, it has to be confirmed that this
holds for the particular case in consideration.

The second pitfall is that since our controlled variables are derived from the
optimality conditions, this method will give optimal operation (and switch-
ing), as long as the same optimality conditions cannot be satisfied at two
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distinct d. This will hold if the optimization problem is convex in the distur-
bance space of interest.

1.7 Case Study

We consider an isothermal CSTR with two parallel reactions, as depicted in
Fig. 1.2, taken from Srinivasan et al (2008). The reactor is fed with two feed
streams FA and FB which contain the reactantsA and B in the concentrations
cA and cB. In the main vessel, the two components react to the desired
product C, and the undesired side product D. The reactants A and B are
not consumed completely during the reaction, so the outflow contains all four
products. The CSTR is operated isothermally, and we assume that perfect
temperature control has been implemented.

The products C and D are formed by the reactions:

A + B
k1−→ C

2 B
k2−→ D

(1.38)

We wish to maximize the amount of desired product (FA+FB)cC , weighted
by a yield factor (FA+FB)cC/(FAcA,in) (Srinivasan et al, 2008). The amount
of heat to remove and the maximum flow rate are limited by the equipment,
and we formulate the mathematical optimization problem as follows (Srini-
vasan et al, 2008):

max
FA,FB

(FA + FB)cC
FAcAin

(FA + FB)cC (1.39)

subject to

FAcAin − (FA + FB)cA − k1cAcBV = 0

FBcBin − (FA + FB)cB − k1cAcBV − 2k2c
2
BV = 0

−(FA + FB)cC + k1cAcBV = 0

FA + FB ≤ Fmax

k1cAcBV (−∆H1) + 2k2cBV (−∆H2) ≤ qmax

(1.40)

Here, k1 and k2 are the rate constants for the two reactions, (−∆H1) and
(−∆H2) are the reaction enthalpies, qmax the maximum allowed heat, V
the reactor volume, and Fmax the maximum total flow rate. The measured
variables (y), the manipulated variables (u), the disturbance variables (d),
and the internal states are given in table 1.2, and the parameter values of the
system are listed in table 1.3.
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A

B

ABCD

Fig. 1.2 CSTR with two reactions

Table 1.2 Overview of variables

Symbol Description Comment

FA Inflow stream A measured input
FB Inflow stream B measured input
F total flow measured variable
q heat produced measured variable
cB concentration of B measured variable
cA concentration of A unmeasured variable
cC concentration of C unmeasured variable
k1 rate constant reaction 1 unmeasured disturbance

Table 1.3 Parameters

Symbol Unit Value

k1 l/(mol h) 0.3 - 1.5
k2 l/(mol h) 0.0014
(−∆H1) J/mol 7× 104

(−∆H2) J/mol 5× 104

cA,in mol/l 2
cB,in mol/l 1.5
V l 500
Fmax l 22
qmax kJ/h 1000

We write the combined vector of states x = [cA, cB , cC ] and manipulated
variables u = [FA, FB ] as

z =
[
cA, cB, cC , FA, FB

]T
. (1.41)
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1.7.1 Identifying Operational Regions

Following the procedure from Section 1.3, the system is optimized off-line
for the range of possible disturbances d = k1. This shows that the system
can be partitioned into three adjacent critical regions, defined by their active
constraints.

The critical regions are visualized in Fig. 1.3, where the normalized con-
straints are plotted over the disturbance range. In the first region, for dis-
turbances below about k1 = 0.65 l

mol h , the flow constraint is the only active

constraint. The second critical region for values between about k1 = 0.65 l
mol h

and k1 = 0.8 l
mol h is characterized by two active constraints, i. e. both the flow

constraint and the heat constraint are active. Finally, in the third region,
above about k1 = 0.8 l

mol h only the heat constraint remains.

0.2 0.4 0.6 0.8 1 1.2 1.4 1.6
0.88
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1.02
Constraints

disturbance k1
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nd
 F

/fm
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F/Fmax
q/qmax

Fig. 1.3 Optimal values of the constrained variables

1.7.2 Eliminating λ

In each critical region, the set of controlled variables contains the active
constraints (we know that they should be controlled at the optimum). This
leaves the unconstrained degrees of freedom, which is the difference between
the number of manipulated variables and the active constraints, nDOF =
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nz − ng. For each of the unconstrained degrees of freedom one controlled
variable is needed.

In the first critical region this gives nDOF,1 = 5 − 4 = 1 unconstrained
degrees of freedom, so apart from the active constraint, which is the first
controlled variable, we need to control one more variable (invariant).

To obtain the reduced gradient, we calculate the null space of Jacobian of
the active set NT

z and multiply it with the gradient of the objective function
∇zJ(z,d) to obtain Jz,red,1 = NT

z ∇zJ . Depending on the algorithm to
compute the null space, this may become a fractional expression, but since
we want to control the process at the optimum, i. e. we control Jz,red,1 to
zero, it is sufficient to consider only the numerator of Jz,red,1. This is possible
because a fraction vanishes if the numerator is zero (provided the denominator
is nonzero which is the case here because ∇zg has full rank). For the critical
region 1, we obtain from (1.7) the invariant

Jz,red,1 = −(FA + FB)
2cC

[
−3cCF

2
BFA − 3cCF

2
AFB

− 4cCcBF
2
Ak2V − 4cCk2V

2k1c
2
BFA − cCF

3
A

− cCF
3
B − 4cCk2V

2k1c
2
BFB − cCcBF

2
Ak1V

− 4cCcBF
2
Bk2V − cCcBF

2
Bk1V − cCF

2
AcAk1V

− cCF
2
BcAk1V − 8cCFAcBFBk2V

− 2cCFAcBFBk1V − 2cCFAFBcAk1V

+ 8FAk1V
2cA,ink2c

2
B + 2F 2

Ak1V cBcA,in

+ 2FAk1V FBcBcA,in − 2F 2
Ak1V cB,incA

−2FAk1V FBcB,incA]

(1.42)

which should be controlled to zero. This expression may be simplified slightly,
since it is known that (FA + FB)

2cC 6= 0. It is therefore sufficient to control
the factor in square brackets in (1.42) to zero.

Similarly, in the second critical region nDOF,2 = 5 − 5 = 0, and here we
simply control the active constraints, keeping q at qmax and F at Fmax.

In the third critical region nDOF,3 = 5 − 4 = 1, and we use one of the
manipulated variables control the active constraint (q = qmax) while the
other one is used to control the invariant measurement combination Jz,red,3,
which is an expression similar to (1.42).

1.7.3 Eliminating Unknown Variables

The invariant variable combinations for the first and the third critical region
Jz,red,1 and Jz,red,3 still contain unknown variables, namely k1, cA and cC ,
and cannot be used for feedback control directly.
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To arrive at variable combinations which can be used for control, we in-
clude all known variables into y, and all unknown variables into d̂, such that
d̂ = [k1, ca, cC ]. Then we write the necessary conditions for optimality as for
each region as

Jz,red(y, d̂) = 0

g(y, d̂) = 0.
(1.43)

Considering the known variables y as parameters of the system, we want to
find conditions on these parameters such that (1.43) is satisfied. The system
has nd̂ = 3 unknown variables, k1, ca and cc, which we know that they are not
zero. This corresponds to solutions [k1, cA, cC ] ∈ (C∗)3. According to section
1.5 we have that (1.43) is satisfied if and only if the sparse resultant is zero.

In critical region 1 and 3, the number of equations neq = 5 (model equa-
tions+active constrains+invariant), and the number of unknowns nd̂ = 3.
So we have more equations than necessary. Since we assume no measure-
ment noise, all measurements are equally good, and we may select a subset of
nd̂ + 1 equations from (1.43) to compute the sparse resultant for the subset
of equations. Obviously, the reduced gradient must be contained in this set
of equations. Alternatively, as we do in the following, we can eliminate one
more variable from the invariant.

For the first region, we use the sparse resultant of the system consisting of
the invariant (1.42), the model equations (the first three equality constraints
in (1.40)) and the first (active) inequality constraint in (1.40) to eliminate
k1, cA, cC and FB and to calculate the controlled variable combination. The
computations were performed using the multires software (Busé and Mour-
rain, 2003). After division by nonzero factors, the controlled variable for re-
gion 1 becomes:

c1 = −c2b,inF 2
A − F 2

AcA,incb,in + 6FAcA,ink2c
2
bV + 2FAcA,inFmaxcb

− FAcA,inFmaxcb,in + F 2
maxc

2
b + c2b,inF

2
max + 4V 2k22c

4
b

− 2cb,inF
2
maxcb − 4V k2c

2
bcb,inFmax + 4V k2c

3
bFmax

(1.44)

In the second critical region, control is simple; the two manipulated vari-
ables are used to control the two active constraints F = Fmax and q = qmax.

The third critical region is controlled similar to the first one. One input
variable is used to control the active constraint, and the second input is
used to control the resultant. The model equations (the first three equations)
together with the energy constraint) in (1.40) and the reduced gradient are
used to compute the resultant. Thus the unknown variables k1, cA, cC , and FB

are eliminated from the reduced gradient. The controlled variable for region
3 is:
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c3 = −4V c2Bk2∆H2FAcA,incB,inqmax∆H1 + FAc
2
B,inq

2
max∆H1

+ 4V 2c4Bk
2
2∆H2FAcA,incB,in∆H

2
1 − 4V 2c4Bk

2
2∆H

2
2FAcA,incB,in∆H1

− 2V c2Bk2FAcA,incB,in∆H
2
1qmax − 4V c2Bk2∆H2FAc

2
B,in∆H1qmax

− 2V c2Bk2∆H2F
2
AcA,inc

2
B,in∆H

2
1 + 8V c3Bk2∆H2∆H1FAcA,inqmax

− 8V 2c4Bk
2
2∆H2cB,in∆H1qmax − 12V 2c4Bk

2
2FA∆H

2
2 c

2
B,in∆H1

− 8V 2c5Bk
2
2∆H2FAcA,in∆H

2
1 + 8V 2c5Bk

2
2∆H

2
2∆H1FAcA,in

+ 8V 2c5Bk
2
2FA∆H

2
2 cB,in∆H1 − q3maxcB,in + 2cBq

3
max

−∆H1cB,inFAcA,inq
2
max + 2cBFAcA,inq

2
max∆H1 + F 2

AcA,inc
2
B,in∆H

2
1 qmax

− 2cBFAcB,inq
2
max∆H1 + 8V c3Bk2∆H2q

2
max + 8V 2c5Bk

2
2∆H

2
2qmax

+ 8V 3c6Bk
3
2∆H

3
2 cB,in − 2cBF

2
AcA,incB,in∆H

2
1qmax

− 2V c2Bk2∆H1q
2
maxcB,in − 2V c2Bk2∆H2q

2
maxcB,in

+ 4V 2c4Bk
2
2∆H

2
2 cB,inqmax − 8V 3c6Bk

3
2∆H

2
2 cB,in∆H1

(1.45)

Although these expressions are quite involved, they contain only known quan-
tities, and can be easily evaluated and used for control. Before actually using
the measurement combinations for control, they are scaled so that the order
of magnitude is similar. That is, c1 is scaled (divided) by Fmax, and c2 is
scaled by ∆H2

1∆H2FAFB .

1.7.4 Using Measurement Invariants for Control and
Region Identification

Having established the controlled variables for the three critical regions, it
remains to determine, when to switch between the regions. Starting in the
first critical region, the flow rate is controlled such that FA+FB = Fmax, and
the first measurement combination c1 is controlled to zero. As the value of
the disturbance k1 rises, the reaction rate increases and the required cooling
to keep the system isothermal, until maximum cooling is reached, Fig. 1.4.
When the constraint is reached, the control structure is switched to the next
critical region, where the inputs are used to control q = qmax and FA+FB =
Fmax. While operating in the second region, the controlled variables of the
neighbouring regions are monitored. As soon as one of the variables c1 or
c3 reaches its optimal setpoint (i. e. 0) for its region the control structure
is changed accordingly. Specifically, when k1 is further increased, such that
c3 = 0 is reached, we must keep FA +FB < Fmax such to maintain the value
c3 = 0.
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Fig. 1.4 Optimal values of controlled variables

1.8 Discussion

The presented method is based on the same idea as NCO tracking (François
et al, 2005). However in contrast to NCO tracking, where the optimality
conditions are solved for the optimizing inputs, this work focuses on finding
the right outputs which express the optimality conditions. The corresponding
inputs are generated by PI controllers and feedback control.

The method was developed as an alternative derivation and a generaliza-
tion of the existing null space method (Alstad and Skogestad, 2007) for linear
systems.

In the linear case, eliminating the constraints is straight forward, while this
is not trivial in the polynomial case. However, by premultiplying ∇J by the
null space of the constraints NT , we eliminate the Lagrangian multipliers
from the equation set, and obtain the reduced gradient for the nonlinear
case. The elimination of the Lagrangian multipliers can also be done by the
resultant. Under the strict complementarity condition (either λ = 0 or the
constraint is active), the solutions for λ lie in the toric variety, and therefore
the sparse resultant gives necessary and sufficient conditions on the known
variables so that the KKT system has a solution. We chose to apply the two-
step procedure in this work, since this results in lower computational load
when computing the resultants.
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As an alternative to calculating resultants, the controlled variable combi-
nations could be computed using Gröbner bases with an appropriate elimi-
nation ordering (Cox et al, 1992). One could use an appropriate monomial
ordering which eliminates the unknown variables, and then use a polynomial
from the elimination ideal as controlled variable. However, this Gröbner ba-
sis approach has some disadvantages, as it is not straightforward to find an
elimination order which eliminates the unknown variables from the equation
system while not yielding the “trivial solution” (i. e. the invariant is always
zero when the constraints are satisfied). Another problem is that the selected
invariant might give rise to “artificial solutions” which are not solutions of
the original optimality conditions.

A similar approach is to calculate a Göbner basis for the ideal generated by
the active constraints g(y, d̂) and m(y, d̂), and to reduce the N∇zJ modulo
the ideal. This avoids the trivial solution, however, the problem of choosing
a monomial ordering which eliminates all unknown variables, remains.

Another argument against using a Gröbner basis for calculation the in-
variant, is, that it can yield very large and complicated expressions.

Since also the sparse resultants can give large expressions, in practice the
method is best suited for small systems, with few constraints and equations.
This is further emphasized by the fact that calculating the analytical deter-
minant for large matrices is computationally demanding and that the con-
struction of the resultant matrices is based on mixed subdivision, which is a
hard enumeration problem (Cox et al, 2005).

In many cases (and in our case study) there are more polynomial equations
than unknowns. Then the engineer has to chose which model polynomials to
use in the resultant calculations in addition to the reduced gradient. From
a purely mathematical view, this does not make any difference, as long as
the set of model equations has finitely many solutions for d. However the
controlled variables will look quite different for different choices. The best (in
terms of simplicity) choice depends on the structure of the equations, and
is thus specific to the problem. However, as a general guideline, it would be
advisable to keep the degrees of the polynomials low in the unknown variables.
This leads to simpler resultants.

The resultant method, as presented above, does not take into account
errors in the model and measurements. This is beyond the scope of this
work. Our goal was to extend the idea of the null-space method (Alstad and
Skogestad, 2007) and to demonstrate on a small example that the concept of
finding variables which remain constant at optimal operation is possible also
for polynomial systems.

Apart from handling noisy measurements and model mismatch, a further
subject for future research is to find methods which reproduce not all solutions
of the optimality conditions, but only a certain set of interest. This could
be all the real solutions or solutions which reside in some further specified
semialgebraic set.
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1.9 Conclusions

In this chapter we have presented an approach to obtain optimal steady state
operation which does not require online calculations. We have shown that,
after identifying the critical regions, there exist optimally invariant variable
combination for each region. If there are enough measurement/model rela-
tions (ng + nm ≥ nd̂), the unknown variables can be eliminated by measure-
ments and system equations, and the invariant combinations can be used for
control using a decentralized self-optimizing control structure.

Further, we have shown that the measurement invariants can be used for
detecting changes in the active set and for finding the right region to switch
to.

Using methods form elimination theory, we have shown that, in principle,
the idea of using polynomials in the measurements as self-optimizing control
variables can be used to control the process optimally.
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Chapter 2

Controller Performance Monitoring and
Assessment

Selvanathan Sivalingam and Morten Hovd

Abstract The area of controller performance assessment is concerned with
the analysis of existing controllers, for the purpose of locating areas where
the control performance is inadequate. Thus, as opposed to most areas of
control engineering that focus on controller design, controller performance
assessment aims to provide tools for control system maintenance. Preferably,
the controller performance monitoring should work with routine operating
data, both to avoid disturbing the plant and because the sheer size of most
chemical plants make active experimentation on a plant-wide scale unrealis-
tic and in most cases unacceptable. Thus, the field of controller performance
assessment gives value to the immense volumes of process data that are rou-
tinely logged and archived. The field has matured to the point where several
commercial algorithms and/or vendor services are available for process per-
formance auditing or monitoring.

2.1 Introduction

Most modern industrial plants have hundreds or even thousands of automatic
control loops. These loops can be simple proportional-integral-derivative
(PID) or more sophisticated model-based linear and non-linear control loops.
It has been reported that as many as 60% of all industrial controllers have per-
formance problems (Ender, 1993). Recent research and development efforts in
the area of primary control loop performance assessment have been targeted
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at reducing the maintenance burden. The performance of a process controller
often changes during plant operation. An initially well-tuned controller may
become undesirably sluggish or aggressive due to equipment wear or changes
in operating conditions causing changes in process dynamics (including the
‘notorious’ valve stiction) or operating constraints. A controller with poor
performance increases operating costs, lowers product quality and even risks
process safety. In practice, several poorly performing controllers often exist in
plants and remain unnoticed for a quite long time before being detected and
hopefully corrected. Having an automated means of detecting and then diag-
nosing the control loop degradation is essential to maintain/improve product
quality, safety and also plant economy for any plant of non-trivial size. Even
a 1% improvement either in energy efficiency or reduced product variability
saves hundreds of millions of dollars for process industries (Bialkowski, 1993).

The term control loop performance monitoring means the action of watch-
ing out for changes in a statistic that reflects the control performance over
time. The term control loop performance assessment refers to the action of
evaluating such a statistic at a certain point in time. However, the two terms
are used somewhat interchangeably in the literature.

The deployment of distributed control system (DCS), advanced control
applications, and information management systems have become common-
place in the process industry. This has led to detailed information about the
plant being archived on a daily basis. Competitive pressure and tighter en-
vironmental regulations have encouraged control engineers and managers to
look at the archived information to identify potential areas of improvement
and identify trends and problems in an incipient fashion for preventive main-
tenance. A spate of surveys on the performance of control loops reveal that
a majority of control loops in processing industries perform poorly. Perfor-
mance demographics of 26000 PID controllers collected across a wide variety
of processing industries in a two year time span indicate that the performance
of 16% of the loops can be classified as excellent, 16% as acceptable, 22% as
fair, and 10% as poor, and the remaining 36% are in open loop (Desborough
and Miller, 2002). Since PID controllers constitute 97% of all industrial con-
trollers (Srinivasan et al, 2005), poorly performing loops pose a significant
problem with huge financial implications.

In common industrial practice, only overall measures of process and con-
trol performance are monitored. The most commonly used measure of per-
formance is the variance or standard deviation of key process variables. If the
control strategies do not work well, the standard deviations can be very large.
The reason that the standard deviation is used for monitoring is its direct
relationship to process performance and profit. Optimal plant operation of-
ten lies at an operational constraint (or intersection of multiple constraints).
A reduction in standard deviation therefore provides the ability to operate
closer to the optimal point without increasing the risk of violating constraints.
Furthermore, if no constraints are active at the optimal operating point, re-
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duction in standard deviation implies that the plant operates more of the
time close to that optimum.

To be practical, monitoring and diagnostic methods must be tailored to
the needs of industrial plants. Thus, for controller performance assessment it
is important to have an efficient tool available. Such a tool should be ideally
equipped with a good user-friendly interface, readily understandable report
generation, diagnosis information in text form, having a single composite
index ranking the loop performance, and employ reliable computational soft-
ware. Most large plants have many poorly performing loops, and instead
of overwhelming operators and maintenance personnel the monitoring tool
should advise on what performance problems should be tackled first, giving
a clear ranking of the control loops according to the severity of the perfor-
mance problems. The monitor should not disturb routine plant operation,
and it should hence use only the routine plant operation data.

A primary difficulty of controller performance monitoring is the shear num-
ber of loops to be monitored – a typical large processing operation consists
of hundreds of control loops, often operating under varying conditions. The
majority of the controllers use the PID algorithm, but there may also be
advanced multivariate model-based controllers and other application specific
controllers. Maintenance of these loops is generally the responsibility of either
a control engineer or an instrument technician, but other responsibilities, cou-
pled with the tediousness of consistently monitoring a large number of loops,
often results in control problems being overlooked for long periods of time.

Real-time controller performance monitoring to identify poorly or under-
performing loops has become an integral part of preventative maintenance.
Among others, rising energy costs and increasing demand for improved prod-
uct quality are driving forces. Automatic process control solutions that in-
corporate realtime monitoring and performance analysis are fulfilling this
market need. While many software solutions display performance metrics,
however, it is important to understand the purpose and limitations of the
various performance assessment techniques since each metric signifies very
specific information about the nature of the process.

Controller performance assessment has been an area of active research
for the last two decades, and several advanced algorithms are available in
commercial software packages. These packages enable control engineers to
easily and accurately obtain controller quality metrics without performing
plant tests, and to monitor all aspects of their control loops.

Fig. 2.1 illustrates a typical control loop. Controller performance assess-
ment techniques address questions such as

1. What set of performance measures should be chosen for a given process so
that the scope for improvement in performance is correctly highlighted?

2. How can one arrange a set of performance measures to figure out the
improvement potential without disturbing the running system? Is the
controller ‘healthy’?
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Fig. 2.1 A simple figure illustrating control performance assessment problems, in-
spired by Jelali (2005).

3. Is the controller doing its job satisfactorily? If not, what leads to loop
degradation?

4. How can the growing data available from the process industries be ex-
ploited for this task?

A recent survey by Jelali (2005) summarizes answers to some of these ques-
tions which are described in the following section.

2.2 Sources of Poor Control Loop Performance

There are several possible causes for poor control performance, requiring
different remedies. One way of categorizing the causes of poor control perfor-
mance is the following four groups:

1. Improper and inadequate controller tuning and lack of maintenance
2. Equipment malfunction or poor design
3. Poor or missing feedforward compensation
4. Inappropriate control structure

In the following, each of these causes for poor performance is discussed in
more detail.
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2.2.1 Improper and Inadequate Controller Tuning and
Lack of Maintenance

The ability of proportional integral (PI) and proportional integral derivative
(PID) controllers to compensate most practical industrial processes has led to
their wide acceptance in industrial applications. As per literature, there are
perhaps only 5-10% of control loops that cannot be controlled adequately by
single input, single output (SISO) PI or PID controllers; in particular, these
controllers are believed to perform well for processes with benign dynamics
and modest performance requirements. It has been stated that 98% of control
loops in the pulp and paper industries are controlled by SISO PI controllers
(Bialkowski, 1996) and that in process control applications, more than 95%
of the controllers are of PID type.

PI or PID controller implementation has been recommended for the control
of processes of low to medium order, with small time delays, when parameter
setting must be done using tuning rules and when controller synthesis is
performed either once or more often. However, despite decades of development
work, surveys indicating the state of the art of control in industrial practice
report sobering results.

For example, Ender (1993) states that in his testing of thousands of control
loops in hundreds of plants, it has been found that more than 30% of installed
controllers are operating in manual mode and 65% of loops operating in
automatic mode produce less variance in manual than in automatic, (i.e.,
the automatic controllers actually degrade operational performance rather
than help improving it). The situation does not appear to have improved
more recently, as per latest report (Overschee and Moor, 2000) that 80% of
PID controllers are badly tuned; 30% of PID controllers operate in manual
with another 30% of the controlled loops increasing the short term variability
of the process to be controlled (typically due to too strong integral action).
Also, it is stated that 25% of all PID controller loops use default factory
settings, implying that they have not been tuned at all.

One clearly cannot expect good performance from a controller that has
never been tuned. For controllers that have been tuned, but still show poor
performance, inappropriate tuning parameters may be the result of tuning
based on a poor plant model or inadequate mastery of control engineering by
the person performing the tuning. The most common cause of poor control
performance is, however, that controllers are normally designed and tuned at
the commissioning stage, but left unchanged after that for years (or decades),
although the performance of many control loops decays over time owing to
changes in the characteristics of the material/product being used, modifi-
cations of operating points/ranges and changes in the status of the plant
equipment (wear, plant modifications).

In industrial practice, the main reasons quoted for lack of tuning and
maintenance are:
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• The commissioning engineers tune the controllers until they are consid-
ered “good enough”. They do not have time to optimise the control. Most
controllers are tuned once they are installed, and then never again.

• Often, the controllers are conservatively tuned (i.e., for the “worst case”)
to retain stability when operating conditions change in non-linear systems.

• There are only a few people responsible for maintenance of automation sys-
tems and all are fully busy with keeping the control systems in operation,
i.e., they have no or very little time for improving controllers. Typically a
remarkable number of controllers have to be maintained by a very small
number of control engineers.

• Operators and engineers often do not have the necessary education and
understanding of process control to be able to know what can be expected
of the control or what the causes of poor performance are. Sometimes, the
poor control performance becomes the norm and production people accept
it as normal. Various studies indicate that the ‘half-life’ of good control
loop performance is about 6 months (Bialkowski, 1993).

2.2.2 Equipment Malfunction or Poor Design

Control loop performance degradation may be the result of failing or malfunc-
tioning sensors or actuators (e.g., due to stiction, hysteresis and deadband).
Sensors are critical components in almost all modern engineering systems and
are used to not only obtain basic plant operational information but also to
compute control actions. A fault in a sensor is typically characterized by a
change in its operational characteristics, and severe sensor faults will typi-
cally cause measurements to misrepresent the operation condition of plant;
mislead control actions and consequently cause energy waste, an increase in
operation costs, and/or unacceptable quality. Failing sensors may also pose a
risk to the overall safety of the plant. Reliable sensors are essential for reliable
monitoring and control of automation systems. The detection and diagnosis
of these changes, or sensor fault diagnosis, plays an important role in the
operation of many engineering systems. Sensor fault detection falls within
the well-established field of fault detection, for which there is a vast special-
ized literature. Although accurate sensors is a prerequisite for good control
performance, the topic will not be addressed further here.

Oscillations in control loops raise particular concerns because they in-
crease variability in product quality, accelerate equipment wear, and may
cause other issues that could potentially disrupt the operation. Therefore,
detecting and diagnosing oscillations yield commercial benefits and are im-
portant activities in control loop supervision and maintenance.

Generally, oscillations are caused by any one or a combination of the fol-
lowing reasons:

1. limit cycles caused by valve stiction or other process nonlinearities
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2. poor controller tuning
3. poor process and control system design
4. external oscillatory disturbances

More serious is the problem when the process or a process component is
not appropriately designed. The relation between process design and control
can be succinctly summarised by the following quotation from a paper by
Ziegler and Nichols (1943): “In the application of automatic controllers, it
is important to realize that controller and process form a unit; credit or
discredit for results obtained are attributable to one as much as the other.
A poor controller is often able to perform acceptably on a process, which
is easily controlled. The finest controller made, when applied to a miserably
designed process, may not deliver the desired performance. True, on badly
designed processes, advanced controllers are able to eke out better results
than older models, but on these processes there is a definite end-point which
can be approached by the instrumentation and it falls short of perfection.”
Thus, the problems mentioned in this item cannot be overcome by retuning
the controller.

2.2.3 Poor or Missing Feedforward Compensation

In an industrial control system there are often many measured signals avail-
able in addition to the the measurement of the process variables that are
actively controlled. The question is to find a way to select the feedforward
variable out of the available measurements. Petersson et al (2003) has made a
comparison of two different methods for feedforward control structure assess-
ment. The first method is taken from Desborough and Harris (1993), and is
based on comparing the actual variance with the minimum achievable vari-
ance, and the contribution of the disturbance to the overall variance. The
second is a method for evaluating deterministic additive disturbances and
estimate where they enter in the process. The methods complement each
other and show that assessment methods should be handled with care, and
their use should reflect the disturbance scenario affecting the plant. In the
case of frequent deterministic disturbances, rejection time speed of response,
etc., may be appropriate performance measures, and the second assessment
method appears more appropriate. For minimizing yield and quality varia-
tions in the presence of stochastic disturbances, the first assessment method
should be chosen.

The first assessment method can be applied using only routine operating
data, whereas the second method requires knowledge of a plant and distur-
bance model or experimentation on the plant. However, although feedforward
control is generally sensitive to model errors (Skogestad and Postlethwaite,
2005), the second assessment method is not particularly sensitive to model
accuarcy (Petersson et al, 2003).
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Clearly, the decision whether to use feedforward control depends on
whether the degree of improvement in the response to the measured dis-
turbance justifies the costs of implementation and maintenance.

Feedforward control is always used along with feedback control, even for
open loop stable systems, because feedback is required to track setpoint
changes and to suppress unmeasured disturbances that are always present
in any real process.

2.2.4 Inappropriate Control Structure

Inadequate input/output pairing, ignoring mutual interactions between the
system variables, competing controllers, insufficient degrees of freedom, the
presence of strong nonlinearities and the lack of time-delay compensation in
the system are frequently found as sources for control problems.

A proper coverage of these issues is far beyond the scope of this chapter.
Instead, we refer to, e.g., Larsson and Skogestad (2000) and Skogestad and
Postlethwaite (2005) for information on issues such as

• Systematic approaches to control system design for entire plants, including
the determination of the available degrees of freedom for plant operation.

• Interaction analysis, in particular the use of the Relative Gain Array
(RGA).

Occasionally, strong nonlinearities are well known, are essentially static,
and are easily described based on readily available plant information. In such
cases, gain scheduling may possibly be designed without much difficulty, and
be able to counteract much of the plant nonlinearity, yielding a controller
response that does not vary much over the desired operating region. In other
cases, feedback may be utilized to obtain a more linear response. For example,
a local flow controller may ’linearize’ a non-linear valve, yielding an essentially
linear response from setpoint change to observed flow in cases where the
response from change in valve stem position to observed flow would be highly
non-linear.

There exists a vast literature on non-linear control that may be consulted
when the simple approaches above do not suffice, see e.g., Khalil (1996).
However, in contrast to simple linear controllers like the PI controller, which
may often be tuned on-line, most non-linear controller design approaches
requires the plant model to be known, which is actually a major complicating
factor in many cases.

Time delay compensation, such as the use of a Smith predictor, may dras-
tically improve control performance. However, one should be aware that in
many applications the time delay will depend strongly on operating condi-
tions. This may cause robustness problems unless properly accounted for in
the controller design.
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2.3 Detection and Diagnosis of Oscillations in Control
Loops

Poorly performing control loops often display oscillations. Looking for oscil-
lating loops is therefore a reasonable approach to identifying (some of the)
poorly performing control loops in the plant. In most cases, oscillating loops
are easily identified by manual inspection. The task of oscillation detection
is therefore primarily focussed on detection methods that can be easily and
reliably automated for either on-line or archival data, as low manpower and
the sheer number of control loops rule out manual inspection of all the loops.

Due to interactions in a process plant, oscillations originating in one loop
will usually spread to other loops. Similarly, external oscillating disturbances
can spread widely across the plant. Following detection of the oscillating loops
in a plant, it is therefore desirable determine where the oscillations arise, and
preferably also diagnose the cause of the oscillations.

2.3.1 Detection of Oscillating Control Loops

For the trained human eye, detection of oscillations may seem a trivial task.
However, it is far from trivial to define and describe oscillations in a typical
signal from a process plant in such a way that it can reliably be automated
(in either on-line or off-line tools). The following are some of the properties of
oscillating signals that may be exploited to identify the periodicity present in
the signals. It is assumed that the signals under study are stable, or at least
only marginally unstable, as otherwise the control loops in question will have
to be taken out of service (and it should then be apparent that the control
loop needs attention). Any exponentially growing signal will eventually hit
some system constraint or cause some malfunction. It is to be noted that
control loops are here classified as oscillatory if they show an unacceptable
tendency to oscillate, a perfect limit cycle is not a requirement. Stable loops
with insufficient damping will also be classified as oscillatory in this context.

A number of oscillation detection methods are suggested in the literature
which fall into the following four main categories:

1. Methods based on the auto-covariance function
2. Spectral peak detection
3. Methods based on the integrated absolute error
4. Method based on wavelet plots

Before going into details of different oscillation detection methods, it is nec-
essary to know some important statistical tools which are defined as follows:
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2.3.1.1 The Auto-covariance Function (ACF)

The auto-covariance function of a stationary process is essentially a measure
of how closely the values of a variable (the statistical dependence of time-
series data), when measured at different times, are correlated. For a variable
x and a data set of N data-points, the auto-covariance function is defined as

rxx[l] =
1

N

N−1∑

k=1

(x[k]− x̄)(x[k + l]− x̄) (2.1)

where k denotes the sample index and x̄ is the mean value of the series.
The ACF of a time-series is symmetric about the lag l = 0. For time series
from stable systems (like the ones we are considering here), it clearly takes
the largest value at lag l = 0. Often, a normalized auto-covariance function,
known as the autocorrelation function is used. It is defined as

ρxx[l] =
rxx[l]

rxx[0]
(2.2)

ρxx[l] lies between -1 and 1 for stable systems, and the autocorrelation
function of an oscillatory signal is also oscillatory. For stable signals, it gen-
erally decays with increasing lags, whereas it will oscillate for systematically
oscillating signals, and a periodic signal will have a periodic autocorrelation
function. In principle, one should be able to detect oscillations directly from
the autocorrelation function. However, it might not be the case if the signal
contains multiple frequencies, measurement noise, assymmetric oscillations,
etc. Nonlinear effects may also introduce oscillations at frequencies that are
multiples of the base oscillation frequency. Nevertheless, Moiso and Piiponen
(1998) propose an oscillation index calculated from the roots of a second or-
der AR model fitted to the autocorrelation function. The method of Miao
and Seborg, which is described below, is also based on the autocorrelation
function.

2.3.1.2 The Power Spectrum

Then power spectral density (PSD), or simply the power spectrum is a posi-
tive real function of a frequency variable associated with a stationary random
process. The power spectrum results from a Fourier transform of the auto-
covariance function, and in essence it is the frequency domain equivalent of
the auto-covariance function.

φxx(ω) =

N−1∑

l=−(N−1)

rxx[l]e
−ilω (2.3)



2 Controller Performance Monitoring and Assessment 37

If the signal exhibits a purely sinusoidal oscillation at a particular frequency,
the power spectrum will have a peak at that frequency. An oscillation that
does not decay with time, will have a very large peak at that frequency in the
power spectrum. The problems of using the power spectrum for oscillation
detection are similar to those of using the autocorrelation function. Instead
of the power spectrum having a single spike at the oscillating frequency, the
signal may be corrupted by noise and nonlinear effects such that the power
spectrum is blurred or contains numerous spikes.

2.3.2 The Oscillation Detection Method of Miao and
Seborg (ACF Based)

Miao and Seborg (1999) uses the autocorrelation function to detect oscilla-
tions. It calculates a somewhat non-standard ‘decay ratio’, as illustrated in
Fig. 2.2.

b
a

0

1

-1

Fig. 2.2 Calculation of the Miao-Seborg oscillation index from the autocorrelation
function.

The Miao-Seborg oscillation index is simply the ratio given by R = a/b.
A threshold value of R = 0.5 is proposed, a larger value will indicate (un-
acceptable) oscillations. Little justification is provided for this measure. In
particular, it is not explained why this measure is better than simply com-
paring the magnitude of neighbouring peaks in the autocorrelation function.

Nevertheless, industrial experience appears to be favourable, and oscilla-
tions are detected with reasonable reliability. Some drawbacks are

• it is relatively complicated for on-line oscillation detection and hence, it is
better suited for offline analysis of batches of data.
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• it does not take the amplitude of oscillations directly into account. Some
oscillations of small amplitude may be acceptable, but this method will
classify also loops with acceptable oscillation as oscillatory.

• it assumes that the oscillations are the main cause of variability in the
measured variable. If a control loop experiences frequent (and irregular)
setpoint changes of magnitude larger than the amplitude of the oscillations,
it may fail to detect the oscillations.

These comments also apply to the ACF-based detection method of Moiso
and Piiponen (1998) described above.

2.3.2.1 Spectral Peak Detection Method

This method is based on looking for peaks in the power spectrum. Visual
inspection of spectra is helpful in this method because strong peaks can be
easily seen – although as previously noted it is desirable to fully automate
the oscillation detection method. Automated oscillation detection based on
spectral analysis becomes difficult if the oscillation is intermittent and periods
vary every cycle, as the power spectrum may then have blurred or multiple
peaks.

2.3.2.2 IAE Based Detection Methods

There are several oscillation detection methods that are based on the Integral
Absolute Error (IAE). Hägglund’s method of oscillation detection Hägglund
(1995) falls in this category, although Hägglund’s measure may be said to
be a more general measure of control performance rather than exclusively an
oscillation detection method. The basic idea behind the measure is that the
controlled variable in a well-functioning control loop should fluctuate around
the setpoint, and that long periods on one side of the setpoint is a sign of
poor tuning.

Hägglund’s performance monitor looks at the control error e(t) = r(t) −
y(t), and integrates the absolute value of e(t) for the period between each
time this signal crosses zero:

IAE =

∫ ti

ti−1

|e(t)| dt

where ti−1 and ti are the times of two consecutive zero crossings. Whenever
this measure increases beyond a threshold value, a counter is incremented,
and an alarm is raised when the counter passes some critical value. It is shown
in Hägglund (1995) how a forgetting factor can be used to avoid alarms from
well-functioning loops which are exposed to infrequent, large disturbances (or
setpoint changes).
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Critical tuning parameters for this monitoring method are the IAE thresh-
old value and the counter alarm limit. Typical choices for the IAE threshold
value are

IAElim = 2a/ωu

IAElim = aTI/π

where a is an acceptable oscillation magnitude, ωu is the ultimate fre-
quency (the oscillation frequency found in a closel loop Ziegler Nichols ex-
periment), and TI is the integral time in a PI(D) controller. The more rigorous
of the two treshold values is the first, and ωu would be available if the loop
was tuned with e.g. Hägglund’s relay-based auto tuning procedure. However,
often ωu will not be available, and the second expression for IAElim will then
have to be used – this expression is intended to work as a reasonable ap-
proximation of the first expression for IAElim for a reasonably tuned loop.
Naturally, this may be misleading if the cause of poor control performance is
poor choice of controller tuning parameters.

The counter alarm limit is simply a tradeoff between the sensitivity of the
monitoring method and the rate of “unnecessary” alarms. This monitoring
method is

• Simple and appliccable for on-line implementation.
• It takes oscillation amplitude into account – it is ignores small oscillations

unless the oscillation period is very long.
• Some tuning of the monitoring method must be expected. The guidelines

for choosing IAElim is based on knowledge of the ultimate frequency of the
control loop – which typically is not known unless a Ziegler-Nichols type
tuning experiment or a Hägglund type autotuner is used. Alternatively, it
is proposed to base IAElim on the controller integral time – which is only
reasonable if the loop is well tuned.

2.3.2.3 The Regularity Index

Hägglund’s monitoring method is extended in Thornhill and Hägglund (1997)
for off-line oscillation detection, resulting in a new oscillation measure called
the regularity index.

To calculate the regularity index, the integral absolute error is calculated,
and when the control error crosses zero, the measure

IAEi

∆Tiσ
(2.4)

is plotted together with the time ti+1 for the most recent zero crossing. Here
IAEi is the integral absolute error between the two most recent zero crossings,
∆Ti is the time between the zero crossings, and σ is an estimate of the r.m.s.
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value of the noise. It is recommended to filter the measurements by estimating
an AR model for the measurement, and to base the analysis (calculation of
IAE) based on a one step ahead prediction from the AR model rather than
the raw measurement. This will reduce the influence of measurment noise,
and the AR model estimation can also give an estimate of the measurement
noise, from which σ can be calculated.

Next, a treshold value ξ is chosen, and a regularity factor is derived from
the time intervals ∆ki between each time the measure in Eq. (2.4) crosses
the treshold value. Thus,

Ri =
∆ki+1

∆ki
; q(ξ) =

Mean value of R

Standard deviation of R
(2.5)

The regularity index is then

q = max
ξ
q(ξ) (2.6)

The period of oscillation is estimated from the number of times the measure in
Eq. (2.4) crosses the treshold ξ between the first and last instance of crossing
the treshold.

2.3.2.4 The Method of Forsman and Stattin

This method also looks at the control error e(t) = r(t) − y(t), but it is
strictly an oscillation detection method and not a general performance mea-
sure. Forsman and Stattin (1999) proposes comparing both the areas between
the control error and zero and the time span that the error has the same sign.
However, the resulting area and time span is not compared with the imme-
diately previous area/timespan (when the control error had opposite sign),
rather the comparison is made with the preceding period when the control
offset had the same sign. This is illustrated in Fig. 2.3.

The method uses two tuning constants α and γ, that both should be in
the range between 0 and 1, and simply counts the number of times hA in a
data set that

α <
Ai+1

Ai
<

1

α
and/or γ <

δi+1

δi
<

1

γ

and the number of times hB that

α <
Bi+1

Bi
<

1

α
and/or γ <

εi+1

εi
<

1

γ

where Ai, Bi, δi and εi are defined in Figure 2.3. The oscillation index is
then given by h = (hA + hB)/N , where N is the number of times in the data
set that the control offset crosses zero.
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Fig. 2.3 The oscillation detection method of Forsman and Stattin.

Forsman and Stattin recommend closer examination of loops having h >
0.4, and if h > 0.8 a very clear oscillative pattern can be expected.

2.3.2.5 Wavelet Based Methods

When there is a persistent oscillation with little variation on the oscillation
frequency, the power spectrum gives a clear signature for the oscillation. This
is because, the signal has a sharp peak of large magnitude at the frequency of
oscillation. However, in process industries, there are some cases where the os-
cillation is intermittent, i.e. non-persistent. In such scenario where the nature
of the signal changes over time, the Fourier transform is used on subsets of the
data to observe the time-varying frequency content. At this point, it should be
emphasised that the decision of dividing data into different segments is done
heuristically by visual inspection and there appears to be no rigorous method
available to perform such segmentation. Wavelet analysis plays a crucial role
here in treating time and frequency simultaneously in time-frequency plane.
This provides signal amplitude as a function of frequency of oscillation (the
resolution) and time of occurrence.

A typical wavelet spectrum indicates time on the horizontal axis and pe-
riod (or frequency) on the vertical axis, and amplitude is represented by
hues in the contour lines on the time-frequency plane (Torrence and Compo,
1998). It is then possible to visualize the relation between the timing of fre-
quency emerging and disappearing in the signal, thus providing more precise
and deeper insights into the process behaviour. Wavelet analysis has been
successfully applied to plant-wide disturbance (oscillation) detection or diag-
nosis by Matsuo et al (2004).
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2.3.2.6 Pre-filtering Data

All methods presented above may be ineffective for noisy data, and both
Miao and Seborg (1999) and Forsman and Stattin (1999) discuss pre-filtering
the data with a low pass filter to reduce the noise. Thornhill and Hägglund
(1997) propose filtering through using the one-step-ahead prediction from an
AR model, as described previously. Clearly, the filter should be designed
to give a reasonable tradeoff between noise and oscillation detection in the
frequency range of interest. The interested reader should consult the original
references for a more comprehensive treatment of this issue.

2.3.2.7 Brief Conclusions on Oscillation Detection

Oscillation detection is a very easy task if the signal is pure sinusoidal with a
single dominant frequency, without any noise and disturbances. In practice,
however, the measurements of process variables are corrupted by instrument
noise, and unknown disturbances. Further, the presence of multiple oscilla-
tions is common, caused by different kinds of faults occurring simultaneously.
In some cases, intermittent oscillations are also a possibility. These effects of-
ten destroy the regularity of oscillations, which make oscillations harder to
detect.

A good oscillation-detection method should be robust to such kinds of dif-
ficult scenarios to accurately detect the presence of oscillations in the time
series. A good oscillation-detection methodology for industrial applications
should have the following features: (a) usage of only time-series informa-
tion of process variables with limited or no additional process knowledge,
(b) robustness to the high-frequency measurement noise and disturbances,
(c) Ability to handle the presence of multiple and intermittent oscillations,
and (d) Amenability to complete automation without human intervention.

2.3.3 Oscillation Diagnosis

Once an oscillating control loop has been detected, it is naturally of interest
to find the cause of the oscillations, in order to come up with some effective
remedy. There is no general solution to the diagnosis problem, the proposed
methods can at best handle parts of the problem. We will present diagnosis
procedures proposed by Hägglund (1995). Valve stiction is a very common
cause for oscillations. A separate section (the next section) is therefore de-
voted to diagnosing this cause of oscillations.
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2.3.3.1 Manual Oscillation Diagnosis

Hägglund (1995) proposes the manual oscillation diagnosis procedure pre-
sented in Fig. 2.4

Put controller

in manual

Still oscillating?

Friction? Possible to

eliminate?

Check valve

yes

External disturbance

no

Valve

maintenance

yes

Check controller

tuning

no
Eliminate

Possible to

feed forward?

yes

no

Feed forward

yes

Tune controller to

cope with disturbance

Fig. 2.4 Hägglund’s method for manual oscillation diagnosis.

The main problem with this procedure is the assumption that if the os-
cillation (in the controlled variable) stops when the controller in a particular
loop is put in manual, then the oscillation is caused by that loop. Often,
oscillations arise from multivariable interactions between loops, and the os-
cillation will then stop when any one of these loops are put in manual. The
first loop to be put in manual will then receive the “blame” for the oscilla-
tions, and will consequently be detuned (made slower). Therefore, the results
of this procedure will depend on the order in which the loops are examined.
If several loops show a similar oscillation pattern, one should therefore first
examine the loop for which slow control is more acceptable.

The procedure is also a little short on examining other instrumentation
problems than valve friction (stiction), e.g., valve hysteresis, measurement
problems, etc. Furthermore, the procedure gives no proposals for how to
eliminate external disturbances. Clearly, the solution will be very dependent
on the particular process, but typically it will involve modifying the process
or the control in other parts of the process.

Additional flowcharts for oscillation diagnosis are presented in Thornhill
and Hägglund (1997). Some of those flowcharts do not require putting the
controller in manual. They also show how useful diagnostic information can
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be derived from plotting the controlled variable (pv) vs. the setpoint (sp).
Idealized plots for actuators with deadband, static friction in actuator, over-
sized valve as manipulated variable, and a linear loop with phase lag are
shown. The use of such sp-pv plots is clearly limited to loops with frequent
setpoint changes, otherwise setpoint changes have to be introduced purely
for diagnostic purposes (i.e., the plant has to be disturbed).

Thornhill and Hägglund (1997) also address nonlinearity detection (with-
out further classifying the non-linearity) using the regularity index and the
power spectrum for the controlled variable.

2.4 Diagnosis of Valve Stiction: Issues and Directions

A key challenge in controller performance monitoring is to find the root cause
of distributed oscillations in chemical plants. Valves are the most common
manipulated variables in chemical plants, and oscillations can cause a valve
to wear out prematurely. It has been found that about 30% of the loops
are oscillatory due to control valve problems (Bialkowski, 1993). Usually, the
cause for such control valve problems is some undesirable valve nonlinearity,
such as stiction or deadband. Among the many types of nonlinearities in
control valves, stiction (short for static friction) is the most common and
leads to more serious oscillations. Many studies have been carried out to
develop methods to detect stiction.

2.4.1 Definitions: Stiction, Deadzone and Backlash

This section gives a brief definition of some important valve nonlinearities.
Fisher (1999) uses the following definitions:

Friction is a force that tends to oppose the relative motion of two surfaces
that are in contact with each other 1. Friction has two components: static
and dynamic friction. Static friction is the force that needs to be overcome
before there is any relative motion between the surfaces. Dynamic friction is
the force that needs to be overcome to maintain (already existing) relative
motion between two surfaces.

Stiction is a colloquial term for static friction.
Backlash is a form of deadband that results from a temporary disconti-

nuity between the input and the output of a device when the input of the
device changes direction.

Hysteresis is the maximum difference in output value for any single input
value during a calibration cycle, excluding errors due to deadband.

1 We note that in this context we do not need to consider friction between fluids or
between a fluid and a solid.
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Deadband is a range through which an input can be varied, upon reversal
of direction, without initiating observable response in the output. Deadband
is typically expressed as a percentage of the input span.

The above definitions do not provide a very good distinction between back-
lash and deadband, and in the following these terms will be used interchange-
ably.
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Fig. 2.5 Valve Nonlinearities – Hysteresis and deadband

2.4.2 Stiction Phenomenon in a Control Valve

A control valve consists of two main parts: a valve and an actuator that
forces the stem to move. Additionally, it may contain a positioner, which
is actually an embedded controller that controls the valve stem so that its
position corresponds to the control signal. Fig. 2.6 displays a simple schematic
of a control valve with a pneumatic actuator. The following discussion will
assume the actuator to be of the pneumatic type, although the same stiction
phenomena may occur with hydraulic or electrical actuators.

In process operation, a control valve is subjected to the following forces:
the valve stem driving force caused by air pressure, spring force associated
with the valve travel, seal-friction of the seals sealing the process fluid, and
stem thrust originating in the process fluid passing through the valve body.
Stiction in control valves is thought to occur due to seal degradation, lubricant
depletion, inclusion of foreign matter, activation at metal sliding surfaces at
high temperatures, and/or tight packing around the stem. The resistance
offered from the stem packing is often cited as the main cause of stiction,
although the stiction may arise wherever solid surfaces are in contact.
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One very common cause of stiction is indirectly due to regulations on
volatile organic compound (VOC) emissions. In many plants, a team monitors
each valve periodically for VOC emissions, usually between the packing and
the stem. If any minute leakage is detected, the packing in the valve body
is tightened, often far more than is necessary. This causes the valve to stick,
resulting in poor control performance and thereby degrading overall plant
operation. Stiction often varies over time and operating regimes. Since wear
is also nonuniform along the body, frictional forces are different at different
stem positions.

2.5 Modelling of Valve Stiction

In this section, a few simple models for valve stiction are presented. The
first of these models is motivated by physical considerations, and since 90%
of actuators are air-operated, a pneumatic configuration is considered here.
However, to modify the physical model for other types of actuators is very
simple – only requiring the modification of how the actuator forces are cal-
culated (i.e., modifying Fa and possibly Fr below).

Following the presentation of the physical model, empirical models us-
ing one or two parameters are described. These models make no attempt at
explaining the physical phenomena observed, but focus on reproducing the
effects of stiction on the commonly logged signals in the control loop, i.e., the
measured process variable (PV) and the controller output (OP).

2.5.1 Physical Model

The general structure of a pneumatic control valve is illustrated in Fig. 2.6.
In the case illustrated by the figure, the valve is closed by the elastic force
of the spring and opened by air pressure. Flow rate is changed according to
the plug position, which is determined by the balance of the forces acting
on the valve. The plug is connected to the valve stem. The stem is moved
against static or dynamic frictional force caused by packing, which is a seal
used to prevent leakage of process fluid. Smooth movement of the stem is
impeded by excessive static friction. The valve position cannot be changed
until the controller output overcomes static friction. The dynamic friction
is often considerably smaller than the static friction. When the difference
between elastic force and air pressure exceeds the maximum static friction
force, the valve stem will start to move. The friction force is then reduced
from the static friction level to the level of the dynamic friction, causing a
large reduction in the force opposing the movement. This causes the valve
stem to suddenly ‘jump’ to another position.
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Fig. 2.6 Structure of a pneumatic control valve

Mathematically, for a sliding stem valve, the force balance equation based
on Newton’s second law can be written as

M
d2x

dt2
=
∑

Forces = Fa + Fr + Ff + Fp + Fi (2.7)

where M is the mass of the moving parts, x is the relative stem position,
Fa = Au is the force applied by pneumatic actuator where A is the area of
the diaphragm and u is the actuator air pressure or the valve input signal,
Fr = −kx is the spring force where k is the spring constant, Fp = −α∆P is
the force due to fluid pressure drop where α is the plug unbalance area and
∆P is the fluid pressure drop across the valve, and Ff is the friction force.
Fi and Fp are assumed to be zero because of their negligible contribution to
the model Kayihan and Doyle III (2000). We will use a simple friction model
from Olsson (1996):

Ff =







−Fcsgn(v)− vFv if v 6= 0
−(Fa + Fr) if |Fa + Fr| ≤ Fs and v = 0
−Fssgn(Fa + Fr) if |Fa + Fr| > Fs and v = 0

(2.8)

Here v is the velocity of the stem movement. This friction model includes
static and dynamic friction. The expression for the dynamic friction is in the
first line of Eq. 2.8 and comprises a velocity-independent term Fc known as
Coulomb friction and a viscous friction term vFv that depends linearly upon
velocity. Both act in opposition to the velocity, as shown by the negative
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signs. The second line in Eq. 2.8 is the case when the valve is stuck. Fs is
the maximum static friction. The velocity of the stuck valve is zero and not
changing, therefore the acceleration is also zero. The third line of the model
represents the situation at the instant of break-away. At that instant, the sum
of forces is (Fa +Fr)−Fssgn(Fa +Fr), which is not zero if |(Fa +Fr)| > Fs.
Therefore, the acceleration becomes non-zero and the valve starts to move.

The simple friction model above is able to create stick-slip behavior in
simulations of control loops. However, due to numerical issues, it is in sim-
ulations necessary to apply the static friction in a small ‘deadband’ around
v = 0. That is, in the first line of Eq. 2.8, use abs(v) > δ instead of v 6= 0,
and in the second and third rows use abs(v) < δ instead of v = 0.

There also exists more sophisticated models of static and dynamic friction,
the interested reader is referred to Olsson (1996). Despite its relative simplic-
ity, a disadvantage of the physical model (2.7-2.8) is that it is practically
impossible to get information on all the parameters of all the sticky valves
used in a typical chemical plant (a problem that would clearly be exacerbated
by the use of more sophisticated models). Hence, simple empirical models are
preferred to first-principle models in modelling valve stiction. Such empirical
models are often called “parametric” models, as they use a low number of
parameters to describe the effects of valve stiction. The famous ones are one
parameter model and two parameter model which are explained below.

2.5.2 Two Parameter Model

To model the relationship between the controller output and the valve posi-
tion of a pneumatic control valve, the balance among elastic force, air pres-
sure, and frictional force needs to be taken into account. The relationship can
be described (Kano et al, 2004) as shown in Fig. 2.7. The dashed line (di-
agonal) denotes the states where elastic force and air pressure are balanced.
The controller output and the valve position change along this line in an
ideal situation without any friction. The ideal relationship is disturbed when
friction arises. For example, the valve is resting at (a) where elastic force and
air pressure are balanced. The valve position cannot be changed due to static
friction even if the controller output, i.e., air pressure, is increased. The valve
begins to open at (b) where the difference between air pressure and elastic
force exceeds the maximum static frictional force. Since the frictional force
changes from static fS to kinetic fD when the valve starts to move at (b), a
slip-jump of the size

J = fS − fD (2.9)

happens and the valve state changes from (b) to (c). Thereafter, the valve
state changes along the line l2 which deviates from the ideal line by fD be-
cause the difference between air pressure and elastic force is equal to fD.
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Fig. 2.7 Two parameter valve stiction model: relationship between controller output
and valve position under valve stiction.

When the valve stops at (d), the difference between air pressure and elastic
force needs to exceed fS again for the valve to open further. Since the differ-
ence between them is fD at (d), air pressure must increase by J to open the
valve. Once air pressure exceeds elastic force by fD, the valve state changes
to (e) and then follows l2.

Air pressure begins to decrease when the controller orders the valve to
close at (f). At this moment, the valve changes its direction and comes to
rest momentarily. The valve position does not change until the difference
between elastic force and air pressure exceeds the maximum static frictional
force fS . The valve state (h) is just point-symmetric to (b). The difference of
air pressure between (f) and (h) is given by

S = fS + fD (2.10)

The valve state follows the line l1 while the valve position decreases. The
above-mentioned phenomena can be modelled as a flowchart shown in Fig. 2.7
(b). The input and output of this valve stiction model are the controller out-
put u and the valve position y, respectively. Here, the controller output is
transformed to the range corresponding to the valve position in advance.
The first two branches check if the upper and the lower bounds of the con-
troller output are satisfied. In this model, two states of the valve are explicitly
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Fig. 2.8 Flowchart of two parameter valve stiction model.

distinguished: 1) a moving state (stp = 0), and 2) a resting state (stp = 1). In
addition, the controller output at the moment the valve state changes from
moving to resting is defined as uS. uS is updated and the state is changed to
the resting state (stp = 1) only when the valve stops or changes its direction
(∆u(t)∆u(t− 1) ≤ 0) while its state is moving (stp = 0). Then, the following
two conditions concerning the difference between u(t) and uS are checked
unless the valve is in a moving state. The first condition judges whether the
valve changes its direction and overcomes the maximum static friction (cor-
responding to (b) and (h) in Fig. 2.7). Here, d = ±1 denotes the direction
of frictional force. The second condition judges whether the valve moves in
the same direction and overcomes friction. If one of these two conditions is
satisfied or the valve is in a moving state, the valve position is updated via
the following equation.
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y(t) = u(t)− d fD = u(t)− d

2
(S − J) (2.11)

On the other hand, the valve position is unchanged if the valve remains in
a resting state. This model just requires two parameters S and J to model
valve stiction.

2.5.3 One Parameter Model

This is a simple model characterized by just one parameter “d” (Stenman
et al, 2003).

x(t) =

{
x(t− 1) if |u(t)− x(t− 1)| ≤ d
u(t) otherwise

(2.12)

Here x(t) and x(t−1) are past and present stem movements, u(t) is the present
controller output and ‘d’ is the valve stiction band. The stem movement of a
sticky valve for a ramp input using this model is shown in Fig. 2.9.

’d’ Stiction band

time

d

x(t)
u(t)=t

x(t)

d

Fig. 2.9 Simulated stiction non-linearity for a ramp input using a one parameter
model

′d′ is expressed in terms of the percentage or fraction of valve movement
corresponding to the amount of stiction present in the valve. For instance, if
100 units of force are required to open the valve completely from completely
closed position and 10 units of force is required to overcome the amount of
static friction in the valve, stiction band is 10% or 0.1.
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2.5.4 Discussion on Various Stiction Models

The physical model (including its more advanced cousins) has a clear disad-
vantage that it required the knowledge of several physical parameters that
are not readily available, both design parameters of the equipment (mass,
spring constant, diaphragm area) and parameters describing the static and
dynamic friction. Naturally, the friction parameters may vary with time.

It should be noted that the two parameter model is developed specifically
to study the consequences of deadband and stiction in control valves – it is
not intended as a general friction model. Parameters of the two-parameter
empirical stiction model can be related directly to plant data, and also such
a model produces the similar open- and closed-loop behaviour as the physical
model. The model only requires the controller output signal and the speci-
fication of deadband plus stickband (S) and slip-jump (J). It overcomes the
main disadvantages of physical modelling of a control valve, i.e, it does not
require the knowledge of the mass of the moving parts of the actuator, spring
constant and the friction forces. The parameters of the two-parameter model
are easy to choose and the effects of parameter changes on loop behaviour
are easy to understand.

The basic difference between the two parameter model and one parameter
model is that the force to overcome the deadband fD in the one parameter
model is assumed to be negligible. If fD is taken to be zero, Eq. 2.9 and Eq.
2.10 imply that S = J = fS . If S = J , Fig. 2.7 takes the shape of Fig. 2.9
which is the characteristic of one parameter model. Looking at Fig. 2.9 it can
be concluded that it looks more like a quantizer than stick-slip behaviour,
since intermediate values on the x(t) axis cannot be achieved.

2.6 Diagnosis of Valve Stiction

A number of researchers have studied the valve stiction problem and sug-
gested methods for detecting it. Horch and Isaksson (1998a) presented a fairly
complex method for detecting stiction by calculating log-likelihood ratios for
multiple models. Their method requires knowledge of the nonlinear plant and
stiction models and extended Kalman filtering. Stenman et al (2003) also pro-
posed a complicated method based on “multi-model mode estimation” and
change detection. Apart from the method’s conceptual complexity, the more
significant drawback with this method is the use of the one-parameter stiction
model, which was argued above to be too simplistic.

In the following, we will briefly explain some simple stiction detection
methods that only require the use of routine operating data.
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2.6.1 Shape-based Stiction Detection

In addition to causing the “slip jump”, the detection of which is the basis of
most stiction detection methods, stiction is also a major cause for deadband
in the relationship between controller output (OP) and manipulated variable
(MV) Fisher (1999).

Plots of OP vs. PV are used in formulating the shape based stiction de-
tection algorithms. When a deadband is present (here assumed to be caused
by valve stiction), the shape between OP and MV turns out to be a parallel-
ogram. The shape-based methods predominantly use only routine operation
data for detecting stiction.

There are three different methods (Kano et al, 2004; Hiroshi et al, 2004;
Yamashita, 2006) in literature to detect valve stiction in control loops using
OP-PV plots. They are all based on the presence of the following character-
istics: (1) There are sections where the valve position does not change even
though OP changes. Here, stiction is stronger as such sections are longer.
(2) The relationship between OP and MV takes the shape of a parallelogram
if slip jump is neglected. Stiction is stronger as the distance between two ends
of the parallelogram is longer.

The general advantages of shape-based stiction-detection methods are:
(1) they can quantify the stiction, and (2) they are applicable also to sit-
uations without periodic oscillation.

These methods require OP data and MV data to find suspicious movement
of valves, because they aim to find particular shapes or relationships between
OP and MV from their data. Such particular shapes or relationships repre-
sent a mismatch between OP and MV signals. If a fast flow measurement
is available, flowrate can be used as MV when valve position data are not
available. The difficulty associated with this is (i) noise, and (ii) the flow loop
has dynamics that can distort the shape of the stiction pattern.

2.6.2 Method Based on Cross-correlation Function

In general, the OP-MV plot is a straight line at 45◦ for a healthy linear valve
(assuming valve position dynamics are fast compared to the changes in the
OP value), and any deviations such as deadband can be diagnosed by visual
inspection. Automated analysis of the OP-MV plot can be problematical,
however, due to the presence of noise, varying set point and the difficulty of
maintaining a data base of all possible patterns for a match. In practice, the
flow through the control valve is frequently not measured unless it is in a flow
control loop. Similarly, the position, while it may be measured on a modern
valve with a positioner, is quite often not available in the data historian.

The challenge in analysis of valve problems, then, is to determine and
quantify the type of fault present using OP and PV data only. The major
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difficulty is that the process dynamics (integration in the case of a level loop)
greatly interfere with the analysis. Stiction in a loop with an integrating
process can be detected by examination of the probability density function
of the pv signal or of its derivatives.

Horch (1999) has developed a method for detecting stiction, based on mea-
surements of the controlled variable and the controller output. The method
assumes that the controller has integral action, which is typically required in
order for the presence of stiction to cause sustained oscillations – as explained
above.

Horch found that the cross-correlation function between controller output
and controlled variable typically is an odd function2 for a system oscillating
due to stiction. On the other hand, if the oscillation is due to external distur-
bances, the cross-correlation function is normally close to an even function.
Unstable loops oscillating with constant amplitude (due to input saturation)
also have an even cross-correlation function.

For a data set with N data points, the cross-correlation function between
u and y for lag τ (where τ is an integer) is given by

ruy(τ) =

∑k1

k=k0
u(k)y(k + τ)

∑N
k=1 u(k)y(k)

(2.13)

where

k0 = 1 for τ ≥ 0

k0 = τ + 1 for τ < 0

k1 = N − τ for τ ≥ 0

k1 = N for τ < 0

Note that the denominator in Eq. (2.13) is merely a normalization, giving
ruy(0) = 1. It is not necessary for the stiction detection method.

Horch’s stiction detection method has been found to work well in many
cases. However, it fails to detect stiction in cases where the dominant time
constant of the (open loop) process is large compared to the observed period
of oscillation. In such cases the cross-correlation function will be approxi-
mately even also for cases with stiction. This problem is most common with
integrating processes (e.g., level control loops), but may also occur for other
processes with slow dynamics.

2 Reflecting the 90◦ phase shift due to the integral action in the controller.
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2.6.3 Stiction Detection Based on Curve Fitting

The curve-fitting method (He et al, 2007) is based on qualitative analysis of
the control signals i.e., in the case of control-loop oscillations caused by con-
troller tuning or external oscillating disturbances, the OP and PV typically
follow sinusoidal waves for both self-regulating and integrating processes. In
the case of stiction, the valve-position signal usually takes the form of a
rectangular wave. Because the valve position signal is usually unmeasured,
instead of looking at the valve position signal, the measured output of the
first integrating element after the valve is examined, which is either OP or
PV. The integrating element converts the rectangular valve position moves
into a triangular wave. For self-regulating processes, the PI-controller acts
as the first integrator and the OP’s move follows a triangular wave, whereas
for integrating processes such as level control, the integrator in the process
integrates the rectangular waves and the PV signal follows a triangular wave.

The above analysis answers the questions of which signal to look after and
why it takes a triangular shape in the presence of valve stiction. The basic idea
of the new detection method is to fit two different functions, triangular wave
and sinusoidal wave, to the measured oscillating signal of the first control-loop
component containing an integrator after the valve (i.e. OP for self-regulating
processes or PV for integrating processes). The data set is first divided into
segments according to zero crossings, and for each segment a half-period of
a triangular and a sinusoidal wave is fitted. A better fit to a triangular wave
indicates valve stiction, while a better fit to a sinusoidal wave indicates the
absence of stiction.

There are several advantages associated with the developed curve-fit
method. One advantage is that it is applicable to both self-regulating and
integrating processes, because for both type of processes, the same idea ap-
plies, i.e. after one integration, the rectangular wave (valve position) becomes
a triangular wave, while the only difference is where the first integration com-
ponent after the valve is located in the control loop. Another advantage is
its industrial practicability due to the following reasons: (i) the methodol-
ogy is straightforward and easy to implement. Fundamentally, the curve fit is
a simple least-squares regression problem, which also provides its robustness
against noise and outliers, and (ii) the detection is easily automated and does
not require user interaction, and (iii) it can handle asymmetric or damped
oscillations, as well as intermittent oscillations.

Clearly, measurement noise can lead to a number of ‘spurious’ zero cross-
ings, and some thought is therefore required to make the method for detecting
zeros crossings robust. Furthermore, the method assumes that the (‘pure’) in-
tegration is the only dynamics affecting the data set used. For cases where
the oscillations are in the frequency range of other dynamic elements in the
loop – which may easily happen if a valve positioner is used – the response
after the first integrating element in the loop may well differ from the ideal-
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ized triangular (‘sawtooth’) wave. The reliability of the curve fitting method
in this case is not known.

2.6.4 Stiction Detection using an OP-PV Plot

The method involves plotting the controller output (OP, manipulated vari-
able) vs. the controlled variable (PV). If these two variables tend to move in
a closed path around an area where the curve seldom enters, this is a sign of
an oscillating control loop, where there is a phase lag (different from n ·180◦)
between input and output. If the OP-PV plot shows sharp ‘corners’, this is
considered to be an indication of significant stiction. Without the sharp cor-
ners, there is no cause for suspecting non-linearity (i.e., stiction) to be the
cause of the oscillations, since they may just as well be caused by poor tun-
ing and random noise or oscillating disturbances. The use of an OP-PV plot
is illustrated in Fig. 2.10, where the blue curve shows a case with stiction,
and the red curve shows the same system without stiction. The use of this
method is apparently widespread in industrial practice, although its origin
is not known to these authors. In the example illustrated in Fig. 2.10, this
method would correctly identify stiction in a case with some measurement
noise.

However, numerical experience and intuition would suggest that this
method may fail in cases with severe measurement noise, especially when
there is a phase difference of close to n · 180◦ at the dominant frequency of
oscillation. Filtering may reduce the sensitivity to noise, but may also re-
duce the sharp corners in the OP-PV curve that are necessary to distinguish
stiction from other causes of oscillation (which may occur also for linear sys-
tems).

In some cases, the problems related to interpreting OP-PV plots may be
reduced by introducing a time shift between the OP and PV time series. This
is illustrated in Figures 2.11 and 2.12. In the left part of Fig. 2.11 we see an
OP-PV plot for a linear system with an oscillatory disturbance (and some
measurement noise). The OP-PV plot has an elliptical shape, but since the
disturbance is at a low frequency there is very little phase shift between the
OP and PV time series – which means that we are looking at the ellipse ’from
the side’. The result is that it is hard to conclude whether there are sharp
corners that would indicate nonlinear effects. In the right part of the figure,
we se the same plot – but this time with the PV time series shifted by 100
samples. The elliptical shape of the plot is now clear (the shifting of the time
series has ‘turned the ellipsoid to face us’).

In Fig. 2.12, we have OP-PV plots for a system with oscillations due to
stiction. Again, in the left part of the figure, it is hard to conclude whether
there are sharp corners in the plot that indicate nonlinearity. In the right
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Fig. 2.10 Use of OP-PV-plot to detect stiction. The blue curve shows a system with
stiction, the red curve shows the same system without stiction.

part of the figure, we have again shifted the PV time series, and the sharp
corners are now evident, indicating nonlinearity (i.e., stiction).

2.6.5 Stiction Detection using Higher Order Statistics

Using higher order statistical methods to detect the presence of nonlinear-
ity has been used for almost three decades (Hinich, 1982). A method based
on higher order statistics (HOS), which can detect whether a time series is
nonlinear or not, has been developed in Choudhury et al (2004b). A HOS
measure, bispectrum, is used to detect non-linearity. The bispectrum mea-
sures interaction between two frequencies, and is defined as

B(f1, f2) = E [X(f1)X(f2)X
∗(f1 + f2)] (2.14)

where B(f1, f2) is the bispectrum at the frequency pair f1, f2), X(f) is the
discrete Fourier transform of the time series x(k), ′∗′ denotes the complex
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Fig. 2.11 OP-PV-plot for a linear system with oscillatory disturbance. Left: original
OP-PV plot. Right: OP-PV plot, with PV time series shifted in time.
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Fig. 2.12 OP-PV-plot for a system with stiction with significant phase shift between
the OP and PV time series at the oscillation frequency. Left: original OP-PV plot.
Right: OP-PV plot, with PV time series shifted in time.

conjugate, and E is the expectation operator. In practice, the expectation
operation is approximated by calculating the Fourier transform for a number
of segments of a long data series, and averaging over these transforms. For
more detail of the data treatment and signal processing, consult Choudhury
et al (2004a) and the references therein. It is clear from (2.14) that B(f1, f2)
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can be plotted in a 3D plot with two frequency axes and the corresponding
value of the bispectrum (real part, imaginary part, or absolute value) on the
third axis.

In order to simplify interpretation, the bispectrum can be normalized to
be real valued and between 0 and 1, resulting in the socalled bicoherence
function bic(f1, f2):

bic2(f1, f2) =
|B(f1, f2)|2

E [|X(f1)X(f2)|2]E [|X(f1 + f2)|2]
(2.15)

The bicoherence is expected to be flat for a linear signal. Significant peaks
and troughs in the bicoherence is therefore an indication of non-linearity. A
discrete ergodic3 time series x(k) is called linear if it can be represented by
a random variable e(k) passed through finite impulse response dynamics h,
that is:

x(k) =
n∑

i=0

h(i)e(k − i) (2.16)

where the random variable e(k) is independent and identically distributed. In
Choudhury et al (2004a) it is shown that if e(k) has zero mean and a Gaus-
sian (normal) distribution, then the bicoherence function is exactly zero. The
authors of Choudhury et al (2004a) therefore propose a ‘Non-Gaussianity
Index’ NGI based on a statistical test of whether the bicoherence is signifi-
cantly different from zero, and a ‘Non-linearity index’ NLI based on whether
the squared maximum of the bicoherence deviates much from the mean value
of the squared bicoherence. Theoretically, NGI > 0 should indicate a non-
gaussian signal, and NLI > 0 should indicate a non-linear signal. In practical
implementation it is recommended to set the thresholds a little higher, with
NGI > 0.001 indicating a non-Gaussian signal, and NLI > 0.01 indicating a
non-linear signal.

It is recommended to use the NGI first and then use the NLI only for
signals that have been found to be non-Gaussian. If both the NGI and NLI
exceed their thresholds, one should look for a non-linear cause of the poor
performance, e.g., valve stiction or backlash, or other non-linear phenomena.
Otherwise, the cause for the poor performance is likely to be “linear”, e.g., a
linear external disturbance or an excessively tightly tuned controller.

3 Roughly speaking, a time series is called ergodic if the time average of the signal
value over a significant segment of the time series can be expected to be the same
irrespective of where in the time series the segment is located.
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2.6.6 Stiction Detection using Hammerstein Model
Based Approach

Here, the fundamental idea is to convert the stiction-detection and quan-
tification problem into a low-order Hammerstein-type system-identification
problem, followed by a global optimisation search for the stiction parame-
ters.

This idea focuses on finding a noninvasive method to determine if there
exists the presence of stiction in a control valve. It approximates process
dynamics by a low-order transfer-function model while estimating parameters
for the static stiction model to account for the non-linearity induced by the
stiction. It is an underlying assumption here to consider that most industrial
processes can be approximated as the first- or second-order-plus-time-delay
process.

It is necessary to select an appropriate stiction-model before proceeding.
The basic steps to follow in any Hammerstein approach are:

1. Given a stiction-model structure and OP data, effectively bound a search
space of unknown stiction-model parameters.

2. Choose stiction-model parameters from the bounded stiction-model space,
and a series of manipulated variable (MV) data is calculated from con-
troller output data according to the given valve-stiction model.

3. With MV and PV data, the process model is identified such that a MSE is
minimised. By varying stiction-model parameters, different process mod-
els are obtained.

4. Find the stiction model that describes the characteristics of the control
valve behaviour the best. Find the minimum model error and get the
corresponding process-model and stiction-model parameters.

In (Srinivasan et al, 2005), Hammerstein model-based approach has been
proposed for linear processes for quantifying valve stiction through a joint
identification procedure. In this approach, identification of linear plant dy-
namics is decoupled from the nonlinear element which is achieved by an
iterative procedure. A similar approach using the two-parameter model pre-
sented above to quantify stiction is discussed in Choudhury et al (2008).
Another work using a Hammerstein-based identification approach with the
two-parameter model can be found in Jelali (2008). The difference between
these two approaches seem to be mainly in how the optimization is performed
in order to identify the stiction model parameters.

2.6.7 Stiction Compensation

There are a number of papers looking at using the controller to compensate for
stiction, not only in process control, but also in other areas like robotics. There
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are many models for stiction – that all share the common trait that none of
them can be expected to be a perfect representation of the phenomenon.

The compensation schemes are typically rather complex, finely tuned to
the specifics of the stiction model used, and not very surprisingly they often
work well for the same stiction model. What is lacking is the demonstration of
any sort of robustness for the compensation scheme. In a simulation study one
could at least use a different model for the ’system’ than the stiction model
used in designing the controller. The practical usefulness of such stiction
compensation schemes are therefore at best not proven.

Industrial practitioners report that use of derivative action often has some
positive effect on stiction. However, derivative control action may not be
suitable for all control loops, and there is also the question whether it should
be placed in the main controller or in the valve positioner. Some further work
in this area may therefore be warranted.

Other practical approaches to managing control problems due to stiction,
include changing the controller to a pure P controller, or introducing a dead-
band in the integrating term (only integrate when the offset is larger than the
deadband). This may reduce or remove the oscillations, but have their own
detrimental effects on control performance. These approaches are therefore
mainly short-term modifications until valve maintenance can be performed.

2.6.8 Detection of Backlash

It was noted above that the terms backlash and deadband are used inter-
changeably. Although stiction is an important cause for backlash, this section
focuses on the case when the deadband is the dominant valve non-linearity,
and there is little or no slip-jump. The same situation was addressed in sub-
section 2.6.1, where it was assumed that the actual valve position is available.
The method in this section addresses the problem when the valve position
is not available, and the backlash detection must be based on the controlled
variable (PV).

In a recent paper, Hägglund (2007) proposes a method for on-line estima-
tion of the deadband. Using describing function analysis, it is shown that an
integrating system controlled with an integrating controller will exhibit oscil-
lations in the presence of backlash. These oscillations are typically quite fast
and of significant amplitude, and will therefore be detected by an appropriate
oscillation detection method.

Asymptotically stable processes with integrating controllers, on the other
hand, will typically not show pronounced oscillations, but rather drift rel-
atively slowly around the setpoint. This results in slow, low amplitude os-
cillations that often will not be detected by oscillation detection methods.
Hägglund’s deadband estimation method is developed for this kind of sys-
tems. It uses the control loop measurement, filtered by a second order low
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Fig. 2.13 Illustration of backlash with deadband of width d.

pass filter to reduce the effect of measurement noise. The filtered loop mea-
surement is denoted yf . The slow oscillations are typically at a frequency
lower than the plant dynamics, and hence the plant model is represented by
the steady state gain Kp. The controller is assumed to be a PI controller
with proportional gain K and integral time Ti. The plant gain Kp and the
controller gain K are assumed to be given in compatible units (such that
their product is dimensionless).

The filtered control error is given as e = ysp−yf , where ysp is the setpoint
(or reference) for the control loop. Let ti be the times when the filtered
control error e changes sign. Correspondingly,∆t = ti+1−ti denotes the time
between successive zero crossings of the filtered control error. The deadband
estimation is executed only when the time between these zero crossings is
large, i.e., when ∆t ≥ 5Ti. We also define
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∆y =

∫ ti+1

ti

|e|dt/∆t (2.17)

∆y may thus be seen as the ‘average’ control error between the zero crossings.
The deadband is then estimated as

d̂ = K

(
∆t

Ti
− 1

KKp

)

∆y (2.18)

This deadband estimation suffers from the fact that the steady state gain
needs to be known. In many cases this will be available (although not neces-
sarily easily available) from steady state plant simulations – even if dynamic
simulation models are not available. Instead, Hägglund takes a more practi-
cal approach and argue that the deadband estimate is relatively insensitive
to the value of Kp for the majority of plants. This stems from the fact that
the estimation is performed only when ∆t ≥ 5Ti, and the observation that
the product KKp is normally larger than 0.5 (assuming a reasonable con-
troller tuning in the absence of backlash, and that the controller tuning is
not dominated by pure time delay).

For more details of implementation of the deadband estimation, the reader
is referred to the original publication by Hägglund (2007).

2.6.9 Backlash Compensation

It is possible to compensate for backlash by adding an extra term to the
calculation of the manipulated variable

u = uFB + uBC (2.19)

where uFB is the ordinary controller output4, and uBC is an additional term
added to compensate for backlash. The ideal backlash compensation would
be

uBC =
d

2
sgn

(
duFB

dt

)

(2.20)

Due to noise this ideal compensation is impractical, and some filtering is nec-
essary. Hägglund (2007) proposes using the filtered control error e introduced
in the subsection above, resulting in the backlash compensation

uBC =
δ

2
sgn(e) (2.21)

4 the subscript FB implies the use of a feedback controller, but uFB may also include
disturbance feedforward components.



64 Selvanathan Sivalingam and Morten Hovd

where δ ≤ d̂. The motivation for basing the compensation on the filtered
control error is that sign changes in this term corresponds to changes in the
derivative of the integral term of the controller. The integral terms is less
sensitive to noise than the proportional and derivative terms.

The use of filtered signals for backlash compensation introduces a delay
in detecting the sign changes of the derivative of the manipulated variable,
and this is further aggravated by considering only the integral term of the
controller. Therefore the δ used in the backlash compensation should be some-
what reduced compared to the deadband d.

2.7 Benchmarking and Performance Measures

To understand how well complex processes are being managed, it is necessary
to monitor and analyze a representative range of performance metrics. The
specific type of metrics will be process dependent but to capture the state of a
process, careful selection of performance indicators is important. A common
classification is into Financial and Non-Financial performance measures. Typ-
ical examples of financial performance measures are profitability, sales, unit
costs whilst non-financial indicators might include employee retention rates,
customer satisfaction levels, and product defect rates. A second classifica-
tion is the quantitative-qualitative divide into “hard” and “soft” performance
measures. Hard performance metrics are those strictly computable quantities
based on numerical measurable data; these range from financial measures like
unit cost and sales per day to non-financial quantities and technical measures
like process plant downtime, product defect rates and product physical prop-
erties (temperature, flow, dimensions, etc). In contrast “soft” performance
indices are metrics of more difficult to measure quantities like customer sat-
isfaction variables and are often captured by a set of linguistic variables such
as very poor, poor, satisfactory, good, excellent.

2.7.1 Control Loop Performance Benchmarking

The performance of a control system relates to its ability to deal with the de-
viations between controlled variables and their set-points (or desired values).
For benchmarking, the severity of these deviations should be quantified by a
single number, the performance index (indicator/potential/measure/metric).
In this section, we will first introduce some traditional performance measures
that have been used for single-loop performance assessment in the case of
frequent deterministic disturbances. Although these performance measures
reflect (different aspects of) control performance, they lack a clear ’standard’
against which the performance can be compared. This problem is avoided
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by using minimum (achievable) variance as a performance measure, and this
will be explained in the subsequent subsection. The final parts of this sec-
tion will consider more advanced performance measures, and briefly address
performance assessment for multivariable systems.

2.7.1.1 Univariate Performance Measures

For every process control application, there are

• Steady-state performance criteria.
• Dynamic response performance criteria

The principal steady-state performance criterion usually is zero error at
steady state. It is well known that this performance criterion requires the
use of integral,action, since a proportional controller can not achieve zero
steady-state error. The evaluation of the dynamic performance of a closed-
loop system is based on two types of commonly used criteria.

1. Criteria that use only a few points of the response.
2. Criteria that use the entire closed-loop response from time t = 0 until
t = very large.

Simple Performance Criteria

Several simple performance criteria are based on some characteristic features
of the closed-loop response of a system to a step in the setpoint. The most
often quoted are

• Overshoot – the maximum amount by which the response exceeds the new
setpoint, divided by the magnitude of the setpoint change.

• Rise time – time needed for the response to reach 90% of its final value.
• Settling time – time needed for the response to settle within ±5% of the

final value.
• Decay ratio – the ratio of the magnitudes of the second and first peak of

the response, measured relative to the final value.

Each of the characteristics above could be used by a designer as a criterion
for selecting the controller and to tune the controller parameters. Thus we
could design the controller in order to have a specified overshoot, or specified
settling time, and so on. It must be emphasized, though, that one simple
characteristic does not suffice to describe the desired dynamic response.
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Time-Integral Performance Criteria

These criteria are based on the entire response of the process. The most
common are

• Integral of the square error (ISE), where

ISE =

∫ ∞

0

ǫ2(t)dt

• Integral of the absolute of the error (IAE), where

IAE =

∫ ∞

0

|ǫ(t)|dt

• Integral of the time-weighted absolute error (ITAE), where

ITAE =

∫ ∞

0

t|ǫ(t)|dt

If we want to strongly suppress large errors, ISE is better than IAE because
the errors are squared and thus contribute more to the value of the integral.
For the suppression of small errors, IAE is better than ISE because when we
square small numbers (less than one) they become even smaller. To suppress
errors that persist for long times, the ITAE criterion be more appropriate
because the presence of large t amplifies the effect of even small errors in the
value of the integral.

The most popular benchmark for controller performance assessment, mini-
mum variance controller was first introduced by Harris (1989a) for single loop
feedback controllers. It provides a theoretical lower bound on the closed-loop
process output variance. The calculation of the MVC assumes that the pro-
cess can be represented adequately by a linear time-invariant (LTI) transfer
function model with additive disturbances.

2.7.1.2 Minimum Variance Controller (MVC)

Minimum variance control is the best possible control in the sense that no
controller can have a lower variance. Its implementation may not be desirable
in practice because it may call for excessively aggressive control and may
lack robustness to model errors. However, it provides a convenient ’hard’
bound on achievable performance against which the performance of other
controllers can be compared. Such a basis is especially important in deciding
corrective steps. For instance, if the current performance were inadequate
but were close to the minimum variance, corrective steps would have to be
directed toward structural changes to the process. On the other hand, if
the variance under the current control were substantially greater than the



2 Controller Performance Monitoring and Assessment 67

calculated minimum, corrective steps could be directed toward improving
the controller performance without making changes to the plant.

Fig. 2.14 Schematic diagram of a simple feedback control system.

Consider the block diagram of a feedback control system shown in Fig. 2.14.
Assume that this single-loop system can be represented adequately by a lin-
ear time-invariant, discrete transfer function model and additive disturbance.
The process transfer function is given by Gp, while Gc and Gd denotes the
controller and disturbance transfer functions, respectively,

y(k) = Gp(q
−1)u(k − b) + d(k) =

ω(q−1)

δ(q−1)
u(k − b) + d(k) (2.22)

where q−1 is the backward shift operator and y(k) and u(k) are devia-
tions of the measured process output and controller outputs, respectively,
from their nominal operating values; d(k) is a bounded disturbance; ω(q−1)
and δ(q−1) are polynomials in the backward shift operator; and b ≥ 1 is the
number of whole periods of delay in the process. The term d(k) is assumed
to represent all unmeasured disturbances acting on y(k) and it may be de-
terministic or stochastic. Let d(k) be given as a linear function of past values
of a statistically independent random sequence of variables, {aij},

d(k) = Gd(q
−1)a(k) =

θ(q−1)

φ(q−1)
a(k) (2.23)

The terms θ(q−1) and φ(q−1) are assumed to be stable polynomials. It is also
to be noted that the performance monitoring of unstable loops need not be
required. For constant reference inputs, the deviations of the outputs from
their steady-state values are given by
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y(k) =
α(q−1)

β(q−1)
a(k) = Ψ(q−1)a(k) (2.24)

y(k) = [ψ0 + ψ1q
−1 + · · ·+ ψbq

−1 + · · ·+]a(k) (2.25)

where Ψj is the jth impulse response coefficient from disturbance to mea-
surement, when the control is active.. The series in Equation 2.25 is conver-
gent if the closed loop between y(k) and d(k) is stable. Because of the delay
term, q−(b−1), the first b terms in Equation 2.25 are identical to those com-
puted from the disturbance transfer function Gd(q

−1) and can be interpreted
as system invariant. Thus, only terms at lag b and beyond are affected by
the current controller action. The reason for this is seen as follows. Once a
disturbance appears at the output, it is feedback to the controller and the
controller makes a correction. However, because of the delay, that corrective
action has no effect on the output for b time intervals into the future. No
disturbance compensation can occur at the output until the deadtime of the
system has expired.

The variance of the controlled variable can be calculated by squaring Equa-
tion 2.25 and then applying the expectation operator E{.},

σ2
y = E{y(k)} = [ψ2

0 + ψ2
1 + · · ·+ ψ2

b + ψ2
b+1 + · · ·+]σ2

a (2.26)

where
σ2
a = E{a(k)2} (2.27)

Equations 2.25 and 2.26 show how the variance of the controlled variable is
related to the variance of {aij}, the process dynamics, the disturbance model,
and the controller – since ψk will depend on the controller for k ≥ b. If the
feedback controller is a MVC then the b-step ahead forecast (terms at and
beyond b) equals zero and the output variance is given by

σ2
mv = [ψ2

0 + ψ2
1 + · · ·+ ψ2

b−1]σ
2
a (2.28)

This controller then rejects the predicted effect of the disturbance after the
deadtime has elapsed. Thus, the controlled variable under minimum variance
control will depend on only the most recent b past disturbances

ymv(k) = [ψ0 + ψ1q
−1 + · · ·+ ψbq

−1]a(k) (2.29)

The finite stochastic process in equation 2.29 is called a moving average
process of order b. It then follows that any controller that is not minimum
variance must inflate the variance, that is

σ2
y = σ2

mv + σ2
ỹ (2.30)

where σ2
ỹ is the increase in the output variance above the minimum obtain-

able variance. Note that in the derivation of the minimum variance above,
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we have assumed that the plant Gp is stable and has a stable inverse. These
assumptions are fulfilled for many control loops.

An important consideration in the calculation of the theoretical minimum
variance, is that routine process data, with or without feedback control, are
used rather than specially designed tests. The only requirement is that the
number of observations is large and representative of the process. The ratio
of the output variance to the theoretical variance under MVC is called the
Harris index (HI) Harris (1989b) and given by

HI =
σ2
y

σ2
mv

(2.31)

From the Equation 2.31, it is clear that HI ≥ 1 and has no upper bound.
When HI is significantly greater than one, further analysis must be done
to ascertain the cause for the variance inflation. For practical purposes, the
normalized Harris index (NHI) is defined as follows,

NHI = 1− σ2
mv

σ2
y

= 1− ψ2
0 + Ψ2

1 + · · ·+ Ψ2
b−1

ψ2
0 + Ψ2

1 + · · ·+ Ψ2
b−1 + · · ·+ (2.32)

This index represents the fractional increase in the variance of the output that
arises from not implementing an MVC. Further, unlike HI, NHI is bounded
to the interval [0, 1]. When NHI = 0, the controller is an MVC. The closer
that NHI gets to one, the larger the variance of the process output, y; relative
to its best possible performance, σ2

mv.

Obtaining the Impulse Response Model

In order to identify a model for the effect of the unknown disturbance on the
controlled variable, we must first select a model structure. We will here use
an autoregressive (AR) model, where we assume that the disturbance a is a
zero mean white noise:

yk + α1yk−1 + α2yk−2 + · · · = ak

or, in terms of the backwards shift operator q−1:

(1 + α1q
−1 + α2q

−2 + α3q
−3 + · · · )yk = A(q−1)yk = dk

Now, the AR model is very simple, and one may therefore need a high
order for the polynomial A(z−1)in order to obtain a reasonably good model.
One therefore runs the risk of “fitting the noise” instead of modelling system
dynamics. It is therefore necessary to use a data set that is much longer
than the order of the polynomial A(q−1). However, if a sufficiently large data
set is used (in which there is significant variations in the controlled variable
y), industrial experience indicate that acceptable models for the purpose of
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control loop performance monitoring is often obtained when the order of the
polynomial A(q−1) is 15-20. The AR model has the advantage that a simple
least squares calculation is all that is required for finding the model, and this
calculation may even be performed recursively, i.e., it is applicable for on-line
implementation. We will here only consider off-line model identification. The
expected value of the disturbance a is zero, and thus we have for a polynomial
A(q−1) of order p and a data set of length N with index k denoting the most
recent sample
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where the underbars are used to distinguish vector-valued variables from
scalar elements. The expected value of the disturbance a is zero, and thus
the model is found from a least squares solution after setting a= 0:

α = −(Y TY )−1Y T y

After finding α, an estimate of the noise sequence is simply found from
a= Y α+y, from which an estimate of the disturbance variance σ2

a can be

found. Having found the polynomialA(q−1), the impulse response coefficients
ψi are found from

yk =
1

A(q−1)
ak = Ψ(q−1)ak

using polynomial long division. Here Ψ(q−1) = 1+ψ1q
−1+ψ2q

−2+ψ3q
−3+

· · · .

2.7.1.3 Calculating the Harris Index

The Harris index is the ratio of the observed variance to the variance that
would be obtained by MVC. The minimum achievable variance can be calcu-
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lated from Eq. (2.29) above, using the identified impulse response coefficients
and the estimated disturbance variance

σ2
a =

1

N − 1

N∑

i=1

(ai − a)
2

where a is the mean value of the estimated disturbance, which is zero by
construction.

The observed variance of the controlled variable can be computed similarly.
However, if there is a persistent offset in the control loop, i.e., if the mean
value of the controlled variable deviates from the reference, this should also
be reflected in a measure of control quality. Hence, a modified variance should
be used which accounts for this persistent offset

σ2
y,o =

1

N − 1

N∑

i=1

(yi − yref )
2

If there is a persistent offset from the reference, the modified variance σ2
y,o

will always be larger than the true variance σ2
y , and the Harris index becomes

HI =
σ2
y,o

σ2
y,mv

while the Normalized Harris Index becomes

NHI = 1− σ2
y,mv

σ2
y,o

2.7.1.4 Obtaining the Deadtime

All the information required for calculating the NHI can be obtained from
routine operating data, provided the deadtime is known. If the deadtime
is not known, it may be estimated from online data – provided sufficiently
informative data can be found, otherwise an identification experiment may be
required in order to determine the deadtime. Further information on deadtime
estimation can be found in Bjorklund and Ljung (2003).

2.7.2 Modifications to the Harris Index

Despite the theoretical elegance of the derivation of the minimum variance
controller, the minimum variance controller may not be a realistic choice for a
controller in a real application. This is because it is sensitive to model errors,
and may use excessive moves in the manipulated variable. It does provide
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an absolute lower bound on the theoretically achievable variance, but it is
nevertheless of interest to have a control quality measure which compares the
actual performance to something (hopefully) more realistic.

A simple modification to the Harris index is to simply use a too high value
for the time delay, thus increasing the ‘minimum’ variance. This is discussed
in Thornhill et al (1999) The resulting performance index will then no longer
compare actual performance with a theoretically optimal performance. In
Thornhill et al (1999), typical choices for the ‘prediction horizons’ are dis-
cussed for common control loop types in refineries (e.g., pressure control, flow
control, etc.). This modification is sometimes known as the extended horizon
performance index.

Another modification is to assume that the ’ideal’ controller does not to-
tally remove the effect of disturbances after one deadtime has passed, but
rather that the effect of the disturbance decays as a first order function after
the deadtime has passed. If we assume that this decay is described by the
parameter µ (0 < µ < 1), so that the ideal response to disturbances against
which performance is measured would be

yk,mod =

δ−1∑

i=0

ψiak−i +

∞∑

i=δ

ψδ−1µ
i−δ+1ak−i

which results in a modified ‘benchmark variance’

σ2
y,mod = σ2

y,mv +
µ2

1− µ2
σ2
a

The modified control performance index then simply becomes

HI,mod =
σ2
y,o

σ2
y,mod

This modified Harris index is proposed by Horch and Isaksson (1998b)
and Kozub (1996). Horch and Isaksson also provide some guidelines for how
to specify the tuning factor µ. They find that if one wishes to account for
a possible error in the estimated deadtime of ±1 sample interval, and still
require a gain margin of 2 for the ‘ideal closed loop’, this corresponds to
choosing µ > 0.5. It is also recommended to have a realistic attitude to how
much the dynamics of the closed loop system can be sped up, compared to
the dynamics of the open loop process. Horch and Isaksson argue that it is
unrealistic to speed up the system by a factor of more than 2-45. If we denote

5 While this argument is reasonable for many control loops, it is obviously incorrect
for integrating processes (e.g., level control), where the open loop time constant is
infinite. Ideally, one should base an estimate of the achievable bandwidth on more
fundamental system properties like time delays, inverse response, or limitations in the
manipulated variables.
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the open loop dominant time constant τol, and the desired closed loop time
constant is τol/v, then the parameter µ should be chosen as

µ = exp

(

−vTs
τol

)

where Ts is the sampling interval for the control system.

2.7.3 Assessing Feedforward Control

The time series analysis behind the Harris index can also be extended to cases
with feedforward control from measured disturbances. In cases where distur-
bances are measurable, but not used for feedforward control, the analysis can
be used to quantify the potential benefit (in terms of variance reduction) from
implementing a feedforward controller. This is described by Desborough and
Harris (1992). The analysis requires knowledge of the deadtimes from mea-
sured disturbances to controlled variable in addition to the deadtime from
the manipulated variable to the controlled variable6. Their analysis results
in an Analysis of Variance table, which shows how much of the observed vari-
ance is due to the unavoidable minimum variance, and what fractions of the
excess variance is affected by feedback control alone, how much is affected by
feedforward control alone, and how much is affected by both feedback and
feedforward control.

In a related paper, Stanfelj et al (1993) address the analysis of the cause
for poor performance, and show how to determine whether it is due to poor
feedforward or feedback control. If the cause is poor feedback control, it is
sometimes possible to determine whether it is due to poor tuning, or due to
errors in the process model. This obvioulsy requires that a (nominal) process
model is available, in contrast with the analysis of Desborough and Harris
which only requires the knowledge of deadtimes. Reliable model quality as-
sessment also requires some external excitation of the control loop, typically
via controller setpoint changes.

2.7.4 Advanced Benchmarks

There exists more advanced benchmarks which can be used for practical
purposes. They are

6 The deadtime from measured disturbances to the controlled variables should be pos-
sible to identify from closed loop data, given a data segment with significant variations
in the measured disturbance. If the identified deadtime is equal to or higher than the
time delay from manipulated to controlled variable, the measured disturbance does
not contribute to variance in the controlled variable under minimum variance control.
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1. The linear quadratic Gaussian (LQG) regulator benchmarking
2. Generalised minimum variance (GMV) benchmarking
3. Restricted-structure or model-based benchmarking (RS)

These benchmarks are briefly explained below.
LQG benchmarking: It is proposed (Huang and Shah, 1999) as an al-
ternative to minimum variance benchmarking. The advantage of the LQG
benchmark is that it also accounts for the use of the manipulated variable,
whereas the MVC assumes that arbitrarily large manipulated variable moves
can be made ’for free’. The main disadvantage lies in the requirement to know
the full model of the process. The use of an LQG benchmark for CPA is much
more complicated than the traditional methods based on the MVC.

GMV benchmarking: The use of the Generalized Minimum Variance con-
troller as a benchmark for performance monitoring was proposed by Grimble
(2002). The Generalized Minimum Variance controller can be seen as an LQG
controller for restricted choices of dynamic weights on the input and control
error. However, the design restriction also allows for simpler calculation of the
controller. More important in the CPA context is that the GMV benchmark
can be calculated using plant data and knowledge of the deadtime only, with-
out requiring the knowledge of the full model, see Grimble (2002) for details.

RS benchmarking: In contrast to MVC, the majority of practical con-
trollers are of PID-type, and have a specific order and structure. Therefore,
it has been argued that realistic performance indicators should be applied
for their assessment, as proposed by Eriksson and Isaksson (1994) and Ko
and Edgar (2001). These approaches calculate a lower bound of the variance
by restricting the controller type to PID only (optimal PID benchmarking)
and allow for more general disturbance models. The PID-achievable lower
bound is generally larger than that calculated from MVC, but is designed to
be achievable by a PID controller. That is, one is interested in determining
how far the control performance is from the “best” achievable performance
for the pre-specified controller. Like the LQG benchmark, RS benchmarking
also requires knowledge of the full order model.

2.7.5 Multivariate Performance Measures

An extension to the derivation of HI of MIMO processes is possible by using
multivariate spectral factorization and thereby solving a multivariate Dio-
phantine identity. Also, the filtering and correlation algorithm developed by
Huang and Shah (1999) for single loop performance assessment can also be
extended to address MIMO controller performance by adding the concept of
an interactor matrix or time-delay matrix.
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However, the Harris index became popular because of its simplicity. When
the approach is extended to multivariate systems, the requirements of a pri-
ori knowledge and calculation burden are unavoidably increased due to the
interactive effects among different variables. The interactor matrix, which al-
lows the feedback control-invariant term of the outputs to be extracted, is
essential in the calculation of the MV for a multivariable system. Huang et al
(1997) have shown that the interactor matrix can be estimated from the first
few Markov parameters of the process using the algorithm given in Rogozin-
ski et al (1987). However, the above techniques require detailed knowledge
which is normally challenging to obtain or estimate accurately. Plant tests
introducing sufficient excitation, followed by considerable modeling effort has
to be undertaken in order to get this information. This is the major difficulty
for the application of multivariable MVC benchmark performance assessment
algorithms. The method developed by Xia et al (2006) can estimate upper
and lower bounds of the MIMO MV performance index from routine operat-
ing data if the I/O delay matrix is known. The lower bound can be estimated
from routine operating data, while the estimation of the upper bound nor-
mally requires introducing additional delays to the controller. The method
can be applied to evaluate the regulatory performance of MIMO industrial
controllers.

2.8 Procedure for Controller Performance Assessment

Controller performance assessment is a challenging task in industrial process
control. Ideally, any controller performance assessment technique should have
the following attributes (Hugo, 2005):

1. Should be independent of disturbance or setpoint spectrums. Both the
disturbances and setpoint changes can vary widely in a plant, and the
assessment should be insensitive to the time period when the data was
taken.

2. Should not require plant tests. This requirement is generally met, as the
user is interested in the closed- loop behavior of the process. However,
closed-loop data can be information poor, and any performance assess-
ment technique should include tests of the accuracy of the results.

3. Able to be automated. The large numbers of loops in a plant necessi-
tate that at least part of the controller performance assessment be done
automatically.

4. Require minimum specification of process dynamics.
5. Absolute or non-arbitrary measure. The metric should compare the cur-

rent quality of control to some universal standard.
6. Sensitive to detuning or process model mismatch or equipment problems

only. The metric should give an indication of only those things that the
control engineer can affect.
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7. Indicative of why the controller is performing poorly. Ideally, the measures
should indicate what should be done to improve control, whether the
problem is due to poor tuning, valve sticking, or oscillations from an
unknown source.

8. Measure the improvement in profit due to the controller. This may be
separate from measuring reduction in variance, as a major profit contri-
bution for some controllers is pushing the process to constraints.

According to Hugo, current software packages generally meet requirements
1-6 above. Requirement 7 is only partially met identifying new tuning param-
eters or a process model strictly from closed-loop data is the function of a
self-tuning regulator (which has found very limited success in industry). The
main difficulty in requirement 8 is defining a base case, which is an activity
that is best done off-line. However, performance assessment techniques can
indicate whether advanced control can reduce the variance over the current
PID controllers.

It is not sufficient and sometimes dangerous to rely on a single statistic for
performance monitoring and diagnosis, as each criterion has its merits and
limitations. The best results are often obtained by the collective application
of several methods that reflect control performance measures from different
aspects. Sections 2.8.1 to 2.8.4 below propose a systematic procedure for
CPA, based in the recommendations in the recent study by Jelali (2005).

2.8.1 Preliminary Analysis of Data

2.8.1.1 Data Pre-processing

Real world data are generally (i) incomplete (lacking attribute values, lacking
certain attributes of interest, or containing only aggregate data), (ii) noisy
(containing errors or outliers) and (iii) inconsistent (containing discrepancies
in codes or names). The following necessary steps need to be considered before
processing the data.

• Use raw data collected at a proper sampling frequency.
• Strictly avoid filtering/smoothing or compression of the data.
• Remove the outliers or bad data.
• Do mean centering and scaling.

Outliers are unusual data values that are not consistent with most ob-
servations. Commonly, outliers result from measurement errors, coding and
recording errors, and, sometimes, are natural, abnormal values. Such non-
representative samples can seriously affect the model produced later. There
are two strategies for dealing with outliers: (i) detect and eventually remove
outliers as a part of the preprocessing phase, or (ii) develop robust modeling
methods that are insensitive to outliers.
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Data compression is found to have detrimental effects on the reliability/-
validity of control loop performance measures (Thornhill et al, 2004). When
the controller performance indices estimated using the compressed data are
used for performance assessment, we are inclined to make the errors in as-
sessing the control loop performance. Hence, it becomes necessary to use the
raw data (uncompressed) for controller performance monitoring. Also, it is
common to centre and scale data such that each variable in the analysis have
mean zero and unit variance. Subtracting the mean of the data is often called
“mean centering”. It results in a shift of the data towards the mean. The
mean of the transformed data thereafter equals to zero.

2.8.1.2 Interaction Analysis when Dealing with MIMO Systems

Industrial control systems generally are designed by assuming that the mul-
tivariable control problem can be decomposed into a series of single input-
single output problems. Often the individual input-output pairs are selected
intuitively. However, this qualitative approach is sometimes not sufficient for
control loop design. There is a need to place the interaction analysis for con-
trols and outputs on a more quantitative basis, which accounts directly for
dynamic properties of the system (Skogestad, 2004).

Multivariate CPA is only required when the loops are strongly coupled.
This can be found out by applying standard interaction measures, such as
relative gain array, which are simple to calculate and interpret provided a
process model is available. Cross-correlation (coherence) analysis is also use-
ful to assess the interaction between the control loops. Even in the case of
significant interactions, one should apply CPA methods, which do not require
the interactor matrix of the process.

2.8.1.3 Time Delay Estimation

In many applications, the time delay can be directly or indirectly estimated.
When time varying, the delay should be continuously updated based on in-
put/output measurements. Some methods for time delay estimation are dis-
cussed in Jelali (2005) and the references therein. When the time delay is
completely unknown, or its determination/adaptation is costly, the use of
the extended prediction horizon approach (Dumont et al, 1993) is highly
recommended.
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2.8.2 Detection of Specific Malfunctions

The correlation (covariance) analysis of the control error is simple and should
be always carried as a first test before carrying out further performance anal-
ysis. The cross-correlation between measured disturbances and the control
error can be used to qualitatively assess feedforward control.

Also spectral analysis of the closed-loop response, which allows one to
detect oscillations, offsets, non-linearities, and measurements noises present
in the process easily, should be performed. A common symptom of poor
loop performance is the appearance of oscillations in process variables. The
next step should be to evaluate how linear (or nonlinear) the closed loop is
by applying one or several tests for detecting non-linearity as possible root-
cause for control loop performance problems. This is of particular relevance
for loops that are found to be oscillating.

For loops with (stationary) offset from setpoint, one should check whether
this is due to lacking integral action or saturation of the manipulated variable.
In the latter case, one should consider whether the saturation is due to an
undersized manipulated variable, or the result of an inappropriate control
structure causing competition with other loops.

For loops where persistent oscillations are the main problem, rather than
input saturation or stationary offset, stiction and backlash detection should
be performed. Some relevant techniques have been presented in preceding
sections. Even if a specific malfunction cannot be identified, indications of
non-linear effects in a signal can be used to guide the search for the cause of
the performance problems.

2.8.3 Evaluation of Level of Control Performance

2.8.3.1 Apply the MVC-based Assessment

This should be the standard benchmark to be applied. Appropriately selected
model orders (typically N ≥ 10τ), and a minimum length of data (typically
N ≥ 150τ) are necessary for obtaining reliable results. Here, τ refers to time
delay. When the Harris index signals that the loop is performing well, then
further assessment is neither useful nor necessary. In the case, where a poor
performance relative to MVC is detected, there is a potential to improve
the control loop performance, but no guarantee that this will be attained by
means of retuning the existing controller. Further, analysis is then warranted.
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2.8.3.2 Apply User-specified or Advanced Control Performance
Benchmarking

Baselines and thresholds (historical benchmark values) using data with “per-
fect” controller performance, or restricted structure (e.g., PI) performance
benchmarking (preferably combined with IMC tuning) can be applied. Also,
the use of more advanced linear quadratic gaussian/ generalized minimum
variance benchmarking can be an option, particularly in cases where perfor-
mance improvement cannot be achieved by retuning the running controller,
and/or for supervisory control loops. Although restricted-structure bench-
marking is quite demanding since it requires plant model to be known, a
beneficial side-effect that it can provide information on how the controller
can be retuned/designed to obtain optimal performance.

2.8.4 Improvement of Control Performance

2.8.4.1 Retune the Control Loop

Adjust some parameters of the control loop(s) found to be poorly performing.
When retuning is not necessary, or does not improve the control performance,
modifications of the instrumentation, control system structure or the process
itself will be required, if the current operation is deemed unacceptable.

2.8.4.2 Modify the Control Structure

When retuning does not improve the control performance, modify some struc-
tural components. In some cases, this could mean a complete redesign of the
control loop(s). Watching a controller performance metric over many oper-
ating regions, might help to discover opportunities for gain-scheduling or
possibly the use of adaptive control.

2.8.4.3 Repair/Redesign System Components

In some situations, inspection and maintenance measures should be taken.
This might follow directly from the findings in section 2.8.2, if specific mal-
functions such as valve stiction has been identified. In other cases, redesign
may be necessary if acceptable performance cannot be achieved with well-
structured and well-tuned control system. This may involve modification of
the feedback dynamics, such as reducing the time delay by changing the
process flow (e.g., adding a bypass), or changing the sensor location. Also,
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disturbance sources might be eliminated, or supplementary sensors installed
to enable feedforward control.

In the procedure described above, many parameters have to be selected
by the user. As an initial basis, default parameters for the performance index
calculation, which were shown to be useful for various generic categories of
refinery control loops by Thornhill et al (1999), may be used or determined
in a similar way. That work substantially lowered the barrier to large scale
implementation of performance-index-based monitoring. It is necessary and
well-spent time to carefully test, inspect, and compare the CPA results using
different parameter choices. Usually, similar parameter values may be used
in the control performance assessment of control loop of the same category
(such as flow control, pressure control, etc.).

2.9 Issues in Multivariate Systems

There is considerable incentive for extending the univariate controller perfor-
mance measures to the multivariable case, both for maintaining these con-
trollers and evaluating their economics, but the solutions available thus far
are difficult to implement. The main disadvantage is that the user must spec-
ify or determine the plant interactor matrix, which depends not only on the
time delays, but is a function of the all plant dynamics.

To date, commercial packages do not contain algorithms for assessing mul-
tivariable controllers. However, it is possible to use the single loop techniques
on each of the outputs of a multivariable controller, although the results
will be somewhat biased. Below we give a brief examination of some aspects
controller performance assessment for multivariable model predictive control
(MPC), and the applicability of single-loop performance assessment to the
multivariable case.

Multivariable controllers in general use all the inputs to control all the
outputs, but the control engineer is mainly interested in how well each output
is controlled to its setpoint, and this is exactly what single loop performance
indices measure. The results will however be biased somewhat as more than
one input can affect each output, with the amount of biasing dependent on
the amount of process coupling. Fortunately, many process are not tightly
coupled, and it is often the case that each major output is controlled largely
by one input.

Model predictive control is primarily used for multivariable systems where
it is desirable to operate close to operational constraints (and where the set of
active constraints may change with operating conditions). MPC controllers
typically consist of two “layers”:

1. An upper layer where the optimal (in some sense) operating conditions
are identified. This is typically formulated as a steady state optimization
problem, using a steady state model of the process.
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2. A lower layer which attempts to control the process to the optimal condi-
tions identified in the layer above. At this layer, a dynamic process model
is used, with the same steady state gains as those used in the layer above.

In both these layers, an optimization problems are solved on-line. Reasons
for poor MPC performance may therefore be:

• Inappropriate formulation of the optimization cost function at one or both
layers. The variables affecting the cost function, and their (relative) weight,
should obviously reflect the desired operation of the plant. This point might
seem obvious, but will often require considerable process knowledge and
experience from the designer.

• Model/plant mismatch, i.e., the model used by the MPC contains signifi-
cant errors.

• Inappropriate (usually too stringent) constraints.

Some MPC controllers apply only input constraints directly in the opti-
mization problem formulation, and translate output constraints into setpoints
when such constraints are active. Other MPC controllers handle also output
constraints directly in the optimization formulation. In either case, an active
constraint means that control quality will have to deteriorate for some other
variable(s).

Monitoring what constraints are active is the most basic step in CPA for
MPC. Examining the Lagrangian multipliers for the optimization problem
(especially at the upper layer of the MPC – which is usually more tightly
related to economic performance) can give information on the potential gain
from modifying the constraint. Ordinary mono-variable CPA metrics can also
give valuable insight into the quality of the MPC control, in particular if there
is only moderate interactions in the plant. Most MPC controllers account for
input usage (and not only output variance) in the optimization problem at
the lower level, a GMV-type performance measure may therefore be more
appropriate than the Harris index. One should, however, be aware that the
CPA measure will be more reliable if the same set of constraints are active
throughout the length of the data series, as changes in the set of active
constraints essentially means that the system is time varying.

The work of Patwardhan and Shah (2002) focuses on the performance di-
agnostics of MPC controllers. An attempt has been made out of their work
to quantify the effect of constraints, model uncertainty and nonlinearity on
the performance of linear MPC. Recently, Chen and Wang (2009) have de-
veloped a statistic-based method for performance assessment and monitoring
of the multivariate feedback control system where an integration of principal
component analysis and the autoregressive moving average filter for building
up minimum variance performance bounds.

Jiang et al (2006) proposed a new scheme to detect and isolate Model-
Plant Mismatch (MPM) for multivariate dynamic systems where the MPM
problem is formulated in the state-space domain, as is widely done in the de-
sign and implementation of MPCs. The specific issue addressed therein is to
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identify which among the state-space matrices had to be re-estimated in order
to account for significant plant deviations from its nominal state, and three
MPM detection indices (MDIs) are proposed to detect the MPM for that
purpose. A shortcoming of their work is that changes in state-space matrices
cannot be directly translated to changes in process characteristics like gain,
time-constant and delay. In addition, delay mismatches become difficult to
detect with a state-space representation since such mismatches cause either
an increase or decrease in the order of the system depending on an increase or
decrease in delay of the process. Recently, Selvanathan and Tangirala (2010)
proposed a method for the diagnosis of poor control loop performance due to
model plant mismatch (MPM) in the internal model control framework. In
particular, the objective here is to identify the mismatch in specific compo-
nents of a transfer function model, namely, the gain, time-constant and delay
from routine closed-loop data. A new quantity Gp/Gm, termed as the Plant
Model Ratio (PMR) in the frequency domain is introduced as a measure of
model plant mismatch which shows that there exists a unique signature in
PMR for each combination of mismatch in model parameters. This method
can not be applied directly to the multivariable control due to the presence of
multivariable interactions, but Selvanathan and Tangirala (2010) do provide
indications of research directions that may provide solutions to this short-
coming.

Acknowledgements The authors are pleased to acknowledge the financial support
by a grant No. NIL-I-007-d from Iceland, Liechtenstein and Norway through the EEA
Financial Mechanism and the Norwegian Financial Mechanism.

References

Bialkowski W (1993) Dreams versus reality: a view from both sides of the gap. Pulp
and Paper Canada 94:19–27

Bjorklund S, Ljung L (2003) A review of time-delay estimation techniques. In: Deci-
sion and Control, 2003. Proceedings. 42nd IEEE Conference on, vol 3, pp 2502–
2507

Chen J, Wang WY (2009) Performance assessment of multivariable control systems
using pca control charts. In: Industrial Electronics and Applications, 2009. ICIEA
2009. 4th IEEE Conference on, pp 936–941

Choudhury MAAS, Shah SL, Thornhill NF (2004a) Diagnosis of poor control loop
performance using higher-order statistics. Automatica 40:1719–1728

Choudhury MAAS, Jain M, Shah SL (2008) Stiction-definition, modelling, detection
and quantification. Process Control 18:232–243

Choudhury MS, Shah SL, Thornhill NF (2004b) Diagnosis of poor control-loop per-
formance using higher-order statistics. Automatica 40:1719–1728

Desborough L, Harris T (1992) Performance assessment measure for univariate feed-
back control. Canadian Journal of Chemical Engineering 70

Desborough L, Miller R (2002) Increasing customer value of industrial control per-
formance monitoring: Honeywell’s experience. Proc AIChE Symp Ser 98:153–186



2 Controller Performance Monitoring and Assessment 83

Desborough LD, Harris TJ (1993) Performance assessment measure for univariate
feedforward/feedback control. Canadian Journal of Chemical Engineering 71

Dumont GA, Elnaggar A, Elshafei A (1993) Adaptive predictive control of systems
with time-varying time delay. International Journal of Adaptive Control and Signal
Processing 7(2):91–101

Ender D (1993) Process control performance: not as good as you think. Control
Engineering 40:180–190

Eriksson PG, Isaksson A (1994) Some aspects of control loop performance monitoring.
In: Control Applications, 1994., Proceedings of the Third IEEE Conference on,
vol 2, pp 1029–1034

Fisher (1999) Control Valve Handbook. Fisher Controls International, Marshalltown,
Iowa, USA

Forsman K, Stattin A (1999) A new criterion for detecting oscillations in control
loops. In: Proceedings of the European Control Conference, Karlsruhe, Germany

Grimble MJ (2002) Controller performance benchmarking and tuning using general-
ized minimum varianve control. Automatica 38:2111–2119
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Chapter 3

Basic Notions of Robust Constrained PID
Control

Mikuláš Huba

Abstract This chapter is aimed as introduction to the prepared textbook on
the Robust constrained PID control. It makes you familiar with historical de-
velopment of PID control, its basic components and structures, problems and
motivations and with basic terminology used within this area. After studying
this chapter you should be better able to describe phases in the technology
development of the PID control, to characterize basic existing types of PID
controllers and to explain, why the development of PID control cannot be con-
sidered as finished, to characterize different performance specifications and
related terms as ε-nonovershooting, ε-nonundershooting, ε-monotonic and ε-
n-pulse (nP) functions and their use in deriving the so called closed loop
performance portrait, to explain notion of dynamical classes (DCs) of control
and their relation to the Feldbaum’s theorem about n-intervals of the relay
minimum time control (MTC), to explain impact of DCs on performance
and design of PID control, to explain notion of fundamental solutions for
setpoint tracking and disturbance rejection and to explain and characterize
basic elements of the extended table of fundamental PID controllers. Within
this publication, this introduction is followed by the next chapter bringing
the simplest structures of the DC0 and the new robust method based on the
Performance Portrait used for the controller tuning. More advanced problems
from higher dynamical classes are treated by separate papers in the associated
workbook and in Preprints of the NIL workshop (Huba et al, 2011a,b)

Mikuláš Huba
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3.1 Introduction

This text is devoted to developing new approach to the robust constrained
PID control of simple single-input-single output (SISO) plants. It starts by
showing and arguing, where and why new alternative solutions were pro-
posed to the traditional ones to extend mainstream of the contemporary de-
velopment and how the traditional problems may be treated more efficiently.
Despite the strong emphasis on comparing with the already existing works,
the overview of references given is surely not complete. With respect to this,
but also in other points, we will welcome any comments and proposals for
improvements. For mathematically oriented reader the text may seem to be
not sufficiently covered by proofs of basic conclusions. And conversely, for
people from practice it may seem to be mathematically too demanding: We
spent a lot of space by trying to fit the academic and engineering control
methods together to get approaches matching optimally needs of real time
control. Therefore, the text is frequently illustrated by examples and will
be complemented by results of controlling physical plant models brought by
other outputs (workbook, workshop preprints) created and presented within
the NIL project.

PI controllers operate about 90% control systems. They represent the
core module of PID controllers that cover about 95% Åström and Hägglund
(1995), or even 98% (Datta et al, 2000) of all control systems in practice.
By nearly century of its existence and by its impact on practice it is related
to personal experience of huge amount of people. We are trying to address
this experience by stressing importance of controlling simple plants and by
comparing different approaches and results.

As each control design, also the design of PID controllers must be based on
some model of the plant behavior and the resulting controllers will necessarily
depend on information embedded into this model. Since the model represents
just an abstract approximation of chosen features of real systems, it is never
complete and always it is to some degree uncertain. Its uncertainty is expected
to influence quality of achieved control results that usually depends on factors
as:

• measurement noise in identification and control,
• disturbances acting on the plant during the identification and control,
• numerical errors and other imperfection of the methods used in the iden-

tification, controller design and control,
• plant nonlinearities relevant to larger deviations from fixed operating

points,
• plant nonlinearities relevant to the vicinity of the operating point (as e.g.

hysteresis),
• non-modeled (high frequency) plant dynamics, i.e. dynamics not consid-

ered in deriving controller equations/structure,
• time related changes of the plant dynamics.



3 Basic Notions of Robust Constrained PID Control 89

From the beginning of control design, each method used in practice was some-
how be able to cope with impact of all these factors. In the last decades, the
robustness aspects related to model uncertainty are treated more rigorously
and many works and publication on robust process control based e.g. on
H2 and H∞ norms proposed, discovered and analyzed a lot of useful fea-
tures and methods. However, the huge number of newly appearing papers
devoted to the robust control of simple SISO systems that try to optimize
traditional solutions, or propose new ones (Skogestad, 2003; Baños and Vi-
dal, 2007; Johnson and Moradi, 2005; Keel et al, 2008; O’Dwyer, 2006; Seok
et al, 2007) indicate that there still exist features of PID control that are ex-
pected to be improved. The high number of appearing publications has also
drawbacks as that it is practically impossible to follow all streams of ideas
and methods of the development and to offer a unifying presentation giving
explanation of their internal relations. And it is not enough to deal just with
the newest development. As it is documented by many examples from science
history, not every time the mostly spread opinions guarantee further progress
and it can happen that some already forgotten ideas finally show to play the
key role in achieving new generation of solutions.

Newer approaches of robust process control trace their origins (Morari
and Zafiriou, 1989) to the “analytical” design by Newton, Gould, and Kaiser
(1957) based on optimizing the ISE (Integral Square Error) performance in-
dex. Morari and Zafiriou denoted the earlier approaches as the “Trial and
Error” ones. It can be, however, shown that already the older approaches
involved some features of the robust design. And, on the other side, also the
modern “robust&analytical” approaches mostly require some iterative modi-
fications until the best compromise between the usually conflicting objectives
is reached. It may e.g. be caused by the fact that the ISE based design is not
primarily motivated by practical requirements but by the mathematical con-
venience and it is known to lead to slightly oscillatory behavior. Therefore,
in this text design based on minimal IAE (Integral of Absolute Error) val-
ues will be preferred (Shinskey, 1990). For practical use, requirements of the
fastest possible transients giving minimal IAE values will be extended by re-
quirements of nonovershooting (NO), or monotonic (MO) control responses
of the output variable that should be achieved by a reasonable excurse of
the manipulated (control) variable giving minimal Total Variance (TV) val-
ues (Skogestad, 2003). So, in the control design reported in this text we will
try to get as fast as possible MO control responses by respecting both the
plant model uncertainties, the control signal constraints and demand on the
total excurse of the manipulated variable.

As the 2nd most important pillar of the robust process control give Morari
and Zafiriou the work by Youla et al (1976) on parameterizing all stable
controller transfer functions possible to given (linear) plant and specified
problem. In this way their primarily aim, to search for a good controller,
was greatly simplified. From this point of view it may be, however, noted
that the same aim (to parameterize all stable controllers and so to simplify
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search for a good controller) was partially achieved already by the pole place-
ment (pole assignment) control design. This (when choosing stable closed
loop poles) is also giving continuum of stable parameterized controllers. Ac-

cording to Åström and Wittenmark (1984) pole assignment approach was
firstly treated by J. Bertram in 1959 and the first published solution was
given by Rissanen (1960). Despite this (older) approach is not as general
as the parameterization by Youla, it is broadly used within different “mod-
ern” approaches. The first design step, the determination of parameterized
nominal controllers, was, however, up to now not sufficiently completed by
the second step, the robustification of the controller. This requires choosing
appropriate closed loop poles. Instead of working with the closed loop poles
(that are specified by negative numbers) it may be simpler to use positive
parameters denoted as bandwidth, or their reciprocal values having meaning
of time constants. However, up to now there do not exist proven techniques
for robust performance design relating simply given control specifications
with the closed loop poles and with the uncertainty information, nonmod-
elled dynamics and measurement noise. This step is therefore still mostly
done by the trial and error method, whereby the choice of the closed loop
poles is not only influenced by the system uncertainty and the nonmodelled
dynamics but also by the constraints put on the control and state variables.
This text shows how the “trial and error”procedures can be automatized and
replaced by a systematic computer based qualitative and quantitative anal-
ysis appropriately taking into account both role of constraints, plan-model
mismatch and different performance specifications. At least for the simplest
loops with dominant dynamics up to the second order the problem of the
control signal constraints may be eliminated by the generalized constrained
pole assignment control (Huba et al, 1999; Huba, 2006). In connection with
the computer based analysis, all developed controllers can be used also for
achieving specified robustness degree.

Another broadly accepted approach to general parametrized solutions re-
lated to the robust control and building on the sensitivity functions, or the
complementary sensitivity functions, was introduced byÅström and Hägglund
(1995). By trying to have clear-cut physical interpretation of the effect of such
tuning parameters and clear picture of their appropriate default values, the
tuning should be relatively easily adjusted (Skogestad, 2003) to a particular
situation and so to be much simpler and reliable. However, from the point
of view of the robust constrained pole assignment control the sensitivity and
complementary sensitivity functions do not always represent an effective and
efficient solution. They e.g. do not match the natural expectation that when
requiring the fastest possible monotonic output transients by decreasing:

• range of possible parameter fluctuations,
• effect of the nonmodelled dynamics (parasitic delays) and
• amplitude of the measurement noise,
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the achieved solutions should converge to the MTC. Using the pole assign-
ment method, such a requirement was systematically followed by Glattfelder
and Schaufelberger (2003). The anti-windup PI controllers they have ana-
lyzed were very close to give ideal control signal step reactions converging to
one pulse of the MTC.

The other important handicap of the development – the gap between the
classical state space approach and the newer robust control was formulated
byMorari and Zafiriou (1989) as “no smooth transition from the established
proven techniques and tools (PID controllers, Smith Predictor) to the new
ones” - may only be eliminated by modifications done from both sides. We
will try to resonse this comment by requiring smooth transition of the new
robust approach to the PID control up to the Relay MTC. Such attempts
have already been done e.g. by works of Glattfelder and Schaufelberger (2003)
(who analyzed achieved PID solutions both from the point of view of robust
control and MTC). Compatibility of different approaches and their relevance
for practice was approached from different points of view also by many other
authors. E.g. Rivera et al (1986), or Skogestad (2003) tried to combine the-
ory with practice and stressed importance of the manipulated variable in
evaluating achieved control performance. In this text we are going to look
for compatibility and to explore different structures of PID control from the
point of view of the state-space approach to controller design and to recon-
struction and compensation of disturbances by using disturbance observer
(DOB). Simultaneously, the achieved constrained loop dynamics will be con-
fronted with result of the MTC. Thereby, it will not be related just to a fixed
nominal operating point but to larger areas of loop parameters enabling to
keep chosen loop dynamical properties under every time present uncertainties
of the plant model. In order to introduce an effective controller classification,
it is further important to introduce new notions like n-pulse function, fun-
damental controllers and dynamical classes of control. Before coming with
these new definitions, let us briefly review basic notions of PID control.

Definition 3.1 (PID controller). Under the notion of PID control we will
include all controllers for setpoint tracking and disturbance rejection in sys-
tems with the dominant dynamics up to the 2nd order described by the trans-
fer functions

S(s) =
Ks(1 + T0s)

s2 + a1s+ a0
e−Tds (3.1)

An alternative previously used definition could speak about controllers
dealing with the reference and with the output signal (control error), its
derivative and integral given by the transfer function

R(s) = KP

(

1 +
1

sTI
+ sTD

)

(3.2)

or by its realizable modifications characterized by following definitions.
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Definition 3.2 (ISA PID controller). According to the ISA standard, the
two-degree-of-freedom PID controllers can be described as

U(s) = kP

{

bW (s)− Y (s) +
1

TIs
[W (s)− Y (s)] +

TDs

1 + sTD/N
[cW (s)− Y (s)]

}

(3.3)
whereby

• Y (s),W (s), U(s) represent Laplace transforms of the controller output,
setpoint and process output variable,

• kP is the controller gain,
• TI and TD the integral and derivative time constants,
• b and c are the weighting coefficients of the proportional and derivative

action and N describes filtration of the derivative action.

By setting TI → ∞ one achieves PD controller, for TD = 0 one gets PI
controller and for TI → ∞ and TD = 0 the P controller.

Definition 3.3 (Series PID controller). As an alternative to the previous
description one can consider serial controller form:

U(s) = k′
{[

b+
1

sT ′
I

]
1 + scT ′

D

1 + T ′
D/N

W (s)−
[

1 +
1

sT ′
I

]
1 + scT ′

D

1 + T ′
D/N

Y (s)

}

(3.4)

Definition 3.4 (Parallel PID controller). The third basic controller form
is given by equation

U(s) = K [bW (s)− Y (s)]+
KI

s
[W (s)− Y (s)]

KDs

1 + sKD/(NK)
[cW (s)− Y (s)]

(3.5)

These 3 basic PID controllers can yet be completed by the I-controller:

Definition 3.5 (I-controller). I-controller may be defined as

U(s) =
1

TIs
[W (s)− Y (s)] =

KI

s
[W (s)− Y (s)] (3.6)

I-controller can be simply derived just from the parallel form by setting K =
KD = 0.

For decades, these linear controllers represent building stones of the vast
majority of solved problems. As a standard option they yet include a constant
output signal (bias) and structures for switching from manual to automatic
regime.

By analyzing their possibilities many authors have finally come to conclu-
sion that it would be oversimplified to consider just controllers (3.2)–(3.6).
This shift from transfer function (3.2) to more complex structures is not just
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the invention of this publication. It results from a longer historical develop-
ment reflecting needs of practice. Even when remaining within the scope of
linear control, since 1960s controllers (3.2) characterized by a triple of param-
eters (KP , TI , TD) are being replaced by more complex structures of the two-
degree-of-freedom controller (3.3)–(3.5) with setpoint weighting (Horowitz,

1963; Åström and Hägglund, 2005). These are characterized by 5 or 6 pa-
rameters (with filters of the derivative action). Controllers used in practice
take forms of more or less complex structures that e.g. always consider also
constraints given on the controller output. Despite to the linear character of
basic equations, the industrially produced controllers are usually equipped
with control constraints and blocking of an abundant integration known as
anti-windup (aw), or anti-reset-windup (arw), by the possibility of on-off
(pulse width modulated) control, or with other nonlinear options (as e.g.
error squared controllers). As we show later, even all these advanced possi-
bilities are not enough to cover needs on a reliable and high quality control
of systems (3.1) and despite to respect to traditions it shows to be necessary
to extend this basis by new elements and to introduce internal differentiation
of all existing solutions. It is also to note that despite speaking about PID
control as being derived for the dominant second order dynamics this does
not restrict its applications to controlling much more complicated systems.

3.2 Innovation versus Conservativeness

It is not easy to quote the first application of PID control. Integrated with
other parts of controlled processes, controllers with proportional and integral
action were used for ages. But as the first mathematical formulation of the
proportional and integral action one can mention the analysis of the speed
control of a steam engine“On Governors”by Maxwell (1868). As devices inde-
pendent from sensors, actuators and controlled plants PI controllers (denoted
as automatic reset) appeared at the end of the World War I. Controllers with
the derivative (D) action (denoted as pre-act) came around 1935. The devel-
opment in this area relates to the legendary firms as Bristol, Fisher, Foxboro,
Honeywell, Leeds & Northrup, or Taylor Instruments. The first methods for
an optimal tuning of controllers appeared few years later (see e.g. Ziegler and
Nichols (1942); Oldenbourg and Sartorius (1951)). But, when now, after more
than one century of study and development of the relatively simple concept
of PI and PID control one can still find several open questions of their reliable
use and tuning, it is necessary to ask“why”?What are the reasons for inflation
of different forms and realizations (series, parallel, non-interactive – ISA and

interactive – series (Åström and Hägglund, 1995) different quasi-continuous
realizations, etc.)?
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What are the reasons for inflation of “optimal”tuning rules? Just O’Dwyer
(2000, 2006) reports in his works 154 tuning rules for PI control and practi-
cally each control conference devoted to the control design brings new ones.

Also some other points are not clearly explained: why it is e.g. sometime
necessary to use setpoint weighting - it means to modify coefficients b and c
in Eqs. (3.3)–(3.5) - and sometimes not?

Why it is sometime necessary to use anti-windup measures and sometimes
not? Why do we have inflation of aw – circuitry, when just Glattfelder and
Schaufelberger (2003) report and analyze 10 different schemes for PI control
(see also Kothare et al (1994))? But, can we expect something else, when
there does not exist a generally accepted unique definition of the windup
phenomenon?

Fig. 3.1 Modular concept of pneumatic PID Control. a) Flapper-Nozzle high gain
nonlinear amplifier, b) P controller, c) PD controller, d) PI controller and e) PID
controller (see e.g. Ogata (1997); Van de Vegte (1994))

When we start to analyze reasons for this multi-dimensional inflation, we
can identify several possible sources and points to discuss:
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Fig. 3.2 Analog electronic PI controller

Fig. 3.3 Modifications of the pneumatic PID controller with a parallel (left) and
a serious feedback (right) enabling to achieve different ranges of adjustable parameters
and different tuning properties (Ogata, 1997)

• PID control is not a closed and unique solution, but result of a not yet
finished development,

• conservatism of practice and tendency to work with older (may be out of
data) solutions,

• existence of alternative solutions to the specified problems offering different
performance,

• failure to analyze the physical essence of the solved problems,
• absence of reliable controllers and their tuning for some typical situations,

e.g. for systems with large dead-time, or for unstable systems,
• absence of controllers respecting given control constraints for some typical

situations,
• not yet finished development of methods for a reliable (self-) tuning of

controllers.

Conservativeness of users is closely related to the historical development of
the PID controller technology. In the initial period, large amount of different
pneumatic, hydraulic electrical and electro-mechanical devices were sponta-
neously developed mostly on an experimental bases. Theoretical studies of
derived controllers started just later, when practice required a deeper under-
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standing of their optimal tuning and when it was necessary to replace older
devices by newer electronic controllers (to the end of 1950s) and digital ones
(since 1980s).

After 1960, due to the invention of transistors, the older pneumatic con-
trollers started being replaced by newer electronic devices based on high
gain operational amplifiers. Their dynamical properties, determined by the
feedback impedances are much more transparent and can easily be mathe-
matically described.

After 1960, new wave of digital controllers started. Around 1980 it is
already to observe fast invasion of digital quasi-continuous microprocessor
based controllers. They work with relatively short sampling periods that
can frequently be neglected and the controllers may be considered as the
continuous-time ones. However, it is to remember that by sampling a high
frequency noise signals at the input of the analogue to digital (A/D) con-
verters, a low frequency signals may appear. In the older analogue controllers
the controller inertia naturally filtered these. The study of digital controllers
brought to light necessity of introduction of new anti-aliasing filters.

Comparing with the analogue control, the fundamental and up to day not
fully used feature of digital control is its flexibility and broad functional-
ity. One of its exceptional features is an easy implementation of dead time
that is very important for its compensation in control loops. It was required
by solutions as the Smith predictor (Smith, 1957), or a bit older controller
by Reswick (1956). For the analogue controllers, implementation of the dead
time required in its compensation represented a serious technical problem.
Due to this, practice has motivation to use simpler PI controllers instead of
them. Reaction to the new situation still does not correspond to the well-
known fact that the majority of processes can be approximated by the first
order models with dead time!

Introduction of digital controllers gave birth to new phenomenon called
windup. Why it was not recognized earlier? May this fact be explained so
that in the digitalization phase the older solutions robust against windup were
not described fully correctly? Effect of the waves of innovation on the anti-
windup control circuitry is in a catching way described in the book “Control
Systems with Input and Output Constraints” by Glattfelder and Schaufel-
berger (2003). They show several examples from the field of power control,
by which they demonstrate problems arising by replacing older generations
of controllers by newer. They show that it is sometimes simpler to imitate by
new solutions the old pneumatic controllers than to invest into reengineer-
ing of the whole technological complex. Related back to the already existing
solutions, this argumentation can be understood. However, it should not be
acceptable for newly designed solutions, when the new controllers give much
broader possibilities!

From the application point of view it has to be noted that the first gener-
ation of controllers was mostly designed to compensate effect of disturbances
acting in the vicinity of fixed operating points. When a transition to a new
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operating point was required, it was either done under manual control, or by
special units. So, the first tuning rules and strategies were devoted to optimal
compensation of disturbances. This category is e.g. represented by the most
popular tuning rules by Ziegler and Nichols (1942). The optimal behavior
corresponding to the setpoint changes was focused just later. Furthermore,
the first pneumatic controllers were constructed in such way that they did not
initiate excessive controller windup. This started to be dominating just for
newer generation of digital controllers, what resulted also in corresponding
research work (see e.g. Fertik and Ros (1967); Kramer and Jenkins (1971)),
when more important results appear just around 1970.

Development of the technology of PID control has, of course, influenced
also the development of the control theory. The today frequently ventilated
gap between the theory and practice has several resources: e.g. the generally
accepted internal classification of PID control does not reflect all basic situa-
tions occurring in practice. It seems that this gap reasonably increased after
replacing the first generation of experimentally designed controllers by more
transparent and easily describable electronic and digital ones, when some im-
portant construction details were neglected and forgotten. The other point
is that the control theory developed into an independent discipline what has
brought also several self-centered features and artificial problems that do not
respond to real needs. Failures in solving real problems lead many researchers
to leave the traditional analytical controllers and to look for new solutions
based e.g. on fuzzy control, neural networks, genetic algorithms or optimiza-
tion based predictive control. Although these new solutions bring many new
interesting and useful features and options, it does not mean that a theory
describing PID control becomes obsolete. Many fictitious advantages of the
new approaches represent, in fact, just the not sufficient knowledge of the
possibilities of the traditional ones. But, what should be improved in the tra-
ditional approach? At first, we should understand more deeply motivations
that gave birth to these structures. This will also need to introduce perfor-
mance specification that will be used for evaluating, if the controller design
is meeting as close as possible practical requirements.

3.3 Advanced Modifications of PID Control

Next we will briefly show some newer modifications of the PI and PID con-
trollers to illustrate broad spectrum of existing solutions that will be stepwise
explained in this book. Going back to the first pneumatic PI controllers, their
structure may be represented by feedback from the controller output through
a low pass filter (Åström and Hägglund, 1995) in Fig. 3.4.

In the proportional zone of control, when the saturation limits are not
active, the controller transfer function becomes
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Fig. 3.4 Serial implementation of the PI controller considering control signal con-
straints

R(s) = KP
1

1− 1
1+TIs

= KP

(
1

1 + TIs

)

(3.7)

Another broadly used modification of the PI controller denoted usually as
the I-P controller uses the proportional feedback acting just on the plant out-
put (Fig. 3.5 left). It may be shown to be a special case of setpoint weighting
(with b = 0, TD = 0 in (3.3), or to be equivalent to the PI controller with the
input filter (prefilter) in Fig. 3.5 right.

Fig. 3.5 I-P controller (left) and the equivalent PI controller with prefilter (right),
KI = KP /TI

Similarly, by using PD terms acting on the output only may give the I-PD,
or PI-PD controllers.

For controlling stable first order systems with long dead time TD, the
Predictive PI controller (PPI, Hägglund (1996); Fig. 3.6 left) is used. This
may be extended by a PD in the feedback path (Fig. 3.7 right) to the PID τd
controllers (Shinskey, 2000). Both may be extended by the IMC filter, or
by a prefilter, when one e.g. gets the structure of the Model Driven PID
controller (Shigemasa et al, 2002; Yukitomo et al, 2002) with the IMC filter
and the prefilter in Fig. 3.7 (above) that is equivalent to the PPI-PD controller
in Fig. 3.7 (below)

All above mentioned structures may be covered by the 2 degree of freedom
(2DOF) MD-PID controller with the 2nd order IMC filter and the prefilter
in Fig. 3.8 (Shigemasa and Yukitomo, 2004; Yukitomo et al, 2004). They
document that the PID control developed is far from to be finished and be
interpreted just by the transfer function (3.2). Obviously, systems with long
dead-time are being integrated as a part of the general PID control.
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Fig. 3.6 Predictive PI controller (PPI) (left) and extended by the IMC controller
(right)

Fig. 3.7 Model Driven PID controller (above) (Shigemasa et al, 2002; Yukitomo
et al, 2002) that is equivalent to the PPI-PD controller (below)

Fig. 3.8 2DOF MD-PID controller

As it is obvious from the title “Model Driven” PID controller, the plant
model played an important role in derivation of previous controllers. One may
speak about approaches using the plant model at least from late 1950s, when
the first schemes for dead time compensation by Reswick (1956) and Smith
(1957) appeared. Both were based on reconstruction of an output disturbance
by a parallel plant model and the reconstructed disturbance was then used for
compensation of the reference setpoint value. Use of the parallel plant model
was later generalized within the Internal Model Control concept (Morari and
Zafiriou, 1989) that developed its own structure and tuning approaches to
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the PID control (Rivera et al, 1986; Skogestad, 2003) used frequently within
the robust control.

Fig. 3.9 Controller for dead time compensation by Reswick (1956)

Fig. 3.10 Filtered Smith predictor for dead time compensation; Smith (1957) pro-
posed this scheme with Fr(s) = 1

All above controllers may be considered as different modifications of the
IMC control derived for reconstruction and compensation of output distur-
bances that were dominantly used in process control. This area is typically
dealing with stable processes, whereby the measured signals may be rather
poor. The remarkable progress in mini- and microcomputers and power elec-
tronics technology in the 1980’s made it also possible to improve the per-
formance of motion control, what consequently lead to testing of traditional
and novel theories of control appropriate for mechatronic systems. In this
area with dominant influence of the input (load) disturbances of frequently
unstable, or marginally stable plants, but the relatively high quality measured
signals, much more frequently the so called Disturbance Observe based servo
systems (Ohnishi , 1987; Ohnishi et al, 1987; Umeno and Hori, 1991), or
the Disturbance Observer based PID control (Zhao, 2004) are used. This ap-
proach that is based on inversion of the model dynamics was also extended to
systems with long dead time (Zhong and Mirkin, 2002; Zhong and Normey-
Rico, 2002).
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The new textbook on Robust Constrained PID control tries to compare
both approaches based on reconstruction and compensation of input and
output disturbances and the traditional approach to the PID control more
systematically, what requires to adopt also some terminology changes. Due
to the fact that also the IMC control actually uses DO for reconstructing out-
put disturbances and both the IMC and DO based PID control are internally
using plant models, where appropriate, the PID structures for reconstruction
and compensation of input disturbances will be denoted more eloquently as
the PID-IM (Inverse Model) controllers and the structures for reconstruction
and compensation of output disturbances as PID-PM (Parallel Model) con-
trollers. Of course, the question is, if this was the best choice that will enable
a modular terminology development appropriate to cover also possible modi-
fications with different mixed forms of solutions, but answers to this question
will bring just the future development. With respect to this, author of this
chapter will be thankfull for any comments regarding these proposals.

Kc
TI

TI

Controller

Fig. 3.11 Disturbance Observer (DO) based servo-system proposed by (Umeno and
Hori, 1991) and interpreted by (Zhao, 2004) as the DO-PI controller

3.4 Performance of PID Control

Traditionally, PID control design may be carried out by using closed loop
specifications in the time domain or in the frequency domain (Skogestad and
Postlethwaite, 1996). In this book we will prefer the first ones, since their ap-
plication in computer based design that would be based on exploiting infor-
mation on the closed loop properties is extremely simple and straightforward.
For characterizing the closed loop dynamics, we will use several qualitative
and quantitative measures.
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3.4.1 Settling Time ts, IAE, TV, TV0, TV1 and TV2

To characterize quality (speed) of control transients different performance in-
dices are used as e.g. settling time, Integral of Absolute Error (IAE), Integral
of Squared Error (ISE), or Total Variance (TV), whereby all these measures
may be considered separately or in different logical combinations. Since we
are always required to finish a control process in a limited time, it might seem
that the basic performance index for process control should be defined as the
settling time

y(t)− w = 0, ∀t ≥ ts, y0 = y(0) 6= w (3.8)

i.e. as time ts required to reach by the output signal y(t) starting from initial
value y0 = y(0) a given setpoint value w. In general, however, the oppo-
site is true. Here, we will exclusively deal with control problems that after
a transient response to new reference state require maintaining system at its
vicinity in steady state. In linear systems, transients to a constant setpoint
value are theoretically infinitely long. So, finite settling time requires defi-
nition of certain neighborhood around it (Fig. 3.12). Such requirement also
follows from the fact that all real control loops work with finite precision of
measurement. To decide, when a transient finished by reaching steady state
lying within defined neighborhood around reference value becomes yet more
delicate problem in a noisy environment. Steady states can e.g. be indicated
by fulfilling requirements put both on the plant input and output

|y(t)− w| ≤ εy ∩ |u(t)− uw| ≤ εu, ∀t ≥ ts (3.9)

whereby the control signal value uw corresponds to maintaining output at the
setpoint value w and parameters εy, εu may follow from particular technology
(measurement noise & required control precision). Alternatively, they should
be chosen in such a way to prevent a premature indication of steady state
at flat extreme points of oscillatory transients. In general, plant output and
plant input (controller output) may achieve steady states at different time
moments, a nearly fixed output value may be achieved by oscillation at the
input (dynamical steady state), there may exist steady states with nonzero
steady state error, etc.

Since the settling time indication (3.9) depends on definition of several
parameters, in order to characterize speed and duration of transients at the
plant output in a simpler way, IAE (Integral of Absolute Error) or ISE (In-
tegral of Squared Error) performance indices are frequently used defined as

IAE =

∫ ∞

0

|[e(t)− e(∞)]| dt, ISE =

∫ ∞

0

[e(t)− e(∞)]
2
dt (3.10a)

IAE =

∫ ∞

0

|[y(t)− w]|dt, ISE =

∫ ∞

0

[y(t)− w]2 dt (3.10b)
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Fig. 3.12 Definition of settling time ts (3.9) based only on the plant output y(t)
with ε = εy

where e(∞) = limt→∞ e(t)
The first definition is usually preferred in situations, when some perma-

nent error is allowed, but it should not lead to a permanent increase of the
integral values. The second definitions are appropriate for situations, where
it is important to avoid permanent error.

With respect to problems with evaluating absolute value in analytical com-
putations, i.e. due to the mathematical convenience, ISE is the criterion most
frequently used by theoreticians for the analytical controller optimization. It
is, however, also well known that such optimization underestimates small
error values and leads to oscillatory transients. Therefore, with respect to
practical requirements, in this book we are going to use dominantly IAE
performance index, since. IAE is a good performance measure because the
size and length of error is proportional to lost revenue (Shinskey, 1990). Be-
cause in optimizing controllers also minimal IAE values may correspond to
transients with some overshooting, when aiming at monotonic transients, or
transients without overshooting, it is not enough to look just for minimum
of IAE, but one has to define also additional design constraints.

The required output behavior can generally be achieved by different tran-
sients of the manipulated variable at the controller output. Therefore, it is
useful to evaluate also Total Variance (TV), a criterion (Skogestad, 2003)
introduced for characterizing “smoothness” and total “energy consumptuion”
at the controller output. This was defined as

TV =

∫ ∞

0

∣
∣
∣
∣

du

dt

∣
∣
∣
∣
dt ≈

∑

i

|ui+1 − ui| (3.11)

Also this is mostly difficult to be evaluated analytically and therefore it is usu-
ally computed experimentally after appropriate discretization with sampling
period as small as possible.
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3.4.2 Basic Qualitative Shapes of Transient Responses

To describe qualitative properties of transients of PID control that may be
composed from several exponentials, or periodic functions, we will introduce
following definitions:

Definition 3.6 (Nonovershooting (NO) and Nonundershooting (NU)
functions). Function of time f(t) with initial value f(0) = limt→0− f(t) dif-
ferent from its final value f(∞) = limt→∞ f(t) fulfilling conditions

[f(t)− f(∞)] sign {f(0)− f(∞)} ≥ 0 ∀t ≥ 0

[f(t)− f(0)] sign {f(∞)− f(0)} ≥ 0 ∀t ≥ 0
(3.12)

will be denoted as NonOvershooting (NO) and NonUndershooting (NU) func-
tion.

NO output property may follow from safety and technology requirements.
It is important in many technologies, as e.g. in controlling machine tools, in
traffic and flight control tasks, etc. In controlling systems with dead-time,
nonovershooting properties may become different from the monotonic ones.

Definition 3.7 (Monotonic (MO) function). Function of time f(t) with
initial value f(0) = limt→0− f(t) different from its final value f(∞) =
limt→∞ f(t) and preserving direction of changes

[f(t2)− f(t1)] sign {f(∞)− f(0)} ≥ 0 ∀t2 > t1 ≥ 0 (3.13)

will be denoted as MOnotonic (MO) function.

Obviously, MO function is also NO and NU function, but not conversely.
Monotonic functions typical for PID control may e.g. be given as f(t) =
1 − e−t/T1 ; y(0) = 0; y(∞) = 1 , whereby T1 > 0 is the time constant
describing how fast the signal approaches new steady state value y(∞). For
t = T1 it should be at 63% of y(∞). By limiting T1 → 0 one gets from this
exponential step function that so may represent limit case of MO functions.

MO transients at the controller output (plant input) and at the plant out-
put may be motivated by energy savings in actuators, by minimizing their
wear, generated noise and vibrations, by comfort of passengers in traffic con-
trol, or by precision increase in controlling systems with actuator hysteresis.
MO controller output will also be expected to yield the lowest possible TV
values.

Definition 3.8 (One-Pulse (1P) function). Function of time f(t) that is
continuous for t > 0 (with possible discontinuity at the origin) with initial
value f(0) = limt→0− f(t) and having with respect to the finite steady state
value f(∞) = limt→∞ f(t) just single extreme point fm = f(tm) 6= f(0) at
tm ≥ 0, whereby it fulfills conditions
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[f(t2)− f(t1)] sign {f(tm)− f(0)} ≥ 0
[f(t4)− f(t3)] sign {f(∞)− f(tm)} ≥ 0

, for 0 ≤ t1 < t2 ≤ tm ≤ t3 < t4 <∞
(3.14)

will be denoted as One-Pulse (1P) function.

Obviously, 1P function may be defined as function with one extreme point
that is MO before and behind this extreme point. By allowing discontinuity of
f(t) at the origin, e.g. for f(t) = e−t1(t) the extreme point may also move to
origin from the right, when tm = 0+, whereby the interval before the extreme
point shrinks to zero.

Examples of 1P functions may be represented by single exponential f(t) =
e−t1(t) that has extreme point f(0+) = 1 and discontinuity at the origin, or
by difference of two exponentials f(t) =

(
e−t − e−2t

)
1(t) having extreme

fm = 1/4 at tm = ln 2

Definition 3.9 (Two-Pulse (2P) function). Function of time f(t) that is
continuous for t > 0 (with possible discontinuity at the origin) with initial
value f(0) = limt→0− f(t) that is having two extreme points fm1 = f(tm1) 6=
f(0) and fm2 = f(tm2) at tm2 > tm1 > 0 with respect to the finite steady
state value f(∞) = limt→∞ f(t) and fulfilling conditions

[f(t2)− f(t1)] sign {f(tm1)− f(0)} ≥ 0
[f(t4)− f(t3)] sign {f(tm2)− f(tm1)} ≥ 0
[f(t6)− f(t5)] sign {f(∞)− f(tm2)} ≥ 0

for 0 ≤ t1 < t2 ≤ tm1 ≤ t3 < t4 ≤ tm2 ≤ t5 < t6 <∞
(3.15)

will be denoted as Two-Pulse (2P) function.

Obviously, 2P function may be defined as function with two extreme points
that is MO on each interval not including one of them. By allowing discon-
tinuity of f(t) at the origin, the first extreme point may also move to origin
from the right, when tm1 = 0+, whereby the interval before this extreme
point shrinks to zero. Example of such a function may again be given by
difference of two exponentials f(t) = e−2t − e−t ; f(t) = 0 with fm1 = 1 at
tm1 = 0+ and fm2 = 1/8 at tm2 = ln 4.

By generalizing previous definitions to get a unique term for all above
functions, we may come to notion of nP function. Within this text it will be
mostly constraint to 0P, 1P and 2P functions.

Definition 3.10 (n-Pulse (nP) function). Function of time f(t) that is
continuous for t > 0 (with possible discontinuity at the origin) with initial
value f(0−) = limt→0− f(t) that is having with respect to the finite final
value f(∞) = limt→∞ f(t) n extreme points fmi = f(tmi), i = 1, . . . , n at
0 < tm1 < · · · < tmn and is MO on each interval not including one of these
extreme points will be denoted as n-Pulse (nP) function. Again, by allowing
discontinuity of f(t) at the origin, the first extreme point may also move to
zero from the right, when tm1 = 0+, whereby the first MO interval before
this extreme point shrinks to zero.
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By introducing notion of nP function it is so possible to denote MO func-
tion as 0P one. Since by limiting values of nP function to any interval con-
taining f(∞) one does not change number of extreme points, it can also be
used in constrained control. After achieving saturation limits, by decreasing
duration of MO intervals among particular saturation pahses, nP functions
may approach rectangular (relay) n-pulses of discontinuous MTC, but for
t > 0 they always remain continuous in time.

To cover whole spectrum of transients typical for PID control we should
yet complete the above list by definition of periodic functions interpreted as
nP function with n → ∞. Then, after specifying the damping ratio (as e.g.
by Ziegler and Nichols (1942)) we could treat also oscillatory loop behavior.
But, with respect to available space, within this text we will deal just with
finite values of n.

3.4.3 Quantifying Qualitative Measures

By identifying properties like loop stability, NO, NU, MO, or nP shape of
particular variable one typically get binary (true/false) information. On the
other hand, performance indices like IAE or TV (3.8)–(3.11) give quantita-
tive information about the loop behavior that enables refined evaluation of
its quality. However, in control engineering it is frequently required to quan-
tify also the above mentioned binary information, e.g. by expressing how far
the system from stability, nonovershooting, or monotonicity border is. In the
frequency domain there are broadly used robust design methods based on
assigning stability degree, gain, phase and stability margin (see e.g. Ander-
son and Moore (1969); Datta et al (2000); Skogestad (2003); Skogestad and
Postlethwaite (1996). Similarly, it is possible to introduce such quantitative
measures for stability, nonovershooting, nonundershooting and monotonicity
also in the time domain.

Quantitative measures for stability: In the time domain, stability or more
precisely instability degree can be indicated in different ways – e.g. by requir-
ing limited output value

|y(t)| < Tmax <∞; ∀t > 0 (3.16)

by limiting possible settling time, IAE, ISE or TV values, maximal over-
shooting, by decreasing damping ratio, etc. When these measures increase
over some predefined values chosen e.g. as a multiple of optimal value, or
with respect to technological constraints, transients may be denoted as un-
stable. Despite this step seems to be mathematically vague, in fact it matches
requirements of practice much closer than the usually used stability definition
based on closed loop poles position – one can easily find example of stable
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system that is not usable in practice because of extremely high amplitudes
of inner signals.

With respect to finite measurement precision and to quantization typical
for digital signals, it is more realistic to relate NO and NU signal proper-
ties not to a precise final value, but to an error band specified symmetrically
(having width 2ε) around supposed final, or initial value. Then, for increasing
signals over- and undershooting is signalized just after crossing this band. By
introducing several levels ε it is possible to replace the binary (true/false)
information by more detailed quantitative information telling e.g. that under
measurement (evaluation) precision 2% of the maximal output value our sys-
tem response may be considered as 0.02-NO, but this already does not hold
for precision defined as 1% of the maximal output signal value. Similarly, for
increasing, or decreasing signals it is possible to weaken strict monotonicity by
introducing final evaluation precision into the monotonicity tests (Fig. 3.13).

Definition 3.11 (ε-NO and ε-NU functions). A continuous signal f(t)
with the initial value f0 = f(0) and with the final value f∞ = f(∞) will be
denoted as ε-nonovershooting, or ε-nonundershooting, when it fulfills condi-
tions

[f(t)− f(∞)] sign {f(0)− f(∞)} ≥ −ε
[f(t)− f(0)] sign {f(∞)− f(0)} ≥ −ε ∀t ≥ 0, ε > 0 (3.17)

Definition 3.12 (ε-MO function). A continuous nearly MO signal f(t)
with the initial value f0 = f(0) and with the final value will be denoted as
ε-monotonic when it fulfills condition

[f(t2)− f(t1)] sign {f(∞)− f(0)} ≥ −ε; ∀t2 > t1 ≥ 0; ε > 0 (3.18)

To simplify program implementation, requirements (3.18) may be evaluated
digitally by working with relatively small sampling period and by comparing
just finite number of subsequent values f(i) and f(i + k), k = 1, 2, . . . ,K,
whereby K = Th/T , T being the sampling period, is chosen to cover at
least one half-period Th of possible high-frequency signal superimposed on
the dominant monotonic signal

[f(i+ 1)− f(i)] sign {f(∞)− f(0)} ≥ −ε;∩ . . .
. . . ∩ ([f(i+K)− f(i)] sign {f(∞)− f(0)} ≥ −ε)

ε > 0, K ≥ 1, i = 1, 2, . . . ,∞
(3.19)

Whereas (3.17)–(3.19) characterize amplitudes of superimposed high-frequency
signals, deviations from strict monotonicity may also be characterized by lim-
iting new integral measure that gives total contribution of high-frequency
deviations (proportional not just to the amplitude, but also to the number
of peaks) denoted as TV0



108 Mikuláš Huba

TV0 =
∑

i

|ui+1 − ui| − |u(∞)− u(0)| < ε0 (3.20)

TV0 takes zero values just for strictly MO control signal transients.
In this way, it may be interesting to apply this criterion both to the plant

output and to the plant input signals. Testing of amplitude deviations ac-
cording to (3.19) may be reasonably simplified due to the following Lemma.

Lemma 3.1. Constrained continuous signal f(t) having initial value f0 =
f(0) and final value f∞ = f(∞) with local extreme points flei = f(tlei) is
ε-monotonic, if all subsequent local extreme points flei fulfill condition

|yle,i+1 − yle,i| sign (y∞ − y0) ≥ −εy, i = 1, 2, 3, . . . (3.21)

Proof. Follows from the fact that the maximal signal increase in the direction
opposite to y∞ − y0 in (3.18) will be constrained by two subsequent extreme
points. interesting to apply this criterion both to the plant output and to the
plant input signals.

Definition 3.13 (ε-nP function). Function of time f(t) that is continuous
for t > 0 (with possible discontinuity at T = 0+) with the initial value
f(0−) = limt→0− f(t), having for t > 0 n extreme points with respect to the
finite final value f(∞) = limt→∞ f(t), whereby

|fmni − f(∞)| > ε; fmni = f(tmni), i = 1, . . . , n at 0 < tmn1 < · · · < tmnn

(3.22a)
[fmni − f(∞)] [fmn,i+1 − f(∞)] < 0, i = 1, . . . , n− 1 (3.22b)

that is ε-MO on each of n + 1 intervals not including one of these extreme
points will be denoted as the ε-nP function. By allowing discontinuity of f(t)
at t = 0+, the first extreme point may also move to tmn1 = 0+, whereby the
first MO interval (0, ttmn1) before this extreme point shrinks to zero.

Nearly nP-dynamics may also be specified by limiting TVn values that take
zero value exactly for signal consisting of n+ 1 monotonic intervals devided
by n extremes. E.g. for signals with 1P dominant control it is possible to
work with limited TV1 criterion defined according to

TV1 =
∑

i

|ui+1 − ui| − |2um − u(∞)− u(0)| < ε1 (3.23)

that takes zero values just for strictly 1P control signal, whereby it does
not depend on possible control signal constraints. For control signals with
superimposed higher harmonics it takes positive values.

Similarly, for systems with dominant 2P control function the acceptable
contribution of higher harmonics may be limited by

TV2 =
∑

i

|ui+1 − ui| − |2um1 − 2um2 − u(∞)− u(0)| < ε2 (3.24)
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For ideal 2P control functions it yields value TV2 = 0

Fig. 3.13 Above: Strictly monotonic signal satisfying (1.12) and “nearly monotonic”
signal satisfying (1.18) with K = Th/T , T being the sampling period, is chosen to
cover at least one quarter-period Th of possible high-frequency signal superimposed
on the dominant monotonic signal ε = εy; Below: Nearly and strictly 2P responses;
local extreme points denoted by “o” and significant extreme points denoted by “•”

In applying weakened versions of ε-NO, ε-MO, or ε-nP properties it is,
however, to remember that achieved information depends on ε – e.g. with
acceptable overshooting 1% a transient may be classified as MO, but for
acceptable overshooting 0.1% as 1P function. From one point of view it is quit
normal that under final measurement precision one is not able to distinguish
these two properties, when the error is below the system resolving power. On
the other hand, it is clear that these weakened versions should be applied



110 Mikuláš Huba

carefully with tolerances not exceeding acceptable measurement (evaluation)
precision, otherwise one get unexpected and unusable results.

Whereas in controlling stable plants it is possible to decrease the number
of control pulses up to zero by keeping MO controller output, in control-
ling unstable plants the number of control pulses cannot decrease below the
number of unstable poles.

NO specifications (not distinguishing between nonovershooting and mono-
tonic control) exist also in the frequency domain (see e.g. Keel et al (2008))
but their application is extremely complicated, especially when speaking
about dead time systems. Specific measure for deviations from monotonicity
was also introduced by Åström and Hägglund (2004). Here, we have preferred
new measures for deviations from NO, MO and nP function properties that
may not only be tested numerically, by evaluating simulated or experimen-
tally measured transients corresponding to the setpoint and disturbance step
responses, but they represent a modular system and are also appropriate
for constrained control. These specifications may be hierarchically organized
into trees, whereby the closed loop stability will be considered as the root
property, NO, NU, MO and nP as child properties. Graphically represented
in the plane of loop parameters, together with quantitative measures, such
properties will be giving performance portrait of particular control loop.

3.4.4 Performance Portrait (PP)

The closed loop PP represents information about the closed loop performance
corresponding to setpoint and disturbance step responses expressed over a
grid of (possibly normalized normalized) loop parameters. For a loop repre-
sented by a D-dimensional parameter vector P = {p1, p2, . . . , pk, pk+1, pk+d};
D = k+d, whereby some part of parameters pi; i = 1, . . . , k is a priori given,
some parameters will be fixed during the loop analysis and pi ∈ [pimin, pimax];
i = k1, . . . , k+ d may vary over some (known) intervals. So, the performance
portrait will be considered in the space with the total dimension D, whereby
the variable parameters forming subspace with the dimension d will take
levels pi,j = pimin + (pimax − pimin)j/ni; j = 1, 2, . . . , ni > 1.

By containing information about required loop properties PP may be used
both for optimally localizing a nominal operating point by appropriate con-
troller tuning, or for optimally localizing an uncertainty set of all possible
operating points corresponding to specified intervals of variable loop param-
eters. When e.g. working with the plant model (3.1) the loop parameters are
Ks, a0, a1, T0, Td. Many control method are based on inversion of the plant
model, whereby model parameters could be denoted as Ks0, a00, a10, T00, Td0.
Inversion will require at least first order filter with a time constant Tf . Spec-
ification of the setpoint response will require determination of at least one
time constant Tw. It means that in total there are 12 parameters that deter-
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mine the resulting dynamics. If e.g. two of them, say Ks ∈ [Ks,min,Ks,max],
Td ∈ [Td,min, Td,max] are variable, the task of the control design will be to
choose appropriate model parameters Ks0, a00, a10, T00, Td0 and free design
parameters Ts, Tw in such a way that over all points over the uncertainty
set corresponding to Ks ∈ [Ks,min,Ks,max], Td ∈ [Td,min, Td,max] chosen ac-
cording to pi,j = pimin + (pimax − pimin)j/ni; j = 1, 2, . . . , ni > 1 required
performance measures will be achieved. PP required for such a design may
be generated by simulation, or by real time experiments. Although its gen-
eration may be connected with numerical problems, especially those related
to the nature of grid computations, when one has to balance precision of
achieved results (quantization level in considered grid) with the total number
of evaluated points and the corresponding computation time, it gives very
promising results especially when dealing with dead time systems.

3.5 Dynamical Classes (DC) of Control

By introducing qualitative measures for transient responses, we are now able
to categorize all PID controllers that are able to yield MO step responses at
the plant output according to the shape of their manipulated (control) vari-
able. If this has properties of nP functions, we will include the corresponding
control into the dynamical class of control with index n, shortly DCn.

Today, also people without a background in optimal control understand
that if they wish to move with their car monotonically from one point to
another they have at least once accelerate (it means to increase kinetic energy
of the car) and then to brake (decrease the energy). Or, if they wish to
charge a container, they must open the input valve for some interval of time.
So, control processes are by its nature related with energy accumulation,
or dissipation and the transients are expected to be the fastest one if they
are related with maximal values of the manipulated variable. This fact was
reflected by the Feldbaum’s theorem (Feldbaum, 1965) published firstly in
1949.

Theorem 3.1 (Feldbaum’s Theorem). For the MTC of the n-th order
system from one constant reference output value to another one there are
required n-intervals of optimal control, when the control signal step-by-step
changes from one limit value to the opposite one.

Despite the fact that later works (by Bushaw (1958); Pontryagin et al
(1964), etc.) showed that in controlling oscillatory systems and initial states
sufficiently far from the required ones the total number of intervals can also
be higher (see e.g. Athans and Falb (1966)), by restricting our treatment to
monotonic output transients from a steady state to another one, Feldbaum’s
theorem still represents one of the corner stones of optimal control. But when
examining majority of existing textbook on PID control, about n-interval of
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optimal control you are going to find practically nothing - one of few positive
exception is the already mentioned book by Glattfelder and Schaufelberger
(2003).

It is true that in practice it is just rarely permitted to apply control dealing
exclusively with limit control values and with their instantaneous changes.
The “rectangular” pulses with sharp rims excite in controlled systems theo-
retically an infinitely broad frequency spectrum of higher harmonics. Exci-
tation of higher harmonics could cause ineligible reactions. Furthermore, we
are mostly not able to perform such control perfectly, and such a control is
usually not acceptable with respect to the technological constraints. An ad-
missible rate of the control signal changes or an admissible acceleration use
to be constrained by construction, or have to be respected by control. So, if
the physical substance of the Feldbaum’s theorem has to be respected, then
in modified “softer” versions, when the control pulses will not be rectangular,
but continuous in time – i.e. somehow “rounded”. Besides of the amplitude
constraints, one has to respect also rate constraints, or even constraints on
higher-order control signal derivatives. Under such constraints it may happen
that some interval does not take the limit value, or even some of them fully
melt away from the control responses. To cover also such “softer” control re-
sponses and to distinguish them from the rectangular train of pulses of the
MTC it is then better to speak about dynamical classes of control and about
corresponding fundamental controllers establishing bridges between smooth
linear PID control and nonlinear discontinuous MTC.

The aim of this chapter is to explore dynamics of PID control and make
it compatible also with the MTC. In relay MTC of simple plants, output
responses corresponding to transition from one steady state to a new reference
steady state are typically monotonic. The already mentioned exception of
systems with complex roots with larger initial deviation from final state is
not relevant for such a problem. The rectangular shape of control signal in
relay MTC is, however, possible just in a limit case of control

• without constraints on the rate of the control signal and/or on its higher
derivatives,

• with negligible nonmodelled dynamics,
• for negligible fluctuations of plant parameters and
• for negligible measurement noise (full information about state).

To respect all these additional factors control signal must become “softer”.
Thereby some its pulses may not hit the constraints, or even some pulses
may fully disappear. So, by stressing importance of the above mentioned
limitations, acceptable closed loop dynamics may naturally tend to lower
number of control pulses, in the limit case of stable systems to single interval
with MO controller output.

Example 3.1 (Smooth control of an n-tuple integrator). When considering sta-
ble single integrator ẏ = u1 (Fig. 3.14) with output y changing monotonically
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from an initial value y0 = y(0) to a final value y∞ = y(∞) > y(0), y will
be increasing (not decreasing) if its derivative is a positive (non negative)
function of time, i.e. ẏ(t) > 0, or ẏ(t) ≥ 0, t ∈ (0,∞). With respect to the
plant equation ẏ = u1, t ∈ (0,∞) it also means that for t ∈ (0,∞) the con-
trol u1(t) must take positive (non negative) values and in the initial and final
steady states satisfy conditions u1(0

−) = ẏ(0) = 0 and u1(∞) = ẏ(∞) = 0
- signal u1(t) continuous for t ≥ 0 and satisfying these conditions must take
a maximum um1 − u(tm1) > 0; u̇(tm1) = 0 for some tm1 ∈ (0,∞). Under
constrained control, when the control signal saturates, the maximum value
may also be achieved over an interval t ∈ [tmax1, tmax2]. It is also obvious
that in order to achieve as fast as possible output increase, the maximum
um1 should be as large as possible and, in order to keep MO output increase,
u1(t) must remain positive even in the case when it has several local extreme
points u1e(tei); i = 1, 2 . . . corresponding to u̇1(tei) = 0.

The simplest control, however, corresponds to situation with u1(t) hav-
ing just a single local extreme that separates the overall control into two
monotonic intervals: the first one monotonically increasing from u(0) = 0
up to um1 = u(tm1) and then the second one monotonically decreasing from
um1 = u(tm1) up to u(∞) = 0.

Fig. 3.14 MO output y satisfying (3.18) for ε = εy = 0 (above) with the correspond-
ing 1P input signal of single integrator u1(t) = ẏ(t) (middle), or with the corresponding
2P input signal of the double integrator u1(t) = ÿ(t) (below)

Similarly, we could treat also a decrease of the setpoint value. So, we may
conclude that in a general case the ideal control guaranteeing MO output
transition between two steady state values of single integrator will be char-
acterized by smooth continuous 1P u1(t) satisfying given initial and final
conditions and having one extreme point and being monotonic before and af-
ter this extreme point. By accepting possible control discontinuity at t = 0+,
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when the extreme point moves to tm1 = 0+, the first MO interval may shrink
to zero. However, the MO output increase finishing by reaching steady state
cannot be achieved by simpler 0P (e.g. step) control signal.

In order to control the double integrator, one has to put additional inte-
grator in front of the previous one and to consider that for achieving a MO
increase of ẏ(t) (the earlier input, now output of the added integrator) for
t ∈ (0, tm1), the new continuous input u2(t) must be described by a function
having one maximum um21 > 0 at an interior point t21 ∈ (0, tm1) that divides
the whole interval (0, tm1) into two MO subintervals (0, t21) and (t21, tm1).

During the earlier second phase of control with t ∈ (tm1,∞), in order to
achieve a monotonic decrease of ẏ(t), input of the new integrator u2(t) must
firstly decrease to its minimal value um22 < 0 at some tm22 ∈ (tm1,∞) and
then monotonically increase to its final value u(∞) = 0. So, instead of the
originally two control intervals, now one has to consider three monotonic con-
trol intervals. When accepting control discontinuity at t = 0+ the number of
intervals may drop to two. But by requiring MO output increase finishing by
reaching new steady state control of the double integrator cannot be achieved
by simpler input, e.g. by a 0P, or by a 1P signal.

Similar conclusions may also be derived for controlling unstable systems –
the number of required pulses cannot be lower than the number of unstable
poles. For these systems we get similar conclusions like for the relay MTC.

For stable plant poles poles their influence on the resulting closed loop
dynamics may vary. If a plant has only stable poles and its open-loop response
is monotonic, then it is always possible to find a controller guaranteeing
monotonic closed loop setpoint response at the plant output by a monotonic
signal at the plant input. By requiring shorter transients, one extreme point
in the setpoint response may become visible, or right two extreme points,
etc. A lot will depend on the plant dynamics, on the chosen controller and on
required speed of processes. Once you decide to use controller producing at
least one extreme point in the control signal, by speeding up the response you
may expect problems with the control signal saturation. In order to solve all
associated problems, we need to introduce some internal classification of all
possible control tasks. This will be achieved by introducing dynamical classes
of control.

Definition 3.14 (Dynamical classes (DC) of control). With n being
nonnegative integer, under Dynamical Class n (shortly DCn) of PID control
we understand all control tasks and their solutions with MO plant output
and nP plant input.

In characterizing shape of the control signal by nP function n corresponds
to the non-negative integer used in denoting number of possible extreme
points or intervals with saturated control signal values that also corresponds
to the number of constrained pulses occurring under MTC. Such control
signals have to bring the plant output monotonically from one steady state
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to another one. With respect to Definition 3.1 and the Feldbaum’s Theorem
it is possible to conclude that all tasks and dynamical processes of the PID
control correspond to DC0, DC1 and DC2. What does it mean?

3.5.1 Dynamical Class 0 (DC0)

In this dynamical class, after a step change of reference variable both the
manipulated variable (controller output) and the plant output change mono-
tonically, from one steady state to another one.

Definition 3.15 (Step response dynamics of DC0). MO control signal
both at the controller and plant output initiated by a setpoint step change
characterize step response dynamics of DC0.

Examples of such control signals at controller output are in Fig. 3.15. Limit
case of such monotonic transients at the plant input, or output is the step
function.

Fig. 3.15 DC0: Control signal reaction to a setpoint step; u – without rate con-
straints, u1 – with a rate constraint, u2 – with constrained 2nd derivative of the
control signal

Processes of DC0 can be met in situations, where the dynamics of tran-
sients in plant may be neglected, i.e. it is not connected with a reasonable
energy, or mass accumulation. Such processes are e.g. typical in controlling
flows by valves. After constraining rate of control signal changes, transition
to a new control signal value can be exponential one. After constraining also
amplitude of the 2nd control signal derivative, the control response takes
form of S-function (Fig. 3.15). Since for properly dimensioned actuators and
admissible inputs the control constraints will never be active, these control
loops are traditionally well treated within the framework of the linear control
theory.

It is yet to note that validity of the NO condition (3.12) does not auto-
matically mean that the control transient must be stable. Therefore, con-
dition (3.12) should yet be combined with some measure indicating system
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stability. Simultaneous fulfillment of monotonicity (3.13) with constrained
values at the plant output and input usually fully guarantee also the parent
property – BIBO system stability.

3.5.2 Dynamical Class 1 (DC1)

In DC1, for the initial phase of control response initiated by a setpoint step it
is typical accumulation of energy in the controlled process. This is associated
with a gradual increase (decrease) of the controlled variable that runs most
rapidly under impact of the limit control signal value. Control signal may be
qualified as one-pulse function.

E.g. by charging a container with liquid, in the first phase of control the
input valve should be fully opened, whereas the output value (liquid level)
monotonically increases and only in the vicinity of the required level the input
flow starts to decrease to a steady state value what will stabilize required
output value. Similar transients can frequently be met in speed control in
mechatronic systems, in temperature, pressure and concentration control,
etc.

Fig. 3.16 DC1: Control signal reaction to a setpoint step change; u – time optimal
(without rate constraints), u1 – with rate constraints for the transient from the limit
to the steady state value, u2 – as u1, with an additional limit on the control signal
increase.

Definition 3.16 (Step response dynamics of DC1). Dynamics with MO
output response and 1P control signal reaction corresponding to a setpoint
step change (involving one extreme point, or one control interval with control
signal at one of the control signal constraints, Fig. 3.16) will be classified as
dynamics of DC1.

From requirement of single extreme point of control signal (one interval
at the limit control value) it follows that the transition from initial control
signal value to its extreme point and transition from this extreme point to
the steady state value u∞ will be monotonic.
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Rectangular pulse of MTC with infinitely short transient from limit con-
trol signal value to the steady state value represent limit situation not fully
achievable in practice. After limiting rate of changes during the control sig-
nal decrease to the steady state (response u1), the span of the limit control
action decreases, but the total length of transient to the new steady state
increases. When constraining also the control signal increase (response u2),
the control signal does not catch to reach the limit value, since the necessary
control decrease to the steady state has to start yet before it – the length of
transient grows further. Whereas the single interval of control is still visible,
by constraining rate of the control signal changes the control signal reaction
slowly approaches monotonic shape typical for DC0.

With respect to one possible interval with constrained controller output,
for dealing with DC1 it is usually not enough to remain within the linear
control. Typical solutions for this dynamical class are frequently achieved
with different aw - controllers.

3.5.3 Dynamical Class 2 (DC2)

In DC2 output changes are associated with accumulation and recurrence or
dissipation of energy required for achieving state and output changes and
stabilization at a new steady state.

Definition 3.17 (Step response dynamics of DC2). Dynamics corre-
sponding to MO output response to a setpoint step change with 2P con-
trol signal reaction involving two extreme points, or two control intervals
(Fig. 3.17) with control value subsequently constrained to the upper and
lower limit value (or conversely), will be classified as dynamics of DC2.

Within the DC2 the control signal reaction to a setpoint step bounded
to monotonic output response can already involve two extreme points. Af-
ter these two intervals (two extreme points) control signal is monotonically
tending to a new steady state value u∞ .

According to the Theorem 3.1 the MTC is typical with two (rectangular)
control pulses approaching both limit control values (Fig. 3.17). After intro-
ducing rate constraints for both the switching from one limit value to the
opposite one and for transient to the steady state value u∞, the 2nd control
interval is typically rounded, or even disappears. Such response u2 is typically
converging to the next lower DC.

In the case when the rate constraints allow the control signal to attack
both the upper and lower control limit, also the majority of aw approaches
fail (Rönnbäck, 1996) (improved solutions are e.g. given by Hippe (2006)).
The windup phenomenon is not only connected with the integral (I) ac-
tion, but also with the controlled process, when it is denoted as the plant
windup Glattfelder and Schaufelberger (2003). In the literature simple and
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reliable solution for this dynamical class that could enable an arbitrary dy-
namics shaping ranging from the fully linear one up to the on-off MTC are
still missing. For all that the needs on such solutions are very high: Let’s
mention just the automotive industry. Here, the historically known cascaded
linear structures are not able to fulfill sufficiently the existing expectations.
Although this task is practically solved (see e.g. Huba (2003, 2006)), the new
solutions are not yet widely known.

Fig. 3.17 DC2: Control signal reaction to a setpoint step change; u – time optimal
(without rate constraints), u1 – by limiting rate of changes in transient from one
control limit to the opposite one and in transient to the steady state, u2 – as u1 but
with stronger constraints.

3.6 Fundamental and “ad hoc” Solutions

Under fundamental controllers we understand solutions that for the nominal
loop dynamics offer continuum of transient responses parameterized by the
closed loop poles (or equivalent parameters as time constants of bandwidths)
and enable to achieve any speed of control ranging from linear pole assignment
control up to the relay MTC. Under “ad hoc” controllers we will understand
solutions offering single (not adjustable) closed loop dynamics, or dynamics
adjustable just in a limited range.

E.g. the relay MTC may be denoted as a typical “ad hoc” solution, since
it offers unique closed loop dynamics that cannot be simply slowed down.

3.6.1 Setpoint Response

Since all solutions of DC0 will always remain linear, the corresponding funda-
mental solutions may be derived by the linear pole assignment control. How
it is possible to characterize their substance?
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Let us consider specification of the closed loop dynamics by two n-tuples
of poles1 α1 and α2 satisfying

−∞ < α2 < α1 < 0 (3.25)

The setpoint response ȳ(αi, t) = y(αi, t)/w(t) representing output reaction
to the setpoint step w(t) = w1(t); w = const is starting for αi; i = 1, 2 in
a steady state with zero initial condition ȳ(αi, 0) = 0.

Definition 3.18 (Fundamental controller of DC0 – setpoint response).
Controllers offering for a setpoint step and poles (3.25) output responses sat-
isfying Ineqs.

1 > ȳ(α2, t) > ȳ(α1, t) > 0; ∀t > 0 (3.26)

and asymptotic properties

lim
t→∞

ȳ(αi, t) = 1; i = 1 or 2 (3.27)

will be denoted as fundamental one.

Fundamental solution simply means that by shifting closed loop poles to
the left the corresponding outputs converge to the reference value faster,
but monotonically, i.e. without overshooting, or undershooting, or without
changing somehow their shape.

Similar effect in increasing speed of control we would like to achieve in
constrained systems treated in DC1 and DC2. Here, the step response of the
MTC representing the not really achievable limit dynamics will be denoted as
ȳtopt(t). Let us suppose that the required state may be achieved by monotonic
output transient, i.e. the Feldbaum’s theorem holds. Expectations on the
fundamental controller may then be expressed by following definition.

Definition 3.19 (Fundamental controllers of DC1 and DC2 – set-
point response). Controller yielding for the nominal dynamics S(s) and for
the closed loop poles (3.25) MO setpoint step responses of the output variable
and fulfilling Ineqs.

1 > ȳtopt(t) = ȳ(−∞, t) ≥ ȳ(α2, t) ≥ ȳ(α1, t) > 0; ∀t > 0 (3.28)

and asymptotic requirement

lim
t→∞

ȳ(αi, t) = 1; i = 1 or 2 (3.29)

will be denoted as fundamental one.

Requirement (3.28) means that the closed loop dynamics may be specified
by the closed loop poles (or other appropriate parameters, as e.g. closed loop

1 Poles need not to be n-tuple, but in both vectors there should be kept fixed ratio
of corresponding entries to the representative value αi, i = 1, 2



120 Mikuláš Huba

time constants, closed loop bandwidth, etc.), whereas it is ranging arbitrarily
from fully linear dynamics of pole assignment control up to the relay MTC
one (Fig. 3.17). Both these situations are considered as limit cases of the
generalized approach.

Fig. 3.18 Output and control signal transients of double integrator plant: left - for
the relay MTC with control signal constrained by Umax = 1.2 and Umin = −0.5; right
– for linear pole assignment control with double real pole values −1,−0.75,−0.5 and
−0.4 arrows indicate pole shifting to zero (i.e. slowing down transients
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Fig. 3.19 Output and control signal transients of double integrator plant by con-
strained pole assignment control Umax = 1.2 and Umin = −0.5; for double real pole
values −8,−4,−2,−1 – arrows indicate pole shifting to zero (i.e. slowing down tran-
sients); dotted – MTC transients

3.6.2 Disturbance Response

Notion of the dynamical classes can be applied both to the setpoint step
responses as well as to the disturbance responses. The main difference is con-
nected with the fact that whereas in the case of a step change of the reference
signal the controller is instantaneously able to react, after a disturbance step
it take some time up to moment when the disturbance observer sufficiently
reconstructs the new disturbance value. Due to this reconstruction time, con-
troller is able to stop control error increase appearing during this phase of
disturbance response just with some delay. Just then controller starts to re-
move the already existing deviation. From this moment, output and control
signal behavior can be analyzed in the same way as after a setpoint step. So,
when speaking about disturbance response of DC0, instead of MO output
considered at the setpoint response we are actually dealing with 1P output
that can be characterized as MO just from the turnover point.

In the following we will deal just with controllers offering disturbance out-
put response that after initial deviation monotonically tends to the required
reference value.

In evaluating disturbance step responses one can test the same properties
as for the setpoint response, but (besides of the already mentioned delay in
disturbance compensation) it is to note that:

• By a prefilter in the reference signal it is possible to slow down dynamics
of the setpoint step responses and by the disturbance observer filter to
modify the disturbance response – in this way it is possible to tune both
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responses at least partially separately – we are speaking about two-degree-
of-freedom controllers.

• In general, areas of parameters guaranteeing NO, MO, or nP disturbance
responses are different from those corresponding to setpoint step responses.

Let the disturbance response ȳ(αi, t) = y(αi, t)/d(t) represents output reac-
tion to the disturbance step d(t) = d1(t); d = const starting for αi; i = 1, 2
in a steady state with zero initial condition ȳ(αi, 0) = 0. Again, we would
like to deal with controllers that by pushing the closed loop poles to minus
infinity enable to increase speed of removal of the control error caused by
disturbance step and thereby to decrease its amplitudes up to zero.

Definition 3.20 (Fundamental controller– disturbance response). Con-
trollers offering for a disturbance step and poles (3.25) output responses sat-
isfying to Ineqs.

0 ≤ |ȳ(α2, t)| ≤ |ȳ(α1, t)|; ∀t > 0 (3.30)

and asymptotic properties

lim
t→∞

ȳ(αi, t) = 0; i = 1 or 2 (3.31)

lim
αi→∞

ȳ(αi, t) = 0; ∀t > 0; i = 1 or 2 (3.32)

will be denoted as fundamental ones.

Since the delay in the disturbance reconstruction and compensation may
be significantly long and due to this also the control error occurring at the
moment of output turnover, it is again possible to consider different DC
associated with its removal.

3.6.3 Internal and Zero Dynamics

In systems with relative order of considered output r less than the total
system order n there always exist states that are not directly controllable
by input. They represent the so called internal dynamics. To achieve some
simplicity, in nonlinear control this internal dynamics is usually characterized
by simpler expressible zero dynamics.

Definition 3.21 (Relative order of the system output). As the relative
degree of the plant output we denote integer r, telling, how many times it is
required to differentiate output to get in the resulting formula control signal
(plant input).

Definition 3.22 (Zero dynamics). Zero dynamics of a system with relative
degree r < n describes dynamics associated with maintaining output and its
first r derivatives at zero. For linear system given by its transfer function
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with highest power in numerator m and highest power in denominator n the
relative degree is given as the pole-zero excess

r = n−m (3.33)

From Definition 3.22 it follows that the zero dynamics is interesting just for
systems with the relative degree less than the system’s degree. In designing
PID controllers, when dealing with dominant dynamics up to the 2nd order
(i.e n ≤ 2) the only situation with zero dynamics corresponds to systems
with the relative degree r = 1 and r = 2. In a special case of systems with
real poles it corresponds to situation when the total plant dynamics may be
decomposed into two parallel first order plants

F (s) =
K1

1 + T1s
+

K2

1 + T2s
= K

1 + T0s

(1 + T1s)(1 + T2s)
(3.34)

K = K1 +K2, T0 =
K1T2 +K2T1
K1 +K2

(3.35)

In this case, zero dynamics is characterized by the time constant T0 of the
numerator of the transfer function. Number −1/T0 is thereby denoted as
the plant zero. Fundamental solutions that would enable an arbitrarily close
tracking of the reference variable may be found just for systems with stable
zero dynamics, when T0 > 0. From the point of view of the MTC this situation
corresponds to the so called singular problem (Athans and Falb, 1966), when
during the 2nd period of control, the manipulated variable does not go to
saturation limit, but takes values denoted as zeroing input (Isidori, 1995)
that varies with the time constant T0. So, Feldbaum’s Theorem is valid just
for systems with the relative degree equal to the full degree. For r < n the
total number of control intervals remains to be given by n, but just r from
them may run with the limit control values.

For systems with unstable zero dynamics (T0 < 0) fundamental solutions
do not exists and it is possible to design just solutions preserving this unstable
zero dynamics leading usually to some output undershooting.

3.7 Dead Time Systems

Another theoretically challenging and due to this being backward segment of
the control theory is represented by the time-delayed systems. For this area,
two early historical solutions are known: the Disturbance-Response Feed-
back by Reswick (1956) for dead-time compensation and the Smith Pre-
dictor (Smith, 1957). Practical experiences referred by many papers show
that both structures have strong limitations: they are highly sensitive to
parameters fluctuations and they do not enable an arbitrarily close approx-
imation of optimal solutions. Controllers with dead time compensation are
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frequently denoted as the predictive ones (see e.g. predictive PI-controller

in Åström and Hägglund (1995)), but sometimes also as the PI - dead-time
controllers (Shinskey, 1996, 2000). In the time of analogue pneumatic and
electronic controllers the main reason for rare use of the corresponding struc-
tures was given by the problems of dead time modeling. So, for many decades’
traditional PID controllers without dead time compensation substituted op-
timal solutions for the dead time compensation. These approaches did not
guarantee strictly optimal results and so they have reasonably contributed
to the inflation of different “optimal” controller tuning. They further survive
due to the conservativeness of practice despite the fact that the new digital
controllers enable an easy dead time modeling and compensation.

3.7.1 Delayed Fundamental Controllers

One important question is if it is possible to achieve for the time delayed
systems the same dynamics as for the delay-free systems.

For the setpoint response answer to this question depends on the dead
time position within the closed loop. If it is situated in the feedback loop,
controllers with dead time compensation enable to achieve at the output the
same dynamics as in the delay free systems. For known initial conditions the
delay-free controller-plant connection enables an immediate action.

Feedback controller compensating dead time present somewhere in the
loop, will be, of course, more complicated and the closed loop behavior will
be much more sensitive to any model imperfection. But, theoretically, for in
advance known input signals it is possible to achieve at the plant output any
speed of control transients.

However, when dealing with response to unknown disturbances, or when
dealing with step response and dead time is located within the feedforward
path, at the output any result of control actions can appear just after the
time delay. Therefore, in such situations, the best achievable behavior will be
delayed by this dead time and it has to be respected also by the corresponding
definitions of fundamental controllers that will be denoted as delayed funda-
mental controllers. The difference will especially be visible in the disturbance
response, where it is no more possible to achieve requirement (3.32).

3.7.2 Fundamental Controllers – a New Concept?

Many of the known approaches to the controller design do not fulfill the
requirements on the fundamental solutions, since they:
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• are linear and so they do not enable to arbitrarily speed up transients to
approach in the limit under consideration of constraints the MTC transient
responses, or

• do not involve free design parameters at all.

E.g. Klán and Gorez (2000) (as many others) tried to find optimal PI con-
troller tuning for stable 1st order systems with relatively long dead time Td.
The problem, however, is that structure of the PI controller was generically
derived for the 1st order plant dynamics without the dead time. Short dead
time values can be allowed by limiting choice of the applicable controller
parameters (closed loop poles). This, however, violates requirements put on
the fundamental solutions. For the 1st order plant with long dead time the
fundamental controller will already have more complicated structure than
simple PI controller – involving some features of the Smith predictor. So, the
above mentioned solution cannot be treated within the group of fundamental
solutions for the first order plants with long dead-time, just as a special (ad
hoc) suboptimal solution.

The above example represents typical feature of majority of existing so-
lutions. The PI controller represents an easy to use, but not a fundamental
solution. In the time of analogue pneumatic and electronic controllers the
main reason for rare use of the optimal dead time structures was given by
the problems of the dead time implementation. So, for many decades’ tra-
ditional PID controllers without dead time compensation substituted them.
These approaches do not guarantee strictly fundamental properties and so
they have reasonably contributed to the inflation of different “optimal” con-
troller tuning. They further survive due to the conservativeness of practice
despite the fact that the new digital controllers enable an easy dead time
modeling and compensation. Of course, it has no sense to fight against their
use, but it should be shown what they are able to offer. In such a way, all
the ambiguity of solutions reported e.g. by O’Dwyer (2000, 2006) can be
reasonably reduced.

3.8 Table of Fundamental PID Controllers

As it was already mentioned above, Glattfelder and Schaufelberger (2003)
tried to design the pole assignment PI controller in such a way that its control
signal step reaction would converge to one pulse of the MTC. This point shows
other important discrepancy of the PI control theory. When comparing their
design criterion with that one introduced by Klán and Gorez who required
the optimal PI control signal step reaction to have a stepwise character (see
e.g. paper by Klán and Gorez (2000); or the discussion by Strmčnik and
Vrančič (2000) we see a clear contradiction. Who is right in this conflict?
The response may surprise many people — both requirements are right!
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Simply, there exist two dynamical classes of PI control. Whereas the tra-
ditional linear PI control having the control signal response required by Klan
and Gorez corresponds to DC0, controllers using anti-windup circuitry and
trying to approach the MTC response characteristic by one saturated pulse
of control represent already solution of DC1. It has no sense to ask, which
one is better — each has its unique properties that cover specific group of
applications!

Generalizing this way of arguing, it is then possible to define three dynamic
classes of the PID control (Tab. 3.1).

Introduction of dynamical classes of control together with introduction of
fundamental solution enable transparent practically motivated classification
of the existing controller structures and tuning rules.

Up to now, works on PID control usually did not pay attention to the
dynamical classes. So it can e.g. happen that whereas Vı́tečková et al (2000)
proposed for the plant

S2(s) =
Ks

s(T1s+ 1)
(3.36)

PD controller tuning that corresponds to the DC1, for the plant

S2(s) =
Ks

(T1s+ 1)(T2s+ 1)
(3.37)

they already gave PID controller tuning that corresponds to the DC0. Be-
cause solutions corresponding to a particular DC need not be unique, it is to
expect that a rigorous classification of the existing solutions according to the
dynamical classes represents a complex and long term problem. Classification
of the existing solutions is complicated also by the fact that the practically
attractive properties may lie on the border of two dynamical classes.

Rows of the newly introduced table of fundamental controllers correspond
to different DCs (Tab. 3.1). These are naturally given by the relative degree
of the output defined by the dominant dynamics located in the forward path
of the control loop. The type of the controller is then given by the dominant
closed loop dynamics including also the feedback dynamics.

The new table of controllers may seem to be much richer than the tradi-
tional basis of PID control consisting of the I, P, PI, P-P, P-PI, PD and PID
controllers. Besides of the basic dynamics, traditional controllers were classi-
fied according to the implementation form (series, parallel, interactive, non-
interactive, with setpoint weighting, with different anti-windup structures,
etc.).

Similar features are to find also in the new approach. Generic schemes of
the constrained PID control are derived by the state space approach and ex-
tended by DOB based I action. These are shown to have equivalent schemes
that are more or less similar to the traditional structures used in different
modifications in practice. Particular controllers are represented by structures
– i.e. they are more complex than simple transfer functions. Such a develop-
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ment is not surprising – e.g. the generalization to controllers with two-degree-
of-freedom controllers started already in 1960s.

All traditional linear structures are involved in the DC0, while the higher
DCs are already essentially nonlinear.

Table 3.1 Table of the fundamental PID controllers

FF – static feedforward control is involved also in all feedback controllers
Pr – abbreviation for predictive (dead time) controllers with compensation of the

dominant dead time

Note that the PI controllers and their predictive versions for dead time
compensation are included in two dynamical classes. Each solution is, how-
ever, different! The traditional linear PI controller represents optimal solution
from DC0. This has either to be combined with a prefilter (usually used in
older analogue electronic solutions), or implemented as the I-P controller with
error acting on I only b = 0. It guarantees dynamics minimizing the actuator
wear.

Up to now, the solutions really optimal for the DC1 were approximated
by linear controllers equipped by some anti-windup circuitry. However, while
the structures used for ages in the series implementation of PI controllers for
constrained systems (Åström and Hägglund, 1995; Glattfelder and Schaufel-
berger, 2003; Kothare et al, 1994) represent substantial part of the newly
derived ones – the question is if the missed parts of the new optimal solutions
are not simply result of a vague controller description, or of the intentional
know-how protection?

The new solutions fully explain needs on setpoint weighting, or prefilters
used equivalently in older analogue electronic controllers, needs on structure
variations (switching between a linear and a nonlinear PD-controller, etc.

Let us remind that the table brings two structures of the PI and PD con-
trollers and even 3 different structures of the PID ones. Because it is no
problem to show that all of them are important for practice, then it is also
clear, why each attempt to replace one fundamental solution by an “optimal”
retuning of some other structure lead finally to the already mentioned infla-
tion of optimal tunings: for each set of initial states, input signals and process
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parameters the optimization gave some results and libraries are crowded by
all such results.

While the fundamental PD controller of DC1 is essentially near to the lin-
ear PD controller compensating usually the largest loop time constant (it has
linear control algorithm extended by saturation), the new PD controllers of
DC2 are already fully nonlinear. For each special loop dynamics (the double
integrator, single integrator+time constant, two different or equal time con-
straints, oscillatory dynamics, etc.) it is possible to derive a special controller.
Despite the possibility to derive for each plant new controller, a unique im-
portance has the solution derived for the double integrator that can be used
universally. Again, it is not something completely new. Feldbaum (1965) cites
patent of Russian engineers from 1935 based on improving dynamics of the
rolling mills positional control by quadratic velocity feedback that is typical
for the time optimal control of the double integrator. Later, similar idea was
used in the industrial controller Speedomax produced by Northrup.

Later we will deal with the fundamental solutions that enable by choosing
the closed loop poles to modify the closed loop dynamics from the fully linear
one up to the on-off dynamics of the MTC. The latter corresponds to pushing
poles up to −∞. All controllers are extended by the I-action based on recon-
struction and compensation of acting disturbances. Since it would be too
demanding to explore in details all possible solutions, this book concentrates
on solutions based on 1- and 2-parameter models.

After choosing for the identified dominant loop dynamics a fundamen-
tal controller, one has to determine its tuning. When is a controller tuning
reliable? Everything depends on the loop properties. If the time constants
and gain of the identified dominant dynamic seem to be constant, besides
of the possibly fixed nominal dynamics reliable system approximation has to
take into account also the nonmodelled (perturbation dynamics). In general
it should considers possible plant-model mismatch that determines borders
of the closed loop poles choice used for the controller tuning and also other
parasitic aspects as e.g. the measurement noise.

3.9 Generic and Intentionally Decreased DC

Introduction of dynamical classes of control into the controller design brings
structure for classification of available approaches, methods and solutions.
Why such a system may be useful, it may be obvious from the following
theorem.

Theorem 3.2. For a given plant, the generic dynamical class of control is
given by the output relative degree. However, for plants with stable subsystems
it can be intentionally decreased up to the number of remaining unstable or
marginally stable poles.
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Each dynamical class of control is related to some control properties. Since
from the above theorem it follows that e.g. for stable 2nd order systems it
is possible to design controllers from DC2, DC1 and DC0, without having
in mind specific properties of each solution comparing of resulting solutions
may be very questionable.

To illustrate related problems, let us start with inspecting possible loop
configurations with dynamics of the 1st and 2nd order. It is to remember that
whereas identifying some process from the measured input-output behavior
(by evaluating step response, relay experiment, measurement at the stability
border, etc.) without additional information it is not possible to decide about
the actual dynamics distribution within the loop. But, for each particular
distribution another controller should be chosen.

For the 1st order loop dynamics (Fig. 3.20) we have to decide upon 2
solutions, for the 2nd order one (Fig. 3.21) upon 3 (or even 4, since we have
to distinguish among the configurations b1 and b2). When remembering,
how many authors tried to propose universal autotuner based on evaluating
the input-output behavior, here you can see one of the reasons, why no of
them can be generally accepted. There are too many degrees of freedom:
the optimal order of the approximation, distribution of the dynamical term
within the loop and choice of the dynamical class of control that can be based
on the relative degree of the actual output, or intentionally decreased.

Fig. 3.20 Control loops with the 1st order dominant dynamics and with relative
degrees a) 0 and b) 1.

Besides of the natural allocation of the dynamics within the control loop
the design has to consider also other aspects as the availability of different
signals, the measurement and quantization noise level of particular measure-
ments, nonmodelled dynamics, possible fluctuations of system parameters,
etc. It is e.g. to show that for the same measured output the sensitivity to
measurement noise is increasing by increasing the dynamical class of used
controllers. So, in a noisy environment of industrial control with oftenly put
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Fig. 3.21 Control loops with the 2nd order dominant dynamics and the relative
degrees: a) 0; b) 1 and c) 2.

additional requirements on minimizing wear of actuators one has intention-
ally to choose solution corresponding to the lowest DC. Similar conclusions
can also follow in controlling processes with variable dead time, gain and
other parameters. But still there exist many situations, where a decrease of
the dynamical class is not permitted – e.g. in controlling unstable systems.

Example 3.2 (Two-tank hydraulic system). For a hydraulic system with two
containers and a pump having a dynamics negligible with respect to the
dynamics of containers characterize generic dynamical classes of control as-
sociated with the output (Fig. 3.20) defined by:

a) y = q0,
b) y = q1 (or y = y1),
c) y = q2 (or y = y2).

Solution: When it is required to control the input flow q0 of the “memo-
ryless” (noninertial) pump, it is possible to speak about process of DC0. This
follows from the assumption of the noninertial pump, when it is possible to
react to step setpoint changes by step flow changes. Of course, due to the
inertia of the pump and of the liquid contained in pipeline the real processes
will be smoother (e.g. exponential as in Fig. 3.15), but these transients can
fully be neglected with respect to the time of filling the containers.

This holds without respect to the question, which information about the
pump flow is used for establishing feedback. Depending on available sensors
the pump can be controlled by measuring the controlled flow by a sensor
located immediately at its output, or it is controlled by using flow observer
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Fig. 3.22 Two tank system with a “noninertial” pump

based on measuring levels y1 and/or y2 (or the flows q1 and q2). In the 2nd

case it may be necessary to respect also the length of the inlet pipeline that
brings dead-time into the control loop. Of course, for each situation the final
controller (including also the relevant reconstruction) will be different.

When it is required to control the flow q1, or the level y1 of the first tank,
each larger setpoint step change may already require to let the pump to work
for some time in one of the limit regimes: either fully switched on (Fig. 3.16),
when the level has to be increase, or fully switched off, when it has to be
decreased. A “linear” control has sense just in the vicinity of the reference
flow (level). The length of transient from a limit regime to a new steady state
can sometimes be fully neglected with respect to the time required for filling
the container. By its nature, this process can be classified as from the DC1.
As above, the final control algorithms will depend on, which process variables
are measured and they will differ from those proposed for the above problem.

When it is required to control the second tank output flow q2, or its level
y2, after each larger setpoint change upward it will be firstly required to run
the pump fully switched on for some time. In such a way the level in the first
tank will increase most rapidly what results in the fastest possible filling of
the 2nd tank. However, yet before reaching the required level in the 2nd tank,
the pump has to be switched off to decrease the first tank level y1 up to the
value corresponding to the required steady state (Fig. 3.17). “Linear”‘ control
process may appear just in the vicinity of the required output flow q2 (level
y2) and its duration can usually be neglected with respect to the duration
of the nonlinear transient. By its nature, the process can be assigned into
the DC2. The control algorithms will depend on, which process variables are
measured and differ from those proposed for both above problems.

Since the two-tank system can be shown to be stable, according to Theo-
rem 3.2 the output flow q2 (or level y2) may be set to the reference level also
by control algorithm of DC0 that would simply set the input flow q0 = q2.
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It can be easily shown (e.g. by simulation) that the corresponding transient
would be much longer than the transient from DC2. For the same task, the
solution of DC1 might be based on bringing the flow q1 to the value corre-
sponding to the desired output, i.e. by q1 = q2. Again, the overall transient
would take more time than by using controller from DC2, but it would be
faster than controller from DC0.

3.10 Summary

1. The existing classification of PID controllers into ISA, series and parallel
ones reflects spontaneous development of the technology that shows still
to be not completely finished. In early period, many details of developed
solutions were considered as proprietary information and the internal
structures were frequently kept secret instead of being published in liter-
ature. Much useful information was also scattered in the literature and
finally forgotten, so that it is not sure that today we know fully to argue
all existing forms of controllers and to transfer their essential features
to the newer technology solutions. Some effort for a more detailed de-
scription was already spent in early period of PID control development
motivated by requirements of a reliable analytical tuning.

2. With respect to real needs of practice it is obvious that the traditional
modules of PID control do not cover all its requirements: there is lack
on solutions for higher dynamical classes (DC) of constrained control
(unstable systems), including also time-delayed systems.

3. Problems are also caused by the fact that control community has still
not accepted notion of dynamical classes of the PID control and require-
ments that must fulfill fundamental controllers to be included into the
PID basis. Despite to the fact that many authors are already respecting
these requirements intuitively, without moving forward in this point, it
is not possible to develop consistent theory that would cover all require-
ments ranging from quasi minimum-time control up to the fully linear
“smooth”transients.

4. Solutions of the DC0 are fully compatible with the traditional linear solu-
tions that in transition from a steady state to another one yield monotonic
output and control signal responses.

5. Within the DC1 containing already one phase of energy accumulation,
the fundamental solutions are up to now typically being replaced by tra-
ditional linear controllers extended by anti-windup (aw) circuitry.

6. Within the DC2 containing energy accumulation and dissipation phases
the fundamental solutions are usually being replaced by less effective and
just locally applicable cascaded structures, by the sliding mode control,
or by new development in model predictive control.



3 Basic Notions of Robust Constrained PID Control 133

7. By index of the dynamical class we denote a non-negative integer denot-
ing number of possible intervals with the limit control signal values (or
extreme points) that can occur under MTC with monotonic output.

8. Dynamical classes of control (control processes, controllers) are physically
closely related to the energy accumulation/dissipation taking part in con-
trolled plants, when they denote relevant number of energy accumulation
phase and, mathematically, to the relative degree of the specified outputs.

9. Definition of dynamical classes of control enables to classify existing de-
sign methods and approaches, to increase reliability of the control design,
to explain several existing gaps between theory and practice and so finally
to improve the acceptance of the control theory by practice.

10. Historically, the notion of dynamical classes of control is closely related
to the Feldbaum’s theorem about n-intervals of the relay MTC. However,
ideal rectangular pulses of such control are considered just as limit case
of the constrained pole assignment control (CPAC) with poles shifted to
minus infinity. Generating of such rectangular pulses would require an
infinitely broad frequency band of the control loop. Putting additional
constraints on the rate of control signal changes (or even on its higher
derivatives), or on the loop frequency band, respectively, CPAC gives
smoother control and some its intervals may shrink to smoother signals
with extreme points, or even they fully disappear.

11. Generic DC index related to the specified output relative degree cannot
be determined by measuring input-output characteristics, if the measured
output is different from the specified one. So, for a rigorous decision in
defining optimal controller we usually need also additional information
about the distribution of dynamical elements within the control loop
(system structure): ideal universal autotuner based fully on input-output
measurement is not possible.

12. In the case of relatively high measurement (quantization) noise, or per-
turbation dynamics it may be useful to intentionally decrease dynamical
class of control against the generic one and so to decrease the systems
sensitivity, actuators wear, etc.

13. For covering all typical situations in controlling systems with transfer
functions up to the 2nd order with dead time we have introduced ta-
ble of fundamental controllers containing besides of static feedforward
control (contained also in all feedback structures) 18 different feedback
controllers.

14. The proposed table includes all traditional (linear) PID controllers within
the DC0. Besides of this it systematically covers many solutions used in
practice that are up to now staying outside of mostly “linear” theory of
the PID control. Despite it is much richer than the basis of traditional
PID control, it still does not cover all possible situations with the 2nd

order plants with dead time – some rarely appearing situations were up
to now omitted due to the sake of simplicity.
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15. The existing inflation of different PID tuning rules and anti-windup struc-
tures results from attempts to replace one fundamental solution by an-
other one by retuning its parameters. By this process based mostly on dif-
ferent optimization procedures one can get a local optimum corresponding
to a particular choice of the initial conditions, input signals and system
parameters, but never a globally valid solution.

16. There are many arguments supporting acceptance of the proposed table
and solutions contained. As at any change of the settled-down theory,
against acts the inertia of human thinking. This cannot be eliminated by
any arguments or facts: this is also result of the system dynamics.

3.11 Questions and Exercises

1. How could you define PID control?
2. Could you formulate an alternative definition?
3. What does characterize index of a dynamical class?
4. How it is related to the Felbaum’s theorem about n intervals of time

optimal control?
5. Which criteria must fulfill a controller to be considered as the fundamen-

tal one?
6. What was the technological reason for lag of theory of the time delayed

systems and by which technology generation it was eliminated?
7. Identify some reasons for lags in development of theory of constrained

PID control.
8. Name some factors contributing to the inflations of optimal tuning rules

for PID control.
9. Does the well-known method by Ziegler and Nichols optimize the con-

troller tuning for the set point step of for the disturbance step responses?
10. Characterize processes of the dynamical classes 0, 1 and 2!
11. Sketch the table of fundamental PID controllers!
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Chapter 4

Basic Fundamental Controllers of DC0

Mikuláš Huba

Abstract The Dynamical Class 0 (DC0) contains all known linear PID con-
trol structures enabling to achieve monotonic plant output course after a
setpoint step by monotonic control signal at the controller output. Ideally,
control signal reaction to such a setpoint step may be arbitrarily fast and in
a limit case to approache step function. Plants that enable to achieve such
transients may be considered as generalization of a memoryless plant with
additional stable dynamics. Considered structures will be derived from the
static feedforward open-loop control extended by reconsruction and compen-
sation of acting disturbances by measuring the plant and controller output
signals. For this purpose, fundamental solutions will be proposed based on
parallel plant model (PID-PM, or IMC like PID structures) and inverse mod-
els of the (invertible) dominant loop dynamics (PID-IM, or DO based PID
structures). In a correctly tuned loop and under effect of admissible input
signals the control signal constraint will never be active: neither in steady
states nor during monotonic transient responses among them. So, in DC0 the
control loop may be fully treated by means of linear control theory. A typical
feature and important advantage of transients in DC0 is the lowest wear and
energy consumption of the actuators.

4.1 I, I0 and FI0 Controllers

Relation of the input and output variable of the memoryless plant (4.1) with
constrained control signal ur, with input disturbance vi and output distur-
bance vo is described as

Mikuláš Huba
Faculty of Electrical Engineering and Information Technology, Slovak University of
Technology in Bratislava, e-mail: mikulas.huba@stuba.sk
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y = K(ur + vi) + vo (4.1)

In order to consider also asymptotic behavior, we will deal just with piece-
wise constant loop inputs.

4.1.1 Output Disturbance Reconstruction

By measuring output y that corresponds to control signal u (Fig. 4.1a) for a
plant gain estimate K0 it is possible to reconstruct the output disturbance
value v̂o by means of v̂o = y − K0ur. This value can then be used for the
distrubance compensation by a counteractive signal added to the reference
value. In order to avoid algebraic loop, to achieve required noise filtration and
robustness, and or to limit rate of control signal changes after a disturbance
step, it is required to work with filtered reconstructed signal

v̂of =
1

1 + Tfs
[y −K0ur] (4.2)

To limit rate of the control & output changes after a reference step, a prefilter
with time constant Tp can be used.

Fig. 4.1 FI0 controllers: static feedforward control extended 1) by reconstruction
and compensation of (a) output and (b) input disturbances of a memoryless plant
and 2) by a prefilter; in nominal case K0 = K
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4.1.2 Input Disturbance Reconstruction

An input disturbance vi may be reconstructed as difference between the re-
constructed plant input ua and the controller output u as vi = y/K0 − ur.
Again, it will be required to work with filtered reconstructed disturbance

v̂if =
1

1 + Tfs
[y/K0 − ur] (4.3)

To limit rate of the control & output changes after a reference step, also
here (Fig. 4.1b) a prefilter with the time constant Tp may be used. For ad-
missible input signals the saturation can be omitted (it will never be active,
i.e. ur = u) and the structures in Fig. 4.1 be replaced by more frequently
used structure (Fig. 4.2) with integrating controller

R (s) =
KI

s
; KI =

1

K0Tf
(4.4)

Fig. 4.2 Closed loop with I0 controller equivalent to the structures from Fig. 4.1
(above) and example of hydraulic actuators with I character (below).
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Instead of the filter time constant Tf it may be simpler to work with the
reconstruction filter bandwidth

Ωf =
1

Tf
= K0KI (4.5)

Equivalent loop prefilter is defined as

Te (s) =
1 + Tfs

1 + Tps
(4.6)

By its omitting, i.e. by setting Tp = Tf in the generic scheme in Fig. 4.1 with

Tp (s) = 1/ (1 + Tfs) (4.7)

one gets a continuous control response after a setpoint step. For keeping
the step character of feedforward control after a reference signal step, the
equivalent loop should include ideal prefilter with as small as possible value
Tp (ideally Tp → 0). This equivalent structure of FI0 controllers may be
usefull not just due to its simplicity, but also in situations when the controller
and actuator are physically not separable. Such a situation is typical e.g. in
using hydraulic and electrical drives in roles of actuator. These genericly
have integral character - for a constant nonzero input their output is linearly
increasing.

Since an output disturbance can be fully replaced by equivalent input
disturbance and this is more fequent in practice, in the sequel we will mostly
limit our treatment to the case of input disturbances whereby the index “i”
may be omitted.

Definition 4.1 (I0 and FI0 controllers). Under I0 controller we will un-
derstand static feedforward control extended by DO based reconstruction and
compensation of input, or output disturbances according to Fig. 4.1. When
extended by the prefilter with the time constant Tp to the FI0 controllers, they
may also be represented by the equivalent structure according to Fig. 4.2.

Definition 4.2 (I controller). Under I controller we will understand FI0
controller with the prefilter time constant Tp = Tf that may also be repre-
sented by the equivalent structure according to Fig. 4.2 in which the input
filter dissapears.

In order to get acceptable filtration of the measurement noise and also
to achieve desired robustenss against non-modelled loop delays and plant-
model mismatch the DO time constant Tf cannot be set arbitrarily small.
In a closed loop tuned for monotonic transient responses and under effect
of admisssible input signals the control saturation will never be active and
therefore it can be omitted from Fig. 4.1. That means the loop can be fully
treated by linear methods. It is also not to forget that the first order filter
used in FI0-controllers does not represent the only available solution. Usefull
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properties as e.g. improved robustness and noise filtering can be achieved by
using higher order DO filters.

4.1.3 Fundamental Properties of I0 and FI0
Controllers

When the gain K0 used for the controller tuning is not equal to real plant
gain K, the transfer functions corresponding to reference/disturbance signal
responses become

I0 : FwI0 (s) =
Y (s)

W (s)
=
K (Tfs+ 1)

K0Tfs+K
=

s/Ωf + 1

sκ/Ωf + 1
; κ =

K0

K

I : FwI (s) =
Y (s)

W (s)
=

K

K0Tfs+K
=

1

sκ/Ωf + 1
; Ωf =

1

Tf

Fv,o (s) =
Y (s)

Vo (s)
=

sK0Tf
K0Tfs+K

=
sκ/Ωf

sκ/Ωf + 1
; Fv,i (s) = KFv,o (s)

(4.8)

So, both responses depend on the reconstruction filter bandwidth Ωf and
on the ratio of the estimated and real plant gains κ = K0/K. For κ > 0,
the closed loop in Fig. 4.2 wil be (theoretically) stable for any positive value
of Ωf , (for any negative value of the closed loop pole αf = −Ωf/κ). By
increasing Ωf → ∞ , Fw (s) → 1, i.e. the exponential closed loop setpoint
step responses 1 − exp(−Ωf t/κ) are approaching unit step, what according
to Def. 3.18 means that for the setpoint response this solution represents
fundamental controller. Similarly, by increasing Ωf → ∞ , Fvi (s) → 0, i.e.
the disturbance closed loop step responses K exp(−Ωf t/κ) are converging to
zero (more precisely, to the Dirac pulse Kδ (t)), what according to require-
ments of Def. 3.18 means that for the disturbance response this solution again
represents fundamental controller.

4.1.4 Nonmodelled Dynamics Approximated by
Dead-time – Analytical Treatment

In controlling ideal memoryless plant the controller gain (4.4) may increase
to infinitely large values (DO filter time constant Tf may converge to zero).
The only condition is that κ > 0, i.e. the estimated plant gain K0 has the
same sign as the real gain K. However, in controling real plants, no control
loop is strictly memoryless one. By increasing reconstruction bandwith Ωf =
1/Tf → ∞, the speed of transients increases. Since the concept of memoryless
plants covers just situation, when the transients are sufficiently slow and
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negligable, at some value of Ωf this concept will become inappropriate to
real loop behavior. As a result, overshooting and oscillations of loop variables
occur.

Next, we are going to determine borders for validity of the concept of
memoryless plant and to propose measures to enable its reliable use. In doing
so, we will start with analyzing influence of the simplest loop dynamics. So, let
us consider loop with I controller (Fig. 4.2) for Tp = Tf ), with a memoryless
plant and dead-time Td, when the relation between the control signal u and
the measured output ym = y1 (Fig. 4.3) is given as

Fyd (s) =
Ym (s)

U (s)
= Ke−Tds (4.9)

Fig. 4.3 Loop with I controller, memoryless plant and dead time

Fw0 (s) =
Y0 (s)

W (s)
=

KIK

s+ e−TdsKIK
=

eTdsΩf/κ

seTds +Ωf/κ
=
B0 (s)

A (s)
; κ =

K0

K

Fw1 (s) =
Y1 (s)

W (s)
=

KIKe−Tds

s+ e−TdsKIK
=

Ωf/κ

seTds +Ωf/κ
=
B1 (s)

A (s)
; Ωf =

1

Tf
(4.10)

After introducing new complex variable

p = Tds (4.11)

these equation may be fully expressed in a normalized form

Fw0 (p) =
Y0 (p)

W (p)
=

epΩ/κ

pep +Ω/κ
=
B0 (p)

A (p)
; Ω =

Td
Tf

Fw1 (p) =
Y1 (p)

W (p)
=

Ω/κ

peTdp +Ω/κ
=
B1 (p)

A (p)
; κ =

K0

K

(4.12)

It is to see that the setpoint response fully depends on the parameter

q = Ω/κ (4.13)
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For some tasks, it may be more appropriate to introduce instead of the pa-
rameter q its reciprocal value

τ = κ/Ω (4.14)

In the case of nominal tuning (κ = 1) it denotes ratio of the filter time
constant to the dead time τ = Tf/Td. One of the first method for analyti-
cal controller tuning (Oldenbourg and Sartorius, 1944, 1951) was based on
derivation of conditions of the double real dominant pole.

Theorem 4.1 (I controller gain corresponding for Td to the Double
Real Dominant Pole (DRDP)). Tuning of the I controller in the loop in
Fig. 4.3 that should guarantee the fastest possible monotonic transients may
be derived by using conditions for the double real dominant pole p0 of the
closed loop characteristic equation A (p) = 0 by satisfying conditions

A (p0) = 0;
.

A (p0) = 0 (4.15)

as

qopt = Ω/κ = exp (−1)

ΩfTd exp (1) = κ

Tf = Td exp (1) /κ

(4.16)

In the plane of loop parameters (κ,Ω) equation represents a line corre-
sponding to the fastest possible transients without overshooting. ForΩ exp (1) >
κ the transients already have overshoots.

It is once more to remind that strictly MO transients can really be achieved
for prefilter with Tp ≥ Tf in Fig. 4.1. Solution equivalent to Tp = Tf is
equivalent to omitting prefilter in the scheme in Fig. 4.2.

Definition 4.3 (Optimal DO bandwith, optimal DO time constant,
optimal I controller gain for loop with Td). As optimal DO time con-
stant Tf , optimal DO bandwith Ωf = 1/Tf , optimal normalized DO band-
with Ω = Td/Tf and optimal integral gain KI = 1/ (K0Tf) of the dead-time
system in Fig. 4.3 will be denoted those corresponding to the double real
dominant pole (DRDP) given as

Ω = κ/exp(1) ; Ωf = κ/ (exp(1)Td) ; Tf = 1/Ωf

KI = 1/ (K0Td exp(1))
(4.17)

Theorem 4.2 (Critical I controller gains). Sustained closed loop oscil-
lation with period Pu = 2π/ω orresponds to the root s = jω of the char-
acteristic equation A (s) = 0. Critical tuning and the corresponding period
of oscillations Pu determined by substituting s = jω (Neimark , 1973) into
A (s) = seTds +Ωf/κ are
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ω = 0 ⇒ Pu → infty ; Ωf/κ = 0

ω = 2π/Td ⇒ Pu = 4Td ; Ωf/κ = π/ (2Td)
(4.18)

The upper critical DO bandwith and the corresponding critical DO time
constant are then given as

Ωcrit = κπ/2 ; Ωf,crit = κπ/ (2Td) ; Tf,crit = 2Td/ (κπ) (4.19)

4.1.5 Nonmodelled Dynamics Approximated by
Dead-time – Treatment by Performance Portrait

Alhough it might seem at the first glance that the analytically derived bor-
der of MO responses based on the DRDP gives reliable results, a detailed
computer based analysis based on the Performance Portrait shows that the
experimentally determined area of MO responses is slightly larger than the
analytically derived one. In this alternative approach the loop behavior is
mapped and analyzed over a grid of loop parameters in the plane (κ,Ω).
From these data it is then possible to visualize the loop Performance Portrait
in Fig. 4.4, or to derive parameters corresponding to a tolerable overshooting
shown in Tab. 4.1. It is interesting to note that all values τ = τ (ǫy), including
e.g. the simple tuning τ = 2 proposed by Skogestad (2003) that corresponds
to 100ǫy = 4.04%, which are for ǫy → 0 converging to the value

τ → 2.703 . . . (4.20)

are smaller than
τopt = exp(1) = 2.718 . . . (4.21)

corresponding to (4.14) and (4.17).
Of course, one could deal with the question, if the discrepancy in results

is due to the limited precision of numerical computations, or it is express-
ing influence of infinitely many poles neglected in the double real dominant
pole method. Although in this case differences may be observed just on the
third decimal position, in general, the experimental qualitative & quantita-
tive computer based analysis of step responses may give much deeper insight
into closed loop properties than the analytical analysis of infinitely many
closed loop poles of such dead time system. Simultaneously it e.g. shows on
numerical issues that may be important not just for simulations, but also
for the real time control. However, for vast majority of engineering tasks the
identified differences in results do not play a primary role and we could con-
clude that in the case of the I-controller the analytically derived conclusions a
coinciding with the results achieved by using the Performance Portrait. This
method gives, however a more detailed information, what will become yet
more important in dealing with more complex control tasks.
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Fig. 4.4 Performance portrait of the loop with I controller and dead time
from Fig. 4.3 including level contours corresponding to IAE values of the out-
put y1; areas of NO&MO output step responses identified for tollerances ǫy =
{0.1, 0.05, 0.02, 0.01, 0.001, 0.0001, 0.00001}; a boundary point of the strictly NO&MO
area is given by (4.17); no one of given ǫy areas does reach up to the area of opti-
mal IAE1 values outlined by bold curces; the stability border (4.19) is given by bold
dotted line; examples of uncertainty boxes are explained in following chapters

Table 4.1 IAE0 and IAE1 values and the corresponding controller tuning corre-
sponding for κ = 1 to the outputs y0 and y1 under ǫy NO&MO setpoint step responses
of the loop with I controller and nonmodelled dynamics approximated by the dead
time Td
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4.1.6 Nonmodelled Dynamics Approximated by Time
Constant – Analytical Treatment

Another elementary possibility for approximating the nonmodelled loop dy-
namics is represented by single time constant (accmulative delay) correspond-
ing to the plant transfer function

Fya(s) =
Ym(s)

U(s)
=

K

1 + Tas
(4.22)

For passive compensation of the nonmodelled dynamics (I controller tun-
ing), the location of this delay within the control loop is not important and
in order to cover both possible loop configurations we will consider transfer
functions corresponding to two possible loop outputs in Fig. 4.2 (i.e. with
Tp = Tf in the generic schemes in Fig 4.1). For the new complex variable

p = Tas (4.23)

they again depend on the parameters q = Ω/κ, or τ = κ/Ω

Fw0(p) =
Y0(p)

W (p)
=

(1 + p)Ω/κ

p (1 + p) +Ω/κ
=
B0(p)

A(p)
; Ω =

Ta
Tf

Fw1(p) =
Y1(p)

W (p)
=

Ω/κ

p (1 + p) +Ω/κ
=
B1(p)

A(p)
; κ =

K0

K

(4.24)

Fig. 4.5 Loop with I controller, memoryless plant and non-modelled dynamics ap-
proximated by time constant

Theorem 4.3 (I controller gain corresponding for Ta to the Double
Real Dominant Pole (DRDP)). Tuning of the I controller in the loop in
Fig. 4.5 that should guarantee the fastest possible monotonic transients may
be derived by using conditions for the double real dominant pole p0 of the
closed loop characteristic equation A(p) = 0 by satisfying conditions

A(p0) = 0; Ȧ(p0) = 0 (4.25)
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as
qopt = Ωopt/κ = 1/4; Tf = 4Ta/κ (4.26)

In the plane of loop parameters (κ,Ω) equation (4.26) represents a line
corresponding to the fastest possible transients without overshooting. For
Ω exp (1) > κ the transients should already have overshooting.

Definition 4.4 (Optimal DO bandwith, optimal DO time constant,
optimal I controller gain for Ta). As optimal DO time constant Tf ,
optimal DO bandwith Ωf = 1/Tf , optimal normalized DO bandwith Ω =
Td/Tf and optimal integral gain KI = 1/ (K0Tf ) of the system with time
constant in Fig. 4.5 will be denoted those corresponding to the double real
dominant pole (DRDP) given as

Ω = κ/4 ; Ωf = κ/ (4Ta) ; Tf = 1/Ωf ; KI = 1/ (4K0Ta) (4.27)

Theorem 4.4 (Critical I controller gains for Ta). Sustained closed loop
oscillation with period Pu = 2π/ω corresponds to the root s = jω of the
characteristic equation A (s) = 0. In difference to the loop with dead time,
for κ > 0 this loop remains stable for any Tf > 0, when the critical tuning and
the corresponding period of oscillations Pu determined by substituting s = jω
into A (s) = s (Tas+ 1) +Ωf/κ are

ω = 0 ⇒ Pu → infty ; Ωf/κ = 0 ; KI,min = 0

ω → ∞ ⇒ Pu → 0 ; Ωf/κ→ ∞ ; KI,max → ∞ (4.28)

4.1.7 Nonmodelled Dynamics Approximated by Time
Constant – Treatment by Performance Portrait

Comparison of results achieved for dead time Tab. 4.1 and time constant
Tab. 4.2 shows that in the case of the time constant Ta increased values of
tolerated overshooting lead to reasonably faster IAE decrease than in the
case of the dead time Td (Fig. 4.6). For 10% tolerated overshooting the IAE
values corresponding to Ta and Td are roughly equal. That has an important
consequence on plant identification: by using the step responses based e.g.
on measuring the average residence time. For systems with tolerable over-
shooting it has no sense to distinguish the type of nonmodelled dynamics.
And conversely, it may be important in aiming to achieve the fastest possi-
ble MO responses with low admissible overshooting and low deviations from
monotonicity.
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Table 4.2 IAE0 and IAE1 values and the corresponding controller tuning corre-
sponding for κ = 1 to the outputs y0 and y1 under ǫy NO&MO setpoint step responses
of the loop with I controller and nonmodelled dynamics approximated by the time
constant Ta
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Fig. 4.6 IAE1 and IAE0 values versus tolerated overshooting for the time constantTa

and dead time Td according to Tab. 4.1 and Tab. 4.2

4.1.8 Tuning Based on Maximal Sensitivity Ms = 1.4

Today, controllers are frequently tuned with the aim to guarantee chosen
maximal sensitivity to modeling errors. This can be expressed as the maximal
value of the sensitivity function defined as S(s) = 1/(1 + L(s)), whereby
L(s) = R(s)F (s) is the open loop transfer function with R(s) being the
transfer function of the controller and F (s) being the plant transfer function.
The maximal sensitivity is then given as
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Ms = max{S(jω), S(s) = 1/(1 + L(s))}; L(s) = R(s)F (s) (4.29)

TherebyMs represents inverse value of the shortest distance R of the crit-
ical point (−1, j0) from the Nyquist curve of the open loop transfer function
L(s). This may be determined by making circle with centre in the critical

point that tougches Nyquist curve (Fig. 4.7). Typical Ms values (Åström

and Hägglund, 1995; Åström et al, 1998) appropriate for control lie in the
range 1.2 − 2.0. Lower Ms values give slower, but less oscillatory transient
responses. Why exactly these values? Do they represent universal constants
defined by the nature? In order to get some interpretation we may com-
pare the maximal sensitivity method with results achieved by the double real
dominant pole.

Fig. 4.7 Maximal sensitivity Ms = 1/R is defined as reciprocal value of the maximal
radius R of the circle with centre in critical point (−1, 0j) that is touging Nyquist
curve L(jω)

By evaluating maximal sensitivity corresponding in the nominal case to
tuning (4.17) one getsMs = 1.3936 ≈ 1.4. The result does not depend on the
particular dead time value Td. It shows that the DRDP and the maximal sen-
sitivity approaches are somehow related and explains possible motivation for
Aström and coworksers to prefer exactly the value Ms = 1.4. However, cal-
culating the maximal sensitivity corresponding to tuning (4.27) gives already
different valueMs = 1.155. It means that the tuning corresponding to DRDP
does not introduced universally valid optimal Ms value. Simultaneously, ques-
tion arrises, which delay is more appropriate for approximations dealing with
non-nmodelled loop dynamics: dead time (4.9) or time constant (4.22)? Ex-
perimental results show that in dealing with real loops tuning (3.18) gives
mostly too conservative controller values (as it is also illustrated by Fig. 4.6)
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that gives argument to work with Td. For approximation (4.22) we might use
also other alternative: to derive new controller tuning corresponding to value
Ms = 1.4 what gives

Tf = 1.5Ta ; Tp = 2.1Tf (4.30)

Thereby, the prefilter time constant value has to be increased from Tp = Tf
more than two times to achieve nearly monotonic step response of y1. Fig. 4.8
shows that such transients are much faster as for the DRDP tuning. By fur-
ther increase of Tp it would also be possible to remove slight overshooting
in the transients of the output y0 and so also of the control signal. It is,
however, to note that in the disturbance response the overshooting remains.
So, approach based on loop shaping and dealing with the maximum sensi-
tivity and the maximum complementary sensitivity (Skogestad and Postleth-
waite, 1996; Skogestad, 2003) is indeed possible, but not primarily oriented
to respect nonovershooting and monotonicity conditions at the plant and
controller outputs. Furthermore, the expected dynamics is guaranteed just
around the nominal operating point. Of course, it is expected that the less
aggresive tuning with lower Ms values will allow higher degree of the plamt-
model mismatch, but there are no easy ways of quantifying these expecta-
tions. Similar comments may also be used for other design methods based on
the frequency response, as e.g. the Disturbance Rejection Magnitude Opti-
mum method (DRMO, Vrančič et al (2004)) that gives

Tf = 2Ta; Tp = 1.35Ta (4.31)

These method may be advantageous in working with plant models achieved
by identification based on the frequency response. Else, more direct approach
of the Performance Portrait method that uses direct technological parameters
as tolerated overshooting, or tolerated deviations from monotonicity will be
preferred.

4.1.9 Short Summary of Nominal I0-Controller Tuning

Previous analysis showed that already in designing simple I controller there
exist several degrees of freedom: by choice of the prefilter Tp it is to decide
about character of the control signal dynamics after setpoint steps – should
it have a step character, or a softer, exponential one? That is: are we going
to use controller according to Fig. 4.1 with equivalent structure in Fig. 4.2
with two unknown parameters Tp and Tf , or simplified solution according to
Fig. 4.1 with prefilter Tp = Tf that is equivalent to Fig. 4.2 without prefilter?
This process of deciding about complexity of the solution could be continued
by considering higher order DO filters in the generic scheme that might be
interesting both from the point of view of noise filtering as well as from the
closed loop robustness point of view.
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Fig. 4.8 Loop with the FI0 controller and plant (4.22) with Tp = Tf and Tf corre-
sponding to (4.27) that yields Ms = 1.15 and with the tuning (4.30) corresponding to
Ms = 1.4

It was also shown that the concept of memoryless plant used in deriving
controller structure has to be refined by appropriate approximation of the
non-modelled dynamics. This plays an important role in controller tuning
enabling achieving the fastest possible ǫy−MO&NO transient responses. In
this step we have analysed basic properties achieved by approximations of
the nonmodelled dynamics by the dead time and by single time constant.
Of course, in practice also their combination, or higher order approximations
may be proposed, as e.g. the approximation by 1/(1 + Tas)

2, used by Glat-
tfelder and Schaufelberger (2003). But, when allowing tolerated overshooting
around 5% of the setpoint step, influence of both types of approximations
of the nonmodelled dynamics is approximately equal and more important
question becomes, which approximations are easier to be achieved. A more
rigorous approximation of the nonmodelled dynamics has sense just for a high
precission control.

In specifying the loop dynamics we have concentrated our effort on con-
ditions of achieving ǫy−NO&MO transients that showed to correspond to
identical conditions in this case. This may be important both in the tech-
nological context, both in decreasing acturator wear and in the constrained
control design. At the controller output, MO transient from one admissible
steady state to another one will never excite control saturation and so it is
possible to omit its effect from the control loop analysis.

Aproximation of the loop dynamics may be based on measuring setpoint
step responses, by evaluating system response at the stability border (when
it is possible and allowed to bring system to oscillations by appropriate con-
troller tuning), by relay experiment, etc.

For loop with memoryless plant and dead (4.9) gave the I controller tuning
based on the DRDP already one of the first control text books by Oldenbourg
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and Sartorius (1944, 1951) that indicates importance of the solution for prac-
tice. Since the controller is derived for the simplest plant model it may be
universally used for controlling broad spectrum of stable plants, what e.g.
inspired Datta et al (2000) to speak about “magic of integral control”. I con-
trollers are appropriate also for systems with long (and possible variable)
dead times. Rugh and Shamma (2000) e.g. presents there use in combustion
engines that are typical by long delay between engine fuelling and exhaust
emissions. But, above mentioned tuning rules are still fixed just to a nominal
point and should futher be extended to more general situation with plant
parameters varying over broader intervals.

4.1.10 Robust Controller Tuning and Characteristics

In practical applications, loop parameters are mostly known with some de-
gree of uncertainty. Plant properties may vary in time (time variable plants),
due to operating point changes (nonlinear plants), or they may be simply
identified with a limited precission. How to tune the controller, when it is
required to guarantee some performance, whereas the loop parameters K,Ta
or Td are not known exactly, but they are given just with interval uncertainty
as

K ∈ 〈Kmin,Kmax〉 ; cK = Kmax/Kmin ≥ 1

Td ∈ 〈Td,min, Td,max〉 ; cd = Td,max/Td,min ≥ 1

Ta ∈ 〈Ta,min, Ta,max〉 ; ca = Ta,max/Ta,min ≥ 1

(4.32)

When interpreting such a situation by means of Fig. 4.4 it is to note that
changes of the plant gain K influence possible values of κ = K0/K. For a
chosen value K0 it is possible to find limit values

κmin = K0/Kmax ; κmax = K0/Kmin (4.33)

that within the parameter plane (κ,Ω), determine range of horizontal move-
ment of the working point. For a constant and exactly know value of
Ω = Td/Tf , or Ω = Ta/Tf the uncertainty set is reduced to a horizontal
uncertainty line segment (ULS) with vertices corresponding to (4.33).

Similarly, for a chosen DO badwidth Ωf = 1/Tf it is possible to find limit
values of Ω = Td/Tf , or Ω = Ta/Tf as

Ωmin = Td,min/Tf ; Ωmax = Td,max/Tf

Ωmin = Ta,min/Tf ; Ωmax = Ta,max/Tf
(4.34)
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If the only uncertainty is related to the nonmodelled dynamics, whereby
the plant gaing is exactly known, the uncertainty set will be given by vertical
ULS with the horizontal position κ = K0/K and vertices (4.34).

By combining extreme values of two independent parameters (4.32) one
gets uncertainty box (UB) with vertices corresponding to (4.33) and (4.34)
as

UB =

[
B11 B12

B21 B22

]

=

[
κmin, Ωmax κmax, Ωmax

κmin, Ωmin κmax, Ωmin

]

(4.35)

To guarantee required property (ǫy-NO&MO control with specified toler-
ance ǫy) for all possible situations, it is then required that the whole UB lies
in parameter area guaranteeing given property. With respect to the shape of
the border of NO & MO control in Fig. 4.4 it is obvious that the critical role
will be played by the upper left vertex

B11 = (κmin, Ωmax) (4.36)

whereby Ωmax = Td,max/Tf , or Ωmax = Ta,max/Tf . In the analytical design
this can be placed at one of the line borders (4.17), or (4.27). That means to
fulfill for all possible working points requirements

K0Tf ≥ exp(1)KmaxTd,max ; K0Tf ≥ 4KmaxTa,max (4.37)

Due to the radial shape of the performance portrait, by shifting ULS or
UB along chosen lines to any position the closed loop properties do not vary.
However, by increasing ratio of the upper and the lower limit value in (4.32)
the mean value of IAE index over the uncertainty set will increase. As it
is evident from Fig. 4.9, the rate of increase depends on the type of the
nonmodelled dynamics and on the tolerated overshooting.

For Ta and strictly MO tuning both IAE values increase due to the ucer-
tainty much more rapidly than for Td, but for the 10% tolerated overshooting
the increase is in both cases practically equivalent and much less intensive
than in the MO case. From this point of view we come to a surprising result:
in the case of the I controller it is easier to control loops with dead time than
loops with equivalent time constant value. Since by increasing the uncertainty
coefficients ca, or cd the maximal values in (4.32) and so also the required Tf
values in (4.37) increase linearly, also the IAE values in 4.9 increase linearly.
It is also to note that in the case of a time constant tuning corresponding to
certain overshooting of the output y0 differs from that corresponding to the
output y1. From this point ov view it is to expect that the step disturbances
entering to the closed loop at different points will in the case of considering
tolerable overshooting require special attention.

Example 4.1. In this illustrative example we will show robust design and the
corresponding robust performance achievable by using the simplest possible
I controller and then compare these results with the much more complex Fil-
tered Smith Predictor (FSP) according to Normey-Rico and Camacho (2007);
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Fig. 4.9 Ta uncertainty influence on average IAE values of outputs y0 and y1 for
strictly MO tuning (KI = 0.25/(KTa,max)) and tuning with 10% tolerable overshoot-
ing of y0 with KI = 0.57/(KTa,max) (left) and equivalent uncertainty influence for
Tdăwith strictly MO tuning (KI = 0.37/(KTd,max)) and tuning with 10% tolerable
overshooting with KI = 0.58/(KTd,max)

Example 6.1. The uncertain plant to be controlled is

F (s) =
Kpe

−Ls

(1 + s) (1 + 0.5s) (1 + 0.25s) (1 + 0.125s)

Kp ∈ 〈0.8, 1.2〉 ; L ∈ 〈9, 12〉
(4.38)

The FSP controller using primary PI-controller

C (s) = Kc
1 + TIs

TIs
(4.39)

was tuned using standard robust approach in the frequency domain based
on a nominal plant and norm bounded multiplicative uncertainty. As the
nominal model an approximation of the original plant by the FOPDT one
with

Fapr (s) =
Kne

−Lns

1 + Tns
; Kn = 1 ; Ln = 10.5 (4.40)

was used. Robust stability was proven for Kc = 1 ; TI = Tn and Tf = Ln/2.
But, this method is not able to guarantee higher requirements on MO tran-
sients, expressed e.g. by the amplitude related deviations, or TV0 values as
it is evident from the PP in Fig. 4.10 left. So, it does not enable to design
controller for more advanced applications. From Fig. 4.10 right it is to see
that even the 20 times larger filter time constant does not reasonably improve
the considered loop performance for larger plant gains: the controller needs
to be fully retuned, possibly by the PP method.

Tuning of the I-controller will be based on the average residence time
interpreted as dead time Td
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Fig. 4.10 PP of the plant (4.38) with the FSP controller based on (4.39)- (4.40) with
Tf = Ln/2 (left) and Tf = 10Ln (right); ǫy−MO areas identified for tollerances ǫy =
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A0 = KTd ; A0 =

∫
∞

0

[y (∞)− y (t)] dt (4.41)

by the step responses (Åström and Hägglund, 1995), or by a general input
signal according to Ingimundarson (2000), when for the maximal dead time
L one gets for (4.38)

Td,max = Lmax + 1 + 0.5 + 0.25 + 0.125 = 13.875 (4.42)

When choosing K0 = 1, the filter time constant may be determined accord-
ing to (4.37) as Tf = τ(ǫy)Td,maxKmax, whereby the values for 2% and 5%
were taken from Tab. 4.1. From the PP in Fig. 4.11 it is obvious that for the
output y1 the deviations achieved in the critical corner exactly match the ex-
pectations, so that no corrections are necessary. Since the MO conditions are
nearly matched also by the output y0, it means that any output correspond-
ing to some distribution of dynamical terms in (4.38) among the feedback and
the feedforward path would match the required specification. Explanation for
this (may be surprising result), when the extremely simple model gives precise
results, may be taken from the same source as the above example ( Normey-
Rico and Camacho (2007), pp. 174): “when the dead-time is dominant, the
contribution of the open loop poles to the closed loop response will be small
thus their elimination will contribute with a small increment in the speed
of the transients”. Model used for tuning of the I controller fully respects
this statement - whereas the model (4.40) used by authors of this statement
not. The PPs in Fig. 4.10 and Fig. 4.11 fully confirm also another statement
of above authors (pp. 145) “the effect of dead-time error is not symmetric”,
just the method they have used does not allow dealing effectively with this
problem.

Simple I controller yields indeed higher IAE values than the much more
complex FSP. However, up to now there exists no method for reliable tuning
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Fig. 4.11 PP of the I controller with Tf tuned to guarantee lower than 2% (ǫy = 0.02,
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of FSP with respect to higher performance requirements. Having this fact in
mind, several authors developed interactive tools to fight with this problem by
the ’trial and error’ method. Using the PP method the FSP may be redesigned
to respect also this problem in a direct way.

4.2 PI0 Controllers

In order to get MO transients, in the case of increasing time constant (accu-
mulative delay) it is frequently not enough to compensate its influence just
by restricting the closed loop bandwidth. Besides of slower transients this
way of compensation brings also increased influence of disturbances. In many
situations such impact is not acceptable and there is arising demand on active
compensation of the time delay that would avoid these negative phenomena.
Active compensation of dominant loop time constant leads to new control
structures denoted here as PI, PI0 and FPI0 controllers. In deriving their
structure the time constant Ta aproximating originally nonmodelled dynam-
ics will now be denoted as the dominant loop time constant T1. We will start
by extending structure in Fig. 4.1 (similarly as in Fig. 4.5) by such a time
constant denoted now as T1.

4.2.1 Different Types of PI0 and FPI0 Controllers

Definition 4.5 (Active compensation of stable time constant - inver-
sion of dynamics). Within the DC0, under “active compensation” of the
loop time constant T1 (“acumulative delay”) it will be understood reconstruc-
tion of the estimate ŷ of the actual loop output y = y0 from the measured
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delayed output ym = y1 that can be expressed as

Ŷ (s) = (1 + T1s)Ym(s)

ŷ(t) = ym(t) + T1dym(t)/dt
(4.43)

Such a reconstruction of the input signal of a dynamical system from mea-
sured values of its output is called as inversion of its dynamics.

Active compensation of single time constant, i.e. inversion of its dynam-
ics, is based on using inverse plant transfer function (inverse model). Such
inversion may, however, be carried out just for stable systems. Output of an
unstable system located in the feedback of Fig. 4.12 would be for a constant
output increasing exponentially to infinite magnitudes. Under finite precis-
sion, such a signal cannnot be processed by real equipment. Besides of this,
with respect to physical feasibility of inversion and to avoid algebraic loops,
reconstruction of actual output will require additional filtration.

Active compensation of the time delay incorporated into reconstruction
and compensation of disturbances leads to control structure in Fig. 4.12. In
a loop with admissible inputs and monotonic transients of control signal the
control saturation will never be active and so it can be omitted and the loop
may be represented by the well known structure with the linear PI-controller
R(s) and the equivalent prefilter Te(s)

R(s) = Kc
1 + TIs

TIs
; Kc =

T10
K0Tf

; TI = T10

Te(s) =
1 + Tf1s

(1 + Tp1s) (1 + Tp2s)
; Tf1 = Tf ; Tp1 = T10 ; Tp2 = Tp

(4.44)

After cancelling Tf in the prefilter numerator (4.44) by choosing Tp1 =
T10 = Tf and Tp2 = Tp > 0, step changes of control signal produced by a
setpoint step will change to smoother exponential changes and the structure
corresponds to the Two Degreee of Freedom (2DOF) PI controller that is also
equivalent to the PI controller with error acting on I action (integral part)
only, while the P-action has as input negative measured output. When fur-
thermore Tp2 = Tp = 0 the structure reduces to the traditional PI controller
without the equivalent prefilter.

U(s) = −KpYm(s) + E(s)/ (K0Tf ) ; E(s) =W (s)− Ym(s) (4.45)

When starting by defining the traditional PI controller parametersKp and
TI , then according to (4.44) it is possible to calculate the equivalent prefilter
parameters of the structure in Fig. 4.12 and to denote them as

Tp1 = TI ; Tp2 = 0 ; Tf1 = TI/ (KpK0) (4.46)
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Fig. 4.12 a) Fundamental PI0-IM controller designed as static feedforward control
extended by input disturbance reconstruction and compensation using Inverse plant
Model (cancelling time constant T1); b) Modification of the I0 controller for input
disturbance reconstruction with balanced DO including loop time constant estimate
in the channel from the controller output and c) Parallel plant Model of the PI0-PM
controller (PI0-IMC controller); all structures may be extended by prefilter

Because of pole zero cancellation in the prefilter, controller (4.45) with
the error acting on I only that gives smoother (exponential) control error
decrease, may be simpler described by the prefilter parameters

Tp1 = TI ; Tp2 = 0 ; Tf1 = 0 (4.47)

Definition 4.6 (Fundamental PI0-IM, FPI0-IM and PI controllers
based on Inverse Model of the dominant loop dynamics). The static
feedforward control extended by the reconstruction and compensation of in-
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put disturbances and compensation of single loop time constant using inverse
model of the dominant loop dynamics will be denoted as the PI0-IM controller
here. It is a fundamental solution fulfilling conditions of Def. 3.18. When ex-
tended by a prefilter with the time constant Tp > 0 it will be denoted as the
FPI0-IM controller. For Tf1 = Tp1 = Tf = T10, when also the prefilter (4.44)
of the equivalent loop in Fig. 4.13 reduces to the prefilter with single time
constant Tp2 = Tp, one gets the structure of the 2 degree of freedom (2DOF)
PI controller. When also Tp = 0 the structure reduces to the traditional PI
controller. The closed loop transfer functions of the FPI0-IM and 2DOF PI
controller with the plant-model parameter dismatch are given as

Fw0 (s) =
Y0(s)

W (s)
=

K (1 + Tfs) (1 + T1s)

(1 + Tps) [K0TfT1s2 + (K0Tf +KT10) s+K]

Fw1 (s) =
Y1(s)

W (s)
=

K (1 + Tfs)

(1 + Tps) [K0TfT1s2 + (K0Tf +KT10) s+K]

Fw0p(s) =
K (1 + T1s)

K0TfT1s2 + (K0Tf +KT10) s+K
; Tf1 = Tp1 = T10

Fw1p(s) =
K

K0TfT1s2 + (K0Tf +KT10) s+K
; Tf1 = Tp1 = T10

(4.48)

It is to note that the equivalent scheme according to Fig. 4.13 is now
allways realizable, i.e. also for the FPI0-IM controller with Tp = 0. Since for
K0/K > 0, Tf > 0, T10 > 0 and T1 > 0 all denominator coefficients are
positive, system remains robustly stable for any such a tuning.

Besides of use of the inverse dynamics, an equal balancing of both recon-
struction channels may also be achieved by alternative solutions with the time
constant T1 included in the DO path from the controller output in Fig. 4.12b.
Instead of this it is more frequently used solution with reconstruction and
compensation of the output disturbance using the parallel plant model in
Fig. 4.12c.
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Definition 4.7 (PI0-PM controller with Paralel plant Model typical
for the IMC structures). In loops with the time constant T1 the input
disturbance reconstruction used in the I0 controller can be improved by insert-
ing identified time constant T10 into the DO reconstruction branch leading
from the controller output (Fig. 4.12b) to balance equally both reconstruc-
tion channnels. When designed for reconstruction and compensation of the
output disturbance (Fig. 4.12c), the resulting PI0-PM controller will become
identical with the IMC control structure that is known by low noise sensi-
tivity and good robustenss. Transfer functions describing setpoint responses
may be achieved from (4.48) by susbstituting T10 instead of Tf . Similarly,
also the responses to input disturbances cannot be arbitrarily speeded up
and are determined by the time constant T10. This structure does not fullfill
requirements on the fundamental solutions from Def. 3.18 and therefore it
will not be further analyzed here.

4.2.2 PI0-IM: Analytical Versus Numerical Robust
Tuning

Analytical approach to controller tuning may be based on the position and
character of the closed loop poles. In such a case, character of the transient
responses is determined by roots of the characteristic polynomial correspond-
ing to different loop parameters. Closed loop poles corresponding to (4.48)
are

s1,2 = −K0Tf +KT10
2K0TfT1

±

√

(K0Tf +KT10)
2 − 4KK0TfT1

2K0TfT1
(4.49)

Transients are expected to change qualitatively when the discriminant
in (4.49) changes its sign, i.e. when

(K0Tf +KT10)
2 − 4KK0TfT1 = 0 (4.50)

By denoting

κ = K0/K > 0 ; τf = Tf/T10 > 0 ; τ1 = T1/T10 > 0 ; τp = Tp/T10 > 0
(4.51)

the last equation may also be rewritten as

τ1 =
(κτf + 1)

2

4κτf
(4.52)

The closed loop performance portrait showing dependance of the shape of
transient responses on the loop parameters is appropriate to be identified for
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dimensionless parameters (4.51). It can be derived from (4.48) by introducing
new complex variable

p = T10s (4.53)

when

Fw0(p) =
Y0(p)

W (p)
=

(1 + τfp) (1 + τ1p)

(1 + τpp) [κτfτ1p2 + (κτf + 1) p+ 1]

Fw0p(p) =
(1 + τ1p)

κτfτ1p2 + (κτf + 1) p+ 1
; τp = τf

(4.54)

New complex variable pmeans also new scale in the time domain, whereby,
for the same input, the time transients corresponding to p in (4.54) will be
times faster than transients corresponding to s in (4.48). It means that all
properties related to time (as e.g. IAE or ISE performance indices) identi-
fied in the dimensionless variables have to be multiplied by this factor. Note
(Fig. 4.14) that for the output y0 (input of the time constant) of the PI0
controller achieved for Tp = 0 the NO areas are no more identical with those
corresponding to MO output, as in the case of the I controller and that to
larger values of τf = Tf/T10 correspond enlarged areas of NO and MO con-
trol.

From the closed loop transfer functions of the PI0 controller achieved for
Tp = 0 from (4.48), or (4.54) it may be deduced that for K > K0 ⇒ κ <
1 due to the 2nd order polynomials in numerator and denominator giving
Fw0 (∞) > 1 the setpoint step responses of y0incline to overshooting. This
will restrict choice of appropriate tuning for achieving NO and MO output
to K0 ≥ Kmax. Only here gives the aperiodicity border (4.50), (4.52) some
usefull information. Output monotonicity of the setpoint responses of y0 could
be be improved by canceling one of the numerator time constants by prefilter.
Since the plant time constant may vary in time, the simplest solution is to use
prefilter with tuning Tp = Tf , or the equivalent controller without prefilter
(i.e. with Tp1 = Tf1 in (4.44)). For the output y1 the areas of NO and MO
control coincides. The aperiodicity border (4.50), (4.52) gives for κ < 1 some
usefull information just for small values of τf . All these subtle nuances shows
that impact of the robust analytical tuning based on the closed loop pole is
very restricted by its nature. The u-TV values with TVmin = 1 correspond to
unit step of the setpoint signal and K = 1. In order to eliminate dependance
on these parameters, it is more appropriate to work with TV0 criterion.



164 Mikuláš Huba
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Fig. 4.14 Performance portrait of the PI0-IM controller for setpoint response
with two values of τf = 1/2 and τf = 2 and different measurement precissions
ǫy = {0.1, 0.05, 0.02, 0.01, 0.001, 0.0001, 0.00001} with white showing the best perfor-
mance; dotted border of complex poles (4.50), (4.52)
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4.2.3 PI0-IM: Impact of the Parameter Mismatch on
Setpoint Steps

In tuning the controller one will usually ask: “which tuning will guarantee
chosen qualitative shape of transients and simultaneously give minimal IAE
values for the whole possible extent of parameter changes?”

In answering this question, let us formulate the control task in robust
design of the PI0-IM controller more precisely. For the plant uncertainty
given as

K ∈ 〈Kmin,Kmax〉 ; cK = Kmax/Kmin ≥ 1

T1 ∈ 〈T1,min, T1,max〉 ; cT = T1,max/T1,min ≥ 1
(4.55)

that in the plane of normalized parameters (κ, τ1) yields uncertainty boxes
of all possible operating points

UB =

[
B11 B12

B21 B22

]

=

[
κmin, τ1,max κmax, τ1,max

κmin, τ1,min κmax, τ1,min

]

(4.56)

or in the case with single uncertain parameter corresponding to the uncer-
tainty line segment (ULS) the task is to find controller tuning guaranteeing
fastest possible transients (with minimal average IAE value). In fulfilling this
task it is firstly required to identify the loop performance portrait correspond-
ing to dimensionless variables (e.g.by fixing plant values K = 1, T1 = 1 and
by mapping system behavior for interesting range of plant values K0 and
T10 (for intervals larger than given by (4.55) and for some range of values
τf = Tf/T10. All interesting results achieved by computer simulation will
then be stored within the 3D space of dimensionless parameters (4.51).

Examples of sweeping parameter area corresponding e.g. to ǫ-MO output
y0 and looking for appropriate UB lying completely in it are in Fig. 4.15. By
using uncertainty information represented by (4.55) it is necessary to sweep
over all possible values of Tf for UB (4.56) or ULS defined by ratios of extreme
values of uncertain parameters cK , or cT and lying in the required perfor-
mance area. During this step, from identified values of particular UB (4.55)
one has to recalculate the task from fixed controller tuning K0, T10 and vari-
able plant parameters K,T1 to fixed limit loop values (4.55) and variable
controller tuning corresponding to the optimal position of UB according to

K0 = κoptminKmax ; T10 = T1,min/τ
opt
min ; IAEmean = T10IAE

opt
mean (4.57)

Finally, the identified optimal tuning has to be verified by simulation to
guarantee required degree of output monotonicity and overshooting. Due to
truncation errors, results fulfilling given condition may be shifted by one
quantization step that may be important especially when working with lower
number of points in the parameter grid. In such a case, finer controller tuning
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could reasonably improve the resulting control performance. The calculation
may be accelerated by generating new performance portrait just for a limited
range of unknown parameters. Minimal IAE values usually correspond to UB
shifted as much as possible to the values with κ ≥ 1, i.e. to K0 ≥ Kmax.
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Fig. 4.15 Uncertainty boxes corresponding to interval plant parameters (3.43) for
τf = 2 (left) and τf = 1/2 (right) and tolerated overshooting 1%; optimal UB (bold)
ǫy = {0.1, 0.05, 0.02, 0.01, 0.001, 0.0001, 0.00001} with white showing the best perfor-
mance;

We may use this fact in simplifying visualization problems in 3D, when
by supposing K0 = Kmax it is possible to decrease the number of uncertain
parameters to one and to work in 2D parameter space. Also here we may
expect that for the output y0 of the PI0 controller the transients may be
monotonic for τ1 ≤ 1 and τf > 0. Without considering nonmodelled dynam-
ics, the transient responses may be arbitrarily speeded up by decreasing the
DO filter time constant and the IAE value over the ULS may be made to
be arbitrarily small. From this point of view, use of more complex PI0-IM
controller seems to be much more advantageous than the use of I0 controller
with uncertainty characteristics in Fig. 4.9. However, even in the situations
with negligable uncertainty of the dominant dynamics parameters, in real
loops the process of speeding up transient responses by decreasing the DO
filter time constant will be limited by the every time present nonmodelled
dynamics. The DO filter time constant must remain larger that the largest
time constant or dead time approximating the nonmodelled dynamics.

Example 4.2 (Tuning of the PI0 Controller for Limited TV0 Values). The
task is to tune robustly PI0 controller to guarantee for setpoint step response
limited values of TV0<TV0,max = 0.1 for the plant uncertainty limits

T1 ∈ 〈1, 1.5〉 ; K ∈ 〈10, 20〉 (4.58)

Performance Portrait (Fig. 4.16 ) was generated over 100x100 points for
T10 = 1,K = K0 = 1, τ1 ∈ 〈0.01, 2〉 and τf ∈ 〈0.01, 5〉. In order to keep the
disturbance response as fast as possible, controller will be tuned by using the
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smallest possible Tf value enabling to achieve the required performance. Lo-
calization of the corresponding ULS in the PP is shown by bold line segment.
The tuing parameters are determined according to (4.57). By sweeping the
PP one gets

τf = 2.1327 ; τopt1,min = 0.8101 ; IAEopt
1,mean = 1.0267

T10 = T1,min/τ
opt
1,min = 1.2344 ; Tf = τfT10 = 2.6327

IAE1,mean = T10IAE
opt
1,mean

(4.59)
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Fig. 4.16 PI0: Performance portrait for the TV0 values of the setpoint step re-
sponses with the ULS corresponding for the minimal possible value τf to the limit T1

values (4.58) and to TV0 < 0.1

From the setpoint step responses corresonding to limit values (4.58) and
satisfying TV0 < 0.1 it is to see that the amplitude deviations from mono-
tonicity and nonovershooting may be approximatelly expressed as

ǫy ≈ TV0,max/2 (4.60)

Such a relation holds, however, just in situations, when the transients show
one pulse superimposed on monotonic (in the limit case step) variables.
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4.2.4 PI0-IM: Impact of Parameter Mismatch for
Disturbance Step

Up to now, all our attention was concentrated on the setpoint response, but
already there we tried to find such a controller tuning that would fulfill the
performance requirements with the minimal Tf values that are expected to
give the fastest possible disturbance reconstruction and compensation. Now
we will focuss our attention also to the disturbance response. For an input
disturbance vi the disturbance responses are defined by transfer functions

Fvi0(s) =
Y0(s)

Vi(s)
=

sKK0Tf (1 + T1s)

[K0TfT1s2 + (K0Tf +KT10) s+K]

Fvi1(s) =
Y1(s)

Vi(s)
=

1

(1 + T1s)
Fvi0(s)

(4.61)

As it is obvious from these transfer functions that yield Fvi0(0) = 0 and
Fvi1(0) = 0, a piecewise constant input disturbances will cause no permanent
error. From Fvij(0) = 0 ; j = 0, 1 it is obvious that in steady states influence of
admissible piecewise constant input disturbances disturbances is completely
eliminated. For generating performance portrait it is again advantageous to
introduce normalized loop parameters (4.51) and (4.53) that yield

Fvi0(p) =
Y0(p)

Vi(p)
=

pK0τf (1 + τ1p)

[κτfτ1p2 + (κτf + 1) p+ 1]

Fvi1(p) =
Y1(p)

Vi(p)
=

1

(1 + τ1p)
Fvi0(p)

(4.62)
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As it is obvious from these transfer functions, the performance analysis
may not be fully realized in the normalized variables and the disturbance
response will also depend on the tuning parameter K0. So, localization of UB
in space of normalized parameters will be based on sweeping the parameter
portrait for position corresponding to minimal IAE value that has to respect
not only the time scale (4.53), but also scaling imposed by K0.

It is to remember that NO, or MO areas of controller parameters identified
by the computer based analysis for a disturbance step are different from
equivalent areas corresponding to setpoint step step. When it is required
to keep some property for setpoint as well as for disturbance response, the
uncertainty box corresponding to possible loop values must lie in intersection
of corresponding areas.

4.2.5 Influence of the Nonmodelled Dynamics

Results of the previous analysis show that controller tuning is dominantly
influenced by robustness issues. This holds also in situations, when the pa-
rameter changes are relatively negligible and plant is supposed to have time
invariant dynamics.

The first intuitive expectation migt be that by decreasing plant uncer-
tainty and by canceling the dominant time constants by inverse dynamics,
the remaining loop dynamics can be arbitrarily speeded up (as for fundamen-
tal solutions) by deceasing Tf → 0. This is, however, not true in practice.
In such situations a reliable PI0 controller tuning would require to deter-
mine not only the dominant loop time constant T1 but also some parameter
approximating the nonmodelled dynamics. In the simplest case it is again
possible to approximate the nonmodelled dynamics by a time constant Ta
(accumulative delay), or by a transport delays Td. Such loop approximations
would be based on models as

Fyd(s) =
Ym(s)

U(s)
=
Ke−Tds

1 + T1s
(4.63)

or

Fyd(s) =
Ym(s)

U(s)
=

K

(1 + T1s) (1 + Tas)
(4.64)

In the nominal case with T10 = T1, the first estimate of appropriate Tf
values for which the nonmodelled dynamics might be important could be
based on Tab. 4.1 and Tab. 4.2 derived for the I0 controller. Such approach
was already mentioned by textbooks (Huba, 2003, 2006). Using approxima-
tion of the nonmodelled dynamics by dead time and K0 = K,T10 = T1 one
gets e.g values recommended by Vı́tečková et al (2000), or many other results
summarized by O’Dwyer (2000).
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To get more detailed picture of the resulting loop dynamics for T10 6== T1 ,
the computer based analysis can be used again. For both models 4.63 and 4.64
introduction of additional parameter for the nonmodell dynamics leads to
increase of the dimension of the solved problem. It means that already when
using possibility for simplification by choosing K0 = Kmax it is necessary
to work in a 3D space. Therefore, it is always advantageous to check the
possibility to simplify the problem e.g. by choosing T10 = T1,max and to solve
the problem in 2D space of parameters (τd, τf ), ; τd = Td/T10.

4.2.6 Effect of Measurement and Quantization Noise

For a possible measurement noise δ the responses of both possible outputs
are defined by

Fδ0(s) =
Y0(s)

δ(s)
=

K (1 + T10s) (1 + T1s)

[K0TfT1s2 + (K0Tf +KT10) s+K]

Fδ1(s) =
Y1(s)

δ(s)
=

1

(1 + T1s)
Fδ0(s)

(4.65)

In the robustness analysis in previous sections we came to conclusion that
from the robustness point of view it is better to use the more complex PI0
controller than the simpler I0 controller. However, in tuning the fundamen-
tal PI0-IM controller given by Fig. 3.12a it is important to remember that
a measurement noise step by ∆δ produces in the control signal kick with
amplitude

∆u = lim
s→∞

s
1 + T10s

K0Tfs

∆δ

s
=

T10
K0Tf

∆δ (4.66)

When for a given value ∆δ one chooses the filter time constant Tf too
small, noise amplification and due to this the corresponding ”kick” of the
manipulated variable ∆u may increase over acceptable values. So, the filter
time constant (or the equivalent gain of the P action (4.44)) should also con-
sider acteptable levels of such control signal kicks defined by the maximal
amplitudes of the measurement noise. Whereas for the I0 controller the in-
tegral character of controller is guaranteeing homogenous filtration over all
frequencies, for the PI0 controller filtration properties dominate just for fre-
quencies over the DO bandwidth Ωf = 1/Tf . So, the measurement noise and
required filtration properties represent the key aspects in deciding if to use
I0 or PI0 control.
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4.2.7 Conclusions PI0

Space available for this contribution has not enabled to go into detailed com-
paring of all possible structures of the PI0 controllers, of possible DO filters
and prefitlers. But, in interpreting results from the computer based analysis
of robust controller tuning it is important to note several points:

1. For the setpoint step responses of output y0 (input of the time constant)
NO areas are different from MO ones. For the disturbance responses of
output y0 and for both responses of output y1 NO and MO areas are
identical.

2. NO and MO areas corresponding to output y0 are different from those
corresponding to the output y1. It is to remember that just the tasks with
output y0 with the relative degree zero genericly fall into DC0.

3. Transients from DC0 may also be designed for the output y1 (see Theo-
rem 3.1), but there faster dynamics may be achieved by solutions of DC1,
treated e.g in Huba (2011).

4. Setpoint step responses are more sensitive to the plant-model mismatch
than the disturbance responses. This sensitivity typical for the setpoint
step responses of the output y0 may be reasonable decreased by using
prefilter with Tp = Tf .

5. For NO and MO step responses of output y0 it is important to work with
K0 ≥ K and T10 ≥ T1.

6. By limiting the admissible TV0 values in tuning the PI0 controller it is
simultaneously possible to limit the amplitude deviations from nonover-
shooting and monotonicity to approximatelly ǫy ≈ TV0,max

4.2.8 Performance Portrait of the FPI0 Controller for
Tp = Tf

After extending the PI0 controller by prefilter with the time constant Tp = Tf
to the FPI0 (4.44) it is possible to reasonably enlarge areas of NO and MO
step responses without increasing number of tuned parameters. The perfor-
mance portrait in Fig. 4.18 shows that with the tuning T10 = T1,max and
K0 = Kmaxit is possible to achieve outputs u, y0 and y1 with zero TV0 val-
ues for practically arbitrary Tf values. This, however, holds just for systems
with negligable nonmodelled dynamics. Therefore, in real applications this
controller could be reliably tuned after approximating the nonmodelled dy-
namics and by increasing number of normalized parameters by using the PP
generated in 3D. A simplified approach could e.g use the analyzes of the I0
tuning to choose Tf and according to the PP in 2D to set

T10 = T1,max ; K0 = Kmax (4.67)
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4.3 Predictive I0 and Filtered Predictive I0 Controllers
(PrI0 and FPrI0)

Tuning of the closed loop systems involving dead-time still represents a chal-
lenging domain of control research. Thereby, importance of dead-time systems
that are being used to describe transport of mass, energy and information
and to approximate accumulation of time lags in a chain of low order sys-
tems is permanently increasing, to mention just different new applications
arising in the field of remote control via computer networks and telecommu-
nication links. As it was shown in many contributions (see e.g. Normey-Rico
and Camacho (2007)), an increase of the dead-time values with respect to
the dominant plant time constant leads in the loops with PID controllers
without active dead time compensation to rapid performance deterioration.
Consider a stepwise constant reference signal w(t) and an uncertain plant
with dominant dead-time

F (s) = Ke−Tds

K ∈ 〈Kmin,Kmax〉 ; cK = Kmax/Kmin ≥ 1

Td ∈ 〈Td,min, Td,max〉 ; cd = Td,max/Td,min ≥ 1

(4.68)

The task is to design robust controller that would guarantee step responses
of the output and control variable with tolerable deviation from monotonicity
defined e.g. by specifying the amplitude deviations ǫy, or ǫu, or by specifying
the integral measures for deviations u-TV0 or y-TV0.

The plant model (4.68) may be simply identified by evaluating the average

residence time (4.41) by the step responses Åström and Hägglund (1995), or
by a general input signal according to Ingimundarson (2000).

In the simplest case, based on estimate of the plant gain K0, to set out-
put of the considered plant to the reference value w the static feedforward
control 1/K0 maight be used. For the plant with an output disturbance vo
it would be possible to extend this static feedforward control by the Distur-
bance Observer (DO) inspired by the IMC (Morari and Zafiriou, 1989). For
the input disturbance it may similarly be used the DO based on the inverse
plant model inspired by Ohnishi et al. (1996). Thereby, in both cases, esti-
mate of the plant dead time Td0 was inserted into the DO branch from the
controller output.

In controlling plant (4.68) both these alternatives are equivalent, but in
order to be clear in controlling more complex plants and with sake of the
brevity we will propose following:

Definition 4.8 (Predictive PrI0 and FPrI0 Controllers). Under the
PrI0 controller we will understand the static feedforward control with the
gain 1/K0 extended by the input or output disturbance reconstruction and
compensation (Fig. 4.19) with the DO filter time constant Tf and by the
prefilter with the time constant Tp (in the simpest case with Tp = Tf) giving
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Fig. 4.18 FPI0 with Tp = Tf : Performance portrait for the TV0 values of the setpoint
step responses at the outputs y0 (controller output) and y1 and the equivalent IAE
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the resulting control law

U(s) =
W (s)

K0 (1 + Tfs)
−
[

Y (s)

K0 (1 + Tfs)
− e−Td0sU(s)

K0 (1 + Tfs)

]

(4.69)

Fig. 4.19 a) Fundamental FPrI0-PM controller (FPrI0-IMC controller) controller
designed as static feedforward control extended by input disturbance reconstruction
and compensation using Parallel plant Model (above) and the FPrI0-IM controller
with Inverse Model of the invertible dynamics reduced to 1/K0 (below); in both cases
the disturbance reconstruction was balanced by including dead time estimate into the
DO channel from the controller output; both structures are extended by a prefilter
(in the simpest case with Tp = Tf ) to FPrI0 controllers
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4.3.1 Performance Portrait of the PrI0 and FPrI0
Controllers

Intuitively one could expect optimal behavior of this controller for K0 =
K,Td0 = Td. However, how to choose K0 and Td0 and what happens in the
case of a parameter mismatch?

The setpoint-to-output closed loop transfer functions of the PrI0 and FPrI0
controllers corresponding to the output y1 and a plant-model parameter dis-
match are given as

Fw1 (s) =
Y1 (s)

W (s)
=

K (1 + Tfs) e
−Tds

(1 + Tps) [K0 (Tfs+ 1− e−Td0s) +Ke−Tds]

Fw1p (s) =
Ke−Tds

K0 (Tfs+ 1− e−Td0s) +Ke−Tds
; Tp = Tf

(4.70)

Similarly, the input disturbance-to-output y1 closed loop transfer functions
for the plant-model parameter dismatch is given as

Fvi1 (s) =
Y1 (s)

Vi (s)
=

KK0e
−Tds

(
1 + Tfs− e−Td0s

)

K0 (Tfs+ 1− e−Td0s) +Ke−Tds
(4.71)

Obviously, Fw1 (0) = 1 and Fvi1 (0) = 0, what guarantees I-behaviour, i.e.
rejection of piece-wise constant disturbances also for K0 6= K and Td0 6= Td.
These properties hold also for the output y0

Fw0 (s) = Fw1 (s) e
Tds ; Fvi0 (s) = Fvi1 (s) e

Tds (4.72)

To be able to use the generated PP for any plant (4.68), the setpoint
step responses will be mapped by using 3D coordinate system (κ, τf , τd) with
normalized variables

κ = K0/K ; τf = Tf/Td0 ; τd = Td/Td0 ; τp = Tp/Td0 ; p = Td0s (4.73)

that yield

Fw1 (p) =
Y1 (p)

W (p)
=

(1 + τfp) e
−τdp

(1 + τps) [κ (τfp+ 1− e−p) + e−τdp]

Fw1p (p) =
e−τdp

κ (τfp+ 1− e−p) + e−τdp
; τp = τf

Fvi1 (p) =
Y1 (p)

Vi (p)
=

K0e
−τdp (1 + τfp− e−p)

κ (τfp+ 1− e−p) + e−τdp

(4.74)

The transfer functions corresponding to the output y0 may similarly be
derived by means of
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Fw0 (p) = Fw1 (p) e
τdp ; Fvi0 (p) = Fvi1 (p) e

τdp (4.75)

Examples of one layer of the 3D PP of the PI0 and FPI0 in Fig. 4.20 that
by introducing the prefilter the ǫy-areas reasonably enlarger and that e.g. the
10−5-MO area is close to the area with TV0 = 10−4, what again points out
possibility to work with the numerically simpler measures for the integral
deviations from strictly monotonic control at the plant input and output.

By being based on the 2-parameter plant model the PrI controllers repre-
sent alternatives to the PI controllers. For systems with the dominant time
delays they enable substantial quality improvement. First version of PrI con-
troller was proposed by Reswick (1956). Yet before the well known Smith
Predictor (SP) he proposed active compensation of the whole identified dead
time (Td0 = Td and K0 = K) corresponding Tf = 0. This caused, how-
ever, enormous sensitivity to parameters uncertainty, because for Tf → 0 the
monotonicity areas shrink (Fig. 4.21). Because of lacking method for a reli-

able controller tuning, it was practically forgotten and newer works (Åström
& Hägglund, 1995; 2005, Guzman et al., 2008; Normey-Rico et al., 2009)
mention just the Smith Predictor. The PP based analysis enables to explain
the high sensitivity of the Reswick’s solution and importance of the choice
of Tf and gives also possibility of robust tuning of these simplest possible
predictive controllers.

4.3.2 Robust Tuning of the PrI0 and FPrI0 Controllers

In a subplane (κ, τd) with a given τf the robust design corresponding to
plant (4.68) means to locate Uncertainty Box of all possible operating points

UB =

[
B11 B12

B21 B22

]

=

[
κmin, τd,max κmax, τd,max

κmin, τd,min κmax, τd,min

]

(4.76)

with vertices corresponding to combinations of the limit values of κ and τd
by specifying K0, Td0 and Tf in such a manner that will guarantee the fastest
possible transients (with minimal average IAE value). Examples of sweeping
parameter area corresponding e.g. to ǫy-MO output y1, ǫy = 0.02 and looking
for appropriate UB lying completely in it are in Fig. 4.22.

Due to the relatively rough quantization, the achieved overshooting (Fig.
XXX3 below) is not absolutely close to the tolerable value. It is to note that
the found“optimal”tuning of this controller is very close to the expected value
of the gain K0 = Kmax) that may reasonably simplify the tuning process by
reducing the task to 2D space of parameters (τd, τf ).

In the case with single uncertain parameter the task reduces to finding
optimal position of a horizontal (uncertain gain K), or vertical (uncertain
Td) uncertainty line segment (ULS).
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Fig. 4.20 One layer of the PP of the plant (4.68) with the PrI0 (above)
and FPrI0 controller (below) corresponding to τf = 0.49 generated over
61x61x11 points and showing ǫy-MO areas (left above) for tollerances ǫy =
{0.1, 0.05, 0.02, 0.01, 0.001, 0.0001, 0.00001}, white denoting the best performance, the
u-TV0 contours (right above) and the IAE0 and IAE1 levels (below) in the plane
(κ, τd)
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Fig. 4.21 Layer of the PP of the plant (4.68) with the FPrI0 controller corresponding
to τf = 0.15 generated over 61x61x11 points and showing ǫy-MO areas (left above)
for tollerances ǫy = {0.1, 0.05, 0.02, 0.01, 0.001, 0.0001, 0.00001}, white denoting the best
performance, the u-TV0 contours (right above) and the IAE0 and IAE1 levels (below)
in the plane (κ, τd)

By using uncertainty information represented by (4.68) it is necessary to
sweep over all possible values of Tf for UB (4.76) or ULS defined by ra-
tios of extreme values of uncertain parameters cK , or cd and lying in the
required performance area. During this step, from identified values of partic-
ular UB (4.68) one has to recalculate the task from fixed controller tuning
K0, Td,0 and variable plant parameters K,Td to fixed limit loop values (4.68)
and variable controller tuning Tf ,K0 and Td,0 corresponding to the optimal
position of UB according to

K0 = κoptminKmax ; Td,0 = Td,min/τ
opt
min ; IAEmean = Td,0IAE

opt
mean (4.77)

By increasing the tolerable deviation from monotonicity to ǫy = 0.05
(Fig. 4.23), the transient run faster, but simultaneously the additional control
effort expressed by increased u-TV0 value occurs.

In both analyzed cases, due to the relatively rough quantization, the
achieved overshooting of the step responses is not absolutely close to the
tolerable value. A direct increase of points in one dimension in generating
the the performance portrait leads in 3D PP to cubic increase of the total
number of points. But, from the shapes of ǫy-MO areas of the PP it is evident
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Fig. 4.22 Result for seeping an optimal UB of the plant (4.68) with
Kmin = 1, Kmax = 2, Td,min = 1, Td,max = 2 over PP of 61x61x11
points, areas of ǫy-MO output step responses identified for tollerances ǫy =
{0.1, 0.05, 0.02, 0.01, 0.001, 0.0001, 0.00001}, white denoting the best performance, with
identified parameters Tf = 1.3796, K0 = 2.005 and Td,0 = 1.8519 (above) and the
corresponding transients (below)

that it is allways possible to set K0 = Kmax and reduce the whole design
procedure to 2D space (τd, τf ).

Example 4.3 (PrI0 Controler for Plant from Example 4.1).
This illustrative example compares robust design of the PrI0 controller

with the FSP ( Normey-Rico and Camacho (2007); Example 6.1) with the
robust design of I controller in Example 4.1. The uncertain plant to be con-
trolled is (4.38). Its Performance Portraits achieved by the FSP and I con-
troller are given by Fig. 4.10 and Fig. 4.11. For tuning the FPrI0 controller,
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Fig. 4.23 Result for seeping an optimal UB of the plant (4.68) with Kmin =
1, Kmax = 2, Td,min = 1, Td,max = 2 over PP of 61x61x11 points with identified param-
eters Tf = 1.0648, K0 = 2.005 and Td,0 = 1.8519; areas of ǫy-MO output step responses
identified for tollerances ǫy = {0.1, 0.05, 0.02, 0.01, 0.001, 0.0001, 0.00001}, white denot-
ing the best performance (above) and the corresponding transients (below)

similarly as in (4.42) the equivalent dead time will be determined by using
information about the sum of the plant time constants as

Td = L+ S ; S =
∑

Ti = 1.875 ; Td ∈ 〈10.875, 13.875〉 (4.78)

According to this, the optimal UB (Fig.) was specified in 3D PP of the
plant (4.68) by tuning parameters

Tf = 4.7359 ; K0 = 1.584 ; Td0 = 11.6935 (4.79)
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Fig. 4.24 Result for sweeping IAE optimal UB for y1 and 0.02–MO of the plant (4.38)
with Kp,min = 0.8,Kp,max = 1.2, Lmin = 9, Lmax = 12 approximated by Td (4.78)
over PP of 61x61x11 points with identified parameters Tf = 4.7359, K0 = 1.584 and
Td,0 = 1.8519; areas of ǫy-MO output step responses of y1 identified for tollerances
ǫy = {0.1, 0.05, 0.02, 0.01, 0.001, 0.0001, 0.00001}, white denoting the best performance
(above) and transients corresponding to the limit uncertain parameter values (below)

Due to the relatively rough quantization, the calculated gain K0 is rather
overestimated with respect to Kmax = 1.2 and so the achieved overshooting
of the step responses is not absolutely close to the tolerable value. Despite
to this the achieved results are comparable with those achieved with retuned
Filtered Smith Predictor based on the first order plus dead time model (Huba,
2011). Also now, explanation for this surprising result, when the extremely
simple model gives excellent results, may be taken from the same source as
this example ( Normey-Rico and Camacho (2007), pp. 174): “when the dead-
time is dominant, the contribution of the open loop poles to the closed loop
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response will be small thus their elimination will contribute with a small
increment in the speed of the transients”. PrI0 and FPrI0 fully respect this
fact and will surelly find top position in many industrial applications.

4.4 Summary

1. Known input disturbances may be compensated by opposite signal at the
controller output. Output disturbances may be compensated by opposite
signal correcting the reference setpoint value of the controller.

2. By extending the static feedforward control of a memoryless plant by
disturbance observer (DO) for reconstruction of disturbances one gets
the generic structure of the I0 controller. Different stable low-pass filter
can be chosen with respect to the measurement noise filtration and loop
robustness. Continuity of the setpoint step response may be achieved by
using prefilter for the setpoint variable.

3. In loops with strictly memoryless plant represents the I0 controller a
fundamental solution – the DO filter time constant may be arbitrarily
small (the gain of the equivalent I0 controller infinitely large) and the
corresponding transient responses infinitely fast.

4. In tuning real loops with memoryless plant it is important to estimate
the every time present nonmodelled loop dynamics. This can be approx-
imated by dead time, by time constant, or by more complex dynamics.
Controller parameters corresponding to the fastest non-overshooting and
monotonic control may be well approximated by analyzing conditions of
double real dominant close doop pole (DRDP). Approximations by dead
time usually lead to faster monotonic transients than approximations by
time constant.

5. Tuning of the I0 controller gain is equivalent to simultaneous tuning of
the DO filter time constant Tf used in disturbance reconstruction and
tuning of the reciprocal gain of the feedforward control. For achieving
setpoint step responses with defined overshooting, maximal dead time
values and minimal plant gains have to be identified.

6. Tuning of the I0 controller brings several degrees of freedom. One can
decide about dynamics of the control signal corresponding to a setpoint
step that may either have stepwise character (achieved by using controller
according to Fig. 4.1) or softer exponential one (given by controller in
Fig. 4.12 with prefilter time constant Tp = Tf , or by controller in Fig. 4.13
without prefilter). The nonmodelled loop dynamics may be approximated
by a dead time, by a time constant, or by more complex transfer function.
The loop dynamics may be approximated by providing a step response
experiment, by measurement on stability border, by relay experiment,
etc.
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7. In control loops with a memoryless plant and one (stable) dominant time
constant it is possible to cancel its effect in DO by filtered inverse of this
dominant loop dynamics that gives structure of the PI0 controller. For a
neglected nonmodelled dynamics it represents a fundamental solution –
ideally, the DO filter time constant may be arbitrarily small (the equiv-
alent I0 controller gain may be infinitely large) and the corresponding
transient responses may be infinitely fast. Different stable low-pass filters
can be chosen with respect to the measurement noise filtration and loop
robustness.

8. In nominal case, a reliable controller tuning has to respect the nonmod-
elled loop dynamics that remains after cancelling the dominant time con-
stant. The dominant time plant constant effect on the reconstruction
dynamics may also be balanced by adding its estimate into the branch
leading from the controller output. In this way one gets IMC like structure
of the PI0 controller that has no more properties of fundamental solu-
tions: its dynamics cannot be arbitrarily speeded up, just to a limit value
given by the dominant loop time constant. This solution may, however,
be interesting by low noise sensitivity and robustness against parameters
uncertaintny.

9. Active compensation of the loop (plant) time constants by the inverse
terms in the DO based PI0 controllers may lead to increased sensitivity
to the measurement noise. But, the loop sensitivity to parameters un-
certainty may be decreased. Higher order models usually also give lower
effect of the nonmodelled dynamics. Ideal controllers (corresponding to
models with neglected nonmodelld dynamics) represent fundamental so-
lutions enabaling to shift closed loop pole (observer pole) theoretically
to minus infinity and so to speed up transients to stepwise changes of
control signal and output variable. However, in all real loops it is neces-
sary to limit admissible closed loop poles (filter poles) to values giving
acceptable noise amplification, robustness to model uncertainty and non-
modelled dynamics.

10. For the closed loop with monotonic nonoverhooting control signal tran-
sients and for admissible inputs (reference signals and acting distur-
bances) the control saturation will never be activated and so it can be
omitted from considered control structures. This enables to describe all
problems considered within the dynamical class 0 (DC0) by linear control
theory. Therefore, in dealing with linear PID control structures we will
consider their use within the DC0, even in situations when for the sake
of simplicity the index “0” was omitted.

11. Active compensation of dead time by inversion is not possible. In this
case, the dead time introducing time shift of the measured output may be
compensated by including estimate of dead time into the observer branch
leading from the controller output. The disturbance will be reconstructed
by the time delay, but its values will be not distorted by different time
shifts of both DO branches. In this way it is possible to construct pre-
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dictive I0 controller (PrI0) and its filtered version FPrI0 equipped by a
prefilter.

12. Introduction of DO based I action designed as reconstruction and com-
pensation of input, or output disturbances plays a key role in designing
constrained integrating controllers for higher dynamical classes of control
that do not exhibit integrator windup.

4.5 Questions and Exercises

1. Which controller is more sensitive to the measurement noise: the PI0, or
the PrI0 one?

2. How could you define PID0 controller for active compensation of two time
constants?

3. Could you formulate alternative solutions to this problem?
4. Which criteria must fulfill proposed controllers to be considered as the

fundamental ones? Do all solution proposed by you fulfill these require-
ments?

5. What does characterize index “0” of the dynamical class DC0?
6. How could you define PrPI0 controller for active compensation of one

time constant and of long dead time?
7. Could you formulate alternative solutions to this problem?
8. Which criteria must fulfill propoes controllers to be considered as the

fundamental ones? Do all solution proposed by you fulfill these require-
ments?
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Åström, K. J. and T. Hägglund (1995) PID controllers: Theory, design, and tuning –
2nd ed., Instrument Society of America, Research Triangle Park, NC.
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Vrančič, D., Strmčnik, S., Kocijan, J. (2004). Improving disturbance rejection of PI
controllers by means of the magnitude optimum method. ISA Trans. 43, 73-84.





Chapter 5

Introduction to Nonlinear Model
Predictive Control and Moving Horizon
Estimation

Tor A. Johansen

Abstract Nonlinear model predictive control and moving horizon estima-
tion are related methods since both are based on the concept of solving an
optimization problem that involves a finite time horizon and a dynamic math-
ematical model. This chapter provides an introduction to these methods, with
emphasis on how to formulate the optimization problem. Both theoretical and
practical aspects are treated, ranging from theoretical concepts such as sta-
bility, existence and uniqueness of the solution, to practical challenges related
to numerical optimization methods and computational complexity.

5.1 Introduction

The purpose of this chapter is to give an introduction to two of the most
powerful tools that can be used to address nonlinear control and estimation
problems - nonlinear model predictive control (NMPC) and nonlinear mov-
ing horizon estimation (NMHE). They are treated together since they are
almost identical in approach and implementation - even though they solve
two different and complementary problems.

The text is intended for advanced master and doctoral level students that
have a solid background in linear and nonlinear control theory, and with a
background in linear MPC, numerical methods for optimization and simula-
tion, and state estimation using observers and the Extended Kalman Filter.
Other excellent surveys to the topic and introductory texts can be found in
Allgöwer et al (1999); Findeisen et al (2003b); Mayne et al (2000); Morari
and Lee (1999); Rawlings (2000).

Tor A. Johansen
Department of Engineering Cybernetics, Norwegian University of Science and Tech-
nology, Trondheim, Norway, e-mail: tor.arne.johansen@itk.ntnu.no
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5.1.1 Motivation and Main Ideas

5.1.1.1 Nonlinear Control

Consider the problem of controlling a multi-variable nonlinear system, subject
to physical and operational constraints on the input and state. Well known
systematic nonlinear control methods such as feedback linearization (Isidori
(1989); Marino and Tomei (1995); Nijmeijer and van der Schaft (1990)) and
constructive Lyapunov-based methods (Krstic et al (1995); Sepulchre et al
(1997)) lead to very elegant solutions, but they depend on complicated design
procedures that does not scale well to large systems and they are not devel-
oped in order to handle constraints in a systematic manner. The concept
of optimal control, and in particular its practical implementation in terms
of Nonlinear Model Predictive Control (NMPC) is an attractive alternative
since the complexity of the control design and specification increases moder-
ately with the size and complexity of the system. In particular for systems
that can be adequately modeled with linear models, MPC has become the
de-facto standard advanced control method in the process industries (Qin
and Badgwell (1996)). This is due to its ability to handle large scale multi-
variable processes with tens or hundreds of inputs and states that must fulfill
physical and operational constraints.

MPC involves the formulation and solution of a numerical optimization
problem corresponding to a finite-horizon optimal control problem at each
sampling instant. Since the state of the system is updated during each sam-
pling period, a new optimization problem must be solved at each sampling
interval. This is know as the receding horizon approach. With linear mod-
els the MPC problem is typically a quadratic or linear program, which is
known to be convex and for which there exists a variety of numerical meth-
ods and software. While the numerical complexity of linear MPC may be
a reasonable challenge with powerful computers being available, there is no
doubt that NMPC is limited in its industrial impact due to the challenges
of guaranteeing a global (or at least sufficiently good) solution to the result-
ing nonlinear optimization problem within the real-time requirements (Qin
and Badgwell (2000)). Other limiting factors are the challenges of developing
nonlinear dynamic models and state estimators. The nonlinear programming
problem may have multiple local minima and will demand a much larger
number of computations at each sample, even without providing any hard
guarantees on the solution. Hence, NMPC is currently not a panacea that
can be plugged in to solved any control problem. However, it is a power-
ful approach of great promise that has proven itself in several applications,
Qin and Badgwell (2000); Foss and Schei (2007), and with further research
in the direction of numerical implementation technology and modeling and
state estimation methods, it may strengthen its position as the most powerful
method available for certain classes of systems.
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5.1.1.2 Nonlinear Estimation

Consider the state estimation problem of nonlinear systems. A least-squares
optimal state estimation problem can be formulated by minimizing a prop-
erly weighted least-squares criterion defined on the full data history horizon,
subject to the nonlinear model equations, (Moraal and Grizzle (1995b); Rao
et al (2003)). This is, however, impractical as infinite memory and processing
will be needed as the amount of data grows unbounded with time. Alterna-
tively, a well known sub-optimal estimator is given by an Extended Kalman
Filter (EKF) which approximates this least-squares problem and defines a fi-
nite memory recursive algorithm suited for real-time implementation, where
only the last measurement is used to update the state estimate, based on the
past history being approximately summarized by estimates of the state and
the error covariance matrix, Gelb (2002). Unfortunately, the EKF is based on
various stochastic assumptions on noise and disturbances that are rarely met
in practice, and in combination with nonlinearities and model uncertainty,
this may lead to unacceptable performance of the EKF. A possible better use
of the dynamic model and past history when updating the state estimate is
made by a nonlinear Moving Horizon State Estimator (NMHE) that makes
use of a finite memory moving window of both current and historical mea-
surement data in the least-squares criterion, possibly in addition to known
constraints on the state and uncertainty, and a state estimate and error co-
variance matrix estimate to estimate the arrival-cost at the beginning of the
data window, see Rao et al (2003); Moraal and Grizzle (1995b); Alessandri
et al (1999, 2008) for different formulation relying on somewhat different as-
sumptions. Such an MHE can also be considered a sub-optimal approximation
to an estimator that uses the full history of past data, and some empirical
studies, Haseltine and Rawlings (2005) show that the NMHE can perform
better than the EKF in terms of accuracy and robustness. It should also be
mentioned that other variations of the Kalman filter, such as particle filters
and the unscented Kalman filter, also show great promise for nonlinear state
estimation (Rawlings and Bakshi (2006); Kandepu et al (2008); Bølviken et al
(2001)) and are competitive alternatives to NMHE. Finally, we remark that
nonlinear observers based on constructive Lyapunov design methods Krstic
et al (1995); Sepulchre et al (1997) and nonlinear system theory (Marino and
Tomei (1995); Isidori (1989)) are developed for certain classes of nonlinear
systems and leads to very elegant and computationally efficient solutions, but
are not easy to develop for large classes of high order multi-variable systems.

5.1.2 Historical Literature Review

Originally, the MPC and MHE methods were developed fairly independently.
More recently, with the development of algorithms for constrained NMPC and
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NMHE their developments have converged and the methods are more often
presented as duals of each other and with similar notation and terminol-
ogy. One reason is the fundamental duality between estimation and control,
Goodwin et al (2005), but equally important may be their dependence on
nonlinear numerical optimization and similarities in the formulation of the
optimization problems that leads to synergies when implementing practical
solutions.

5.1.2.1 Nonlinear Model Predictive Control

The nonlinear optimal control theory was developed in the 1950’s and
1960’s, resulting in powerful characterizations such as the maximum prin-
ciple, Athans and Falb (1966) and dynamic programming, Bellman (1957).
In the direct numerical optimal control literature, Hicks and Ray (1971); Deu-
flhard (1974); Biegler (1984); Bock and Plitt (1984); Betts (2001); Gill et al
(1997); Bock et al (1999); von Stryk (1993), numerical methods to compute
open loop control trajectories were central research topics. Problem formu-
lations that included constraints on control and state variables were treated
using numerical optimization.

NMPC involves the repetitive solution of an optimal control problem at
each sampling instant in a receding horizon fashion. Unfortunately, there
is no guarantee that the receding horizon implementation of a sequences of
open loop optimal control solutions will perform well, or even be stable, when
considering the closed loop system. This challenge, in combination with the
tremendous success of linear MPC in the process industries, Qin and Badg-
well (1996), lead to an increasing academic interest in NMPC research with
focus on stability analysis and design modifications that guarantee stability
and robustness. The early results Chen and Shaw (1982); Keerthi and Gilbert
(1988); Mayne and Michalska (1990) boosted a large series of research, in-
cluding Michalska and Mayne (1993); Alamir and Bornard (1995); Chen and
Allgöwer (1998); Nicolao et al (2000); Scokaert et al (1999); Magni et al
(2001a,b); Jadbabaie et al (2001); Mayne et al (2000). Industrial applications
of NMPC have been reported, and are surveyed in Qin and Badgwell (2000);
Foss and Schei (2007).

One of the early contributions of NMPC are given in Li and Biegler (1989),
that uses linearization procedures and Gauss-Newton methods to provide a
numerical procedure for NMPC based on SQP that makes only one Newton-
iteration at each sampling instant. Theoretical results are also given in Li and
Biegler (1990). The continuation/GMRES method of Ohtsuka (2004) is based
on a similar philosophy of only one Newton-iteration per sample, while it is
based on interior point methods. Recent NMPC research along similar ideas
has benefited considerably from progress in numerical optimization, being
able to take advantage of structural properties on the NMPC problem and
general efficiency improvements, e.g. Biegler (2000); Diehl et al (2009); Tenny
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et al (2004); Zavala and Biegler (2009), in addition to important issues such
as robustness Magni et al (2003); Magni and Scattolini (2007); Limon et al
(2006).

In parallel with the development of NMPC, researchers have developed
so-called Real-Time Optimization (RTO) approaches, Sequeira et al (2002);
Xiong and Jutan (2003). They are conceptually similar to NMPC, as they
are generally based on nonlinear models (usually first principles models) and
nonlinear programming. Their conceptual difference is that RTO uses static
nonlinear models, while NMPC uses dynamic nonlinear models.

5.1.2.2 Nonlinear Moving Horizon Estimation

Generalizing ideas from linear filtering, Jazwinski (1968), early formulations
of NMHE were developed in Jang et al (1986); Ramamurthi et al (1993);
Kim et al (1991); Tjoa and Biegler (1991); Glad (1983); Zimmer (1994);
Michalska and Mayne (1995). A direct approach to the deterministic discrete-
time nonlinear MHE problem is to view the problem as one of inverting a
sequence of nonlinear algebraic equations defined from the state update and
measurement equations, and some moving time horizon, Moraal and Grizzle
(1995b).

Such discrete-time observers are formulated in the context of numerical
nonlinear optimization and analyzed with respect to convergence in Rao et al
(2003); Alessandri et al (1999, 2008); Raff et al (2005); Alamir (1999). In
recent contributions, Biyik and Arcak (2006) provides results on how to use
a continuous time model in the discrete time design, while issues related to
parameterization are highlighted in Alamir (2007) computational efficiency
are central targets of Zavala et al (2008); Alamir (2007); Alessandri et al
(2008).

Uniform observability is a key assumption in most formulations and anal-
ysis of NMHE. For many practical problems, like combined state and pa-
rameter estimation problems, uniform observability is often not fulfilled and
modifications are needed to achieve robustness, Moraal and Grizzle (1995a);
Sui and Johansen (2010).

5.1.3 Notation

Norms: For a vector x ∈ Rn, let ||x|| = ||x||2 =
√
xTx denote the Euclidean

norm, and ||x||1 = |x1| + ... + |xN | and ||x||∞ = maxi |xi|. The weighted

norms are for a given symmetric matrix Q ≻ 0 given as ||x||Q =
√

xTQx and
we use the same notation also when Q � 0. Vectors x1, x2, ..., xN are stacked
into one large vector x by the notation x = col(x1, x2, ...., xN ).
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For a continuous signal x(t), where t denotes continuous time, we let
x[t0, t1] denote the trajectory between t0 ≤ t ≤ t1.

5.1.4 Organization

This chapter is organized in three main sections. In section 5.2 the formulation
of NMPC optimization problems is described, focusing on the consequences
of the various choices and challenges an engineer will face when designing and
tuning an NMPC. Likewise, section 5.3 considers the formulation of NMHE
optimization problems. The more detailed aspects of implementation in terms
of numerical computations and solving the optimization problem, are treated
on a general level common for both NMPC and NMHE, in section 5.4.

5.2 NMPC Optimization Problem Formulation

This section will focus on the formulation of the NMPC problem, while the
detailed issues related to its numerical solution are postponed until section
5.4. It is, however, important to have in mind that these two issues are closely
linked. While the NMPC problem formulation is driven by the specification
of the control objective, constraints and dynamic model formulations, one
should also consider potential numerical challenges at this point. In partic-
ular, important characteristics of the tradeoff between numerical accuracy
and computational complexity are determined already at the point when the
NMPC optimization problem is formulation through discretization, choice of
parameterizations, and choice of decision variables and constraint formula-
tions in the optimization problem. Some of these relationships are treated
also in this section, together with fundamental properties of the optimization
problem, including stability, convexity and the link between controllability
and well-posedness of the optimization problem.

5.2.1 Continuous-time Model, Discretization and
Finite Parameterization

This section will introduce a basic nonlinear optimal control formulation
starting from a continuous time model and a finite horizon where the ob-
jective is to minimize a cost function
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J(u[0, T ], x[0, T ]) ,

∫ T

0

ℓ(x(t), u(t), t)dt + S(x(T ), T ) (5.1)

(5.2)

subject to the inequality constraints for all t ∈ [0, T ]

umin ≤ u(t) ≤ umax (5.3)

g(x(t), u(t), t) ≤ 0 (5.4)

and the evolution of the ordinary differential equation (ODE) given by

d

dt
x(t) = f(x(t), u(t), t) (5.5)

with given initial condition x(0) ∈ Rn. The function ℓ is know as the stage
cost, S is the terminal cost, T > 0 is the horizon, and together these define
the cost function J . The evolution of the state x(t) is given by the func-
tion f according to (5.5) and depends on the input signal u(t) ∈ R

m and
time t, and forms an infinite-dimensional equality constraint to the optimal
solution in the formulation above. In addition there is saturation on the in-
put with minimum and maximum thresholds umin and umax, respectively,
and general inequality constraints jointly on states and inputs, point-wise in
time t ∈ [0, T ], defined by the function g. These constraints may result from
both physical and operational constraints of the control system and stability-
preserving terminal sets that will be discussed later in section 5.2.3, see also
Mayne et al (2000).The properties of ℓ and S have consequences for the con-
trol performance, including stability, and must be carefully understood and
tuned, Mayne et al (2000). We will return to this important issue in section
5.2.3. The explicit time-dependence in f, g, ℓ allows for time-varying reference
trajectories, known disturbances and exogenous input signals to be accounted
for in the optimal control problem formulation. Throughout this chapter we
implicitly assume all the functions involved satisfy the necessary regularity
assumptions, such as continuity and smoothness.

The above formulation basically defines an infinite-dimensional optimal
control problem whose solution can be characterized using classical tools like
calculus of variations, Pontryagin’s maximum principle (Athans and Falb
(1966)) and dynamic programming, Bellman (1957). In these indirect meth-
ods such characterizations of the solution can help us only in a very lim-
ited number of special cases to find an analytic exact representation of the
solution. The most interesting and well known is the unconstrained linear
quadratic regulator (LQR) where the feedback solution is a linear state feed-
back u = Kx under additional assumptions on T and S that makes the cost
function equivalent to an infinite horizon cost Athans and Falb (1966). More
recently, explicit piecewise linear state feedback representation of the solu-
tion can be made for the linearly constrained LQR problem (Bemporad et al
(2002)) and more generally for linearly constrained discrete-time piecewise
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linear systems, Bemporad et al (2000), although the complexity of the exact
representation may be prohibitive for anything but small scale systems.

Although numerical solutions can be found based on the characterizations
of the indirect methods, In the context of NMPC we choose to restrict our
attention to so-called direct methods that seems most promising and popular.
They are characterized by discretization and finite parameterization being
introduced in the optimal control problem formulation which is then directly
solved with numerical methods. The principle of NMPC is to repeatedly solve
finite-horizon optimal control problems of the above kind at each sampling
instant. This means that the initial state x(0) to (5.5) is viewed as the current
state based on the most recent measurements, and the optimal control tra-
jectory u[0, T ] solving the above problem is implemented for a short period
of time (usually one sampling interval, typically much smaller than T ) until
the procedure is repeated and an updated optimal control trajectory is avail-
able. However, the solution of the above optimal control problem, requires
reformulations for the following reasons

• The solution to the ordinary differential equation (5.5) with given initial
conditions must generally be based on discretized to be handled by numeri-
cal integration since exact closed-form solutions of the ODE are usually not
possible to formulate in the general nonlinear case. Viewed in a different
way, the infinite number of equality constraints (5.5) must be represented
by a finite approximation.

• The infinite-dimensional unknown solution u[0, T ] should be replaced by a
finite number of decision variables to be able to define a finite-dimensional
optimization problem that can be solved using numerical optimization.

• Measurements are typically sampled data available only at the sampling
instants, such that an updated initial state x(0) will normally be available
only at defined sampling instants.

• Arbitrary control trajectories cannot be implemented since typically the
control command can only be changed at defined sampling instants and is
typically assumed to be constant (or some other simple sample-and-hold
function such as linear) between the sampling instants.

In order to reformulate the problem into a finite-dimensional and practical
setting, we will make the following assumptions that will allow the integral
and differentiation operators to be approximated by numerical integration
methods.

• The horizon T is finite and given.
• The input signal u[0, T ] is assumed to be piecewise constant with a regular

sampling interval ts such that T is an integer multiple of ts, and param-
eterized by a vector U ∈ R

p such that u(t) = µ(t, U) ∈ R
r is piecewise

continuous.
• An (approximate) solution to (5.5) is assumed to be defined in the form
x(t) = φ(t, U, x(0)) at N discrete time instants Td = {t1, t2, ..., tN} ⊂ [0, T ]
for some ODE solution function φ(·). The discrete set of time instants Td
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results from discretization of the ODEs and its time instants may not be
equidistant. A simulation of the ODEs embedded in the function φ(·) may
incorporate additional intermediate time-steps not included in Td, since the
purpose of Td is primarily to discretize the inequality constraints (5.3)-(5.4)
at a finite number of representative points in time and to approximate the
integral in (5.1) with a finite sum. In general, the time instants Td need
not coincide with sampling instants.

The assumption of given horizon T is typical for many NMPC problems, but
there are important exceptions such as minimum-time formulations in e.g.
robotics, Shin and McKay (1985), batch process control (Foss et al (1995);
Nagy and Braatz (2003); Nagy et al (2007)), and other problems such as div-
ing compression (Feng et al (2009)), where the horizon T may be considered
a free variable. The resulting modifications to the problem formulations may
lead to additional challenges related to the time discretization and may make
the optimization problem more challenging.

The basis for the NMPC is the nominal model (5.5), and we remark that
model uncertainty, unknown disturbances and measurement errors are not
accounted for in this formulation of the NMPC problem. Various extensions
and variations that can relax many of the assumptions above can be made
relatively easy as straightforward modifications to the basic problem formu-
lation. Obviously, the ODEs (5.5) can result from the spatial discretization
of a partial differential equation (PDE), and the problem formulation can
be augmented with nonlinear algebraic constraints in a straightforward way
to account for a differential-algebraic model (DAE) model formulation (Cer-
vantes and Biegler (1998); Diehl et al (2002)). For simplicity of presentation,
we stick to the formulation above and return to some alternatives and op-
portunities that will be discussed in later sections.

The parameterization of the input signal µ(t, U) on the horizon t ∈ [0, T ] is
important and will influence both the control performance and computational
performance. In general, it should satisfy the following objectives

• Be sufficiently flexible in order to allow for a solution of the reformulated
optimal control problem close to the solution original problem (5.1)-(5.5).

• Be parsimonos in the sense that it does not contain unnecessary parameters
that will lead to unnecessary computational complexity and numerical
sensitivity.

• Be implementable within the capabilities of the control system hardware
and software, meaning that particular consideration may be needed for
any parameterization beyond a piecewise constant input trajectory that is
restricted to change its value only at the sampling instants.

Based on the last very practical point, a general choice is the piecewise con-
stant control input µ(t, U) = Uk for tk ≤ t < tk+1 parameterized by the
vector U = col(U0, ..., UN−1) ∈ RmN . Practical experience shows that the
receding horizon implementation offers considerable flexibility for a NMPC
to recover performance due to sub-optimality at each step. Consequently, it is
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common practice to implement move-blocking strategies such that a smaller
number of parameters is required by restricted the input from change at every
sampling instant on the horizon, in particular towards the end of the horizon.
For example, MPC has been successfully implemented for stable plants based
on linear models by optimizing a constant input on the whole horizon, Qin
and Badgwell (1996).

5.2.2 Numerical Optimal Control

In this section the basic optimal control formulation in section 5.2.1 is refor-
mulated into a form suitable for numeric solution by a nonlinear optimization
solver.

As classified in Diehl et al (2009) there are two main avenues to direct
numerical optimal control

• The sequential approach. The ODE constraint (5.5) is solved via nu-
meric simulation when evaluating the cost and constraint functions. This
means that the intermediate states x(t1), ...., x(tN ) disappear from the
problem formulation by substitution into the cost and constraint func-
tions, while the control trajectory parameters U are treated as unknowns.
This leads to a sequence of simulate-optimize iterations, often known as
Direct Single Shooting, Hicks and Ray (1971); Sargent and Sullivan (1977);
Kraft (1985).

• The simultaneous approach. The ODE constraints (5.5) are dis-
cretized in time and the resulting finite set of nonlinear algebraic equa-
tions are treated as nonlinear equality constraints. The intermediate states
x(t1), ...., x(tN ) are treated as unknown variables together with the con-
trol trajectory parameters U , and the cost function is evaluated simply
by replacing the integral (5.1) by a finite sum. This leads to simultaneous
solution of the ODEs and the optimization problem with a larger number
of constraints and variables. The most well known methods of this type are
Direct Multiple Shooting (Deuflhard (1974); Bock and Plitt (1984); Bock
et al (1999); Leineweber et al (2003)) and Collocation methods, (Tsang
et al (1975); Biegler (1984); von Stryk (1993)).

It is fair to say that all the above mentioned approaches have advantages that
could make them the method of choice when considering a specific problem.
Already now we are in position to understand some of the differences

• The simultaneous approach involves a larger number of constraints and
variables and therefore leads to “bigger problems”. On the other hand,
the cost and constraint function evaluation is much simpler and there are
structural properties of the equations and numerical advantages that can
be exploited in some cases. This will be discussed in section 5.4.
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• Neglecting errors due to discretization and numerical approximations, all
methods results in the same optimal control trajectory. Hence, one may
expect the main difference between these alternatives to be related to
numerical properties and computational complexity. Numerical accuracy of
the solution is a consequence of discretization, round-off errors, sensitivity
to initial conditions and input, differences in linear algebraic methods, etc.
and must be balanced against computational cost. These aspects will be
treated in more detail in section 5.4.

• Nonlinear optimization problems are generally non-convex, and the con-
vergence and success of a given optimization algorithm depend largely on
the initial guess provided for the solution. The sequential and simultaneous
approach are in this sense fundamentally different, since the simultaneous
approach not only requires an initial control trajectory guess, but also
one for the state trajectory. The availability of a good initial guess for
the state trajectory is an advantage that can be exploited by the simul-
taneous approach. On the other hand, the presence of nonlinear equality
constraints (which by definition are non-convex) in the simultaneous ap-
proach, one cannot expect feasible initial guesses, which has consequences
for the choice of numerical methods, and will be further discussed in section
5.4.

• The sequential approach may use more or less arbitrary and separate ODE
and optimization solvers, which may in some cases be simple and conve-
nient when compared to the simultaneous approach that tend to require
more specialized and integrated numeric software combining these tasks.
This may be a particularly important issue for industrial users that must
use software tools based on an extensive set of requirements and con-
straints.

5.2.2.1 Direct Single Shooting

In direct single shooting (Hicks and Ray (1971); Sargent and Sullivan (1977);
Kraft (1985)), the ODE constraint (5.5) is eliminated by substituting its
discretized numerical solution x(tk) = φ(tk, U, x(0)) into the cost and con-
straints; minimize with respect to U the cost

V ∗(x(0)) = min
U∈Rp

V (U ;x(0)) ,

N∑

k=1

ℓ(φ(tk, U, x(0)), µ(tk, U), tk)(tk − tk−1)

+S(φ(T, U, x(0)), T ) (5.6)

subject to

umin ≤ µ(tk, U) ≤ umax, tk ∈ Td (5.7)

g(φ(tk, U, x(0)), µ(tk, U), tk) ≤ 0, tk ∈ Td (5.8)
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and the ODE solution function φ(·) is the result of a numerical integration
scheme. In its simplest form, an explicit integration scheme may be used

x(tk+1) = F (x(tk), µ(tk, U), tk), x(t0) = x(0) given, (5.9)

for k = 0, ..., N − 1, leading to

φ(tk, U, x(0)) = F (. . . F (F (x(0), µ(t0, U), t0), µ(t1, U), t1), ..., µ(tk−1, U), tk−1)

(5.10)

However, φ(tk, U, x(0)) may also be computed using any other (implicit) dis-
cretization scheme in the simulation.

The problem (5.6) - (5.8) is a nonlinear program in U parameterized by
the initial state vector x(0) and time. Dependence on time-varying external
signals such as references and known disturbances are left implicit in order to
keep the notation simple. The receding horizon MPC strategy will therefore
re-optimize U when new state or external input information appears, typically
periodically at each sample. We assume the solution exists, and let it be
denoted U∗.

We note that the introduction of common modifications such as terminal
constraints and infeasibility relaxations still gives a nonlinear program, but
with additional decision variables and constraints.

5.2.2.2 Direct Collocation

In direct collocation (Tsang et al (1975); Biegler (1984); von Stryk (1993)) the
numerical solution for x(tk) is not substituted into the cost and constraint
functions, but the associated nonlinear algebraic equations resulting of an
ODE discretization scheme are kept. Hence, the variables x(tk), k = 1, ...N
are treated as unknown decision variables:

V ∗(x(0)) = min
U∈Rp,x(t1)∈Rn,...,x(tN)∈Rn

V (U, x(t1), ..., x(tN );x(0))

,

N∑

k=1

ℓ(x(tk), µ(tk, U), tk)(tk − tk−1) + S(x(tN ), T ) (5.11)

subject to

umin ≤ µ(tk, U) ≤ umax, tk ∈ Td (5.12)

g(x(tk), µ(tk, U), tk) ≤ 0, tk ∈ Td (5.13)

F (x(tk+1), x(tk), µ(tk, U), tk) = 0, k = 0, ..., N − 1 (5.14)

x(t0) = x(0) given (5.15)
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where F is a function defined by the discretization scheme of the ODE (5.5).
We observe from (5.14) that it directly allows for implicit numerical integra-
tion methods to be used, and that the algebraic equations resulting from the
implicit integration scheme will be solved simultaneously with the optimiza-
tion.

The problem (5.11) - (5.13) is a nonlinear program in the variables
U, x(t1), ..., x(tN ) parameterized by the initial state vector x(0). In addition,
dependence on time-varying external signals such as references and known
disturbances are left implicit in order to keep the notation simple. The re-
ceding horizon MPC strategy will therefore re-optimize U when new state
or external input information appears, typically periodically at each sample.
We assume the solution exists, and let it be denoted U∗, x∗(t1), ..., x

∗(tN ).

5.2.2.3 Direct Multiple Shooting

Direct multiple shooting (Deuflhard (1974); Bock and Plitt (1984); Bock
et al (1999); Leineweber et al (2003)) combines elements of both direct single
shooting and direct collocation. It is a simultaneous approach in the sense
it reformulates the ODE (5.5) to a set of nonlinear algebraic equality con-
straints that are solved simultaneously with the optimization. It differs from
the direct collocation method since an ODE solver is used to simulate the
ODE (5.5) in each time interval tk ≤ t ≤ tk+1 for k = 0, ..., N − 1:

V ∗(x(0)) = min
U∈Rp,(x(t1),...,x(tN))T∈RnN

V (U, x(t1), ..., x(tN );x(0))

,

N∑

k=1

ℓ(x(tk), µ(tk, U), tk)(tk − tk−1) + S(x(tN ), T ) (5.16)

subject to

umin ≤ µ(tk, U) ≤ umax, tk ∈ Td (5.17)

g(x(tk), µ(tk, U), tk) ≤ 0, tk ∈ Td (5.18)

x(tk+1) = φ(x(tk), µ(tk, U), tk), k = 0, ..., N − 1 (5.19)

x(t0) = x(0) given, (5.20)

where φ is a function defined by the simulation of the ODE (5.5). The main
difference between direct multiple shooting and direct collocation is due to
the use of an arbitrary ODE solver between the time-instants in Td. Direct
multiple shooting may have advantages when adaptive discretization schemes
are needed (due to stiff dynamics, for example) since they might require a
varying number of grid points for each iteration of the solver. With multiple
shooting this can in principle be “hidden” within the direct single shooting
solver used between each time-instant in Td, while it directly leads to a change
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in the dimensions of the optimization problem at each iteration with a direct
collocation method. Direct multiple shooting decouples the grids required for
the point-wise discretization of the constraints (5.18) and the discretization
grid required to integrated the ODE. In a sense, direct multiple shooting
provides additional flexibility compared to both direct single shooting and
direct collocation. On the other hand, direct collocation leads to a more
sparse structure that can be exploited by the numerical optimization solver.

5.2.2.4 The Nonlinear Program – Feasibility and Continuity

This section summarizes some features of the numeric optimization problem
resulting from the direct approach to numerical optimal control in NMPC.
Important issues related to the well-posedness of the problem are reviewed.
They are related to existence and uniqueness of the solution and continuous
dependence of the solution on data such as the initial state x(0). These are
again related to regularity properties and fundamental properties such as
controllability.

In summary, all formulations reviewed in this section lead to a nonlinear
optimization problem of the form

V ∗(θ) = min
z
V (z, θ) (5.21)

subject to

G(z, θ) ≤ 0 (5.22)

H(z, θ) = 0 (5.23)

where z is a vector of decision variables (control trajectory parameters, in-
termediate states, slack variables, etc.) while θ is a vector of parameters to
the problem (initial states, parameters of reference trajectories, exogenous
inputs, etc.).

Existence of a solution corresponds to feasibility of the optimization prob-
lem. We define the feasible set of parameters ΘF as the set that contains all
θ for which the optimization problem (5.21)-(5.23) has a solution z∗(θ)

ΘF = {z | there exists a z such that G(z, θ) ≤ 0, H(z, θ) = 0} (5.24)

The feasible set is a result of the dynamics of the systems and basically all
design parameters of the NMPC problem. Generally speaking, it is desired to
make this set as large as possible while fulfilling the physical and operational
constraints of the control system. We will return to this design issue in section
5.2.3.

For simplicity, let us for the time being neglect the equality constraints
(5.23). Using direct single shooting they can be eliminated and are thus not
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important for the understanding of the fundamental issues in this section.
For a given parameter θ0 ∈ ΘF , consider the Karush-Kuhn-Tucker (KKT)
first-order necessary conditions for local optimality of (5.21)-(5.22); Nocedal
and Wright (1999)

∇zL(z0; θ0) = 0 (5.25)

G(z0; θ0) ≤ 0 (5.26)

µ0 ≥ 0 (5.27)

diag(µ0)G(z0; θ0) = 0 (5.28)

are necessary for a local minimum z0, with associated Lagrange multiplier µ0

and the Lagrangian defined as

L(z, µ; θ) , V (z; θ) + µTG(z; θ) (5.29)

Consider the optimal active set A0 at θ0, i.e. a set of indices to active con-
straints in (5.26). The above conditions are sufficient for local optimality of
z0 provided the following second order condition holds:

yT∇2
zL(z0, µ0; θ0)y > 0, for all y ∈ F − {0} (5.30)

with F being the set of all directions where it is not clear from first order
conditions if the cost will increase or decrease:

F = {y | ∇zGA0(z0; θ0)y ≥ 0,∇zGi(z0; θ0)y = 0, for all i with (µ0)i > 0}.(5.31)

The notation GA0 means the rows of G with indices in A0. The following
result gives local regularity conditions for the optimal solution, Lagrange
multipliers and optimal cost as functions of θ.

Assumption A1. V and G are twice continuously differentiable in a
neighborhood of (z0, θ0).

Assumption A2. The sufficient conditions (5.25)-(5.28) and (5.30) for a
local minimum at z0 hold.

Assumption A3. Linear independence constraint qualification (LICQ)
holds, i.e. the active constraint gradients ∇UGA0(z0; θ0) are linearly inde-
pendent.

Assumption A4. Strict complementary slackness holds, i.e. (µ0)A0 > 0.

Theorem 5.1. For a given z0 and θ0 then under assumptions A1-A3, z0 is
a local isolated minimum, and for θ in a neighborhood of θ0, there exists a
unique continuous function z∗(θ) satisfying z∗(θ0) = z0 and the sufficient
conditions for a local minimum.

If in addition A4 holds, then for θ in a neighborhood of θ0 the function
z∗(θ) is differentiable and the associated Lagrange multipliers µ∗(θ) exists,
and are unique and continuously differentiable. Finally, the set of active con-
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straints is unchanged, and the active constraint gradients are linearly inde-
pendent at z∗(θ).

The first part is proven in Kojima (1980), and the 2nd part follows from
Theorem 3.2.2 in Fiacco (1983).

The concept of controllability of nonlinear systems can be defined in several
ways. Here we have taken a pragmatic point of view, and focus on conditions
that leads to feasibility of the solution, and continuity of the value function
or solution as a function of the time-varying data θ that includes the ini-
tial conditions. In the context of numerical optimal control, issues related to
lack of controllability or inappropriate design choices will typically manifest
themselves in terms of infeasibility (no solution exists), indefiniteness of the
Hessian (a global solution is not found), or singularity or poor conditioning
of the Hessian (the solution is not unique and continuously dependent on
the input data, or is highly sensitive to changes in decision variables). The
latter case means that small changes in the state may require very large con-
trol actions to compensate. Since the above sufficient optimality conditions
are practically impossible to verify a priori, these are important issues to be
monitored by the practical NMPC algorithm based on output from the nu-
merical solver in order to asses the quality of the NMPC design and identify
problems related to lack of controllability or inappropriate design or tuning
of the NMPC criterion and constraints.

The simplest special case for which strong properties can be guarantees a
priori is the case of joint convexity:

A5. V and G are jointly convex for all (z, θ).
The optimal cost function can now be shown to have some regularity prop-

erties, Mangasarian and Rosen (1964):

Theorem 5.2. Suppose A1-A5 holds. Then XF is a closed convex set, and
V ∗ : ΘF → R is convex and continuous.

Convexity of ΘF and V ∗ is a direct consequence of A5, while continuity
of V ∗ can be established under weaker conditions; Fiacco (1983). We remark
that V ∗ is in general not differentiable, but properties such as local differen-
tiability and directional differentiability can be investigated as shown in e.g.
Fiacco (1983). Regularity properties of the solution function z∗ is a slightly
more delicate issue, and essentially relies on stronger assumptions such as
strict joint convexity that ensure uniqueness of the solution.

5.2.3 Tuning and Stability

The specification of the NMPC control functionality and dynamic perfor-
mance is essentially provided through the cost function and the constraints.
We will not go into details on the practical tuning tradeoffs and the types of
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physical and operational constraints, but note that one may typically choose
l2 or l1 type cost function

ℓ(x, u, t) = ||x− rx(t))|2Q + ||u− ru(t)||2R (5.32)

ℓ(x, u, t) = ||Q(x− rx(t))||1 + ||R(u− ru(t)||1 (5.33)

where the properties of the weight matrices Q � 0 and R � 0 are essential
for performance, and in some cases also stability. In the simplest case when
there exists an ε > 0 such that

ℓ(x, u, t) ≥ ε(||x||2 + ||u||2) (5.34)

it is clear that all states and control actions are directly observable through
the cost function, an it follows intuitively that minimization of the cost func-
tion will influence all states that are controllable. Based on the similar argu-
ments, it is in fact sufficient for stabilization that only the unstable modes of
the system are observable through the cost function, such that Q � 0 may
be sufficient if weights are given on the unstable modes, Mayne et al (2000).
In order to ensure uniqueness of the control trajectory it is generally recom-
mended that R ≻ 0. In summary, conventional LQR tuning guidelines (e.g.
Athans and Falb (1966)) are very helpful as a starting point also for NMPC.

Although the effect of modeling errors and disturbances will be discussed
in section 5.2.4.2, we remark that incorrect choice of the reference ru(t) for
the control input may lead to a steady-state error that will be important to
compensate for in many applications.

NMPC is based on the receding horizon control principle, where a finite
horizon open loop optimal control problem solved at each sampling instant
and the optimized control trajectory is implemented until a new optimized
control trajectory is available at the next sampling instant. This leads to
closed-loop control since each new optimized control trajectory is based on
the most recent state information. However, the numerical optimal control
problem solved at each sampling instant provides essentially an open-loop
control trajectory. The finite-horizon cost function imposes in principle no
stability requirement by itself, and with an unfortunate choice of design pa-
rameters (horizon T , weight matrices Q and R, terminal cost S, and certain
constraints) the closed loop NMPC may be unstable. In particular for open
loop unstable systems, it is important to understand how these design pa-
rameters should be chosen to avoid an unstable NMPC.

5.2.3.1 Stability Preserving Constraints And Cost-to-go

This section discusses stability of the NMPC in more depth, and how this
property is related to design parameters in the cost function and constraints.
The description will be fairly informal, and we avoid the technical details in
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order to focus on the most important concepts. For simplicity we assumme
that the objective is regulation to a constant set-point r. Further details and a
more rigorous treatment of the topic are found in Chen and Allgöwer (1998);
Mayne et al (2000); Michalska and Mayne (1993); Keerthi and Gilbert (1988);
Mayne and Michalska (1990), and we remark that the concepts relevant for
NMPC are essentially the same as for linear MPC.

The following principles are generally useful to ensure stability of an
NMPC Mayne et al (2000):

• The control trajectory parameterization µ(t, U) must be “sufficiently rich”
- most theoretical work assume piecewise constant control input trajectory
that is allowed to move at each sampling instant.

• From the optimality principle of dynamic programming, Bellman (1957),
an infinite horizon cost may be expected to have a stabilizing property.
Theoretically, this leads to an infinite dimensional problem (except in sim-
ple special cases), so more practical approaches are

– Sufficiently large horizon T . However, it is not obvious to know what is
large enough, in particular for an open loop unstable system and when
the constrained outputs are non-minimum phase (see Saberi et al (2002)
for results on the importance of the zero-dynamics of the constrained
outputs for the linear case).

– A terminal cost chosen to approximate the cost-to-go, i.e. S(x(T ), T ) ≈
∫∞

t=T
ℓ(x(t), u(t), t)dt such that the total cost function approximates an

infinite horizon cost. Unfortunately, the cost-to-go is generally hard to
compute and simple approximations are usually chosen.

• Terminal set constraints of the type x(tN ) ∈ Ω that ensures that the
state is regulated “close enough” to the set-point such that after T it is a
priori known that there exists a feasible and stabilizing controller that will
ensure that x(t), t ≥ T never leaves Ω and eventually goes asymptotically
to the set-point. There are many algorithms based on this philosophy,
some of them are defined as dual mode NMPC (Michalska and Mayne
(1993)) since they switch to a stabilizing simpler (non-NMPC) control law
once Ω is reached, while others continue to use NMPC also in Ω with the
confidence that there exist an (explicit or implicit) stabilizing control law
that the NMPC may improve upon.

• Terminal equality constraints of the type x(tN ) = r, Keerthi and Gilbert
(1988), that ensures convergence in finite time. This basically implies that
the cost after time T is zero, and is therefore related to both an infinite-cost
strategy and a stability-preserving-constraint strategy.

• Finally, the idea of choosing the cost-to-go to approximate an infinite-
horizon cost and the use of a terminal set may be combined. With the use
of a terminal set it will be sufficient to approximate the cost-to-go for states
that are within the terminal set, and simple tools like local linearization
can be applied to make this a fairly practical approach; Chen and Allgöwer
(1998).
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A formal treatment of these issues are found in the references, see Mayne
et al (2000) for additional references. The main tools are the use of either the
value function V ∗(x) as a Lyapunov function, or investigating monotony of
a sequences of value function values. Instead, we provide an example that is
essentially similar to the method in Chen and Allgöwer (1998).

Example. Consider the discrete-time non-linear system

x(tk+1) = F (x(tk), u(tk)) (5.35)

where x ∈ Rn is the state, and u ∈ Rm is the input. We assume the control
objective is regulation to the origin. For the current x(tk), we formulate the
optimization problem

V ∗(x(tk)) = min
U

J(U, x(tk)) (5.36)

subject to xk|k = x(tk) and

ymin ≤ yk+i|k ≤ ymax, i = 1, ..., N

umin ≤ uk+i ≤ umax, i = 0, 1, ..., N − 1,

xk+N |k ∈ Ω (5.37)

xk+i+1|k = F (xk+i|k, uk+i), i = 0, 1, ..., N − 1

yk+i|k = Cxk+i|k , i = 1, 2, ..., N

with U = {uk, uk+1, ..., uk+N−1} and the cost function given by

J(U, x(tk)) =
N−1∑

i=0

(
||xk+i|k||2Q + ||uk+i||2R

)
+ ||xk+N |k||2P (5.38)

The compact and convex terminal set Ω is defined by

Ω = {x ∈ R
n | xTPx ≤ α} (5.39)

where P = PT ≻ 0 and α > 0 will be specified shortly. An optimal solution
to the problem (5.36)-(5.37) is denoted U∗ = {u∗t , u∗t+1, ..., u

∗
t+N−1}, and the

control input is chosen according to the receding horizon policy u(tk) = u∗t .
This and similar optimization problems can be formulated in a concise form

V ∗(x) = min
U
J(U, x) subject to G(U, x) ≤ 0 (5.40)

Define the set of N -step feasible initial states as follows

XF = {x ∈ R
n |G(U, x) ≤ 0 for some U ∈ R

Nm} (5.41)

Suppose Ω is a control invariant set, such that XF is a subset of the N -step
stabilizable set, Kerrigan and Maciejowski (2000). Notice that the origin is an
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equilibrium and interior point in XF . It remains to specify P ≻ 0 and α > 0
such that Ω is a control invariant set. For this purpose, we use the ideas
of Chen and Allgöwer (1998), where one simultaneously determine a linear
feedback such that Ω is positively invariant under this feedback. Define the
local linearization at the origin

A =
∂f

∂x
(0, 0), B =

∂F

∂u
(0, 0) (5.42)

Now, the following assumptions are made:

• (A,B) is stabilizable.
• P,Q,R ≻ 0.
• ymin < 0 < ymax and umin < 0 < umax.
• The function f is twice continuously differentiable, with f(0, 0) = 0.

Since (A,B) is stabilizable, let K denote the associated LQ optimal gain
matrix, such that A0 = A − BK is strictly Hurwitz. A discrete-time refor-
mulation of Lemma 1 in Chen and Allgöwer (1998) can be made, Johansen
(2004):

Lemma 5.1. If P ≻ 0 satisfies the Lyapunov-equation

AT
0 PA0 − P = −κP −Q−KTRK (5.43)

for some κ > 0, there exists a constant α > 0 such that Ω defined in (5.39)
satisfies

1. Ω ⊂ C = {x ∈ Rn | umin ≤ −Kx ≤ umax, ymin ≤ Cx ≤ ymax}.
2. The autonomous nonlinear system

x(tk+1) = F (x(tk),−Kx(tk)) (5.44)

is asymptotically stable for all x(0) ∈ Ω, i.e. Ω is positively invariant.
3. The infinite-horizon cost for the system (5.44)

J∞(x(tk)) =

∞∑

i=0

(
||xk+i|k||2Q + ||Kxk+i|k||2R

)
(5.45)

satisfies J∞(x) ≤ xTPx for all x ∈ Ω.

In order to prove this result we first remark that the Lyapunov-equation
(5.43) is generally satisfied for sufficiently small κ > 0 because A0 is strictly
Hurwitz and the right-hand side is negative definite. One may define a set of
the form

Ωα1 = {x ∈ R
n | xTPx ≤ α1} (5.46)



5 Introduction to NMPC and NMHE 207

with α1 > 0, such that Ωα1 ⊆ C, i.e. an ellipsoidal inner approximationΩα1 to
the polyhedron C where the input and state constraints are satisfied. Hence,
the first claim holds for all α ∈ (0, α1].

Define the positive definite function W (x) = xTPx. Along trajectories of
the autonomous system (5.44) we have

W (x(tk+1))−W (x(tk)) = (A0x(tk) + φ(x(tk)))
T P (A0x(tk) + φ(x(tk)))

−xT (tk)Px(tk)
= xT (tk)

(
AT

0 PA0 − P
)
x(tk) + φT (x(tk))Pφ(x(tk))

+xT (tk)(A
T
0 P + PA0)φ(x(tk))

where φ(x) = F (x,−Kx)−A0x satisfies φ(0) = 0. From (5.43)

W (x(tk+1))−W (x(tk)) = −xT (tk)
(
Q+KTRK + κP

)
x(tk)

+xT (tk)(A
T
0 P + PA0)φ(x(tk)) + φT (x(tk))Pφ(x(tk))

Let Lφ be a Lipschitz constant for φ in Ωα (which must exist because f is
differentiable). Since ∂φ/∂x(0) = 0 and φ is twice differentiable we can choose
Lφ > 0 as close to zero as desired by selecting α > 0 sufficiently small. Hence,
there exist α ∈ (0, α1] such that

W (x(tk+1))−W (x(tk)) ≤ −xT (tk)
(κ

2
P +Q+KTRK

)

x(tk) (5.47)

for all x(tk) ∈ Ω and positive invariance of Ω follows since Ω is a level set of
W .

Notice that from (5.47) we have

W (x(∞)) −W (x(0)) ≤ −J∞(x(0)) − κ

2

∞∑

k=0

||x(tk)||2P (5.48)

and the third claim holds because W (x(∞)) = 0 for all x(0) ∈ Ω.
Hence, the result is proven, and it follows from Mayne et al (2000); Chen

and Allgöwer (1998) that the RHC makes the origin asymptotically stable
with region of attraction equal to the feasible set XF . A procedure for select-
ing P, κ and α can be adapted from Chen and Allgöwer (1998).

5.2.3.2 Sub-optimal NMPC

It may be difficult to establish a non-conservative hard bound on the number
of iterations required for convergence of the nonlinear programming problem
that NMPC must solve numerically at each sampling instant. Furthermore,
there may not be computational resources available to guarantee that a suffi-
cient number of iterations can be computed, and only a local minimum may
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be found. As an example, some NMPC methods will assume that only one
iteration is performed per sample, Li and Biegler (1989, 1990). Hence, it is
of interest to understand the consequences of not converting in terms of con-
trol performance loss. A fundamental result is given in Scokaert et al (1999),
where it is shown that feasibility and descent (reduction in cost function
compared to the control trajectory computed at the previous sample) is suf-
ficient for asymptotic stability of NMPC provided that terminal constraints
are included in the formulation. Hence, optimality is not required. In the
same spirit, a computationally efficient and robust implementation of these
ideas are pursued in Lazar et al (2008), and also exploited in the context of
approximate NMPC Bemporad and Filippi (2003); Johansen (2004).

5.2.3.3 Example: Compressor Surge Control

Consider the following 2nd-order compressor model Greitzer (1976); Grav-
dahl and Egeland (1997) with x1 being normalized mass flow, x2 normalized
pressure and u normalized mass flow through a close coupled valve in series
with the compressor

ẋ1 = B (Ψe(x1)− x2 − u) (5.49)

ẋ2 =
1

B
(x1 − Φ(x2)) (5.50)

The following compressor and valve characteristics are used

Ψe(x1) = ψc0 +H

(

1 + 1.5
(x1
W

− 1
)

− 0.5
(x1
W

− 1
)3
)

Φ(x2) = γsign(x2)
√

|x2|

with γ = 0.5, B = 1, H = 0.18, ψc0 = 0.3 and W = 0.25. The control
objective is to avoid surge, i.e. stabilize the system. This may be formulated
as

ℓ(x, u) = α(x − x∗)T (x− x∗) + κu2

S(x) = Rv2 + β(x− x∗)T (x− x∗)

with α, β, κ, ρ ≥ 0 and the set-point x∗1 = 0.40, x∗2 = 0.60 corresponds to
an unstable equilibrium point. We have chosen α = 1, β = 0, and κ = 0.08.
The horizon is chosen as T = 12, which is split into N = p = 15 equal-
sized intervals, using piecewise constant control input parameterization. Valve
capacity requires the constraint

0 ≤ u(t) ≤ 0.3 (5.51)

to hold, and the pressure constraint
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x2 ≥ 0.4− v (5.52)

avoids operation too far left of the operating point. The variable v ≥ 0 is
a slack variable introduced in order to avoid infeasibility and R = 8 is its
weight in the cost function.

A nonlinear optimization problem is formulated using direct single shoot-
ing where explicit Euler integration with step size 0.02 is applied to solve the
ODE. Due to the unstable dynamics, this may not be the best choice, but it
is sufficient for this simple example.

The NLP solution is shown in Figure 5.1 as a function u∗(x). The corre-
sponding optimal cost V ∗(x) is shown in Figure 5.2, and simulation results
are shown in Figure 5.3, where the controller is switched on after t = 20. We
note that it quickly stabilizes the deep surge oscillations.
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Fig. 5.1 Feedback control law.
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Fig. 5.2 Optimal costs of the feedback control law.

5.2.4 Extensions and Variations of the Problem
Formulation

5.2.4.1 Infeasibility Handling and Slack Variables

Feasibility of the NMPC optimization problem is an essential requirement for
any meaningful state and reference command, and it is importance in practice
that the NMPC optimization problem is formulated such that feasibility is
ensured as far as possible by relaxing the constraints when needed and when
possible. Obviously, physical constraints like input saturation can never be
related, but operational constraints can generally be relaxed according to
certain priorities under the additional requirement that safety constraints are
fulfilled by a separate system (like an emergency shutdown system, pressure
relief valves, or by functions in a decentralized control system). Stability-
enforcing terminal constraints may also be relaxed in practice, or even skipped
completely, since they tend to be conservative and often not needed when
the NMPC is otherwise carefully designed, in particular for open loop stable
systems.

A general way to reformulate an optimization problem to guarantee fea-
sibility is to use slack variables (e.g. Vada et al (1999)). Taking the fairly
general NLP formulation (5.21)-(5.23) as the starting point, we reformulate
it in the following way
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V ∗
s (θ) = min

z,s,q
V (z, θ) + ||Wss||1 + ||Wqq||1 (5.53)

subject to

G(z, θ) ≤ s (5.54)

H(z, θ) = q (5.55)

s ≥ 0 (5.56)

where Ws � 0 and Wq � 0 are weight matrices of appropriate dimension.
They are usually chosen such that the two latter penalty terms of (5.53)
dominates the first term in order to ensure that the feasibility constraints are
not relaxed when not needed.

5.2.4.2 Robustness

Practical industrial experience shows that MPC tend to be inherently robust,
Qin and Badgwell (1996, 2000), even without any particular consideration
in the design phase beyond ensuring the accuracy of dynamic models and
formulating realistic specifications in terms of operational constraints and
cost function weights. In addition, mechanisms to handle steady state model
errors (integral action like mechanisms) are usually implemented.

As a contrast to this practical experience, it is shown by examples, Grimm
et al (2004), that when the NMPC problem involves state constraints, or ter-
minal constraints in combination with short prediction horizons, the asymp-
totic stability of the closed-loop may have not be robust. A necessary con-
dition for lack of robustness is that the value function and state feedback
law are discontinuous, Grimm et al (2004), while at the same time lack of
continuity does not necessarily lead to lack of robustness, Lazar et al (2007).

There exist a wide range of NMPC formulation that include robustness
into the formulation of the optimization problem. One can mainly distinguish
between three types of approaches; stochastic NMPC, min-max NMPC, and
mechanisms to avoid steady-state errors.

There are two formulations of min-max NMPC: the open-loop and the
closed-loop formulation (see Magni and Scattolini (2007) for review of the
min-max NMPC approaches). The open-loop min-max NMPC (Michalska
and Mayne (1993); Limon et al (2002); Magni and Scattolini (2007)) guaran-
tees the robust stability and the robust feasibility of the system, but it may be
very conservative since the control sequence has to ensure constraints fulfill-
ment for all possible uncertainty scenarios without considering the fact that
future measurements of the state contain information about past uncertainty
values. As a result, the open-loop min-max NMPC controllers may have a
small feasible set and a poor performance because they do not include the
effect of feedback provided by the receding horizon strategy of MPC.
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Most min-max MPC robustness approaches assume a fairly simple additive
uncertainty model of the form

xk+1 = F (xk, uk) + wk (5.57)

where some bound on the unknown uncertainty wk is assumed. The conserva-
tiveness of the open-loop approaches is overcome by the closed-loop min-max
NMPC (Magni et al (2003); Magni and Scattolini (2007); Limon et al (2006)),
where the optimization is performed over a sequence of feedback control poli-
cies. With the closed-loop approach, the min-max NMPC problem represents
a differential game where the controller is the minimizing player and the
disturbance is the output of the maximizing player. The controller chooses
the control input as a function of the current state so as to ensure that the
effect of the disturbance on the system output is sufficiently small for any
choice made by the maximizing player. In this way, the closed-loop min-max
NMPC would guarantee a larger feasible set and a higher level of performance
compared to the open-loop min-max NMPC (Magni et al (2003)).

Stochastic NMPC formulations are based on a probabilistic description of
uncertainty, and can also be characterized as open-loop Cannon et al (2009);
Kantas et al (2009) and closed-loop Goodwin et al (2009); Arellano-Garcia
et al (2007) similarly to min-max robust NMPC as described above. They also
share similar challenges due to significantly increased computational complex-
ity when compared to nominal NMPC formulations.

The reformulation of nonlinear models as Linear Parameter Varying (LPV)
models allows for the use of linear and bi-linear matrix inequality formulations
of robust NMPC, Angeli et al (2000); Casavola et al (2003); Wan and Kothare
(2004). The embedding of nonlinear systems into the class of LPV models

xk+1 = A(pk)xk +B(pk)uk + w(pk) (5.58)

leads to loss of information in the model that leads to more conservative
robust control. However, using tools of semi-definite and convex program-
ming, Boyd et al (1994), the LPV re-formulation allows for the computa-
tional complexity to be significantly reduced in many cases. In (5.58), pk is
a parameter whose value is known to belong to some bounded set, and some
approaches also assume that its time-derivative has a known bound, and the
LPV re-formulation clearly allows a richer class of uncertainty to be modeled,
compared to (5.57).

Steady-state control errors may result if there are steady-state model er-
rors. While linear control design offers several tools to deal with this problem
(including integral action, integrating models in linear MPC, and others),
not all of them are directly transferable to nonlinear systems. The commonly
used cure for steady-state errors in MPC, which can be directly transferred
to NMPC, appears to be the use of a state estimator or observer that esti-
mates an input or output disturbance for direct compensation in the NMPC
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cost function, Muske and Badgwell (2002); Pannocchia and Rawlings (2003);
Pannocchia and Bemporad (2007); Borrelli and Morari (2007).

5.2.4.3 Observers and Output Feedback

Most formulations of nonlinear MPC assume state feedback. They are usu-
ally based on state space models, e.g. Balchen et al (1992); Foss and Schei
(2007), although certain black-box using discrete-time nonlinear input/out-

put models have also been proposed Nørgaard et al (2000); Åksesson and
Toivonen (2006). Since all states are usually not measured, any implementa-
tion of NMPC based on a state space model will require a state estimator,
which is often a critical component of an NMPC Kol̊as et al (2008). State
space models have the advantage that they are most conveniently based on
first principles.

Although practical rules of thumb for observer design such as separation of
time-scales (typically one order of magnitude faster state estimator relative
to the control loop response time) tend to be applicable in practical imple-
mentations also for NMPC, there also exist a number of rigorous theoretical
results on the stability of the combination of observers with NMPC, see Find-
eisen et al (2003b) for an overview. Although a general separation principles
does not exists for NMPC, there are some results in this direction, Findeisen
et al (2003a); Adetola and Guay (2003); Messina et al (2005); Roset et al
(2006).

5.2.4.4 Mixed-integer MPC

General NMPC formulations based on nonlinear models suffer from the fact
that it is hard to verify whether the underlying optimization problem is con-
vex or not, such that in general it must be assumed to be non-convex. At the
same time, all practical optimization solvers will assume some form of local
convexity and guarantee convergence only to good initial guesses for the solu-
tion. This challenge will be further discussed in section 5.4. On the other hand,
NMPC based on piecewise linear (PWL) models and cost functions will in
general lead to mixed-integer linear programs (MI-LP) for which there exists
solvers that guarantee global convergence, Tyler and Morari (1999); Bem-
porad and Morari (1999). The equivalence between a wide class of hybrid
systems models, mixed logic models and PWL models, Heemels et al (2001),
makes this approach attractive in many practical applications. Despite its
applicability and importance, we only remark that the MI-LP theory and
software are well developed, and refer to the references above and the large
literature on MI-LP, Williams (1999).
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5.2.4.5 Decentralized and Distributed NMPC

Recently, several approaches for decentralized and distributed implementa-
tion of NMPC algorithms have been developed. A review of architectures
for distributed and hierarchical MPC can be found in Scattolini (2009). The
possibility to use MPC in a decentralized fashion has the advantage to reduce
the original, large size, optimization problem into a number of smaller and
more tractable ones.

In Magni and Scattolini (2006), a stabilizing decentralized MPC algorithm
for nonlinear systems consisting of several interconnected local subsystems is
developed. It is derived under the main assumptions that no information can
be exchanged between local control laws, i.e. the coupling between the sub-
systems is ignored, and only input constraints are imposed on the system. In
Dunbar and Murray (2006), it is supposed that the dynamics and constraints
of the nonlinear subsystems are decoupled, but their state vectors are cou-
pled in a single cost function of a finite horizon optimal control problem. In
Keviczky et al (2006), an optimal control problem for a set of dynamically
decoupled nonlinear systems, where the cost function and constraints couple
the dynamical behavior of the systems, is solved.

5.3 NMHE Optimization Problem Formulation

In this section we consider the formulation of the NMHE optimization prob-
lem, and we follow as similar organization as section 5.2, with focus on the
formulation of the optimization problem and the link between fundamental
properties such as observability, detectability and existence and uniqueness
of the solution.

5.3.1 Basic Problem Formulation

The state estimation problem is to determine the current state based on a
sequence of past and current measurements at discrete time instants, and the
use of a dynamic model. For simplicity, we will assume data are available
via synchronous sampling. Extension to be more general situation when data
from the different sensors and data channels are asynchronous are concep-
tually straightforward and does not lead to any fundamental complications,
but the mathematical notation requires many more indices and becomes un-
necessarily tedious for an introduction to the topic. The problem can be
treated by careful discretization of the continuous-time system to take asyn-
chronous data into account, or a more pragmatic approach would be to rely
on digital signal processing technique of interpolation and extrapolation for
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pre-processing the data before used in the NMHE in order to artificially pro-
vide synchronized data as required at each sampling instant, Proakis and
Manolakis (1996).

At the time tk corresponding to the discrete time index k we consider a set
of N + 1 sampling instants Ts = {tk−N , tk−N+1, ...., tk}, where the following
synchronized window of output and input data are available

Yk = col(y(tk−N ), y(tk−N+1), ....., y(tk))

Uk = col(u(tk−N ), u(tk−N+1), ....., u(tk))

where y(t) ∈ Rr and u(t) ∈ Rm. We assume without loss of generality that
sampling is periodic, i.e. the horizon T = tk− tk−N and the sampling interval
ts = ti − ti−1 are constant. The inputs and outputs may be related by an
ODE model

d

dt
x(t) = f(x(t), u(t), w(t)) (5.59a)

y(t) = h(x(t), u(t)) + v(t) (5.59b)

with unknown initial condition x(tk−N ) ⊂ Rn. The variable w includes un-
known model errors and disturbances, and v includes unknown additive mea-
surement errors. In addition, one may have available a priori information
about x(t) in the form of constraints on states and uncertainty

col(x(t), w(t), v(t)) ∈ X ×W × V, t ∈ [tk−N , tk] (5.60)

for some compact sets X,W and V . The constraints may result from oper-
ational knowledge of the system, or physical properties of the states (such
as chemical composition never being negative at any point in time). More
generally, such a priori knowledge may incorporate more complex statements
that motivates a more general constraint formulation

C(x(t), w(t), v(t), t) ≤ 0, t ∈ [tk−N , tk] (5.61)

The above constraint could incorporate time-varying information and state-
ments that involves the interaction between two ore more variables - for
example that a gas pressure is always below a certain threshold, expressed
through the product of gas mass and temperature through the ideal gas law.
One may also have a priori information that is not linked to a particular
time instant, like that the average value of a certain variable is known to stay
between certain upper and lower bounds or that the measurement noise has
zero mean, which can be expressed as

∫ tk

tk−N

c(x(t), w(t), v(t))dt ≤ 0 (5.62)
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The state estimation problem is essentially to estimate x(tk) based on the
N+1 data samples, the model, and the a priori information given in the form
of constraints.

5.3.1.1 Observability

The concept of observability is essential in order to formulate and understand
the NMHE problem. In this section we will for convenience assume that
the dynamic model system (5.59) is discretized in the form of a state space
formulation

xk+1 = F (xk, uk, wk) (5.63a)

yk = h(xk, uk) + vk (5.63b)

with the convenient notation uk = u(tk), yk = y(tk), vk = v(tk), wk = w(tk).
In this section, we will neglect the constraints (5.60)-(5.62) since they are
not important for the observability concept. Furthermore, the process noise
vk and measurement noise wk will also be set to zero and neglected in this
section when defining the concept of observability. Note that by using the
discrete-time equation (5.63a) recursively with initial condition x(tk−N ) and
vk = 0 and wk = 0, one will uniquely determine x(t), t ≥ tk−N , including the
current state x(tk) that we want to estimate.

To express Yk as a function of xk−N and Uk under these conditions, denote
Fk(xk) = F (xk, uk, 0) and hk(xk) = h(xk, uk), and note from (5.63b) that
the following algebraic map can be formulated, Moraal and Grizzle (1995b):

Yk = H(xk−N , Uk) =








huk−N (xk−N )
huk−N+1 ◦ Fk−N (xk−N )

...
huk ◦ Fk−1 ◦ · · · ◦ Fk−N (xk−N )








(5.64)

Hence, without the presence of any uncertainty and constraints, the state esti-
mation problem is equivalent to the inversion of this set of nonlinear algebraic
equations, like in the case of a linear system when full rank of the observabil-
ity matrix is equivalent to observability. In order to better understand the
similarities between the linear and nonlinear case, consider the linear system
xk+1 = Axk +Buk with output yk = Cxk. The (5.64) corresponds to

Yk = CNxk−N + BNUk (5.65)

where the matrix CN is defined by



218 Tor A. Johansen

CN =








C
CA
...

CAN








(5.66)

and BN is a matrix that contains blocks of the form CAiB. Clearly, the state
can be uniquely determined from the window of past inputs and outputs by
inverting the linear algebraic equations (5.65) if and only if CN has full rank.
It is well known from linear systems theory that rank(CN ) = rank(Cn) for
N ≥ n, where Cn is known as the observability matrix. Similarly, in the
nonlinear case, conditions that ensure that the inverse problem is well-posed
(Tikhonov and Arsenin (1977)) in the sense that the inverse of (5.64) exists, is
unique, and depends continuously on the data Uk and Yk are of fundamental
importance and essentially amounts to the concept of observability.

Definition 5.1 (Moraal and Grizzle (1995b)). The system (5.63) is N -
observable if there exists a K-function ϕ such that for all x1, x2 ∈ X there
exists a feasible Uk ∈ UN+1 such that

ϕ(||x1 − x2||2) ≤ ||H(x1, Uk)−H(x2, Uk)||2.

Definition 5.2 (Sui and Johansen (2010)). The input Uk ∈ U
N+1 is said

to be N -exciting for the N -observable system (5.63) at time index k if there
exists a K-function ϕk that for all x1, x2 ∈ X satisfies

ϕt(||x1 − x2||2) ≤ ||H(x1, Uk)−H(x2, Uk)||2.

From Proposition 2.4.7 in Abraham et al (1983), we have

H(x1, Uk)−H(x2, Uk) = Φk(x1, x2)(x1 − x2), (5.67)

where

Φk(x1, x2) =

∫ 1

0

∂

∂x
H((1− s)x2 + sx1, Uk)ds. (5.68)

An observability rank condition can be formulated similar to the linear case
outlined above (see also Moraal and Grizzle (1995b); Alessandri et al (2008);
Fiacco (1983) and others for similar results):

Lemma 5.2. If X and U are compact and convex sets, the functions F and
h are twice differentiable on X × U and the Jacobian matrix ∂H

∂x (x, Uk) has
full rank (equal to n) for all x ∈ X and some Uk ∈ U

N+1, then the system
is N -observable and the input Uk is N -exciting for the system (5.63) at time
index k.

Proof (Sui and Johansen (2010)). Due to the observability rank condition be-
ing satisfied, ΦT

k (·)Φk(·) > 0 and the system of nonlinear algebraic equations
(5.67) can be inverted as follows:
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x1 − x2 = Φ+
k (x1, x2)

(
H(x1, Uk)−H(x2, Uk)

)
,

⇒ 1

π2
k(x1, x2)

‖x1 − x2‖2 ≤ ‖H(x1, Uk)−H(x2, Uk)
∥
∥
2
,

where πk(x1, x2) = ‖Φ+
k (x1, x2)‖. This proves that the conditions in Defini-

tions 5.1 and 5.2 hold with ϕ(s) = s/p2 where

p = sup
x1,x2∈X,Uk∈UN+1

||Φ+
k (x1, x2)|| (5.69)

is bounded due to F and h are twice differentiable on the compact set X×U.
⊓⊔

This condition is a natural generalization of the linear observability matrix
rank condition since

∂H

∂x
(x, Uk) = CN (5.70)

for a linear system, and the full rank condition of Cn is completely equivalent
to observability for N ≥ n. A fundamental difference is that in the nonlinear
case the rank of the matrix ∂H

∂x (x, Uk) depends on both the current state
x and the current and past inputs Uk. This means that in the nonlinear
case, successful asymptotic state estimation may depend on state and input
trajectories, in strong contrast to the linear case where only the initial state
influences the transient behavior of the observer (neglecting the influence of
noise and disturbances in this discussion).

The role of the horizon parameter N can also be understood from the
above discussion. While N = n is generally sufficient for an estimate to be
computable for observable linear systems, the benefits of choosing N larger
is two-fold: The input data Uk may be N -exciting for a nonlinear system for
sufficiently large N , but not for N = n, and second, a larger N will improve
robustness to noise and uncertainty via a filtering effect. The possible dis-
advantages of choosing N very large are increased computational complexity
and too much filtering leading to slow convergence of the estimates.

Define the N -information vector at time index k as

Ik = col(yk−N , . . . , yk, uk−N , . . . , uk).

When a system is not N -observable, it is not possible to reconstruct ex-
actly all the state components from the N -information vector. However, in
some cases one may be able to reconstruct exactly at least some components,
based on the N -information vector, and the remaining components can be
reconstructed asymptotically. This corresponds to the notion of detectability,
where we suppose there exists a coordinate transform T : X → D ⊆ Rn,
where D is the convex hull of T(X):

d = col(ξ, z) = T(x) (5.71)
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such that the following dynamics are equivalent to (5.63) for any initial con-
dition in X and inputs in U,

ξk+1 = F1(ξk, zk, uk) (5.72a)

zk+1 = F2(zk, uk) (5.72b)

yk = g(zk, uk). (5.72c)

This transform effectively partitions the state x into an observable state z
and an unobservable state ξ. The following strong detectability definition is
taken from Moraal and Grizzle (1995a):

Definition 5.3. The system (5.63) is strongly N -detectable if
(1) there exists a coordinate transform T : X → D that brings the system in
the form (5.72);
(2) the sub-system (5.72b)-(5.72c) is N -observable;
(3) the sub-system (5.72a) has uniformly contractive dynamics, i.e. there
exists a constant L1 < 1 such that for all col(ξ1, z) ∈ D, col(ξ2, z) ∈ D and
u ∈ U, the function F1 satisfies

||F1(ξ1, z, u)− F1(ξ2, z, u)||′ ≤ L1||ξ1 − ξ2||′. (5.73)

with a suitable norm || · ||′.
It is remarked that since there is considerable freedom in the choice of

transform T and the norm || · ||′, the contraction assumption in part 3 of the
definition is not very restrictive. For linear systems, it is equivalent to the
conventional detectability definition.

Definition 5.4. The input Uk is said to be N -exciting for a strongly N -
detectable system (5.63) at time index k if it is N -exciting for the sub-system
(5.72b)-(5.72c) at time index k.

If the input Ut is not N -exciting at certain points in time, the state esti-
mation inversion problem (Moraal and Grizzle (1995b)) will be ill-posed (the
solution does not exist, is not unique, or does not depend continuously on
the data) or ill-conditioned (the unique solution is unacceptably sensitive to
perturbations of the data), and particular consideration is required to achieve
a robust estimator. Such modifications are generally known as regularization
methods, see Tikhonov and Arsenin (1977). A common method, Tikhonov
and Arsenin (1977), is to augment the cost function with a penalty on de-
viation from a priori information and makes the estimated solution degrade
gracefully when Ut is not N -exciting.

5.3.1.2 Objective Function and Constraints

The topic of this section is to formulate the NMHE problem in terms of a non-
linear optimization problem that is convenient to solve using numerical opti-
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mization. Defining Wk = col(wk−N ..., wk−1, wk), and Vk = col(vk−N , ..., vk)
we introduce the following cost function similar to Rao et al (2003)

J ′(xk−N , ..., xk,Wk, Vk) =
k∑

i=k−N

L(wi, vi) + Zk−N (xk−N ) (5.74)

where L(w, v) is a stage cost typically of the least-squares type L(w, v) =
||w||2M + ||v||2Ξ for some M = MT � 0 and Ξ = ΞT � 0, there is a second
term Z that we will discuss shortly, and the minimization must be performed
subject to the model constraints

xi+1 = F (xi, ui, wi) (5.75)

yi = h(xi, ui) + vi (5.76)

and the additional constraints resulting from (5.60)-(5.62)

col(xi, wi, vi) ∈ X ×W × V, i = k −N, ..., k (5.77)

C(xi, wi, vi, ti) ≤ 0, i = k −N, ..., k (5.78)
k∑

i=k−N

c(xi, wi, vi) ≤ 0 (5.79)

It is straightforward to eliminate the variables vi from this optimization prob-
lem, leading to

Φ∗
k−N = min

xk−N ,...xk,Wk

J(xk−N , ..., xk,Wk)

=

k∑

i=k−N

L(wi, yi − h(xi, ui)) + Zk−N (xk−N ) (5.80)

subject to

xi+1 = F (xi, ui, wi), i = k −N, ..., k (5.81)

col(xi, wi, vi) ∈ X ×W × V, i = k −N, ..., k (5.82)

C(xi, wi, yi − h(xi, ui), ti) ≤ 0, i = k −N, ..., k (5.83)
k∑

i=k−N

c(xi, wi, yi − h(xi, ui)) ≤ 0 (5.84)

By defining the solution function φ(i, Uk, xk−N ) for i ≥ k − N using (5.81)
recursively we can make further elimination of the nonlinear equality con-
straints (5.81) similar to the direct single shooting approach and re-define
the cost function and constraints as follows:
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min
xk−N ,Wk

J(xk−N ,Wk) =

k∑

i=k−N

L(wi, yi−h(φ(i, Uk, xk−N ), ui))+Zk−N (xk−N )

(5.85)
subject to

col(xi, wi, vi) ∈ X ×W × V, i = k −N, ..., k

C(φ(i, Uk, xk−N ), wi, yi − h(φ(i, Uk, xk−N ), ui), ti) ≤ 0, i = k −N, ..., k
k∑

i=k−N

c(φ(i, Uk, xk−N ), wi, yi − h(φ(i, Uk, xk−N ), ui)) ≤ 0 (5.86)

The simple choice Z(·) = 0 means that the state estimate is defined as the
best least squares match with the data on the horizon. This means that
no information from the data before the start of the horizon is used in the
estimation, which is a clear weakness especially when the information content
in the data is low due to lack of excitation, noise and other uncertainty. In
other words, the estimation formulation contains no other mechanisms to
introduce filtering of noise or regularization than to increase the horizon
N , which also increases the computational complexity of the optimization
problem and may still be insufficient.

In order to improve our ability to tune the NMHE and systematically
introduce filtering of the state estimates, the term Z(·) in the formulation may
be used as an arrival-cost estimate as discussed in e.g. Rao et al (2003) or in an
ad hoc way to penalize deviation from an a priori estimate as in e.g Alessandri
et al (2008); Sui and Johansen (2010); Alessandri et al (2003). Arrival cost
estimation is discussed further in section 5.3.1.3, and a link between arrival
cost estimation and the approach of Alessandri et al (2008) is illustrated in
Poloni et al (2010).

We remark that the formulations make no particular assumptions on the
uncertainty, and minimizes the impact of uncertainty on the estimates in a
least-squares sense. Introduction of stochastic models can be envisioned and
lead to better estimates in some cases, Lima and Rawlings (2010).

5.3.1.3 Arrival-cost Estimates

The term Z(·) in the cost function J defined in (5.80) may be used to make
the finite (moving) window cost function J approximate the full (still finite)
window cost (Rao et al (2003))

J ′′(xk−N , ..., xk,Wk) =

k∑

i=0

L(wi, yi − h(xi, ui)) + Γ (x0) (5.87)

such that



5 Introduction to NMPC and NMHE 223

Zk−N (xk−N ) ≈
k−N−1∑

i=0

L(wi, yi − h(xi, ui)) + Γ (x0) (5.88)

where Γ (x0) is such that Γ (x0) = 0 for the a priori most likely estimate of x0,
and Γ (x) ≻ 0 for other values. The motivation for more closely approximating
the full window cost (as opposed to a moving window cost) is to capture as
much information as possible from time index i = 0, 1, ...., k −N − 1. Using
arguments of dynamic programming, Rao et al (2003), an exact arrival cost
completely captures the information up to time index k−N − 1. This would
lead to more accurate estimates through improved filtering.

The effect of the arrival cost can be understood by comparing the moving
horizon approach to Extended Kalman Filtering (EKF); Gelb (2002). In an
EKF the information in past data is summarized in the covariance matrix
estimate. Under assumptions that include linearity of the system and the
noise and disturbances being Gaussian white noise with known covariances
that are reflected in a quadratic cost function, it is known that the Kalman
filter is an optimal filter, Gelb (2002), that provides states estimates with
minimum variance. An EKF is an approximate sub-optimal filter that allows
for nonlinearities and makes certain simplifying computations such neglect-
ing higher order statistics and higher order (nonlinear) terms. In a similar
manner, the NMHE with an arrival cost estimate captures the information
of data until the start of the window in the arrival cost. Unfortunately, it is
hard to find an explicit representation of the arrival cost for nonlinear sys-
tems, and practical methods attempts to approximate the arrival cost. The
use of covariance matrix estimates from EKF and similar ideas is a useful
way to define the arrival cost, Rao et al (2003):

Zk(x) = (x− x̂k)
TΠ−1

k (x− x̂k) + Φ∗
k (5.89)

The matrix Πk is assumed to be non-singular such that its inverse is well
defined, and obtained by solving the recursive Riccati-equation

Πk+1 = GkQkG
T
k +AkΠkA

T
k −AkΠkC

T
k

(
Rk + CkΠkC

T
k

)−1
CkΠkA

T
k

with some given positive definite matrix as initial condition Π0. The ma-
trices Ak, Gk, Ck are defined as linearizations about the NMHE estimated
trajectory:

Ak =
∂F (x̂k, uk, ŵk)

∂x
(5.90)

Gk =
∂F (x̂k, uk, ŵk)

∂w
(5.91)

Ck =
∂h(x̂k, uk)

∂x
(5.92)
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and for simplicity we assume Qk and Rk are defined through a quadratic cost
function L(w, v) = wTQ−1

k w + vTR−1
k v. More generally, Qk and Rk may be

defined as Hessians of L as in Rao et al (2003).
It is well known that alternative nonlinear Kalman Filters may perform

better than the EKF in many situations. In the context of NMHE arrival cost
estimation some useful methods are sample based filters (Ungarala (2009)),
particle filtes (Lopez-Negrete et al (2009)), and Unscented Kalman Filtering
(UKF) (Qu and Hahn (2009)).

5.3.1.4 Combined State and Parameter Estimation

Many practical estimation problems are characterized by both states and
parameters being unknown or uncertain. In Kalman filtering (Gelb (2002))
and observer design, a common approach to the joint state and parameter
estimation problem is to augment the state space with constant parameters.
Assuming a vector of constant parameters θ∗ appears in the model equations:

ξi+1 = Fm(ξi, ui, ωi, θ
∗) (5.93)

yi = hm(ξi, ui, θ
∗) + vi (5.94)

with the new notation where ξi is the state and ωi is the disturbance. An
augmented state space model assumes that the parameters are constant or
slowly time-varying by the following model of the unknown parameter vector

θi+1 = θi + ̺i (5.95)

Combining (5.93)-(5.94) with (5.95) leads to

(
ξi+1

θi+1

)

=

(
Fm(ξi, ui, ωi, θi)

θi + ̺i

)

(5.96)

yi = hm(zi, ui, θi) + vi (5.97)

With the augmented state x = col(ξ, θ) and augmented disturbance vector
w = col(ω, ̺) we observe that these equations are in the assumed form (5.75)-
(5.76) such that the NMHE algorithm formulation can be applied without
any modifications.

It is common to encounter combined state and parameter estimation prob-
lems where convergence conditions of uniform observability or persistence of
excitation are not fulfilled, Moraal and Grizzle (1995a); Sui and Johansen
(2010). In such cases various mechanisms of regularization should be im-
plemented to get graceful degradation of the estimation when insufficient
information is available to determine the estimates. The use of a term in the
cost function that preserves the history and makes the observer degrade to an
open-loop observer is one such mechanism, that can be combined with more
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advanced monitoring of the Hessian matrix of the cost function to detect and
resolve lack of excitation, Sui and Johansen (2010).

5.4 Numerical Optimization

For simplicity of notation, we assume in this section that the NMHE or
NMPC problem is formulated as a general nonlinear programming problem
at each time instant

min
z
V (z) subject to G(z) ≤ 0, H(z) = 0 (5.98)

where z is a vector with the unknown decision variables. In practice, as im-
plemented in most numerical solver software, it will be important to exploit
structural properties of the constraints and objective functions such that fur-
ther separation of the functions G and H into simple bounds (zmin ≤ z ≤
zmax), linear constraints and “truly” nonlinear constraints is usually made
for efficient implementation. For simplicity of presentation, we does not make
such separation here.

5.4.1 Problem Structure

The choice of numerical optimization solver strategy will have significant im-
pact on both the need for computational resources and the quality of the
solution in NMPC and NMHE. In this context, computational resources usu-
ally means the CPU time required for the solution to converge to meet the
tolerance requirements, while quality of solution is related to lack of conver-
gence or high sensitivity to initial guesses.

There are several features of NMPC and NMHE problems that are relevant
to consider

• Formulation of the numerical optimal control or estimation problem, e.g.
sequential or simultaneous approaches. The sequential approach leads to
a smaller, denser problem with a computationally complex cost function
usually without nonlinear equality constraints, while the simultaneous ap-
proach leads to a larger, more structured, sparse problem with nonlinear
equality constrains and relatively simple cost and constraint functions to
evaluate.

• NMPC and NMHE solves a sequence of numerical optimal control or esti-
mation problems, where the parameters of the problem are usually subject
to fairly small changes from one run to the next. There is usually benefits
of warm starting the next optimization run using the solution and other
internal data from the previous run as initial guesses, data or conditions.



226 Tor A. Johansen

• Since the optimization will be repeated at the next sample, and the opti-
mization problem is formulated using uncertain data, it may not always be
essential that the solver has converged (or equivalently that the tolerances
may not need to be very strict) due to the forgiving effect of feedback.
However, a feasible solution is generally required at each run in order to
operate the control and monitoring systems. This means that problems
tend to be re-formulated using slack variables with some prioritization of
constraints that can be relaxed, and that is it generally desirable to start
the next optimization run with a feasible initial guess generated from the
previous run such that even with a limited number of iterations one can
guarantee feasibility.

• Safety and reliability are essential features of most control and monitoring
systems, which means that post-optimal analysis and checks on the quality
of the solution must usually be implemented. Issues such as non-convexity
and non-smoothness of models and constraints are essential to understand
and take into account.

Although all nonlinear MPC and MHE problems have certain features in
common, they may also differ considerably with respect to size, models, cost
functions and constraints. This means that there will not be a single numerical
method that will be the best, in general. Below, we briefly outline some
commonly used numerical methods with emphasis on sequential quadratic
programming and interior point methods. We point out that there exist a
wide range of alternative methods that may perform better in certain types
of problems, like derivative-free methods (e.g. Conn et al (2009)) that may
be better suited if the computation of gradients is expensive or not possible
to achieve accurately.

5.4.2 Nonlinear Programming

Newton’s method for iterative solution of nonlinear algebraic equations is
the backbone of most numerical optimization methods. For a nonlinear vec-
tor equation f(z) = 0, Newton’s method starts with an initial guess vector z0

and generates a sequence of guesses zk indexed by the integer k = 1, 2, 3, ....
according to the following formula that results from linearization using Tay-
lor’s theorem and truncation:

f(zk) +∇T
z f(z

k)(zk+1 − zk) = 0 (5.99)

Eq. (5.99) defines a set of linear algebraic equations that can be solved for
zk+1 using numerical linear algebra, which is the workhorse at the core of
nonlinear programming and is the main contribution to computational com-
plexity in addition to the computation of the function f and its gradient
(Jacobian matrix) ∇zf . As Newton’s method is based on linearization, it has
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only local convergence, but with a quadratic convergence rate, Nocedal and
Wright (1999).

Newton’s method is used in nonlinear programming to solve nonlinear
algebraic equations closely related to the first order optimality conditions of
(5.98), known as the Karush-Kuhn-Tucker (KKT) conditions Nocedal and
Wright (1999)

∇zL(z
∗, λ∗, µ∗) = 0 (5.100)

H(z∗) = 0 (5.101)

G(z∗) ≤ 0 (5.102)

µ∗ ≥ 0 (5.103)

Gi(z
∗)µ∗

i = 0, i = 1, ...., nG (5.104)

where nG is the number of inequality constraints and the Lagangian function
is defined as

L(z, λ, µ) = V (z) + λTH(z) + µTG(z) (5.105)

Obviously, the KKT conditions also involves inequalities which means that
Newton’s method cannot be applied directly. The different nonlinear pro-
gramming methods differ conceptually in the way the KKT conditions, being
mixed equations and inequalities, are used to formulate a sequence of nonlin-
ear equations. The different nonlinear programming methods also differ with
respect to approximations used for the gradient ∇zf of the resulting set of
equations. Since the evaluation of (5.100) already requires gradient compu-
tations (for the Jacobian matrix of the Lagrangian ∇zL) in the formulation
of the equations to be solved, the computation of ∇zf generally requires the
expensive computation or approximation of the matrix ∇2

zL, known as the
Hessian matrix of the Lagrangian.

5.4.2.1 Sequential Quadratic Programming (SQP)

SQP methods linearize the KKT conditions (5.100)-(5.104) at the current
iterate zk, leading to a set of linear conditions that can be interpreted as
the KKT conditions of the following quadratic program (QP), Nocedal and
Wright (1999):

min
z
V k
QP (z) (5.106)

subject to

H(zk) +∇T
z H(zk)(z − zk) = 0 (5.107)

G(zk) +∇T
z G(z

k)(z − zk) ≤ 0 (5.108)

with the cost function



228 Tor A. Johansen

V k
QP (z) = ∇T

z V (zk)(z − zk) +
1

2
(z − zk)T∇2

zL(z
k, λk, µk)(z − zk)

(5.109)

This QP interpretation is highly useful since it provides a practical way to
deal with the fact that the KKT conditions include inequalities, which are
not straightforward to solve using Newton’s method directly. The vast knowl-
edge and numerical methods of solving QP problems, typically using active
set methods, Nocedal and Wright (1999); Gill et al (1981), is exploited at
this point. Active set methods replace inequality constraints with equality
constraints based on an active set assumption that is improved iteratively as
the method converges towards an optimal solution.

However, there are three major challenges remaining:

• The first key challenge is related to the Hessian matrix ∇2
zL(·). Problems

arise if this matrix is not positive definite such that the QP is not convex
and a global optimum may not exist or is not unique. In the context of
NMPC or NMHE, problems will also arise if the computational complexity
of computing the Hessian is beyond the CPU resources available. Approxi-
mations such as quasi-Newton and Gauss-Newton methods are commonly
used to approximate the Hessian from the Jacobian, see below, in a positive
definite form.

• The second key challenge is related related to the accuracy of the under-
lying linearizations (or equivalently, the local quadratic approximations of
the QP to the NLP). In order to have control over this issue, it is common
to solve the QP to generate a search direction only, and then generate
the next iterate zk+1 not as the minimum of the QP defined above, but
through a search procedure along this direction. Common search proce-
dures are line search and trust region methods, as outlined below.

• The third key challenge is related to feasibility. To ensure convergence it is
common to use a merit function to control the step size length in both line
search and trust region methods. The merit function adds a penalty on
constraint violations to the original cost function to ensure that the next
iterate moves towards a combined objective of reducing the cost function
and being feasible.

Quasi-Newton methods approximate the Hessian of the Lagrangian by
an update formula that only requires computation of the Jacobian. Common
methods, such as the BFGS update, Nocedal and Wright (1999), leads to
significant computational reduction and ensures that the Hessian approxima-
tion is positive definite. The price to pay is that the convergence rate may
no longer be quadratic, but typically only super-linear, Nocedal and Wright
(1999).

Gauss-Newton methods are particularly useful for least-squares type
of problems, like NMHE and certain NMPC formulations, where the cost
function is the squared norm of some nonlinear functions since a reliable
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estimate of the Hessian can be computed directly from the Jacobian as the
product of the Jacobian and its transpose, Nocedal and Wright (1999).

Line search methods are designed to account for the fact that the QP is
only a locally valid approximation. As the name indicates, one performs a one-
dimensional search in the descent direction computed by the QP (solution) to
ensure that sufficient descent of the actual merit function is achieved; Nocedal
and Wright (1999).

Trust region methods define a maximum step length for the next iterate
based on a trust region, where the linearization is sufficiently accurate. This
aims to ensure that the next iterate is well defined and accurate, and the
size of the trust region is adapted to ensure that the merit function reduction
predicted by the QP is sufficiently close to the actual merit function reduction,
Conn et al (2000); Wright and Tenny (2004).

5.4.2.2 Interior Point Methods (IP)

Interior point methods deal with the inequality constraints of the KKT con-
ditions in a fundamentally different way than SQP methods. The KKT condi-
tions concerning the inequality constraints, in particular (5.104), is replaced
by a smooth approximation (Wright (1997); Diehl et al (2009)):

Gi(z
∗)µ∗

i = τ, i = 1, ...., nG (5.110)

Solving the resulting set of algebraic nonlinear equations with Newton’s meth-
ods is equivalent to a solution of the following appoximate problem, where
the inequality constraints are handled by a log(·) barrier function:

min
z

(

V (z)− τ

nG∑

i=1

log (−Gi(z))

)

subject to H(z) = 0 (5.111)

The parameter τ > 0 parameterizes a central path in the interior of the fea-
sible region towards the optimum as τ → 0, which motivates the name of IP
methods. Once the solution for a given τ > 0 is found, the parameter τ can
be reduced by some factor in the next Newton iteration. The practical imple-
mentation of an IP method will typically use Newton’s method to compute
a search direction. Challenges related to the computation of the Hessian ma-
trix and limited validity of the linearization of the Newton method, remain
similar to SQP, and the ideas of quasi-Newton methods, merit functions, line
search and trust regions are relevant and useful also for IP methods.
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5.4.2.3 Linear Algebra

At heart of both the QP sub-problems of SQP and the Newton-step of IP
methods are the solution of a set of linear algebraic equations. Efficiency of
the numerical optimization solver heavily depends on the efficiency of solving
this problem, since it will be repeated many times towards the solution of the
NLP at each sampling instant of an NMPC or NMHE. Exploiting structural
properties is essential.

Depending on the solution strategy and properties of the problem, such
structural properties are often related to positive definiteness of the Hes-
sian (approximation), sparseness and block-diagonal structure of the linear
systems of equations, and what information from the previous optimization
run can be used to initialize the next run. Using factorization methods one
may eliminate algebraic variables and operate in reduced spaces to save com-
putations. Being able to efficiently maintain and update factorized matrices
between the various iterations is usually essential to implement this. Although
this is essential in any practical implementation of NMHE and NMPC, it is
a fairly complex bag of tricks and tools that we consider outside the scope
of this introduction. Instead, we refer to excellent and comprehensive treat-
ments in Nocedal and Wright (1999); Diehl et al (2009); Gill et al (1997,
1981) and the references therein.

5.4.3 Warm Start

The NLP problem at one sampling instant is usually closely related to the
NLP problem at the previous sampling instant in NMPC and NMHE prob-
lem, since the sampling interval is usually short compared to the dynamics of
the plant and the controller. Assuming the reference signals and other input
to the controller changes slowly, this means that the solution in terms of past
state trajectories (for MHE problems) or future input and state trajectories
(for MPC problems) can be time shifted one sampling period and still provide
a reasonably accurate solution to the next NLP. Assuming no uncertainty in
MPC problems, this is a perfectly valid assumption and is commonly used
to guarantee feasibility at the next step in stability arguments, e.g Scokaert
et al (1999); Mayne et al (2000). Even without time-shifting, the previous
solution itself also provides a good initialization for warm start purposes in
NMPC, Boch et al (1999); Diehl et al (2004).

Unlike SQP methods, IP methods can usually not make effective use of
initial guesses of the solution due to the reformulation of the KKT conditions
that follows the parameterized center path controlled by the parameter τ > 0
that is sequentially reduced towards zero. This does not necessarily imply that
IP methods are less suited for NMPC and NMHE problems, in particular for
large scale problems where IP methods have advantages that may compensate
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for this shortcoming. Modified IP methods that can efficiently incorporate
warm start is a current research topic, Gondzio and Grothey (2008); Shahzad
et al (2010).

Warm start is potentially most efficient when including data beyond just
the solution point, but also consider the internal data of the optimization al-
gorithm such as initial estimates of the Hessian approximation (in case exact
Hessians are not computed), or initial estimates of factorizations of the Hes-
sian (approximation), initial estimates of optimal active sets, and other data.
This is in particular a challenge when the dimensions and structure of these
internal data will change from one sample to the next. This may for example
be the case in the simultaneous formulations (in particular direct collocation)
of numerical optimal control (see section 5.2.2), since the discretization may
be changed from one sample to the next, in general. One must also have in
mind that simultaneous formulations require that both state and control tra-
jectories are initialized, while sequential formulations only require the control
trajectory initialization. What is most beneficial will depend on the accuracy
of the available information for initialization, amongst other things. We refer
to Diehl et al (2009); Houska et al (2010) and the references therein for a
deeper treatment of this topic.

5.4.4 Computation of Jacobians and Hessians

The computation of the Jacobians of the cost and constraint functions is
often the main computational cost of numerical optimization methods, and
even fairly small inaccuracies in the calculation of the Jacobians due to may
lead to severe convergence problems.

Simultaneous approaches offer advantages over sequential approaches with
respect to Jacobian computations:

• The prediction horizon is broken up into several intervals where ODE solu-
tions are computed from given initial conditions. Since these intervals will
be shorter than the single interval of a single shooting approach, numerical
errors due to the ODE solver tend to accumulate less.

• Implicit ODE solvers, which generally have more stable numerical proper-
ties than explicit solvers, can in general be used in simultaneous approach.

• Simultaneous approaches are characterized by simpler cost and constraint
functions, where automatic differentiation is more easily exploited to avoid
numerical Jacobian computation errors, see section 5.4.4.2.

The numerical challenges are in particular important to consider for plants
that are unstable or marginally stable. Like in linear MPC, there may be
advantages of pre-stabilizing an open-loop unstable plant model with a feed-
back compensator before used in NMPC or NMHE, Cannon and Kouvaritakis
(2005); Sui et al (2010).
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5.4.4.1 Finite Difference

The finite difference method approximates the (i, j)-th element of the Jaco-
bian of a vector function f(z) as

(∇zf(z))i,j ≈ fi(zj + δ)− fi(zj)

δ
(5.112)

for some small δ > 0. If δ is too large there will be inaccuracies due to the
nonlinearity of fi, since the method computes the average slope between two
points. If the two points are not infinitely close and the function is not linear,
there will be a “nonlinearity error”. If δ is too small, any finite numerical error
ε1 in the computation of fi(zj+δ) and ε2 in the computation of fi(zj) will lead
to an error ǫ = (ε1 − ε2)/δ in the computation of the derivative. Obviously,
this error goes to infinity when δ → 0, so a tradeoff between these errors
must be made. It should be noticed that the finite difference approximation
error ǫ depends on the difference between the errors in the two point-wise
evaluations of fi. This means that systematic errors (i.e. the same error in
both ε1 and ε2) will have a much smaller effect than a random error of the
same magnitude. Practical experience shows that the use of variable-step
(adaptive) ODE solvers tend to give a small random numerical error, while
the use of fixed-step ODE solvers tend to give a larger systematic error, but
even smaller random error. For the reasons described above, one may find
that a fixed-step ODE solver leads to considerably smaller error in finite
difference Jacobian computations and performs better with less convergence
problems in many numerical methods for NMPC and NMHE.

It is also worthwhile to remind the reader that scaling of all variables
involved in the optimization problem to the same order of magnitude is in
many cases a pre-requisite for numerical nonlinear optimization methods to
work satisfactorily. This is evident in the context of finite difference Jacobian
computations, but also relevant for other numeric computations.

As a final remark, it is possible to exploit square-root factorizations (like
Cholesky factorization) for improved numerical accuracy and computational
complexity in finite difference computations, Schei (1997).

5.4.4.2 Symbolic and Automatic Differentiation

The most accurate result and computationally most efficient approach is to
calculate gradients by symbolically differentiating the cost and constraint
functions. Doing this by hand, or even using symbolic computations in Mat-
lab, Maple or Mathematica, may easily become intractable for NMPC and
NMHE problems that may contain a large number of variables, equations
and inequalities. A more convenient solution is to rely on so-called automatic
differentiation software (Griewank and Walther (2008)) that achieved this
objective either by overlaying operators in object oriented languages such
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as C++ (Griewank et al (1996)), or automatically generates source code for
gradient functions based on source code of the original function, Bischof et al
(1996).
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Åksesson BM, Toivonen HT (2006) A neural network model predictive controller.
Journal of Process Control 16:937–946

Alamir M (1999) Optimization based non–linear observers revisited. Int J Control
72:1204–1217

Alamir M (2007) Nonlinear moving horizon observers: Theory and real-time imple-
mentation. In: Besancon G (ed) Nonlinear Observers and Applications, LNCIS
363, Springer, pp 139–179

Alamir M, Bornard G (1995) Stability of a truncated infinite constrained receding
horizon scheme: The general discrete nonlinear case. Automatica 31:1353–1356

Alessandri A, Baglietto M, Parisini T, Zoppoli R (1999) A neural state estimator with
bounded errors for nonlinear systems. IEEE Transactions on Automatic Control
44:2028 – 2042

Alessandri A, Baglietto M, Battistelli G (2003) Receding–horizon estimation for
discrete–time linear systems. IEEE Transactions Automatic Control 48:473–478

Alessandri A, Baglietto M, Battistelli G (2008) Moving–horizon state estimation for
nonlinear discrete–time systems: New stability results and approximation schemes.
Automatica 44:1753–1765
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Bock HG, Diehl M, Leineweber DB, Schlöder JP (1999) Efficient direct multiple
shooting in nonlinear model predictive control. In: Keil F, Mackens W, Voβ H,
Werther J (eds) Scientific Computing in Chemical Engineering II, vol 2, Springer,
Berlin, pp 218–227

Borrelli F, Morari M (2007) Offset free model predictive control. In: Proc. IEEE
Conference on Decision and Control, pp 1245–1250

Boyd S, Ghaoui LE, Feron E, Balahrishnan V (1994) Linear Matrix Inequalities in
System and Control Theory. SIAM, Philadelphia

Cannon M, Kouvaritakis B (2005) Optimizing prediction dynamics for robust mpc.
IEEE Trans Automatic Control 50:1892–1897

Cannon M, Ng D, Kouvaritakis B (2009) Successive linearization NMPC for a class of
stochastic nonlinear systems. In: Magni L, Raimondo DM, Allgöwer F (eds) Non-
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Allgöwer F (eds) Nonlinear Model Predictive Control: Towards New Challenging
Applications, LNCIS, vol. 384, Berlin/Heidelberg: Springer-Verlag, pp 235–248

Gravdahl JT, Egeland O (1997) Compressor surge control using a close–coupled valve
and backstepping. In: Proc. American Control Conference, Albuquerque, NM.,
vol 2, pp 982 –986

Greitzer EM (1976) Surge and rotating stall in axial flow compressors, part i: Theo-
retical compression system model. J Engineering for Power 98:190–198

Griewank A, Walther A (2008) Evaluating Derivatives, second edition. SIAM
Griewank A, Juedes D, Utke J (1996) ADOL–C, A package for the automatic dif-

ferentiation of algorithms written in C/C++. ACM Trans Mathematical Software
22:131–167

Grimm G, Messina MJ, Tuna SE, Teel AR (2004) Examples when nonlinear model
predictive control is nonrobust. Automatica 40:1729–1738



236 Tor A. Johansen

Haseltine EL, Rawlings JB (2005) Critical evaluation of extended Kalman filtering
and moving–horizon estimation. Ind Eng Chem Res 44:2451–2460

Heemels WPMH, Schutter BD, Bemporad A (2001) Equivalence of hybrid dynamical
models. Automatica 37:1085 – 1091

Hicks GA, Ray WH (1971) Approximation methods for optimal control systems. Can
J Chem Engng 49:522–528

Houska B, Ferreau HJ, Diehl M (2010) ACADO toolkit – an open–source framework
for automatic control and dynamic optimization. Optimal Control Applications
and Methods

Isidori A (1989) Nonlinear Control Systems, 2nd Ed. Springer Verlag, Berlin
Jadbabaie A, Yu J, Hauser J (2001) Unconstrained receding–horizon control of non-

linear systems. IEEE Trans Automatic Control 46:776–783
Jang SS, Joseph B, Mukai H (1986) Comparison of two appraoches to on-linear param-

eter and state estimation of nonlinear systems. Ind Chem Proc Des Dev 25:809–814
Jazwinski AH (1968) Limited memory optimal filtering. IEEE Trans Automatic Con-

trol 13:558–563
Johansen TA (2004) Approximate explicit receding horizon control of constrained

nonlinear systems. Automatica 40:293–300
Kandepu R, Foss B, Imsland L (2008) Applying the unscented Kalman filter for

nonlinear state estimation. J Process Control 18:753–768
Kantas N, Maciejowski JM, Lecchini-Visintini A (2009) Sequential Monte Carlo for

model predictive control. In: Magni L, Raimondo DM, Allgöwer F (eds) Nonlinear
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control for nonlinear discrete–time systems. International Journal of Robust and
Nonlinear Control 13:229–246

Mangasarian OL, Rosen JB (1964) Inequalities for stochastic nonlinear programming
problems. Operations Research 12:143–154

Marino R, Tomei P (1995) Nonlinear Control Design: Geometric, Adaptive and Ro-
bust. Prentice Hall, UK

Mayne DQ, Michalska H (1990) Receding horizon control of nonlinear systems. IEEE
Trans Automatic Control 35:814–824

Mayne DQ, Rawlings JB, Rao CV, Scokaert POM (2000) Constrained model predic-
tive control: Stability and optimality. Automatica 36:789–814

Messina MJ, Tuna SE, Teel AR (2005) Discrete-time certainty equivalence output
feedback: allowing discontinuous control laws including those from model predic-
tive control. Automatica 41:617–628

Michalska H, Mayne DQ (1993) Robust receding horizon control of constrained non-
linear systems. IEEE Trans Automatic Control 38:1623–1633

Michalska H, Mayne DQ (1995) Moving horizon observers and observer–based control.
IEEE Transactions Automatic Control 40:995–1006

Moraal PE, Grizzle JW (1995a) Asymptotic observers for detectable and poorly ob-
servable systems. In: IEEE Conf. Decision and Control, New Orleans, pp 109–114

Moraal PE, Grizzle JW (1995b) Observer design for nonlinear systems with discrete–
time measurement. IEEE Transactions Automatic Control 40:395–404

Morari M, Lee J (1999) Model predicitve control: Past, present and future. Comp
and Chem Eng 23:667–682

Muske KR, Badgwell TA (2002) Disturbance modeling for offset-free linear model
predictive control. J Process Control 12:617 – 632



238 Tor A. Johansen

Nagy Z, Braatz RD (2003) Robust nonlinear model predictive control of batch pro-
cesses. AIChE Journal 49:1776–1786
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ing horizon control. In: Allgöwer F, Zheng A (eds) Nonlinear Predictive Control,
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Chapter 6

Complexity Reduction in Explicit Model
Predictive Control

Michal Kvasnica and Miroslav Fikar and L’uboš Čirka and Martin Herceg

Abstract This chapter discusses recent advances in model predictive con-
trol (MPC) and treats issues and challenges in real-time implementation. We
investigate the explicit approach to MPC. The idea of explicit MPC is to
find the optimal control input as an explicit function of the initial conditions.
Such a function is known to take the Piecewise Affine (PWA) form, and allows
MPC to be applied to systems with fast dynamics. For most practical cases,
however, the function is often too complex to be processed by a typical con-
trol hardware setup in real time. Therefore, two novel methods are proposed
which aim at deriving a simpler representation of the optimal MPC feedback
law. Both methods provide guarantees of closed-loop stability and constraint
satisfaction and are able to reduce the real-time complexity by several orders
of magnitude.

6.1 Introduction

Real-time implementation of MPC in the Receding Horizon fashion (RHMPC)
is a challenging task since it requires that the optimal solution of an optimi-
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sation problem for a given initial condition is obtained within of one sampling
instance. Recently, the concept of parametric programming has been adopted
to pre-compute the optimal solution for all possible initial conditions x as
a Piecewise Affine (PWA) function u∗(x) = κ(x) (Bemporad et al, 2002;
Borrelli, 2003; Kvasnica, 2009). Such a function consists of a set of polyhedral
regions with the optimal solution being affine on each region. This allows one
to apply RHMPC to systems with fast dynamics. Since the optimal solution
is explicitly obtained in a functional form, such an approach is often referred
to as explicit RHMPC.

Complexity of the real-time implementation of such solutions is deter-
mined by the amount of memory needed to describe the function and by the
amount of CPU time needed to evaluate it for a particular value of x. In the
simplest form, the explicit solution can viewed as a table with rows represent-
ing individual regions. The table size depends exponentially on the number
of constraints and on the number of binary variables. As both memory and
CPU time grow proportionally with the table size, for a successful real-time
implementation it is of imminent importance to keep the complexity of κ(x)
(expressed in terms of number of its regions) as low as possible.

In the existing literature, the issue of complexity of κ(x) is usually attacked
from various perspectives. The most simple approaches reduce the prediction
horizons or consider move blocking of inputs.

One option is to approximate the optimal feedback κ(x) by a simpler func-
tion κ̃(x) either by solving a sub-optimal MPC problem. In Bemporad and
Filippi (2003), relaxed Karush-Kuhn-Tucker (KKT) conditions are assumed.
Partition of state-space to orthogonal hypercubes was considered in Johansen
and Grancharova (2003) and recursive procedure is employed to obtain de-
sired accuracy. Jones and Morari (2009)) use bilevel optimisation to generate
a low complexity PWA function directly from the MPC formulation. Opti-
mal control is interpolated over a small number of states. In Rossiter and
Grieder (2005), two different control laws from the feasible region boundary
are interpolated and achieve a large decrease in the number of regions with
possible performance degradation. Laguerre functions are used in Valencia-
Palomo and Rossiter (2010) for reparametrisation of degrees of freedom and
give significant reduction of complexity with a little loss in performance.

Other possibility is to augment the underlying regions of κ(x) (see e.g. Jo-
hansen and Grancharova (2003); Cychowski and O’Mahony (2005); Grieder
et al (2004); Scibilia et al (2009)). In all cases a sub-optimal replacement κ̃(x)
is obtained. However, a direct guarantee of actual complexity reduction, or
impact on closed-loop stability and performance are usually not provided.

Recursive formulations of simple MPC formulations with one step predic-
tion and varying terminal set obtained in previous iteration are considered
in Grieder et al (2005). Simplicity of MPC formulation here usually leads to
a significant reduction of the number of the regions.

Some of the solutions avoid to store the full table and keep only some se-
lected regions. Pannocchia et al (2007) propose partial enumeration of active
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constraints at optimality. Several off-line simulations are needed to identify
the most important combinations of active constraints.

Another option is to post-process κ(x) in order to obtain a simpler repre-
sentation κ̃(x) by merging together regions which share the same expression
for the control law (Geyer et al, 2008). Such an approach, however, is com-
putationally very demanding and thus limited to small-scale problems only.
The same paper discusses also suboptimal strategy based on divide&conquer
approach that can handle larger problems.

The main aim of this chapter is to provide methods and implementations
that reduce execution time needed for evaluate the explicit feedback law κ(x)
on-line for a particular value of x. We will concentrate on two approaches
that post-process the optimal solution: (i) significant reduction of number
of regions by clipping, and (ii) approximation of optimal piecewise affine
control law by a polynomial. Another possible solution based on the concept
of separation function is proposed in the workshop preprints (Kvasnica et al,
2011)

The first approach constructs a replacement function κ̃(x) for the optimal
control law κ(x) which is guaranteed to contain less regions than the original
one for a vast majority of MPC setups. In addition, as will be illustrated
in Section 6.4, such a replacement maintains all closed-loop properties of
κ(x) and therefore does not induce any loss of optimality or stability. The
approach is based on the premise that MPC controller operates at the limits
of the admissible control freedom for some states. The idea therefore is to
extend the unsaturated regions such that they cover the saturated ones. In
the next step we propose to pass the calculated function value through a
so-called clipping function such that the equivalence to the original function
is established for all feasible initial conditions.

The second method approximates the optimal control law defined within
multiple state space regions by a higher degree polynomial valid over the
entire available state-space boundaries. This polynomial, when applied as a
state-feedback, guarantees closed-loop stability, constraint satisfaction, and
a bounded performance decay. The advantage of the proposed scheme lies
in faster controller evaluation and lower storage demand compared to cur-
rently available techniques. As it will be shown, such a polynomial can be
constructed by solving a linear programming problem.

6.2 Notation

We denote by Rn the n-dimensional real vectors and by Rn×m the n ×m-
dimensional real matrices. For a matrix or a vector A, [A]\I represents all
rows of A except of those belonging to some index set I. The interior of a
set S is denoted by int (S). Given a function κ(x), dom(κ(x)) denotes its
domain.
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Definition 6.1 (Polyhedron). A polyhedron is the convex intersection of c
closed affine half-spaces, i.e. R := {x ∈ Rnx | Rxx ≤ R0} with Rx ∈ Rc×nx

and R0 ∈ R
c.

Definition 6.2 (P-collection). The set R ⊆ Rnx is called the P-collection
if it is a collection of a finite number of polyhedra, i.e. R = {Ri}Ri=1.

Definition 6.3 (Set difference (Baotić and Torrisi, 2003)). The set
difference between a polyhedron Q ⊆ Rnx and a P-collection P ⊆ Rnx is the
P-collection R = Q \ P := {x ∈ Rnx | x ∈ Q, x /∈ P}.
Definition 6.4 (Partition). We call the collection of polyhedra {Ri}Ri=1 the

partition of polyhedron R if R =
⋃R

i=1 Ri, and int (Ri) ∩ int (Rj) = ∅ for all
i 6= j. Each polyhedron Ri will be referred to as the region of the partition.

Definition 6.5 (Adjacent regions). Regions Ri and Rj of the partition
R are called adjacent if Ri ∩Rj is an (nx − 1)-dimensional facet of both Ri

and Rj , i 6= j.

Definition 6.6 (Adjacency list). For each facet j of region Ri of the par-
tition R we denote by Ai,j(R) the index set of regions adjacent to Ri along
the j-th facet.

Definition 6.7 (PWA function over polyhedra). Function κ(x) : R →
Rnz with x ∈ R ⊆ Rnx , R being a polyhedron, is called Piecewise Affine
(PWA) over polyhedra, if {Ri}Ri=1 is the partition of R and

κ(x) := Kix+Li ∀x ∈ Ri, (6.1)

with Ki ∈ Rnz×nx , Li ∈ Rnz , and i = [1, . . . , R].

Definition 6.8 (Continuous PWA function). PWA function κ(x) is con-
tinuous if Kix+Li = Kjx+Lj holds ∀x ∈ Ri ∩Rj , i 6= j.

6.3 Explicit Model Predictive Control

In MPC, optimal control actions are calculated by solving a suitable optimi-
sation problem, which usually takes the following form:

J(x0) = min
UN

ℓN(xN ) +
N−1∑

k=0

ℓ(xk,uk) (6.2a)

s.t. x0 = x(t), (6.2b)

xk+1 = f(xk,uk), (6.2c)

xk ∈ X , (6.2d)

uk ∈ U , (6.2e)

xN ∈ X f , (6.2f)
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where xk ∈ Rnx and uk ∈ Rnu denote, respectively, the state and input
predictions at time instance t + k, initialised by the measurements of the
current state x(t). These quantities are constrained to reside within of chosen
sets X and U . Evolution of the predictions is driven by the prediction model,
represented by the function f(xk,uk). The prediction is carried out over a
finite prediction horizon N . The terminal predicted state xN is constrained
to reside in a suitable terminal set X f ⊆ X . The aim is to find the vector
UN := [uT

0 ,u
T
1 , . . . ,u

T
N−1]

T of optimal control inputs which minimises the
objective function (6.2a) composed of the terminal penalty ℓN (·) and the
stage costs ℓ(·, ·):

ℓN(xN ) = ‖QNxN‖p, (6.3a)

ℓ(xk,uk) = ‖Qxxk‖p + ‖Quuk‖p. (6.3b)

Here, QN , Qx and Qu are penalty matrices of suitable dimensions and p =
{1, 2,∞} denotes a standard polyhedral vector norm. Two types of prediction
models are usually considered in practise:

1. Discrete-time linear time-invariant (LTI) models of the form

xk+1 = Axk +Buk
︸ ︷︷ ︸

f(xk,uk)

, (6.4)

2. Discrete-time piecewise affine (PWA) models represented by a set of nD

distinct local linear models

xk+1 = Ajxk +Bjuk if [ xk
uk

] ∈ Dj
︸ ︷︷ ︸

f(xk,uk)

. (6.5)

These systems originate naturally when nonlinear process dynamics is ap-
proximated by multiple local linear models. Here, the index j = 1, . . . , nD

represents the j-th local linear dynamics out of the total number of dy-
namics nD. Each local expression is only valid within of the polyhedron
Dj = {[ xu ] | Dx

jx +Du
ju ≤ D0

j}, where Dx
j , D

u
j , and D0

j are matrices
of suitable dimensions.

In RHMPC, the optimal sequence U∗
N is calculated by solving (6.2) for

a given value of x(t). Subsequently, only u∗
0 is extracted from U∗

N and it is
applied to the plant. At the next time instance the procedure is repeated again
for a fresh measurements x(t), hence introducing feedback into the MPC
scheme. Since only u∗

0 is required at each time step, the RHMPC feedback is
given by

u∗
0(x(t)) = [Inu 0nu · · · 0nu ]U

∗
N . (6.6)

In explicit MPC approach the optimal solution to problem (6.2) is “pre-
calculated” for all possible values of the initial condition x(t) using parametric
programming (Bemporad et al, 2002; Kvasnica, 2009). An introduction to this
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technique for a linear time-invariant model and a quadratic cost function is
given below.

6.3.1 Quadratic Programming Definition

Consider optimal control problems for a discrete-time linear, time-invariant
system

xk+1 = Axk +Buk (6.7)

with A ∈ R
nx×nx and B ∈ R

nx×nu .
Now consider the constrained finite-time optimal control problem

J(x0) = minxT
NQNxk +

N−1∑

k=0

xT
k Qxxk + uT

kQuuk (6.8a)

subj. to xk ∈ X , uk ∈ U , k ∈ {0, . . . , N − 1}, (6.8b)

xN ∈ X f , (6.8c)

xk+1 = Axk +Buk (6.8d)

As future state predictions are constrained by (6.7), we can recursively
substitute for them yielding

xk = Aix0 +

k−1∑

j=0

AjBuk−1−j (6.9)

Thus, optimal solution of problem (6.8) can be reformulated as

J∗(x0) = xT
0 Y x0 +min

UN

1

2

{

UT
NHUN + xT

0 FUN

}

(6.10a)

subj. to GUN ≤ W +Ex0 (6.10b)

where the column vector UN is the optimisation vector and H, F , Y , G,
W , E can easily be obtained from the original formulation.

The reformulated problem (6.10) is a standard quadratic programming
formulation. Taking any initial value x0, optimal future control trajectory
UN (x) can be found from which only the first element is used to close the
loop.
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6.3.2 Explicit Solution

In explicit solution of (6.10) we use the so-called multi-parametric program-
ming approach to optimisation. In multi-parametric programming, the ob-
jective is to obtain the optimiser UN for a whole range of parameters x0,
i.e. to obtain UN (x) as an explicit function of the parameter x. The term
multi is used to emphasise that the parameter x (in our case the actual state
vector x0) is a vector and not a scalar. If the objective function is quadratic
in the optimisation variable UN , the terminologymulti-parametric Quadratic
Program (mp-QP) is used.

In this formulation, it is useful to define

z = UN +H−1F Tx0 (6.11)

and to transform the formulation to problem, where the state vector x0 ap-
pears only in constraints

J∗(x0) = min
z

1

2

{

zTHz

}

(6.12a)

subj. to Gz ≤ W + Sx0 (6.12b)

where S = E +GH−1F T .
An mp-QP computation scheme consists of the following three steps:

1. Active Constraint Identification: A feasible parameter x̂ is determined
and the associated QP (6.12) is solved. This will yield the optimiser z and
active constraints A(x̂) defined as inequalities that are active at solution,
i.e.

A(x̂) = {i ∈ J | G(i)z = W (i) + S(i)x̂}, J = {1, 2, . . . , q}, (6.13)

where G(i), W (i), and S(i) denote the i-th row of the matrices G, W ,
and S, respectively, and q denotes the number of constraints. The rows
indexed by the active constraints A(x̂) are extracted from the constraint
matrices G,W and S in (6.12) to form the matrices GA,WA and SA.

2. Region Computation: Next, it is possible to use KKT conditions to ob-
tain an explicit representation of the optimiser UN (x) which is valid in
some neighbourhood of x̂. These are for our problem defined as

Hz +GTλ = 0 (6.14a)

λT (Gz −W − Sx̂) = 0 (6.14b)

λ ≥ 0 (6.14c)

Gz ≤ W + Sx̂ (6.14d)

Optimised variable z can be solved from (6.14a)
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z = −H−1GTλ (6.15)

Condition (6.14b) can be separated into active and inactive constraints.
For inactive constraints holds λI = 0. For active constraints are the corre-
sponding Lagrange multipliers λA positive and inequality constraints are
changed to equalities. Substituting for z from (6.15) into equality con-
straints gives

−GAH
−1GT

AλA +WA + SAx̂ = 0 (6.16)

and yields expressions for active Lagrange multipliers

λA = −(GAH
−1GT

A)
−1(WA + SAx̂) (6.17)

The optimal value of optimiser z and optimal control trajectory UN are
thus given as affine functions of x̂

z = −H−1GT
A(GAH

−1GT
A)

−1(WA + SAx̂) (6.18)

UN = z −H−1F T x̂

= −H−1GT
A(GAH

−1GT
A)

−1(WA + SAx̂)−H−1F T x̂

= F rx̂+Gr (6.19)

where

F r = H−1GT
A(GAH

−1GT
A)

−1SA −H−1F T (6.20)

Gr = H−1GT
A(GAH

−1GT
A)

−1WA (6.21)

In the next step, the set of states is determined where the optimiser UN (x)
satisfies the same active constraints and is optimal. Such a region is char-
acterised by two inequalities (6.14c), (6.14d) and is written compactly as
Hrx ≤ Kr where

Hr =

[
G(F r +H−1F T )− S

(GAH
−1GT

A)
−1SA

]

(6.22)

Kr =

[
W −GGr

−(GAH
−1GT

A)
−1WA

]

(6.23)

3. State Space Exploration: Once the controller region is computed, the al-
gorithm proceeds iteratively in neighbouring regions until the entire feasi-
ble state space is covered with controller regions.

After completing the algorithm, the explicit model predictive controller
consists of definitions of multiple state regions with different affine control
laws. Its actual implementation reduces to search for an active region of
states and calculation of the corresponding control.
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6.3.3 Summary

Let us now summarise and generalise the obtained results. If we assume that
the sets X , U , and X f in (6.2d)–(6.2f) are polyhedra containing the origin
in their respective interiors, the closed-form solution to (6.2) is characterised
by the following Theorem.

Theorem 6.1 (Borrelli (2003)). The RHMPC feedback u∗
0(x(t)) for prob-

lem (6.2) with the prediction model (6.2c) represented by (6.4) or (6.5) is
given by

u∗
0(x(t)) = κ(x(t)) (6.24)

where:

1. κ(x(t)) is a PWA function of the form (6.1),
2. κ(x(t)) is defined over R polyhedral regions Ri,
3. κ(x(t)) has the domain Ω =

⋃

i Ri,
4. the optimal cost J∗(x(t)) is a PWA function J∗(x(t)) = M ix(t) + Li

defined over the same regions Ri.

Theorem 6.1 states that RHMPC feedback κ(x(t)) can be constructed off-
line as PWA function. Henceforth, κ(x(t)) will be called the explicit RHMPC
feedback law. The advantage of such an approach is that value of u∗

0 for a
particular value of x(t) can be obtained by simply evaluating κ(x(t)). For
the type of problems investigated in this work, such an evaluation is usually
faster compared to solving problem (6.2) as an optimisation problem with a
fixed initial condition using off-the-shelf software.

There are two main factors which decide whether it will be possible to
employ κ(x(t)) as an RHMPC feedback in real time:

• whether the memory footprint of PWA function κ(x(t)) fits into the stor-
age limits of the control device,

• whether it possible to evaluate such a function, for a particular value of
x(t), within of one sampling instance.

Clearly, as the number of regions of κ(x(t)) grows, memory consumption in-
creases and evaluation gets slower. Therefore, in the next sections we provide
two different strategies which aim at replacing κ(x(t)) by a different feedback
κ̃(x(t)) of lower complexity. As will be illustrated on concrete examples, the
presented procedures allow to significantly decrease the memory and runtime
requirements needed to implement MPC in real time.

6.3.4 Numerical Example

We consider a double integrator whose transfer function representation is
given by
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P (s) =
1

s2

With a sampling time Ts = 1 s, the corresponding state-space form can be
written as

xk+1 =

(
1 1
0 1

)

xk +

(
1
0.5

)

uk

yk = x2,k

We want to design an explicit optimal state-feedback law which minimises
quadratic performance index (6.8a) with N = 5, QN = 0, Qx = I, and
Qu = 1. System states and the control signals are subject to constraints
xk ∈ [−1, 1]× [−1, 1] and uk ∈ [−1, 1], respectively.

We will implement MPC using the Multi-Parametric Toolbox (MPT). To
do so, we describe the dynamical model of the plant:

model.A = [1 1; 0 1];

model.B = [1; 0.5];

model.C = [0 1];

model.D = 0;

along with the system constraints:

model.umin = -1;

model.umax = 1;

model.xmin = [-1; -1];

model.xmax = [1; 1];

Next, parameters of the performance index have to be specified:

cost.N = 5;

cost.Q = [1 0; 0 1];

cost.R = 1;

cost.P_N = 0;

cost.norm = 2;

Finally, the explicit optimal state-feedback control law can be calculated by
executing

controller = mpt_control(model, cost)

The obtained explicit control law is defined by
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and it can be plotted using the command

plot(controller)

which will show the regions of the state-space over which the optimal control
law is defined, as illustrated in Figure 6.1.

−1 −0.5 0 0.5 1
−1

−0.5

0

0.5

1

x
1

x 2 u = −0.52 x
1
 −0.94 x

2

u = −1

u = 1

Fig. 6.1 Controller regions and the optimal control for the double integrator example
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6.4 Performance-Lossless Complexity Reduction of
Explicit MPC

6.4.1 Introduction

By solving the optimisation problem (6.2) using parametric programming,
one obtains an explicit representation of the RHMPC feedback law as a PWA
function κ(x(t)) defined over R regions. In this section we show that it is
possible to replace this function by a significantly simpler expression κ̃(x(t))
if the following standing assumption holds.

Assumption 6.2 The explicit RHMPC feedback law κ(x(t)) is a continuous
PWA function.

Theorem 6.3 (Borrelli (2003)). If the optimisation problem (6.2) is for-
mulated using a linear prediction model in (6.2c) and solved using parametric
programming, then κ(x(t)) satisfies Assumption 6.2.

Remark 6.1. For PWA-based prediction models (cf. (6.5)) in (6.2c), continu-
ity of κ(x(t)) is not guaranteed a-priori. In such a case the methods presented
in this section can still be applied if an a-posteriori continuity check is per-
formed.

For linear prediction models in (6.2c), Theorem 6.3 guarantees that the
explicit RHMPC feedback (6.24) is a continuous PWA function κ(x) de-
fined over R polyhedral regions. Our primary objective is to replace κ(x)
by a simpler function κ̃(x), which requires less memory for its description,
is faster to evaluate, and preserves the equivalence κ(x) = φ(κ̃(x)) for
all x ∈ dom(κ(x)) with φ(·) being a clipping function. It will be shown
that κ̃(x) is a PWA function defined over R̃ polyhedral regions such that
Runsat ≤ R̃ ≤ R, where Runsat is the number of unsaturated regions of the
original function κ(x) (cf. Definition 6.9). In addition, it will be illustrated
that, typically, R̃ = Runsat and R̃ ≪ R for the case of problems investigated
in Section 6.3. Therefore, replacing the explicit RHMPC feedback κ(x) by
φ(κ̃(x)) does not sacrifice any performance, and usually leads to a significant
reduction of the memory consumption and to an increased on-line evaluation
speed.

6.4.2 Theoretical Background

Definition 6.9 (Saturated region). Let κ and κ denote, respectively, the
element-wise maximum and minimum which the PWA function κ(x) attains
over dom(κ(x)). Denote by Imax the index set of regions saturated at the
maximum of κ(x) (i.e. Ki = 0 and Li = κ for all i ∈ Imax), by Imin the
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index set of regions saturated at the minimum (i.e. Ki = 0 and Li = κ for
all i ∈ Imin), and Isat = Imax ∪ Imin. We call the region Ri the saturated
region if it is either saturated at the minimum or at the maximum, i.e. if i ∈
Isat. Otherwise the region is called unsaturated. The index set of unsaturated
regions is denoted by Iunsat.
Definition 6.10 (Saturated PWA function). We call the PWA function
κ(x) saturated if its partition contains at least one saturated region, i.e.
Isat 6= ∅.
Remark 6.2. Not every explicit RHMPC feedback u∗(x) = κ(x) is necessarily
a saturated PWA function. If it is not, then no simplification can be achieved
using the procedure discussed here.

Remark 6.3. If κ(x) is a vector-valued function (i.e. when nu > 1), its regions
are considered saturated in the sense of Definition 6.9 if all its elements
κ1(x), . . . , κnu(x) are saturated jointly at maximum, or at minimum. E.g.
a region with κ1(x) = κ1 and κ2(x) = κ2 is considered saturated, but the
case with κ1(x) = κ1 and κ2(x) = κ2 is not.

Remark 6.4. Although the joint saturation outlined in Remark 6.3 may sound
too conservative, in Section 6.4.4 we demonstrate that it is fulfilled in practise
often enough for the presented procedure to achieve considerable reduction
of complexity. Reducing the conservatism w.r.t. the requirement of joint sat-
uration is subject of ongoing research.

Definition 6.11 (Suitable augmentation). Given is a saturated continu-
ous PWA function κ(x) as in (6.1), defined over the partition {Ri}Ri=1. We
call the function κ̃(x) a suitable augmentation of κ(x) if following properties
hold:

P1: κ̃(x) is defined over the P-collection {R̃j}R̃j=1 such that
⋃

iRi =
⋃

j R̃j ,
i.e. dom(κ(x)) = dom(κ̃(x)),

P2: κ̃(x) = κ(x) for all x ∈ RIunsat ,
P3: κ̃(x) ≥ κ for all x ∈ RImax ,
P4: κ̃(x) ≤ κ for all x ∈ RImin ,

where κ, κ, Iunsat, Imax, and Imin are as in Definition 6.9, and RI denotes
the subset of regions {Ri}i∈I for some index set I ⊆ 1, . . . , R.

Figure 2(a) shows an illustrative 1-D PWA function κ(x), while Fig. 2(c)
depicts its suitable augmentation.

6.4.3 Main Results

Notice that a suitable augmentation κ̃(x) is not, by Definition 6.11, required
to be continuous, nor does it require that κ̃(x) = κ(x) for all x ∈ domκ(x).
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It merely suggests that one can replace the affine expression κ(x) = Kix+Li

in the saturated regions by an arbitrary K̃ix+ L̃i which satisfies P3–P4. As
will be shown in the sequel, this freedom allows to construct a simpler function
κ̃(x) by enlarging the unsaturated regions such that they completely cover the
saturated ones. Once such a function is obtained, we recover κ(x) by applying
a simple clipping function φ(·) such that φ(κ̃(x)) = κ(x) ∀x ∈ dom(κ(x)).
A procedure for computing κ̃(x) is reported as Algorithm 1, which is the first
main result of the chapter.

Algorithm 1 Construction of a suitable augmentation
INPUT: Saturated continuous PWA function κ(x) defined over the polyhedral par-

tition R = {Ri}
R
i=1

with Ri = {x | Rx
i x ≤ R0

i } and Ω =
⋃

i Ri being a convex
polyhedron.

OUTPUT: Suitable augmentation κ̃(x) = K̃jx+ L̃j if x ∈ R̃j , j = 1, . . . , R̃.
1: Obtain the adjacency list Ai,j(R) and the index set Iunsat representing indices

of unsaturated regions.
2: for each unsaturated region Ri ∈ RIunsat

do

3: Using the adjacency list Ai,j identify the subset of half-space indices J over
which the neighbour of Ri is a saturated region.

4: Phase A: Form a new polyhedron R̃ = {x | R̃
x
x ≤ R̃

0
} by removing from Ri

the half-spaces indexed by J , i.e. R̃
x
= [Rx

i ]\J and R̃
0
= [R0

i ]\J .

5: Phase B: Let R̃ = R̃ ∩Ω.
6: Determine which unsaturated regions other than Ri intersect with R̃. Denote

the index set of intersecting regions by I.
7: if I 6= ∅ then

8: Phase C: Let R̃ = R̃ \ RI , cf. Definition 6.3.
9: end if

10: Store region(s) R̃ and set K̃r = Ki, L̃r = Li for each R̃r ∈ R̃.
11: end for

12: If R̃ > R, take κ̃(x) = κ(x).
13: return

We will explain the algorithm on the following example. Consider a 1-D
PWA function κ(x) as shown in Figure 2(a), where R = 6 and domain of
κ(x) is Ω = {x | − 5 ≤ x ≤ 5}:
1. R1 = {−5 ≤ x ≤ −3}, κ(x) = −1
2. R2 = {−3 ≤ x ≤ −1}, κ(x) = 0.5x+ 0.5
3. R3 = {−1 ≤ x ≤ 1}, κ(x) = 0
4. R4 = {1 ≤ x ≤ 3}, κ(x) = 0.5x− 0.5
5. R5 = {3 ≤ x ≤ 4}, κ(x) = 1
6. R6 = {4 ≤ x ≤ 5}, κ(x) = 1

Since κ = 1 and κ = −1, Isat = {1, 5, 6} and Iunsat = {2, 3, 4}.
The algorithm iterates through all unsaturated regions in an arbitrary

order. Take i = 2. Then in Step 3 the region R2 has R1 as a saturated
neighbour over the half-space x ≥ −3. Therefore, in Phase A on Step 4 a
new region R̃ is formed by removing this half-space from R2. This gives
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(d) Suitable augmentation κ̃(x) (solid
line) and the result of clipping φ(κ̃(x))
(dashed line). Note that φ(κ̃(x)) = κ(x)
for all x.

Fig. 6.2 Illustration of a suitable augmentation κ̃(x) of a PWA function κ(x).

R̃ = {x ≤ −1}. As this region is unbounded, it is then intersected with Ω
in Step 5, which gives R̃ = {−5 ≤ x ≤ −1} in Phase B. As this new region
does not intersect with any other unsaturated regions (i.e. with R3 or R4),
Step 8 is skipped and region R̃ is stored, cf. Figure 2(b).

Then the algorithm continues with the second unsaturated region, i.e i = 3.
As region R3 has no saturated neighbours, J = ∅ in Step 4, and therefore
R̃ = R3 on Step 10, i.e. the region remains unchanged.

Finally, for i = 4 the regionR4 has regionR5 as a saturated neighbour over
the half-space x ≤ 3. Therefore R̃ = {x ≥ 1} in Phase A, R̃ = {1 ≤ x ≤ 5}
in Phase B, and Phase C is not needed, as R̃ doesn’t intersect with other
unsaturated regions R2 and R4, cf. Figure 2(c). The algorithm terminates
after exploring all unsaturated regions.
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Remark 6.5. The adjacency list is automatically generated as a by-product
of most pQP solvers, see e.g. Bemporad et al (2002); Tøndel et al (2003a);
Kvasnica et al (2004); Baotić (2005); Spjøtvold et al (2005). Should it not be
available at hand, it can be computed by the MPT Toolbox (Kvasnica et al,
2004). The toolbox can also be used to detect polyhedral intersections in
Step 6 and to compute the set difference between two P-collections in Step 8.

Remark 6.6. As noted by Baotić and Torrisi (2003), the set difference between
a polyhedron R̃ and a P-collectionRI in Step 8 is, in general, the P-collection

{R̃r}R̃r=1. If, however, the union ∪R̃r is convex, R̃ can be replaced by a single
region. If it is not, a minimal representation R̃ can be obtained e.g. by the
method of Geyer et al (2008).

Remark 6.7. In theory, the set difference operation in Step 8 can produce
exponentially many regions. Therefore Step 12 is formally needed to ensure
that κ̃(x) is no more complex than the original function κ(x). We remark
that we have never observed such a case, though.

Next, we provide a formal proof of correctness of Algorithm 1.

Theorem 6.4. For an arbitrary saturated continuous PWA function κ(x),
Algorithm 1 constructs its suitable augmentation κ̃(x) which fulfils all pre-
requisites of Definition 6.11.

Proof. First, we show that
⋃

j R̃j =
⋃

i Ri = Ω. As κ(x) is assumed to be
saturated, at least one half-space must be have been removed in Step 4, hence
⋃

j R̃j ⊇ Ω. However, due to Step 5 we have
⋃

j R̃j =
⋃

j(R̃j ∩ Ω) = Ω ∩
(
⋃

j R̃j) = Ω. Hence κ̃(x) fulfil-ls P1 of Def. 6.11. To prove that κ̃(x) = κ(x)

for all x ∈ RIunsat it is enough to show that R̃ ∩ RIunsat = ∅, i.e. that the
extended regions R̃ do not overlap with unsaturated regions. Due to Step 8,
we have (R̃\RIunsat)∩RIunsat = R̃∩(RIunsat \RIunsat) = R̃∩∅ = ∅. Therefore
κ̃(x) meets P2 of Def. 6.11. Finally, P3 and P4 follow directly since κ(x) is
assumed to be continuous.

Theorem 6.5. The number of regions R̃ of the augmented function κ̃(x)
generated by Algorithm 1 is bounded by Runsat ≤ R̃ ≤ R.

Proof. The lower bound comes from two facts: (i) Algorithm 1 does not mod-
ify the number of unsaturated regions; and (ii) the saturated regions are re-
placed by “expansion” of unsaturated regions, therefore R̃ = Runsat in the
best case. However, Phase C in Step 8 can give rise to additional regions
due to Remark 6.6, and therefore R̃ ≥ Runsat, in general. The upper bound
follows directly from Step 12, cf. Remark 6.7.

Corollary 6.1. If Step 8 is never invoked during the run of Algorithm 1,
then κ̃(x) is defined over R̃ = Runsat regions.
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Theorems 6.4 and 6.5 say that κ(x) can be replaced by its suitable augmen-
tation κ̃(x) of (possibly) lower complexity in terms of number of regions. As
will be documented in Section 6.4.4, usually R̃ ≪ R for the case of problems
considered in this chapter. The augmentation, however, cannot be readily
applied as an RHMPC feedback since, in general, κ̃(x) 6= κ(x) for some
x ∈ dom(κ(x)). The equivalence can be achieved by passing κ̃(x) through a
very simple clipping function, as noted by Theorem 6.6, which is the second
main result.

Theorem 6.6. Consider a saturated continuous PWA function κ(x) and its
suitable augmentation κ̃(x). Let

φ(κ̃(x)) := max(min(κ̃(x),κ),κ). (6.25)

Then the equivalence φ(κ̃(x)) = κ(x) is established for all x ∈ dom(κ(x)),
and therefore φ(κ̃(x)) is a performance-lossless replacement of κ(x).

Proof. Notice that (6.25) is a compact encoding of three IF-THEN rules:

φ(κ̃(x)) =







κ if κ̃(x) ≥ κ,

κ if κ̃(x) ≤ κ,

κ̃(x) otherwise.

(6.26)

Then we get φ(κ̃(x)) = κ for all x ∈ RImax by P3 of Definition 6.11,
φ(κ̃(x)) = κ for all x ∈ RImin by P4, and φ(κ̃(x)) = κ̃(x) = κ(x) for all
x ∈ RIunsat by P2. Finally, we have that RImax∪RImin∪RIunsat = dom(κ(x))
by Def. 6.4 and Theorem 6.1, and hence dom(φ(κ̃(x))) ⊇ dom(κ(x)).

Evaluation of φ(κ̃(x)) for a given value of x is a three stage process.
First, the index a of the region which contains x is identified. This can be
achieved e.g. by searching through the regions R̃i sequentially, and stopping
once x ∈ R̃a. Alternatively, one can construct the binary search tree (Tøndel
et al, 2003b) to perform the region traversal in time logarithmic in R̃. Once
the index a is found, the a-th elements K̃a and L̃a are extracted from mem-
ory and κ̃(x) = K̃ax+ L̃a is computed. Finally, the function value is clipped
by passing it through (6.25), which always performs only 2nu comparisons,
insignificant compared to the complexity of region traversal. The extra mem-
ory required to store κ and κ for φ(·) is 2nu floating point numbers, negligible
compared to the memory footprint of regions R̃i.

By Theorem 6.6 we have that φ(κ̃(x)) is a performance-lossless replace-
ment of the explicit RHMPC feedback κ(x) since φ(κ̃(x)) = κ(x) = u∗

0(x)
for all initial conditions x for which problem (6.2) is feasible. Therefore if
κ(x) guarantees certain closed-loop properties (e.g. stability, optimality, fea-
sibility), so will φ(κ̃(x)). In addition, it will be demonstrated in the next
section that κ̃(x) is, in majority of practical cases, significantly simpler than
κ(x). To show this, we perform an extensive case study aimed at illustrating
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that, typically, R̃ = Runsat ≪ R, hence showing that the procedure described
in this chapter leads to RHMPC controllers of significantly lower complexity.
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Fig. 6.3 Order of region traversal and set difference operation

The next example shows a situation when phase C is necessary. Let us
assume that there are some unsaturated regions at the border of the feasible
state region enclosed by saturated regions. This represents the situation in
Figure 3(a) from the modified introductory example where the region R6

would be unsaturated and the control law decreasing, for example κ(x) =
−x + 5. The presented algorithm based on set difference can now produce
two types of solutions.

1. We start with regionR4 that is stretched to the right border ofΩ covering
regions R5 and R6. Afterwards, set difference procedure removes the
region R6 leading to a discontinuity at point x = 4 (Figure 3(b)). Of
course, this discontinuity will be removed by clipping.

2. We start with region R6 that is stretched to the left border of Ω covering
all other regions. Afterwards, set difference procedure removes regionsR1



6 Complexity Reduction in Explicit Model Predictive Control 259

to R4 leading to a discontinuity at point x = 3 (Figure 3(c)). Again, this
discontinuity will be removed by clipping.

This ambiguity in order in which regions are processed can lead to different
region shapes and sometimes even to different number of resulting regions
(see Section 6.4.5 where this behaviour was observed).

Another possible algorithm could be to stretch regions R4 and R6 over R5

until the corresponding feedback laws intersect (Figure 3(d)). An advantage
of this approach lies in the fact that it does not depend on the order in which
regions are processed. On the other hand, it might lead to combinatorial
problems in higher state dimensions and to a need to decompose the resulting
intersection of unsaturated neighbours into convex regions.

6.4.4 Numerical Examples

6.4.4.1 Double Integrator I

Consider again the double integrator problem from Section 6.3.4. As it con-
sists only of three regions (one unconstrained LQR and two saturated ones),
the resulting controller is simply clipped LQR controller

v(t) = −0.52x1(t)− 0.94x2(t), u(t) = max(min(v(t), 1),−1). (6.27)

This controller is valid over the whole state constraints x ∈ [−1, 1]× [−1, 1].

6.4.4.2 Double Integrator II

Consider again a double integrator sampled at 1 second given by the state-
space representation

[
x1(t+ 1)
x2(t+ 1)

]

=

[
1 1
0 1

] [
x1(t)
x2(t)

]

+

[
1
0.5

]

u(t), (6.28)

which is subject to constraints X = {−30 ≤ x(t) ≤ 30} and U = {−1 ≤
u(t) ≤ 1}. Compared to the previous case, feasible state box is much larger.
The MPC problem (6.2) was formulated with prediction horizon N = 25,
Qx = QN = I, Qu = 1, and X f = X . Problem (6.2) was then solved as
a parametric QP according to Theorem 6.1. Using the MPT Toolbox, the
explicit RHMPC feedback κ(x(t)) was obtained in 63 seconds (on a 2.4 GHz
CPU with 2GB of RAM using MATLAB 7.4) as a PWA function defined over
847 regions shown in Fig. 6.4.

A simple analysis showed that the function contains 37 unsaturated regions
(the coloured stripe in Fig. 6.4). We have subsequently applied Algorithm 1
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to construct a replacement function κ̃(x(t)). The algorithm terminated after
just 0.5 seconds, giving κ̃(x(t)) defined over 37 regions, cf. Corollary 6.1.
The regions of κ̃(x(t)) are depicted in Fig. 6.5. It follows that complexity of
RHMPC implementation can be reduced by a factor of 22 by using φ(κ̃(x(t)))
instead of κ(x(t)) as a feedback in this scenario.

The optimal region merging (ORM), as proposed in Geyer et al (2008), was
not directly applicable in this case because the problem size was too large to
be handled. However, the same reference also introduces a sub-optimal way
of merging based on the divide&conquer strategy. Applying such an approach
resulted in 71 regions after 278 seconds.

As it was mentioned above, different order in which regions are processed
gives different region shapes. Another possible region shapes with the exactly
the same number of regions (37) are shown in Fig. 6.6.

6.4.5 Random Systems

Next we analyse random stable and unstable LTI systems with 2 and 3 states,
1 and 2 inputs, subject to constraints X = {x(t) | − 30 ≤ x(t) ≤ 30} and
U = {u(t) | − 1 ≤ u(t) ≤ 1}. For each system the MPC problem (6.2)
is constructed with Qx = I, Qu = I, N = 15, and QN and X f designed
such that closed-loop stability is attained, i.e. setting QN to the solution of
DARE and using a positively control invariant terminal set X f . For each
random system we have then solved the MPC problem (6.2) parametrically
using the MPT Toolbox Kvasnica et al (2004). Each resulting PWA solution
u∗
0(x) = κ(x) was subsequently post-processed independently by Algorithm 1

and by the ORM method of Geyer et al (2008).
Results obtained for nx = 2 and nu = 1 are shown in Table 6.1. Columns

of the table represent, respectively, the index of the random system, R – the
number of regions of κ(x), R̃ – the number of regions of κ̃(x) calculated by
Algorithm 1, T̃ – the runtime Algorithm 1, RORM – the number of regions
obtained by the ORM method of Geyer et al (2008), and TORM – its runtime.
Entries with † denote cases where the ORM procedure did not finish within of
12 hours. Entries marked with ⋆ denote cases where optimal region merging
crashed due to a prohibitive size of the problem. In such case, results of ORM
sub-optimal divide&conquer strategy are presented instead.

For convenience, systems in tables are sorted in the ascending order of
number of original regions.

On average, the number of regions of κ̃(x) is decreased by a factor of 8.4.
In 90% of cases Algorithm 1 generated R̃ equal to the number of unsaturated
regions of κ(x), cf. Corollary 6.1. The only exception was the random system
reported in row no. 10, where Runsat = 29.

Table 6.2 shows the results obtained for random systems with nx = 2 states
and nu = 2 inputs. Again, the reported numbers show that Algorithm 1 is
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Fig. 6.4 Double integrator: regions of κ(x(t)). The coloured strip in the middle are
unsaturated regions. The two large yellow areas represent regions where κ(x(t)) is
saturated at κ or κ.
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Fig. 6.5 Double integrator: regions of the replacement function κ̃(x(t)) (solid shapes)
formed as the extensions of unsaturated regions of κ(x(t)) (dashed regions).
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Fig. 6.6 Double integrator: different regions of the replacement function κ̃(x(t))
resulting from a different region order.

able to considerably decrease the complexity of the explicit RHMPC feed-
back law with relatively low computational effort. On average, complexity in
terms of number of regions was decreased by a factor of 4.7. This factor is
lower compared to the previous test case. This is due to the fact that Algo-
rithm 1 only removes those regions in which all control inputs are saturated,
cf. Remark 6.3. The likelihood that this would happen naturally decreases
with increasing dimension of the input vector. It is worth noting, though,
that even under the conservative assumption of joint saturation, the proce-
dure presented here still achieved better results than the ORM approach for
all cases except of two (rows no. 6 and 10 in Table 6.2). In 90% of cases
the generated replacement RHMPC feedback law κ̃(x) was defined over the
corresponding number of unsaturated regions, once again confirming that the
conclusions of Corollary 6.1 often hold in practise.

The only exception was case no. 10, where the theoretically achievable
minimum number of regions was Runsat = 495 and the obtained num-
ber of regions was 769. When subsequent runs of the algorithm with ran-
domly changed processing order were applied, the following numbers resulted:
734, 693, 735, 712, 760. Thus, the algorithm based on set-difference can indeed
produce suboptimal results.
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Table 6.1 Results for random systems with nx = 2 and nu = 1.

Case R R̃ RORM T̃ [s] TORM [s]
1 35 5 11 0.1 0.6

2 59 7 15 0.2 1.5

3 75 9 19 0.2 2.5

4 83 9 19 0.2 2.5

5 91 9 19 0.2 3.1

6 127 15 27⋆ 0.2 13.3

7 153 23 39⋆ 0.4 28.4

8 173 17 31⋆ 0.3 18.2

9 221 23 43⋆ 0.4 42.9

10 225 39 49⋆ 0.8 40.5

Table 6.2 Results for random systems with nx = 2 and nu = 2.

Case R R̃ RORM T̃ [s] TORM [s]
1 37 5 7 0.1 0.5

2 61 7 9 0.2 0.7

3 63 5 9 0.2 0.8

4 71 29 41 0.5 7.8

5 73 33 39 0.7 11.4

6 83 53 45 1.2 15.1

7 165 63 83⋆ 1.5 98.3

8 271 119 155⋆ 4.6 283.9

9 943 193 210⋆ 11.3 606.9

10 2029 769 463⋆ 95.2 860.7

Results for random systems with 3 states and 1 input are reported in
Table 6.3. They show that complexity of κ̃(x) was reduced by factors ranging
from 5 for case no. 2 to 15 for case no. 3. On average, the number of regions
R̃ of κ̃(x) was 8 times less than the number of regions of κ(x). It is also
worth noting that R̃ was equal to Runsat for all investigated cases except of
system no. 5 (where Runsat = 55) and system no. 10 (where Runsat = 353).

Overall, obtained results indicate that the significant reduction of RHMPC
complexity was achieved. Using the proposed method it was always possible
to reduce the number of regions considerably in a relatively short time. In
addition, Algorithm 1, compared to the ORM approach, scales significantly
better with increasing size of the problem. On the other hand, the ORM
method is more general, as it also allows post-processing of discontinuous
PWA functions.
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Table 6.3 Results for random systems with nx = 3 and nu = 1.

Case R R̃ RORM T̃ [s] TORM [s]
1 43 7 16 1 19

2 223 49 57⋆ 1 324

3 481 33 80⋆ 1 261

4 503 41 71⋆ 1 2100

5 523 69 101⋆ 2 575

6 527 51 75⋆ 2 1808

7 547 73 188⋆ 3 3420

8 837 139 † 7 †

9 1628 274 † 23 †

10 1795 358 † 38 †

6.4.6 Combination of Clipping and ORM

In principle, clipping and ORM can be combined and applied in sequence.
The preferred way can be to apply clipping first and ORM afterwards. There
are several supporting points for this:

• ORM cannot handle problems with a number of regions having the same
control law larger than about 50. Thus, for a majority of realistic problems,
the optimal method does not converge. For a class of slightly larger prob-
lems, modified ORM based on divide&conquer strategy may be used with
a relative success. This can also be confirmed by examining Tables 6.1–6.3.

• Experience shows that the most of regions with the same control law are
the saturated ones. ORM has to join these into larger convex polytopes
whereas clipping needs not to take care of convexity.

• Clipping keeps resulting regions convex and removes a large fraction of
situations that would produce nonconvex union of polytopes with ORM.

• Clipping cannot handle regions with unconstrained control laws.

On the other hand, the set difference step in the clipping algorithm can
produce some new regions that were not in the original formulation. In that
case, it can theoretically happen that ORM followed by clipping could pro-
duce smaller number of regions as for the reverse sequence.

For illustration of advantages when the combined approach is used, con-
sider again the double integrator process with the horizonN = 3 and absolute
value cost function using MPT:

Double_Integrator

probStruct.norm = 1; probStruct.N = 3;

ctrl = mpt_control(sysStruct, probStruct);

The resulting controller consists of 50 regions and is shown in Fig. 6.7. More
specifically, there are 16 regions on the upper control constraint, 16 regions
on the lower control constraint and there are also some regions with the same
control law that is not saturated.
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We can now apply both ORM and clipping

orm1 = mpt_simplify(ctrl, ’optimal’)

[clip1, sat, unsat] = remove_saturated_regions(ctrl);

This produces results shown in Fig. 6.8. We can see that ORM can reduce
the original controller to 16 regions whereas clipping to 18. Thus, in this case
ORM is more successful than clipping. This can be attributed to the fact
that the number of saturated regions is not very high and that ORM can
converge.

Finally, we apply again ORM and clipping for the already simplified con-
trollers

orm2 = mpt_simplify(clip1, ’optimal’)

[clip2, sat, unsat] = remove_saturated_regions(orm1);

In this case, both sequences of methods converge to the same controller
with 10 regions shown in Fig. 6.9.

6.5 Polynomial Approximation of RHMPC

6.5.1 Introduction

In this section we shown how to approximate the given explicit RHMPC
feedback law κ(x) by a single multivariate polynomial

κ̃(x) =

d∑

i=0

nx∑

j=1

[αi]jx
i
j (6.29)

of pre-specified degree d in such a way that closed-loop stability, feasibility,
and bounded performance decay are guaranteed. Here, αi ∈ Rnu×nx are the
coefficients to be determined, [αi]j denotes the j-th column of αi, x

i
j is the

i-th power of the j-th element of vector x ∈ Rnx , and nx and nu denote,
respectively, the number of states and control inputs. Once calculated, the
polynomial can replace the explicit MPC solution as a feedback controller,
without negative impact on stability or constraint satisfaction. The added
benefit is that evaluation of the polynomial feedback (6.29) for a given state
measurements x can be done much faster compared to traversing the look-up
table of the optimal MPC controller (Kvasnica et al, 2008). Memory footprint
of the approximate controller is also significantly smaller compared to that
of the optimal MPC feedback law.

The approximation is performed in two steps. First, given an explicit rep-
resentation of the RHMPC feedback law κ(x) and a corresponding PWA Lya-
punov function V (x), the set of feedback laws which render V (x) a Control
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Fig. 6.7 Double integrator: original solution without any region reduction
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Fig. 6.8 Double integrator: region reduction with ORM (left) and clipping (right)
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Fig. 6.9 Double integrator: final solution with both ORM and clipping applied (in
any order)
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Lyapunov Function is calculated using basic computational geometry tools.
It is shown that any control law from this set asymptotically stabilises the
given system while also providing constraint satisfaction for all time. Then,
in the second step, we show how to search for the coefficients of the approx-
imation polynomial such that it is always contained in the set of stabilising
feedback laws by solving a single linear program (LP).

6.5.2 Theoretical Background

Assumption 6.7 (Stability, feasibility) Note that in the following it is
assumed that the parameters N,Qx,Qu,QN , and X f in (6.2) are chosen in
such a way that the explicit RHMPC feedback κ(x(t)) as in (6.24) is closed-
loop stabilising, feasible for all time (Christophersen, 2007) and that a poly-
hedral piecewise affine Lyapunov function of the form

V (x(t)) = V x
i x(t) + V 0

i , if x(t) ∈ Ri, (6.30)

for the closed-loop system

fCL(x(t)) := f(x(t), κ(x(t))), (6.31)

x(t) ∈ Ω, exists and is given.

This is not a restricting requirement but rather the aim of most (if not all)
control strategies. Furthermore, we remark that if the parameters are chosen
according to e.g. Mayne et al (2000) one can simply take V (x(t)) equal to
the optimal cost J∗(x(t)).

In order to present the complete result for the new controller approxima-
tion approach, the two underlying core ideas need to be explained. The first
idea is based on the inherent freedom of the Lyapunov function (6.30):

Theorem 6.8 (Asymptotic/exponential stability (Lazar et al, 2008)).
Let Ω be a bounded positively invariant set in Rnx for the autonomous (closed-
loop) system x(t+1) = fCL(x(t)) with x(t) ∈ Ω and let α(·), α(·), and β(·)
be K-class functions (Vidyasagar, 1993). If there exists a non-negative func-
tion V : Ω → R≥0 with V (0nx) = 0 such that

α(‖x‖) ≤ V (x) ≤ α(‖x‖), (6.32a)

∆V (x) := V (fCL(x))− V (x) ≤ −β(‖x‖), (6.32b)

for all x ∈ Ω, then the following results hold:

(a)The equilibrium point 0nx is asymptotically stable (Vidyasagar, 1993) in
the Lyapunov sense in Ω.
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(b)If α(‖x‖) := a‖x‖γ, α(‖x‖) := a‖x‖γ, and β(‖x‖) := b‖x‖γ for some pos-
itive constants a, a, b, γ > 0 then the equilibrium point 0nx is exponentially
stable (Vidyasagar, 1993) in the Lyapunov sense in Ω.

Simply speaking, if all the prerequisites of Theorem 6.8 are fulfilled with
a given controller κ(·), the resulting behaviour of the closed-loop system
is stabilising. If, for the given function V (·), β(·) is now relaxed, one can
(possibly) find a set of controllers that will render the closed-loop system
stabilising and feasible. These sets of controllers are denoted in the following
as stability tubes. The concept and results of stability tubes – along with their
computation – are elaborated in further detail in (Christophersen, 2007, Ch.
10).

Definition 6.12 (Stability tube). Let V (·) be a Lyapunov function for the
general nonlinear, closed-loop system x(t+1) = f(x(t), u(t)), with x(t) ∈ Ω,
under the stabilising control u(t) = κ(x(t)) and constraints [ xu ] ∈ D and let
the prerequisites of Theorem 6.8 be fulfilled. Furthermore, let β(·) be a K-
class function. Then the set

S(V, β) :=
{

[ xu ] ∈ R
nx×nu

∣
∣
∣ f(x,u) ∈ Ω,

[ xu ] ∈ D, V (f (x,u))− V (x) ≤ −β(‖x‖)
}

is called stability tube.

Theorem 6.9 (Christophersen (2007)). Let the assumptions of Defini-
tion 6.12 be fulfilled. Then every control law u(t) = κ̃(x(t)), x(t) ∈ Ω, (also
any sequence of control samples u(t)) fulfilling

[
x(t)
u(t)

]

∈ S(V, β) (6.33)

asymptotically stabilises the system x(t+1) = f(x(t), u(t)), where x(t) ∈ Ω,
to the origin.

Naturally, for general nonlinear systems, the stability tube S(V, β) can ba-
sically take any form. Note, however, that for the considered class of PWA sys-
tems (6.5), PWA control laws u(x) = κ(x) of the form (6.24), and PWA Lya-
punov functions of the form (6.30) with β(·) consisting of a sum of weighted
vector 1-/∞-norms, the stability tube can be described by a collection of poly-
topic sets in the state-input space and can be computed with basic polytopic
operations:

S(V, β) :=
{

[ xu ]
∣
∣
∣ fPWA(x,κ(x)) ∈ Ω,

V (fPWA(x,κ(x)))− V (x) ≤ −β(‖x‖)
}

. (6.34)
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In the case considered here, the stability tube can be represented and ‘easily’
be obtained as a collection (or union) of polytopes of the form S(V, β) :=
∪NS

j=1Sj , where the closure of Sj is S̄j :=
{
[ xu ] ∈ R

nx+nu | Sxu
j [ xu ] ≤ S0

j

}
.

Without going into details, by construction, we have the following prop-
erties: (a) for some index set Ii ⊆ {1, . . . , NS}, the union ∪j∈IiSj is defined

over the controller region Ri, and (b),
∑NP

i=1 |Ii| = NS . This means that
each Sj is defined over a single region Ri, i.e. if for some i1 and j we have
projx(Sj) ⊆ Pi1 then there does not exist a i2 6= i1 with projx(Sj) ⊆ Pi2 . We
remark that simulations seem to indicate that most often Ii = 1 for all i, i.e.
only one Sj is defined over Ri.

6.5.3 Main Results

We aim at approximating the optimal RHMPC feedback law κ(x) by a single
polynomial

Problem 6.1. Given κ(x) as in (6.24) and V (x) of the form (6.30) as an
optimal closed-form solution to the CFTOC problem (6.2) for a PWA sys-
tem (6.5) with p = 1 or p = ∞ in (6.3), find coefficients α0, . . . ,αd of the
polynomial state-feedback law (6.29) of fixed degree d which approximates
κ(x) in such a way that closed-loop stability, constraint satisfaction, and a
bounded performance decay are guaranteed.

Assumption 6.10 For the pair κ(x), V (x) there exists a stability tube
S(V, β) = ⋃Si(V, β) of the form (6.34) with Si defined over the i-th regions
Ri being convex (i.e. |Ii| = 1), and the union

⋃Si(V, β) being connected.

Existence of S(V, β) hints at existence of control laws other than κ(x) which
would yield the same closed-loop properties (stability and constraint satis-
faction). Connectivity is implied by the assumption that a single polynomial
covers the whole space of interest and convexity is assumed in order to obtain
a unique solution.

Theorem 6.9 provides a sufficient condition for existence of κ̃(x) which
solves Problem 6.1:

Lemma 6.1. Let a stability tube S(V, β) satisfying Assumption 6.10 be given
and denote by pi(α,x) a set of polynomials

pi(α,x) := S0
i − Sxu

i

[ x
κ̃(x)

]
. (6.35)

Then κ̃(x) as in (6.29) is a solution to Problem 6.1 if

pi(α,x) ≥ 0, ∀x ∈ Ri, ∀i ∈ [1, . . . , R]. (6.36)

Proof. By assuming convexity of Si(·) we have
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Si(·) =
{ [ x

κ̃(x)

]
| Sxu

i

[ x
κ̃(x)

]
≤ S0

i

}

(6.37)

Hence (6.36) is equivalent to (6.33) with pi(α,x) as in (6.35). From The-
orem 6.9 it follows that any control law, i.e. also u = κ̃(x), satisfying
[ xu ] ∈ ⋃Si(V, β) will provide closed-loop stability, constraint satisfaction,
and a guaranteed worst-case performance decay of β(‖x‖).

Lemma 6.1 suggests that finding κ̃(x) of the form (6.29) as a solution to
Problem 6.1 can be cast as finding coefficients α0, . . . ,αd such that polyno-
mials pi(α,x) are non-negative for all points x ∈ Ri, ∀i ∈ [1, . . . , R]. The
proposed approach is based on the following theorem, due to Pólya (Hardy
et al, 1952):

Theorem 6.11 (Pólya’s theorem). If a homogeneous polynomial pi(α,x)
is positive ∀x ∈ Ri with Ri being a simplex, all the coefficients of pMi (α,x) =
pi(α,x) · (

∑nx

j=1 xj)
M are positive for a sufficiently large Pólya degree M .

Remark 6.8. Search for α such that pMi (α,x) ≥ 0, ∀x ∈ Ri can be performed
by using the more obvious reverse of Pólya’s theorem, i.e. that positive coef-
ficients of the extended polynomial imply positivity over the whole simplex.

Remark 6.9. The advantage of Theorem 6.11 over other conservative tech-
niques for ensuring positivity of polynomials (such as the SOS formulation
of Kvasnica et al (2008)) stems from the fact that given a symbolic repre-
sentation of pMi (α,x), the coefficients α can be found by solving a linear
program (LP). To see this, observe that α enters (6.35) in a linear fashion
and that all constraints (6.36) are linear in α.

Notice, however, that Theorem 6.11 is not directly applicable to find α

from (6.36) as Ri are not simplices, in general. To overcome this limitation,
we observe that, by Theorem 6.1, we have Ri = {x | Rx

i x ≤ R0
i }, which is

a polytope described by an intersection of finitely many half-spaces. Given
Vi = vertices(Ri) being a set of extremal vertices of Ri, the i-th region can
be equivalently expressed as a convex combination of Vi:

Ri =
{

x

∣
∣
∣ x =

|Vi|∑

j=1

λj [Vi]j , ∀λ ∈ Λi

}

, (6.38)

Λi =
{

λ

∣
∣
∣ 0 ≤ λj ≤ 1,

|Vi|∑

j=1

λj = 1
}

, (6.39)

where |Vi| stands for the number of extremal points of the i-th region, [Vi]j
denotes the j-th vertex of Ri, and λ = [λ1, . . . , λ|Vi|]. By substituting for
x =

∑

j λj [Vi]j into (6.36) we get

pi(α,λ) ≥ 0, ∀λ ∈ Λi, ∀i ∈ [1, . . . , R]. (6.40)
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Notice that Λi in (6.40) are now simplices and Theorem 6.11 can therefore
be applied to find α such that pi(α,λ) is non-negative ∀λ ∈ Λi.

We can now state the second main result, which is Theorem 6.12 and Algo-
rithm 2 for calculating values of the coefficients α0, . . . ,αd of the polynomial
feedback law κ̃(x) which is an admissible solution to Problem 6.1.

Algorithm 2 Polynomial approximation

INPUT: PWA system (6.5), parameters N , Qx, Qu, QN , X f of the CFTOC prob-
lem (6.2), desired maximal performance decay β(‖x‖), degree of the approxima-
tion polynomial d, Pólya degree M .

OUTPUT: Coefficients α0, . . . ,αd of the polynomial feedback (6.29) which, when
applied as a state-feedback, asymptotically stabilises the given PWA system.

1: Obtain a closed-form solution κ(x), Ri, V (x) to the CFTOC problem (6.2) ac-
cording to Theorem 6.1.

2: Calculate the stability tube S(V, β) per (6.34).
3: Calculate extremal vertices Vi of all regions Ri.
4: Formulate polynomials pi(α,λ) per (6.40).

5: Homogenise pi(α,λ) by multiplying single monomials by (
∑|Vi|

j=1
λj) until all mono-

mials have the same degree.
6: Compute, symbolically, coefficients cMi of the Pólya’s polynomial pMi (α,λ) =

pi(α,λ) · (
∑|Vi|

j=1
λj)M .

7: Search for α by solving the following linear program:

find α0, . . . ,αd, (6.41)

s.t. cMi ≥ 0, ∀i ∈ [1, . . . , R]. (6.42)

8: return α0, . . . ,αd.

Theorem 6.12. Let the input arguments of Algorithm 2 satisfy the condi-
tions of Assumptions 6.7 and 6.10. Then the polynomial feedback κ̃(x) of the
form (6.29) calculated by Algorithm 2 is a solution to Problem 6.1.

Proof. Directly by Lemma 6.1 and Theorem 6.11.

Remark 6.10. All conditions of Assumption 6.7 will be satisfied (and hence
V (x) = J∗(x)) for N = ∞ and QN , X f calculated as shown in Baotić et al
(2006).

Remark 6.11. Computation in Steps 1 and 3 of Algorithm 2 can be carried
out using Multi-Parametric Toolbox. The code for calculating S(V, β) can be
obtained upon mail request from the authors. Steps 4–7 can be solved using
YALMIP (Löfberg, 2004), which takes care of all symbolic and non-symbolic
calculations.

Remark 6.12. Algorithm 2 is a non-iterative procedure and therefore it always
terminates.
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Remark 6.13. Instead of a pure feasibility objective in (6.41), an alternative
is to look for α which minimise the point-wise distance ‖κ(xj) − κ̃(xj)‖1
with xj = [Vi]j , ∀j = [1, . . . , |Vi|], ∀i = [1, . . . , R]. Another approach is to
try to aim for low-order polynomials by minimising coefficients for higher-
order terms. Alternatively, one can even aim for low-complexity controller
by minimising the number of non-zero coefficients, which would lead to a
mixed-integer LP problem.

6.5.4 Numerical Example
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Fig. 6.10 Stability tubes S(·) (gray sets), optimal control law κ(x) (blue dashed
line), and stabilising polynomial approximations of different degrees.

To illustrate the results of Theorem 6.12, consider the following 1D PWA
system (Kvasnica et al, 2008):

xk+1 =

{
4/5xk + 2uk if xk > 0,

−6/5xk + uk if xk ≤ 0,
(6.43)
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with uk ∈ [−1, 1] and xk ∈ [−4, 4]. The CFTOC problem (6.2) was solved
with p = 1, Qx = 1, Qu = 1, QN = 0, N = ∞ and the corresponding stability
tube S(·) was calculated for β(‖x‖) = b‖x‖γ with b = 1 · 10−6 and γ = 1.
The closed-form solution consisted of 7 regions and the stability tube satisfied
Assumption 6.10. The sets S(·) are depicted in gray in Figure 6.10 along with
the optimal feedback law κ(x). Coefficients of three approximation polyno-
mials with d = 3, 5, 7 have been subsequently calculated using Theorem 6.11
with M = 1 and are also depicted in Fig. 6.10. The distance-minimisation
criterion suggested in Remark 6.13 was used when solving the LP in Step 7
of Algorithm 2.

Note that clipping method introduced in the previous section could be
used to enhance quality of the polynomial controller as well. This means that
the lower bound (−1) and upper bound (1) on control can be removed (or
set to ±∞) to find the polynomial coefficients. This increases the feasible
region of stability tubes. In our example, a clipped linear control law (degree
of polynomial d = 1)

uk = max(min(2xk, 1),−1), xk ∈ [−4, 4] (6.44)

will satisfy all control and performance specifications. The clipped signal will
remain in stability tubes and approximates the optimal control law fairly
well. Similarly, clipped higher order polynomials will approximate the optimal
control law even closer.

6.5.5 Real-time Control of a Thermo-Optical Device

The uDAQ28/LT thermal-optical system is an experimental device aimed
primarily for education purposes Huba et al (2006). The device allows for real
time measurement and control of temperature and light intensity. It can be
connected to a personal computer via an universal serial bus without requiring
an input-output card (Fig. 6.11). Data acquisition and real-time control of
the uDAQ28/LT device is carried out in the Matlab/Simulink environment
which allows very easy manipulation with the device.

The plant represents a dynamical system which combines slow and fast
dynamics. The slow process is characterised by a heat transfer and the fast
process corresponds to light emission. Both processes are caused by an em-
bedded light bulb which is controlled by an input voltage signal. In general,
the plant is characterised by five inputs and eight outputs whereas only three
controlled inputs and three measured outputs are of interest. A precise de-
scription of these signals is given in Tab. 6.4.

The construction of the device suggests offers two main control loops.
The primal loop regulates the light bulb intensity by manipulating the input
voltage. The second loop maintains the inner temperature in safety limits by
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manipulating the revolutions of a cooling fan. Presence of physical constraints
on manipulated and controlled variables makes the control task challenging
and the device has often been used for benchmark of constrained PID control
approaches (Huba and Vrančič, 2007).

Table 6.4 Description of measured and controlled signals.

Signal Name Range
Input voltage to light bulb 0–5V
Input voltage to cooling fan 0–5V

Input voltage to LED 0–5V
Inner temperature 0–100 deg C
Light intensity not given

Revolutions of the cooling fan 0–6000 rpm

Fig. 6.11 Front view on a thermo-optical device uDAQ28/LT.

6.5.5.1 Identification and PWA Model

In the sequel, only the optical channel of the light-bulb is considered. This
decision is motivated by the fact that this channel is represented by a fast
dynamics, which makes real-time implementation of a control system a chal-
lenging task. Due to very fast responses of the light channel, the sampling rate
was selected the lowest admissible by Windows, i.e. Ts = 0.05 s. As the opti-
cal channel is sampled, it immediately suggests identification of input-output
relations in discrete time.
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Input-output relations of the optical channel have been identified with
the help of IDTOOL Toolbox Čirka. et al (2006) as a second order discrete
transfer function

G(z−1) =
bz−2

1 + a1z−1 + a2z−2
(6.45)

where b, a1, a2 are constant parameters and z−1 is a discrete time delay
operator Mikleš and Fikar (2007). IDTOOL toolbox contains the recursive
least squares method LDDIF (Kulhavý and Kárný, 1984) which provides very
good estimates of the unknown parameters. However, as the transfer function
is valid only locally, the identification was performed over four operating
points and the results are summarised in Tab. 6.5.

For the use in explicit MPC scheme, the input-output representation (6.45)
is transformed to a discrete state-space model. It is achieved by introducing
state variables with discrete time instant k, i.e. v1,k = yk−1, v2,k = yk−2 and
the state space model reads

v1,k+1 = −a1v1,k − a2v2,k + bwk (6.46a)

v2,k+1 = v1,k (6.46b)

yk = v2,k. (6.46c)

In (6.46) wk represents the input voltage applied directly to the plant and yk
is the measured output. Voltage input is constrained

wk ∈ [0, 5]V (6.47)

and the measured output lies inside the interval

yk ∈ [0, 55] (6.48)

of light intensity units (not given in the reference manual). The overall input-
output behaviour of the optical channel can be recovered by aggregation of
the local linear models (6.46) which forms PWA model. Here, the operat-
ing area is first split into regions and local linear models are assigned to
each such region. The overall behaviour of PWA model is then driven by
switching between the locally valid models using logical IF-THEN rules. To
perform partitioning of the operating area according to linearisation points
in Tab. 6.5, a Voronoi diagram (Aurenhammer, 1991) is constructed, which

Table 6.5 Identification data over four operation points.

input output b a1 a2
(1) 1.3 6.84 2.03 -1.07 0.46
(2) 2.5 19.46 3.56 -0.97 0.43
(3) 3.5 32.09 4.51 -0.91 0.41
(4) 4.5 45.86 5.39 -0.87 0.40
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directly returns partitions of the state space as a sequence of convex poly-
topes. This operation was executed using one of the routines included in MPT
toolbox (Kvasnica et al, 2004) and it returned following regions:

D1 = {vk ∈ R
2 | 0 ≤ v2,k ≤ 13.15} (6.49a)

D2 = {vk ∈ R
2 | 13.15 ≤ v2,k ≤ 25.77} (6.49b)

D3 = {vk ∈ R
2 | 25.77 ≤ v2,k ≤ 38.97} (6.49c)

D4 = {vk ∈ R
2 | 38.97 ≤ v2,k ≤ 55} (6.49d)

To each of the regions (6.49), a corresponding local linear dynamics (6.46) is
assigned, and it forms overall PWA model.

The output from PWA model has been compared to the real measured
output from the plant and the result is depicted in Fig. 6.12. For the given
scenario PWA model follows correctly the plant’s output, thus the accuracy
of the model is verified. It can be noticed that at the beginning there is
larger mismatch between the plant and the model. It is caused by physical
properties of a filament in the bulb which requires certain time to incandesce
from a cold startup. As this phase is over, PWA model correctly captures the
optical channel of the plant and it can be employed for MPC design.
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Fig. 6.12 Verification of PWA model.
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Table 6.6 Matrices of the normalised model (6.52).

A1 B1 f1

A2 B2 f2

A3 B3 f3

A4 B4 f4

=

1.072 -0.464 0.277 -1.492
1 0 0 0

0.969 -0.431 0.485 -0.642
1 0 0 0

0.913 -0.410 0.616 0
1 0 0 0

0.868 -0.402 0.735 0.471
1 0 0 0

6.5.5.2 Control Design

Prediction Model

In order to prevent numerical issues when employing the PWA model for
MPC synthesis, it is advised to perform coordinate transformation and nor-
malisation. This can be achieved by introducing normalised variables x1, x2
and u as follows:

x1 =
v1,k − v1,ref

v̄1
, (6.50a)

x2 =
v2,k − v2,ref

v̄2
, (6.50b)

u =
wk − wref

w̄
. (6.50c)

The suffix “ref” represents the desired steady state value, i.e.

v1,ref = 32.09, v2,ref = 32.09, wref = 3.5 (6.51)

which is basically the linearisation point of the third dynamics (see Tab. 6.5)
and v̄1 = 3.67, v̄2 = 3.67, w̄ = 0.5 are constants. Applying the normalisation,
the transformed PWA model yields

fPWA(xk, uk) = Aixk +Biuk + f i (6.52)

where i = 1, 2, 3, 4 and state update matrices are given in Tab. 6.6. The state
space model (6.52) is associated with the following regions

D1 = {x ∈ R
2 | − 8.75 ≤ x2 ≤ −5.16} (6.53a)

D2 = {x ∈ R
2 | − 5.16 ≤ x2 ≤ −1.72} (6.53b)

D3 = {x ∈ R
2 | − 1.72 ≤ x2 ≤ 1.88} (6.53c)

D4 = {x ∈ R
2 | 1.88 ≤ x2 ≤ 6.25} (6.53d)
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Besides the dynamics as in (6.52), the following constraints are assumed
to be imposed on the behaviour of the prediction model:

X = {x ∈ R
2 | − 8.75 ≤ x1 ≤ 6.25, −8.75 ≤ x2 ≤ 6.25} (6.54a)

U = {u ∈ R | − 7 ≤ u ≤ 3}. (6.54b)

State constraints X are derived from the operating range of light inten-
sity (6.48) and input constraints U represent the saturation limits (6.47).

Control Problem

The aim of the control strategy is to find an optimal sequence of control
inputs such that all system states are driven to a desired equilibrium. The
equilibrium is given by the linearisation point for the third PWA dynam-
ics (6.52) and in the transformed coordinates (6.50) it is exactly the origin,
i.e. x1 = 0, x2 = 0, u = 0. Mathematically, the problem can be formulated as
to find a sequence of future control moves UN up to horizon N which steer
the system states/input to the origin while satisfying constraints (6.54). More
precisely,

min
UN

∞∑

k=0

‖Qxxk‖1 + ‖Quuk‖1 (6.55a)

s.t. xk+1 = fPWA(xk, uk) (6.55b)

xk ∈ X (6.55c)

uk ∈ U (6.55d)

where xk = [x1, x2]
T represents the state vector, the function fPWA(·) de-

scribes the PWA model defined in (6.52) and the sets X , U are the constraints
on input and state variables given by (6.54). Due to the presence of switching
rules in PWA model (6.52), the overall optimisation problem (6.55) is cast
using additional binary variables as mpMILP. The problem is consequently
solved using MPT toolbox (Kvasnica et al, 2004).

Explicit Solution

The problem (6.55) has been solved with parameters Qx = I, Qu = 0.5. The
infinite choice of prediction horizon guarantees that the obtained MPC feed-
back law will provide closed-loop stability (Baotić et al, 2006). The resulting
PWA control law builds a look-up table divided into 118 regions, defined in
variables x1, x2, and these regions are plotted in Fig. 13(a). Over each one
of these regions a local feedback law is defined as illustrated in Fig. 13(b).
Similarly, the cost function is shown in Fig. 13(c). Note that in the case
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(a) Regions of the look-up table. (b) Local control laws over each region.

(c) Value function. (d) Stability tubes.

Fig. 6.13 Explicit solution to Problem (6.55) consists of PWA map defined over 118
regions.

of multiparametric MILP solutions, the resulting PWA control law can be
discontinuous (Fig. 13(b)) and defined over a nonconvex set. This is a conse-
quence of using binary variables to encode the IF-THEN rules which describe
behaviour of the PWA prediction model.

To implement the resulting look-up table in the on-line experiment, one has
to store and evaluate the data. While storing part is limited by the available
memory, the evaluation task is limited by the sampling time. The complexity
of both tasks depends on the number of regions R. Assuming that we have
enough memory to store the look-up table, one have to still evaluate the PWA
law. In fact, this task comprises of two steps

1. region identification
2. evaluation of PWA law

from which the first part consumes the most time. Even with the use of binary
search tree algorithm, where the evaluation time is logarithmic in R (Tøndel
et al, 2003b), the scheme can still be prohibitive for implementation. Moti-
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vated by this fact, the goal is to apply the polynomial approximation scheme
presented where the whole look-up table is replaced by one polynomial, which
is very cheap to implement. To do so, we have to find the set of all pertur-
bations of the control law under which the closed loop renders stability. This
will be implemented in the next section.

Polynomial Approximation

Using the polynomial approximation scheme the goal is to find a polynomial
control law of the form

κ̃(x) = (a11, a12)

(
x1
x2

)

+ (a21, a22)

(
x21
x22

)

+ (a31, a32)

(
x31
x32

)

(6.56)

which, when applied as a state feedback, guarantees closed-loop stabil-
ity and constraint satisfaction. Theorem 6.12 provides a sufficient condi-
tion for existence of such a polynomial feedback law in the sense that if
(x, κ̃(x)) ∈ S(V, β), ∀x ∈ ⋃i Ri, then κ̃(x) will provide closed-loop stabil-
ity and constraint satisfaction. Therefore the search for suitable polynomial
coefficients of (6.56) can be cast as the following optimisation problem:

min
a11,...,a32

∑

j

‖(u(x)− κ̃(x))‖2 (6.57a)

s.t. (x, κ̃(x)) ∈ S(V, β). (6.57b)

From all possible choices of κ̃(x) which satisfy (6.57b), cost function (6.57a)
is used to select the coefficients which provide best approximation of the
optimal feedback law u(x).

The main advantage of the polynomial feedback law (6.56), compared to
MPC controller based on evaluating PWA feedback law, is reduction of the
total implementation and storage cost. On the storage side, only the coeffi-
cients aij need to be recorded in the memory, compared to storing the regions
Pi and the feedback laws F i and gi for PWA feedback law. The on-line im-
plementation cost is also greatly reduced, as only polynomial evaluation for
a given x need to be performed to obtain a stabilising control action.

Table 6.7 Coefficients of the approximated polynomial (6.56).

a11, a12 -0.8718, -0.0007
a21, a22 -0.0519, 0.0004
a31, a32 0.0019, 0.0001
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The approximation scheme has been applied to obtain polynomial control
law of type (6.56) with help of YALMIP (Löfberg, 2004). Computed coeffi-
cients are given in Tab. 6.7.

Graphical representation of the computed polynomial of order 3 is shown
in Fig. 14(b). To visibly see the differences comparing to optimal controller
(shown in Fig. 14(a)), a cross-section through x2 = 0 is provided in Fig. 6.15.
Illustration of the approximation scheme is shown in Fig. 6.15 which repre-
sents a cross-section in stability tubes along the coordinate x2 = 0. The poly-
hedral sets in Fig. 6.15 demonstrate the space of the stability tubes where
there exist a stabilising control law according to Theorem 6.12. Inside this
space the approximated polynomial (6.56) has been fitted and it is shown in
Fig. 6.15 with a dashed line while the optimal control law is depicted with
solid line.

6.5.5.3 Real-Time Implementation

In this section computational requirements are evaluated for the optimal
and approximated controller. Both controllers are applied in the real-time
experiment and measured performance is discussed.

Computational Demands

Implementation of the optimal controller in the on-line experiment is limited
by the sampling time Ts = 0.05 s. If the look-up table, obtained previously
and consisting of 118 regions, is stored and evaluated using the binary search
tree algorithm Tøndel et al (2003a), the number of FLOPS which are required
to evaluate such a controller for a given initial condition is at most 41. The
memory requirements are 2832 bytes for the control law and 1536 bytes for
the search tree which gives a total of 4368 bytes.

In the polynomial approximation scheme, the number of FLOPS depend
on the degree of approximated polynomial and on the polynomial degree.
By considering the polynomial (6.56) with degree of three, the upper bound
for evaluation FLOPS is 14, less than a half of the runtime for the binary
search tree. More prominent, however, is the drop in memory consumption.
As state above, the explicit MPC solution with 118 regions requires 4368
bytes of memory storage, while to store the polynomial feedback law (6.56),
mere 24 bytes of memory are required (6 polynomial coefficients, each of them
consuming 4 bytes when represented as floating point numbers).
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Fig. 6.14 Optimal control law and polynomial approximation.
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Fig. 6.15 Cross-section of the control laws through x2 = 0.

Experimental Results

The optimal explicit MPC controller as well as the polynomial feedback strat-
egy have been implemented in real time and obtained results are shown in
Figs. 6.16 and 6.17. The plots represent the transition from the initial condi-
tion x0 = (−8.7,−8.7)T to the origin. Input signal generated by the optimal
controller immediately jumps to the upper limit and then gently approaches
the origin. In the polynomial controller this effect is different, the controller
is slightly slower, but the same stabilising effect is achieved. State and input
profiles converge to desired steady state, hence the control objective was met
with both approaches. It is interesting to note that a polynomial controller
acts better (in the sense of the selected performance criterion (6.55a)) than
the optimal one. In particular, (6.55a) evaluates to 146.34 when the opti-
mal MPC controller is used as a feedback, compared to the value of 142.96
for the case where the polynomial controller was used. This small difference
can be attributed to the fact that the optimal controller is more sensitive to
changes of the states. Nevertheless, the difference is small enough to say that
both controllers share roughly the same performance while the approximated
controller is significantly cheaper than the optimal one.

Performance of both controllers has not been tested on disturbance atten-
uation because this effect cannot be fully compensated by any of the used
controllers since they do not contain an integration part. Moreover, these ef-
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fects are too small to satisfactory evaluate the performance of both controllers
while showing their advantages (e.g. constraint satisfaction).
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(a) Profiles of the state variable x1.
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Fig. 6.16 State profiles for optimal and polynomial controller.
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Baotić M, Torrisi FD (2003) Polycover. Tech. Rep. AUT03-11, Automatic Control
Laboratory, ETHZ, Switzerland
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Bratislava, Illkovičova 3, Bratislava, in Slovak.

Johansen T, Grancharova A (2003) Approximate explicit constrained linear model
predictive control via orthogonal search tree. IEEE Trans on Automatic Control
48:810–815

Jones C, Morari M (2009) Approximate Explicit MPC using Bilevel Optimization.
In: European Control Conference, Budapest, Hungary
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Löfberg J (2004) YALMIP. Available from http://control.ee.ethz.ch/˜joloef/yalmip.
php

Mayne DQ, Rawlings JB, Rao CV, Scokaert POM (2000) Constrained model predic-
tive control: Stability and optimality. Automatica 36(6):789–814
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Chapter 7

Predictive Control of Mechatronic
Systems with Fast Dynamics

Tomáš Polóni and Gergely Takács and Boris Rohal’-Ilkiv

Abstract This chapter covers the model predictive control of mechatronic
systems with fast dynamics. A vibration system and an internal combustion
engine are presented as demonstration examples of such systems. High sam-
pling rates are common requirement in both applications, what makes the
utilization of the computationally intensive MPC techniques more difficult.
A comparison of optimal and sub-optimal MPC strategies providing guaran-
teed stability and constraint feasibility is presented in the active vibration
attenuation of lightly damped mechanical systems. This problem area is con-
nected with another challenging problem: namely how to design a moving
horizon observer suitable for monitoring the dynamics of the vibrating sys-
tem. Such an observer is an essential part of the considered model predictive
controllers. In the end of the chapter a vital problem of internal combustion
engines; the air-to-fuel ratio control has been analyzed using a multi-model
predictive control methodology.

Tomáš Polóni
Institute of Measurement, Automation and Informatics, Faculty of Mechanical Engi-
neering, Slovak University of Technology in Bratislava, e-mail: tomas.poloni@stuba.sk

Gergely Takács
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7.1 Introduction

Mechatronic systems represent a very close integration of mechanical and
electronic systems together with information technologies. All of this is en-
hanced with mutual synergistic actions of the individual components. These
systems are intended for a wide area of use both in industry and everyday
life. Some examples are machine-building, individual mechanical components,
machines, automotive engineering and up to the spectrum of precision micro-
electro-mechanical components (MEMS).

With increasing the power and miniaturization of microelectronics it is
possible to continuously increase the degree of hardware integration as well.
This in practice means the direct incorporation of sensors, actuators and mi-
crocomputers to electro-mechanical, predominantly nonlinear systems. This
hardware integration takes place side by side with an increasing degree of
software integration. This process is running on the basis of information pro-
cessing, which primarily rests upon the development of new advanced control
functions for these mechatronic systems.

Apart from the basic feedforward and feedback control functions a new
contribution may be made by utilizing a wider knowledge basis, consisting of
mathematical models of the controlled plants, algorithms for identification,
state and parameters estimation, methods for design of new advanced con-
trol algorithms with more sophisticated behaviour, new criteria for looking
on the control performance and efficiency of the systems etc. . . The new and
modern solutions of the advanced control structures for the mechatronic sys-
tems always lead to a direct, on-line information (signal) processing in real
time, which subsequently must be adapted to the features of the mechanical
process. At the same time, various basic needs of the systems design such
must be respected. Some of these are: limitations in computing possibilities
due to real time restrictions; mechanical processes nonlinearities; bounded
rates and bounded amplitudes of the actuators; robustness and transparency
of resulting control functions algorithms etc. . .

The present stay-of-the-art (Isermann, 2005) in the development of mecha-
tronic systems control functions is the characteristic usage of direct algo-
rithms of the feedforward and feedback type, with fixed - non-adaptive -
parameters setting at the proportional, proportional integration or propor-
tional integration derivative action. The potential nonlinearities are mostly
taken into account using in advance elaborated (presetting, non-adaptive)
look-up tables or maps.

Very often simple, discrete (two-state) controllers are employed for systems
control. For many applications, these solutions fail in ensuring the desired
level of control quality for example with respect to reference signals changes,
or are not able to sufficiently compensate the outer disturbances caused by
variable system loads. Moreover these solutions may not have the sufficient
robustness in order to cope with internal and external uncertainties. A seri-
ous practical problem of the current mechatronic system control structures
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is their insufficient ability to actively respect various limitations, physical
and constructional constraints set on the input/manipulated, state or output
system variables, design requirements and operational conditions.

The content of this chapter is orientated towards the employment of (math-
ematical models based) predictive principles for the design and develop-
ment of new intelligent and robust control functions and algorithms, taking
into account specific needs and limitations of the mechatronic systems with
fast dynamics. Potential applications are particularly aimed at the usage of
mechatronic systems and modules in automotive accessories such as control
of combustion engines, anti-lock-braking systems, active suspension, electro-
hydraulic brakes etc. . . and in automotive industry such as automated robot
assembly lines for cars and various automotive components, for control of
MEMS and for usage in other industrial areas also.

The specific mechatronic systems used as examples and analyzed in this
chapter are taken from the field of computationally efficient MPC of vibration
systems and internal combustion engines. These examples are used to intro-
duce recent improvements and upcoming challenges in the field of efficient
MPC.

The first subchapter, that is 7.2 covers recent research on the topic of
active vibration attenuation via computationally efficient model predictive
control. This specific area is narrowed further to the control of large and
under-damped mechanical structures. Such structures are for example heli-
copter rotor beams, wing surfaces, antenna masts and others. The first part
of this section will cover a survey of different MPC algorithms which pro-
vide guaranteed stability and constraint feasibility and applied to a vibration
attenuation setup. Later on through the use of a laboratory example, vi-
bration damping performance will be matched for the different methods. In
addition to that, the off-line and on-line computational properties and some
implementation challenges are evaluated as well.

Following this, in subchapter 7.3 the focus will be moved from model pre-
dictive control to another very exciting and closely related topic, namely mov-
ing horizon observers (MHO). The design of moving horizon observer will be
considered for the vibration attenuation system using the least-squares esti-
mation of state and parameters combining with a pre-filtering technique.

Finally in subchapter 7.4 the formulation of multi-model predictive ap-
proach to control of air-fuel ratio of an internal combustion engine is described
and analyzed. The quality of air-fuel ratio control strongly influences key ve-
hicle attributes such as emissions, fuel economy and drivability. The proper
air-fuel ratio control is necessary for efficient conversion of the engine exhaust
gases performed by the three-way catalyst. The maximum efficiency of the
three way catalyst is reach in a narrow region where the fuel is matched to
air quantity in stoichiometric proportion. The main challenges in the design
of an air-fuel controller include the engine nonlinear dynamics and variable
time delays.
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Parts of the subchapters have been originally presented in (Takács and
Rohal’-Ilkiv, 2009b), (Polóni et al, 2010) and (Polóni et al, 2007).

7.2 Comparison of Model Predictive Control Methods
for Lightly Damped Vibrating Systems

7.2.1 Introduction

Undesirable structural vibrations are present in countless real life engineering
applications. Mechanical vibrations may limit the effective system and sub-
system lifespan, cause safety concerns, and other issues.

For long years, engineers have been successfully utilizing passive vibration
attenuation techniques. Passive structural changes for example the manipula-
tion of structural stiffness and weight are often self-evident, however in many
cases not viable. Such passive vibration attenuation treatment is especially
impractical if not impossible for systems with dominant low frequency range
responses (Preumont, 2002).

The introduction of semi-active suppression methods has brought nu-
merous improvements in comparison with the passive vibration treatment
techniques. The absence of expensive and bulky control hardware may even
present advantages in comparison with fully active methods. However semi-
active vibration suppression is considered to be relatively ineffective when
weighted against the fully active approach.

Within the last two decades active vibration suppression has become an
attractive way to completely eliminate or significantly reduce unwanted me-
chanical vibrations. Numerous excellent books and hundreds of publications
have appeared since, describing engineering problems where vibration sup-
pression is deemed necessary (Preumont, 2002; Inman, 2006). With the ad-
vent of smart materials research, the range of possible actuators has signifi-
cantly multiplied as well.

The extensive asymmetry of modest actuator capabilities and the sub-
stantial range of expected deformations in lightly damped structures sug-
gests an own class engineering problems in vibration attenuation. The class
of problems suggested above carries special meaning if model predictive con-
trol (MPC) with guaranteed stability is considered as the control algorithm.
An excellent example for such lightly damped structures are helicopter rotor
beams.

Active rotor beam designs with embedded actuators may stabilize air-
craft flight, reduce vibrations and improve fuel efficiency. Examples of lightly
damped mechanical structures amongst others are solar panels on satellites,
wing surfaces, antenna masts and large manipulator arms on spacecraft.
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Amongst different sensor and actuator types, placement optimization pro-
cedures available in scientific literature for active vibration attenuation one of
the most important part of the control system seems to be slightly overlooked:
the control algorithm itself. The well established, albeit simple positive-
position feedback (PPF) and strain-rate feedback (SRF) still seems to be
the most popular control strategy choice (Sloss et al, 2003; Song et al, 2002).

7.2.1.1 The Need for MPC in Vibration Attenuation

Practical engineering problems and actuators hold inherent limitations, thus
control moves must be constrained to prevent issues connected with safety,
economy and component life-span. Piezoceramics are amongst the most often
utilized smart materials in vibration attenuation. They are utilized both as
sensors and more importantly actuators. If a certain maximal voltage limit is
exceeded, the piezoelectric material may fail or behave unexpectedly due to
depolarization effects. Model predictive control is currently the only control
method able to handle process constraints on an algorithmic level (Rossiter,
2003).

Optimal performance along with constraint feasibility and stability guar-
antees is certainly a positive addition to any controlled system, and that is
not any different in the case of active vibration attenuation. One might ar-
gue, that mechanical systems such as actively controlled wing surfaces are
inherently stable and if subjected to an initial excitation will return to their
equilibrium position. However due to the presence of constraints and select
type of excitation scenarios the controlled vibrational system may become
unstable, that is why the use of MPC with guaranteed stability is highly
recommended.

The real-time implementation of MPC algorithms in vibration damping
however comes with a steep price: the two most significant limiting factors
are fast sampling times - a common feature of vibration damping applications
and the excessive asymmetry in actuator capability and expected deflection
ranges in lightly damped structures.

MPC without constraint handling does not require on-line optimization
procedures such as quadratic programming (QP), thus its implementation
in high sampling rate applications is problem free. In fact the saturated LQ
controller as an analogy of an infinite-horizon closed MPC law works very
effectively in high sampling rate vibration attenuation systems.

Constrained MPC without feasibility and stability guarantees may be used
in high sampling rate applications, and it has been already implemented in
active vibration suppression (Hassan et al, 2007). The asymmetry between
actuator capabilities and large deflections in lightly damped structures is
only an issue if stability and feasibility guarantees are considered. In the
work by Wills et al (2008), optimal quadratic-programming based MPC has
been applied to a flexible lightly damped beam however without consider-
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ing stability or feasibility guarantees. The work achieved significant sampling
rates of approximately 5 khz, using a high order model and implemented on
a digital signal processing board. The controller effectively damped the first
five transversal modes of the vibrating cantilever, while filtering out the un-
controllable resonances. A very different approach has been demonstrated by
Niederberger (2005), where a simplified hardware representation of the ex-
plicit pre-computed MPC control law has been employed to control a flexible
beam; again without stability guarantees.

This section investigates implementation properties of different model pre-
dictive control algorithms in vibration control such as on-line running time
and damping performance. Contrary to the previously discussed works imple-
menting MPC in vibration control, the methods considered here do include
feasibility and stability guarantees. It will be suggested that high sampling
rates encountered in vibration control along with considerable actuator and
deflection range asymmetry define a class of problems, leading to several
practical implementation difficulties in MPC algorithms.

The present section demonstrates experimental vibration damping perfor-
mance, algorithm execution timing properties, and implementation difficul-
ties of three different MPC approaches on a laboratory model. This labora-
tory model will emulate the characteristic mechanical properties of lightly
damped structures. The algorithms considered here include the traditional
infinite horizon dual-mode quadratic programming based MPC (QPMPC),
pre-computed optimal multi-parametric MPC (MPMPC) and the efficient al-
beit sub-optimal Newton-Raphson’s MPC (NRMPC). The MPC algorithms
will be matched against a simple saturated LQ controller, which will give a
good indication on the achievable lower limits of sampling times on the given
hardware and provide a base line to compare damping efficiency.

7.2.2 Definition of the Demonstration Problem

A small - scale laboratory model has been created to emulate the mechanical
properties of large, lightly - damped flexible vibrating active systems (Takács
and Rohal’-Ilkiv, 2009a). An excellent example of a lightly damped flexi-
ble structure which may be modelled by a simple beam are helicopter rotor
beams. This laboratory model is essentially a clamped cantilever beam with
bonded piezoelectric actuators. In the current configuration a laser triangu-
lation based distance sensor is providing position information to the feedback
system.

The aim of the controller can be summarized as follows: The applied MPC
controller with guaranteed constraint feasibility and stability must minimize
the deflection measured at the beam tip, that is minimizing the first mode
vibration amplitudes.
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Control is carried out through one input signal, therefore the system will be
controlled as a single-input, single-output linear system. In order to enable the
implementation of the quadratic and multi-parametric programming based
MPC methods, the model order and sampling time is limited. The sampling
rate necessary to cover the first resonant frequency of 8.127Hz by a second
order model is 100Hz. The state-space model describing beam dynamics is a
simple second order system.

To emulate the difference between actuator capabilities and expected
structural deformations, a large range of allowable beam tip deflections is
considered. This in turn produces a large region of attraction in the MPC
law. While the piezoelectric actuators supplied with voltages meeting polar-
ization limits may generate only a static deflection approximately in the range
of ±0.15mm, beam resonance measured at the tip in the first mode easily
exceeds ±15mm. The region of attraction defined by the MPC law must be
able to cover this range of deflections, thus all states measured in within this
specification must be included in the set of all feasible states - that is the
region of attraction.

Vibration damping performance, real-time execution timing properties and
implementation possibilities are compared for the following MPC controllers
all offering guaranteed stability and constraint feasibility in experiments:

• dual-mode quadratic programming based MPC (QPMPC)
• multi-parametric programming based pre-computed MPC (MPMPC)
• Newton-Raphson’s computationally efficient sub-optimal MPC (NRMPC)
• and finally a saturated linear quadratic (LQ) controller (serving as a basis

of comparison both for performance and for timing)

According to the problem definition above, all of the MPC algorithms must
cover the same region of attraction, running on the same implementation
software, utilize the same linear time-invariant state-space prediction model,
utilize identical state observers, penalizations and other possible applicable
settings.

The algorithms specified above shall be verified in various excitation situ-
ations both in the time and frequency domain, effectively comparing timing
properties and damping behaviour.

7.2.3 Theoretical Summary

This subsection will give a brief theoretical summary on the basis of the
algorithms implemented and tested here. A full treatment of the individ-
ual theoretical topics exceeds the scope of this chapter, therefore the reader
should refer to the referenced works such as Maciejowski (2002); Rossiter
(2003); Mayne et al (2000); Chen and Allgöver (1998); Kouvaritakis et al
(2000, 2002); Cannon and Kouvaritakis (2005) . . . etc. for more information.
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7.2.3.1 Traditional Quadratic Programming Based MPC in
Vibration Control

Stability in the traditional quadratic programming (QP) based MPC formu-
lation is guaranteed through suitably formulated state feedback and terminal
cost function matrices and the deployment of dual mode predictions: the first
mode considers nc free control moves, while the second mode assumes the
LQ control law (Mayne et al, 2000; Chen and Allgöver, 1998). Feasibility of
process constraints is ensured beyond the prediction horizon by the inclusion
of a constraint checking horizon of na steps. These additional constraints de-
fine a polytopic set, called the region of attraction. For a given state xk to
be a feasible input to the QP optimization problem, it must be contained
within this region of attraction. The fixed state feedback matrix used to en-
sure stability defines a polytopic terminal set contained within the maximal
admissible set. If the actual measured system state xk is inside this terminal
set, the fixed state control law is in effect.

First, let us consider a system described by a linear, time - invariant (LTI)
state-space model:

xk+1 = Axk +Buk (7.1)

yk = Cxk (7.2)

where xk ∈ Rn is a state vector, uk ∈ Rm is an input vector and yk ∈ Rp

is a an output vector. Matrices A,B and C are the state transition matrix,
input and output matrix, and integer k denotes sampling instances. Direct
feed trough is omitted as in most real feedback control system models. The
controlled system is subject to the following constraints:

y ≤ yk ≤ y (7.3)

u ≤ uk ≤ u (7.4)

x ≤ xk ≤ x (7.5)

where the under and over lines denote lower, respectively upper bounds. If we
would like to steer system (7.1) into the origin, we may define the following
linear quadratic programming problem:

The stability issue of MPC has been comprehensively treated in numerous
works like for example Mayne et al (2000); Chen and Allgöver (1998); Rossiter
(2003); Maciejowski (2002). This paper assumes the most typical method to
guarantee stability: to use the state feedback gainK and terminal cost matrix
P as the solution of the unconstrained, infinite horizon quadratic regulation
problem (Pistikopoulos et al, 2007):

K = −
(

R+BTPB
)−1

BTPA (7.15)

P = (A+BK)
T
P (A + BK) +KTRK +Q (7.16)
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To find the solution of the model predictive control problem, perform the following
set of operations at each sampling instant:

• Observe or measure actual system state at sample xk.
• Minimize the following cost function with respect to constraints:

min
u

J(u,xk) =

nc−1
∑

i=0

(

xT
k+iQxk+i + uT

k+iRuk+i

)

(7.6)

+ xT
k+nc

Pxk+nc

where u = [ui, ui+1, . . . , ui+nc−1] is a vector of predicted control inputs, Q = QT ≥
0 is a state penalization matrix, R = RT ≥ 0 is an input penalization matrix and
nc is a prediction horizon. The typical MPC cost function must be subject to the
following constraints:

y ≤ yi ≤ y, i = 1, 2, . . . , nc + na (7.7)

u ≤ ui ≤ u, i = 1, 2, . . . , nc + na (7.8)

x ≤ xi ≤ x, i = 1, 2, . . . , nc + na (7.9)

xk+0 = xk (7.10)

xk+i+1 = Axk+i +Buk+i, i ≥ 0 (7.11)

yk+i = Cxk+i, i ≥ 0 (7.12)

uk+i = Kxk+i, i ≥ nc (7.13)

(7.14)

where K is a stabilizing feedback gain and na is the additional constraint checking
horizon.

• Apply the first element of the vector of optimal control moves u to the controlled
system, and re-start the procedure.

By iterating (7.1) into the future, one may construct prediction matrices and
substitute those to the cost function, obtaining the following QPminimization
problem:

J∗(xk) = min
u

{
1

2
uTHu+

1

2
xT
kGxk + xT

k Fu

}

(7.17)

subject to the following constraints:

Wcu ≤ wc + Vcxk (7.18)

where matrices H,G, F in (7.17) and matrices Wc, wc, Vc in (7.18) can be
uniquely and trivially determined from the prediction matrices; Q, R and
the relations defined by (7.6)-(7.18).

The formulation and implementation particulars of traditional infinite-
horizon dual-mode quadratic programming based model predictive control
are well known, therefore only theoretical basics are included here.
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7.2.3.2 Multi-parametric MPC

The multi-parametric MPC approach takes advantage of the fact that MPC is
a constrained linear piecewise - affine (PWA) problem. For an MPC controller
explicit solutions can be calculated off-line by partitioning the state-space and
associating a PWA control law with each individual region. This means that
at the implementation stage the actual measured or observed state is associ-
ated with a region and this is followed by evaluating only a piecewise-linear
function. The main drawback of this approach is that off-line computational
time and memory requirements grow exponentially with increased problem
dimensions. A problem of dimensionality above 10 including the prediction
horizon becomes difficult to manage (Maciejowski, 2002). Possible ways how
to reduce the complexity problem in explicit model predictive control are
much deeper analyzed in Chapter 5.

The constrained quadratic programming MPC problem is solved before-
hand, in an off-line regime using multi-parametric programming. The solution
assumes the form of a piecewise-affine state feedback control law, which may
be represented in a form:

uk(xk) =







K1xk + g1 ifxk ∈ R1

K2xk + g2 ifxk ∈ R2

K3xk + g3 ifxk ∈ R3

...
...

KNxk + gN ifxk ∈ RN

(7.19)

where xk is the observed system state, this is in fact acting as input to the
controller function. Matrices Ki and vectors gi define a fixed feedback and
a shift constant for the given control law. The current measured state is a
part of a polyhedral region Ri, the sum of these sets forms a polyhedral
partition P = R1,R2,R3, . . . ,RN in state-space. The polyhedral sets Ri are
characterized by intersections of half spaces in hyperspace:

Ri = {x ∈ R
n|ARix ≤ bRi} (7.20)

These sets intersect only at the boundaries, therefore in case the problem
is feasible, the current state xk unambiguously belongs to one of the par-
titions. If the partition is found, the state can be associated with a PWL
control law. An explicit MPC controller is defined by the following data:
{Ki, gi,ARi, bRi}Ni=1.

The off-line multi-parametric optimization process to calculate an explicit
MPC controller may be summarized by the following algorithm (Rossiter,
2003):

During the on-line control process, repeated at each sampling interval the
set Ri defining a region corresponding to the actual state is found. Next
the function (7.19) corresponding to the polyhedral set Ri is employed to
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To find the solution of the MPMPC problem off-line, given a linear time invariant
system and process settings, perform the following task (once):

• For all feasible active sets, define a polyhedral region Ri such, that in case a given
state xk ∈ Ri, then the control course uk = Kixk + gi is optimal and feasible.
The sum of regions Ri is the region of attraction or admissible set P.

• Reduce regions Ri to prevent overlaps or duplications.
• Store the region look up table Ri and the corresponding PWL functions for the

on-line controller.

calculate the control output. Input to the system is simply the function of
the current state uk = f(xk). This is a computationally efficient process:
with low problem dimensionality currently available hardware is capable of
high sampling speeds. The on-line algorithm may be summarized according
to:

To find the MPC controller output, evaluate the MPMPC problem on-line. At each
sampling instant perform the following tasks:

• Measure or observe current state of the system.
• Identify the index i of the polyhedral region, such that xk ∈ Ri.
• Evaluate the PWL function corresponding to the index i: uk = Kixk + gi.

7.2.3.3 Newton-Raphson’s Sub-optimal MPC in Vibration
Control

The computationally efficient Newton-Raphson based suboptimal MPC con-
troller guarantees stability and constraint feasibility for linear systems. This
is realized through the use of an ellipsoidal region of attraction and terminal
set to approximate the optimal polyhedral regions. This type of controller has
been proposed by Kouvaritakis et al (2000), later optimality has been slighly
improved by Kouvaritakis et al (2002). The on-line optimization task is prac-
tically reduced to an univariate minimization problem: efficiently solvable by
a simple Newton-Raphson algorithm.

Cannon and Kouvaritakis (2005) introduced a method which enables the
region of attraction to be maximized while leaving the prediction horizon
equal to the prediction model order. The convex problem formulation by
Cannon and Kouvaritakis (2005) preserves all the computational advantages
of NRMPC while recovering the largest possible region of attraction. This
efficient MPC formulation with an optimized maximal admissible set is highly
useful for structural vibration control of lightly damped structures.

NRMPC involves augmenting state-space by a perturbation vector fk =
[ck ck+1 . . . ck+nc ]

T . This perturbation vector assumes a zero value with
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inactive constraints. Feedback loop optimality is arbitrary: for example a
linear quadratic (LQ) state feedback is a good choice. During transients this
loop is not optimal any more and the perturbation vector fk will assume a
non-zero value:

uk = Kxk +Efk xk+1 = Φxk +Bfk (7.21)

where Φ = (A + BK). In case prediction dynamics is optimized as well,
vector E is full, otherwise its role is to select the first element ck of the
perturbation vector fk. Using this formulation we can form an autonomous
state-space equation with pre-stabilized dynamics:

zk+1 = Ψzk Ψ =

(
Φ BE

0 T

)

(7.22)

where zk = [xk fk]
T is the augmented state vector and “0” a matrix of

zeros. T acts as a shift matrix without optimizing prediction dynamics. If
the optimization of prediction dynamics is considered it is full and a variable
of the off-line optimization procedure. To preserve numerical stability of the
on - line NRMPC controller algorithm, the size of the region of attraction is
limited by enforcing a bound for the predicted cost for each initial condition
at all times: J(u, xk) ≤ γ. If an invariant ellipsoid in the augmented state-
space is defined by εz =

{
z|zTSz ≤ 1

}
, then the invariance condition can be

expressed by:

S − ΨTSΨ >
1

γ

[
CT KT

0 ET

]

Ω

[
C 0
K E

]

(7.23)

where matrix Ω is a diagonal block matrix containing Ω = diag(I, R), with
input penalization of R.

To simplify matters, let us consider symmetric constraints over the input
in the form |uk| ≤ ū. The feasibility condition for εz is then defined by:

[
ū2
[
K E

]

∗ S

]

≥ 0 (7.24)

where the symmetric part of the matrix is denoted by ∗.
Cannon and Kouvaritakis (2005) introduces a non-linear transformation

of variables, which allows the invariance and feasibility conditions to be mod-
ified in a way that the optimization of prediction dynamics is possible. The
transformation preserves the convexity of the optimization problem. Instead
of treating expressions E and T as selection and shift matrices, we may in-
clude them in the off-line optimization as variables.

The augmented invariant set εz is described by matrix S which according
to Cannon and Kouvaritakis (2005) may be expressed in the following way:
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S =

[
X−1 X−1W

X−1W T •

]

S−1 =

[
Y V

V T •

]

(7.25)

N = WTV T M = EV T (7.26)

The • symbol denotes blocks of S and S−1 uniquely determined by X , Y ,
W and V .

Using relations (7.25) and (7.26) in the original invariance and feasibility
conditions (7.23) respectively (7.24) result in the modified invariance and
feasibility conditions with optimized prediction dynamics:











γI 0 Ω1/2

[
CY CX

KY + M KX

]

∗
[
Y X

X Y

] [
ΦY + BM ΦX

N + ΦY + BM ΦX

]

∗ ∗
[
Y X

X Y

]











≥ 0

(7.27)





ū2
[
KY + M KX

]

∗
[
Y X

X Y

]



 ≥ 0 (7.28)

As it has been previously noted, the “shift” matrices T and E are full and
may be computed from the following relation:

T = W−1NV −T E = MV −1 (7.29)

In the NRMPC formulation, the set of stabilizable states or in other words
the region of attraction is simply the projection of the augmented ellipsoid
εz into the X subspace. The invariant ellipsoidal target set is defined as the
intersection of εz with the X subspace. Here the LQ control law is optimal
with leaving the perturbation vector fk = 0. This ellipsoidal terminal set is
defined by X, while the region of attraction through Y .

Maximizing the volume of the terminal set and region of attraction defined
by X and Y is the aim of the off line optimization algorithm, which can be
summarized according to Cannon and Kouvaritakis (2005):

Optimization of prediction dynamics in NRMPC recovers the maximal
volume ellipsoidal admissible set. Note that the volume oft he region of at-
traction in independent of the prediction horizon used. This is simply true,
because the matrix term Y is independent on the prediction horizon thus it
is enough to set the horizon equal to the order of the model used nc = nx.

The on-line algorithm utilizes the results of the off-line algorithm 7.2.3.3
and can be summarized according to Kouvaritakis et al (2002):
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Off-line NRMPC procedure: Run the following procedure once.

• Calculate an LQ optimal feedback matrix, without considering constraints.
• Maximize the volume of the region of attraction defined by the projection of the

augmented invariant ellipsoid with X subspace and the target set defined by the
intersection of the augmented invariant ellipsoid with X subspace by solving:

max

(

− log det

[

Y 0

0 X

])

(7.30)

subject to constraints defined by the invariance condition (7.27) and the feasibility
condition (7.28). This is a semi-definite programming problem in the variables
X,Y,N and M . . .

• To determine W and V , factorize X and Y .
• Using relation (7.29) for N and M solve for T and E. . .

On-line procedure: At each sampling instant k perform the following minimization:

min
f

fT
k fk s.t. zT

k Szk ≤ 1 (7.31)

From this the control signal uk is evaluated, and the procedure restarted at the next
sampling instant.

Partitioning S allows the reformulation of the optimization constraint in
(7.31) similarly to the structure of z:

zT
kSzk = xT

k Ŝ11xk + 2fT
k Ŝ21xk + f

T
k Ŝ22fk ≤ 1 (7.32)

This is a simple univariate optimization problem, solvable by Lagrange’s
method for constrained extrema:

fk = λ∆Ŝ21xk (7.33)

Φ(λ) = Ŝ12[∆Ŝ
−1

22 ∆− Ŝ
−1

22 ]Ŝ21xk +

+ xT
k Ŝ11xk − 1 = 0 (7.34)

where ∆ = (I − λŜ22)
−1 and λ is the unique real root of Φ(λ). Newton -

Raphson’s root searching algorithm is then utilize to find λ, . Usually no more
than 10 iterations are needed for the NR procedure to converge to the root
of Φ(λ), which is in turn used to compute the perturbation vector f .

The optimality of the NRMPC algorithm may be improved by implement-
ing an extension introduced by Kouvaritakis et al (2002). The NRMPC algo-
rithm utilized in the experiments featured in this section does not make use of
this extension. Simulation studies with the model of the vibrating system did
not prove a substantial improvement over the method based on the original
formulation.
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7.2.4 Experimental Setup

7.2.4.1 Hardware Description

A small scale laboratory model has been created to test the performance of
various MPC algorithms with constraint feasibility and stability guarantees
on lightly damped vibrating active structures. The laboratory device is fea-
tured in Fig. 7.1. This experimental system consists of an aluminum beam
with one end clamped and fixed to a base and the other allowed to vibrate
freely. The beam has the dimensions of 550 × 40 × 3mm and is made of
commercially pure aluminum.

The actuating elements are single layer MIDÉ QP16n piezoelectric trans-
ducers marked as PZT 1 & 2 in Fig. 7.1. These transducers are electrically
connected counter-phase and receive the same electric signal from a MIDÉ
EL-1225 wide bandwidth amplifier. The polarization voltage of the transduc-
ers is ±120V. To prevent actuator damage, this constraint is incorporated in
the MPC law.

Deflections at the beam tip are measured using a Keyence LK-G82 indus-
trial grade laser triangulation system. Manufacturer given sensor accuracy is
±0.05% with the resolution of 0.2µm in the range of 80±15mm. The Keyence
LK-G3001V central processing unit provides analogue outputs to the A/D
input of the measurement card. Measurements from this sensor are directly
used in the controller feedback.

A 16 bit resolution and 100kS/s sampling speed National Instruments
DAPC6030 laboratory measurement card is installed in a personal computer,
providing A/D and D/A conversion to the controller. The controller itself is
implemented using the xPC Target rapid software prototyping platform.

Fig. 7.1 Hardware configuration scheme.
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7.2.4.2 System Identification Procedure

All MPC algorithms considered here assume the use of the same linear time-
invariant (LTI) state-space system defined by (7.1). Current states are ob-
served using a Kalman filtered output measurement, utilizing the LTI system
defined by (7.1). The state-space model assumed here is second order, con-
taining the dynamics of the first vibration mode.

The experimentally identified state-space model represents the input-
output relationship between the actuator voltage and beam tip deflections
directly in millimeters. The experimental identification procedure used a
±120V peak amplitude chirp signal to the two transducers in actuator mode
via the amplifiers. This signal covered the 0.5 − 20Hz frequency range in
300 seconds. The time domain deflection data and input voltage has been
converted into the frequency domain utilizing Fast Fourier Transformation.
Unnecessary frequency ranges have been discarded and the signal has been
de-trended and filtered as well.

The first resonant frequency of the cantilever beam is located at approx-
imately 8.1Hz, therefore model sampling has been set to Ts = 0.01. This
sampling is sufficient to control the first mode. The state-space model has
been obtained through the subspace iteration method of Ljung. (1999). The
experimentally identified model used to generate predictions is:

A =

[
0.867 1.119
−0.214 0.870

]

B =

[
9.336E−4

5.309E−4

]

(7.35)

C = [−0.553 − 0.705]

7.2.4.3 Controller Implementation

All experiments featured in this paper have common features, the controllers
are implemented with the same or equivalent settings. This is essentially
required so that the sampling time and vibration damping comparison is
meaningful. The controllers utilize the same state-space model (7.35) for pre-
diction, QP and MP based MPC assumes a nc = 75 steps long prediction
horizon, while NR based MPC utilizes a nc = nx horizon according to the
theoretical considerations presented in 7.2.3.3. The common nc = 75 steps
horizon has been set up according to the maximal task execution time of the
QPMPC algorithm. Since the QPMPC algorithm is the least computation-
ally efficient of the three considered methods, this horizon acts as a common
basis of comparison.

State penalty matrices in all MPC methods and in the LQ controller com-
putation have been set to Q = CTC, which diretly penalizes output: the
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beam deflections. Input penalty has been determined to be R = 10E−4,
which is an ideal compromise between performance and and controller ag-
gressiveness.

All MPC methods assume u = u = 120V constraints on the input. Sam-
pling time is set to Ts = 0.01 s. All controllers have been implemented in
Matlab / Simulink while the resulting Simulink block scheme has been trans-
ferred onto the same target computer running the xPC Target environment.
The block schemes are identical in every case, except the controller algo-
rithm itself. In addition to the controller, these block schemes contain means
for A/D and D/A data conversion a Kalman filter routine utilizing the same
system model, and means for data logging.

Quadratic programming is performed via the 2.0 version of the qpOASES
open-source C++ active set strategy (Ferreau, 2006; Ferreau et al, 2008).
This quadratic programming solver implements theoretical features enabling
a computational efficiency gain for MPC applications. The qpOASES solver is
loaded and compiled via its Simulink interface, then prediction and constraint
matrices are passed on to it from the Matlab workspace.

The current latest 2.6.2 version of the Multi-Parametric Toolbox (MPT)
for Matlab by Kvasnica et al (2004); Kvasnica (2009) has been utilized to
implement the optimal multi-parametric programming MPC on the exper-
imental device. The MPT Toolbox allows for convenient explicit controller
computation including transferring the controller regions from Matlab to a C
header code. A sequential search algorithm calls this C code header and finds
the PWA law according to the region containing the observed system state.
Using the common conventions and settings introduced at the beginning of
this section, the stable and invariant controller has been computed in 2923
seconds which is over 48 minutes and is defined over 11601 polytopic regions.

The off-line NRMPC procedure is implemented in the Matlab m-file script-
ing language. The controller matrices for the on-line run are evaluated by the
maximization problem defined in (7.30) which is constrained by the linear
matrix inequalities (LMI) defining invariance (7.27) and feasibility (7.28).
This is a semi-definite optimization problem (SDP), which is passed through
the parser YALMIP (L ofberg, 2004) into the SDP solver (Sturm, 1999). The
on - line NRMPC procedure summarized by Algorithm 7.2.3.3 has been im-
plemented using a custom S-Function block written in the C programming
language. Matrix and vector operations are computed using the familiar Basic
Linear Algebra Subprograms (BLAS) library (Dongarra, 2002).
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7.2.5 Off-line Properties

7.2.5.1 On the Horizon Length of Constrained MPC with
Stability Guarantees

A linear, second order state-space model sampled at Ts = 0.01 s does not ren-
der the implementation of a MPC controller difficult. However this is true only
if the MPC law is either unconstrained, or it is constrained without stability
or feasibility guarantees. If stability and constraint feasibility is guaranteed
as in the case of the QPMPC or MPMPC formulation introduced earlier,
the allowable states are contained in a limited subset of the state-space, the
so-called region of attraction or maximal admissible set.

Fig. 7.2 Illustration of the time tm required to enter the target set, when starting
from a given initial condition in the region of attraction.

This means that all expected system states corresponding to the variations
in the output, must be contained in the region of attraction. Given a fixed
system model and penalization matrices, one can enlarge this region through
increasing the prediction horizon of the controller. The minimal necessary
prediction horizon in MPC with guaranteed stability and constraint feasibility
is basically the number of steps necessary to drive system state from a given
initial condition inside the terminal set.

A large asymmetry between the static effect of the actuators and the range
of expected changes also translates to the asymmetry in the volume of the
admissible set of states and the target set in stabilized MPC control. The
time required to steer the initial system state corresponding to the largest
expected output into the target set divided by the sampling period is a good
indicator of the necessary minimal prediction horizon.
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This idea is illustrated in Fig. 7.2. The decaying sinusoid suggests a lightly
damped but controlled vibration of the beam. This obviously requires an
extensive settling time in comparison with the sampling period. The ellipse
on the left represents the region of attraction. All expected system states
must be included in it. There is a certain point in the free vibration of the
beam tip, where system states enter the terminal set. This is illustrated by
the smaller ellipse on the left. The minimal necessary prediction horizon for
stable MPC with constraint feasibility guarantees can be understood as the
time tm required for the state to reach the target set, in sample periods.

Even though this idea can transferred to any physical system with a long
(forced) settling time vs. sampling period ratio and limited control action
in comparison to the effort necessary to drive the system into equilibrium,
lightly damped vibrating structures are especially susceptible to this issue.

For example the laboratory device considered here uses piezoelectric ac-
tuators, with a limited force deformation effect. The (LQ) controlled settling
time is near 2 seconds. Assuming that approximately 1.5 seconds are neces-
sary to reach the target set with a Ts = 0.01 s sampling; one might expect
approximately a nc = 150 steps long minimal necessary prediction horizon
for stabilized MPC control!

Let us now assume an exponential decay of vibration amplitudes. Ampli-
tudes dt of a a freely vibrating system for a given time can be approximated
using:

dt = d0e
−ζωnt (7.36)

where d0 is the initial deflection, t is the time in seconds since the initial
conditions had affected the system, ζ is the damping ratio and ωn is the first
or dominant natural frequency of the vibrating system.

If MPC control is used with constraint feasibility and stability guarantees,
there is a certain amplitude level dts under which the system state enters the
target set. According to relation (7.36) the minimal prediction horizon nmin

for initial deflection d0 can be approximated:

nmin =
− lg(dts

d0
)

2πζfnTs
(7.37)

Here fn is the dominant mechanical eigenfrequency, Ts the sampling rate
considered for control and the rest of the variables as defined for (7.36).

7.2.5.2 Off-line Computational Time

Off - line computational time for the QP, MP and NR based MPC controllers
is demonstrated in Fig. 7.4 . Clearly off-line computational time is not an
issue for the QP nor the NR based MPC controllers. The time to set up the
controllers in the off line regime is limited to constructing prediction matrices
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0 10 20 30 40 50 60 70 80 90 100

10
−4

10
−2

10
0

 

 

Prediction horizon (-)

C
o
m
p
u
ta
ti
o
n
a
l
ti
m
e
(h

) QP
MP
NR

Fig. 7.3 Off-line computational time in hours, required to compute controller struc-
ture for a given horizon length.

in the case of QP while increasing horizon length has no effect on the off-
line NR problem. Assuming generic hardware, off-line computational time for
both QP and NR controllers is under 1 seconds even for a nc = 100 steps
long horizon.

The multi-parametric programming based MPC controller pre-computes
controller regions and the associated PWL law. This requires CPU time which
is exponentially increasing with the prediction horizon. For a problem with
nc = 100 steps prediction horizon, the off line optimal MP problem takes
approximately 3 hours to compute.

A ±20mm maximal allowable deflection is not an unusual requirement for
the type of vibration attenuation system featured here. According to Fig. 7.4
this requires a prediction horizon over nc = 150 steps, however the off-line
MPMPC computation fails over nc = 168 steps due to memory issues. This
horizon requires an approximately 36 hours long computational time assum-
ing MPMPC, while using interpolation we may estimate an excessive 7 days
long off-line computation time to ensure a ±30mm deflection range. This is
clearly beyond reasonable limits for most applications, while the implemen-
tation of such large look-up tables is an issue as well.

7.2.6 On-line Properties

Te on-line properties of the QP, MP and NR based MPC algorithms have
been evaluated in three different experimental excitation situations. A vi-
bration damping performance analysis and task execution time comparison
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Fig. 7.4 Minimal necessary horizon vs. possible deflection range.

is demonstrated in the time domain for a beam deflected from its equilib-
rium. In the frequency domain the beam has been subjected to a disturbance
caused by a laboratory modal shaker supplied with a narrow band chirp sig-
nal and a pseudo random binary signal. Vibration damping performance and
computational time is demonstrated for the frequency domain experiments
as well.

7.2.6.1 Initial Deflection Experiment

The end of the smart cantilever beam has been deflected 5mm away from its
equilibrium position, then left to vibrate under control without any further
outside excitation. The cantilever beam would settle to its equilibrium even
without control, however the controlled response is approximately an order
of magnitude faster.

The response of the beam to the type of excitation described above is
featured in Fig. 7.5. The different MPC methods in question are contrasted
to saturated LQ control. This gives a basis of comparison both in damping
performance and on-line computation time requirements.

Vibration of the beam tip is demonstrated on 7.5(a), where one may ob-
serve no substantial difference between any the individual MPC methods. The
worst damping performance is associated with saturated LQ. The saturated
LQ controlled beam settles slower than either one of the MPC controlled re-
sponses. It may be concluded, that from a practical viewpoint the controlled
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vibration response is not distinguishable, all stable MPC methods perform
very similarly.

The difference between the individual MPC methods is slightly better
demonstrated on Fig. 7.5(b), where the voltage passed onto the actuators
is shown. As it is expected, saturated LQ produces more aggressive control
moves than the MPC methods. This is especially visible after the initial satu-
rated stage has passed. The QP and MP based MPC methods should perform
completely identically according to theory, and in fact the experimental dif-
ference in this test is negligible.

The sub-optimality of Newton-Raphson based MPC is clear and dominant
on the voltage output figure: instead of the saturated behavior resembling a
square signal visible at the beginning of the test, NRMPC produces a less
optimal output approximating but never fully reaching the constraints. This
experiment suggests that there are no substantial differences in the damping
performance for the three investigated MPC methods.

Computational times for the corresponding sample periods are featured in
Fig. 7.6, where the horizontal axis denotes time samples and the vertical axis
shows task execution times (TET). Minimal, maximal and average compu-
tational time for both inside and outside the target set is presented in Table
7.1 as well.

Traditional quadratic programming based MPC utilizes almost all the sam-
pling period to complete its calculations. The first section of the graph is
computationally more intensive. As the system states move into the target
set, a stable level of short computational times is needed to evaluate the
problem. With the experimental setup and requirements demonstrated here
QPMPC is on the limit of practical implementability.

The two remaining controllers require significantly shorter task execution
times. Multi-parametric MPC achieves more than two orders of magnitude
better computational times than QP even when the constraints are active.
This in fact indicates substantial reserve in implementability.

Saturated LQ is also shown in Fig. 7.6, and serves as a baseline for the com-
putational times. Since all three MPC methods require computational time
for state observation, accessing input and output ports and data logging; the
TET response of the LQ controller demonstrated here may be regarded as
an absolute minimal computational time floor for the given hardware config-

Table 7.1 Task execution time summary for the initial deflection test in micro sec-
onds. (“t.s.” denotes target set)

tmin (µs) tmax (µs) tavg (µs)

Outside t.s. Inside t.s.
QP 715 8975 6815 716
MP 14 77 42 14
NR 14 17 16 14
LQ 15 16 15 15
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(a) Beam deflection.
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Fig. 7.5 Response of the beam tip after an initial deflection of 5mm is shown on (a),
while the corresponding actuating signal is featured on (b).

uration. The laboratory measurement card requires 12 microseconds for data
transfer, which is included both on 7.6 and Table 7.1.

Taking into account these observations, is interesting to note the execution
time graph for the NRMPC controller. Here NR shows no significant increase
of computational time even when compared to a simple saturated LQ.

After the system state enters the target set, all three controllers need
shorter execution periods than that required during control with active con-
straints. If constraints are not engaged, both MPMPC and NRMPC needs
comparable computation time to the LQ controller.
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Fig. 7.6 Task execution time (TET) required to compute the previous step in sec-
onds.

7.2.6.2 Chirp Signal Experiment

The vibration attenuation performance of the MPC controllers of interest is
also compared in the frequency domain. For this experiment a Bruel&Kjær
Type 4810 electrodynamic modal shaker is utilized as a source of mechanical
excitation in the bandwidth of interest. A chirp input signal with the band-
width of 0− 20Hz has been supplied to the shaker to excite the beam in the
vicinity of the first resonant frequency.

Fig. 7.7 shows the result of the chirp signal excitation experiment. The
periodogram of the beam tip deflection signal is featured in Fig. 7.7(a),
where both the controlled and free response is observable. Similarly to the
experiment presented in 7.2.6.1 there is no observable vibration attenuation
performance difference for the various types of MPC algorithm. It may be
concluded, that all MPC methods of interest provide a practically identical
vibration damping performance in the bandwidth of interest.

Maximal power-frequency signal amplitude with the corresponding reso-
nant frequency and the absolute deflection is demonstrated in Table 7.4. All
three types of controllers reduce maximal deformation amplitudes approxi-
mately to d = 3.3mm. Since the active beam is essentially stiffened by the
controllers, resonant frequency of the controlled response is shifted to higher
values than the resonant frequency for the free response.

The periodogram of the actuator voltage supplied by the controllers into
the actuators is indicated in Fig. 7.7(a). Note that there is no substantial
difference in the system voltage input for the QP, MP and saturated LQ
controlled experiments. The NRMPC signal periodogram is less dominant,
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(a) Beam deflection.
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Fig. 7.7 Narrow band periodogram of the beam tip deflection signal is shown on
(a), while the periodogram of the corresponding actuating signal is featured on (b).

this is due to the fact that NR provides sub-optimal control in comparison
to QP or optimal MP based MPC.

Table 7.2 Task execution time summary for the resonant and non-resonant con-
trolled beam response to the chirp test in microseconds. Constraints are active inside
the resonant area, while outside resonance the system state is located within the
target set.

(µs)→ tmin tmax tavg tmin tmax tavg
Resonance (9.0− 9.6Hz) Outside res. (0− 8Hz)

QP 4925 8739 6405 725 732 728
MP 25 48 32 23 28 24
NR 25 30 26 24 28 24
LQ 24 28 24 23 28 24
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Fig. 7.8 Time required to compute one control step.

Task execution times for the chirp excitation experiment are indicated in
Fig. 7.8. Minimal, maximal and average computational times are summarized
in Table 7.2 for within and outside the resonant area. The execution time
values are shown in the area surrounding the first resonant frequency, as this
is the region where the disturbance introduced by the shaker may cause the
system states to leave the target set.

The conclusions from the time domain experiment in 7.2.6.1 are valid
for this case as well. Quadratic programming based MPC is running with
execution times close to the sampling period Ts. Optimal MPMPC requires
significantly lower sampling times than QP, while NR based MPC remains the
fastest of them all closely approaching the minimal possible task execution
times set by the LQ controller.

7.2.6.3 Pseudo-Random Binary Signal

This experimental excitation situation utilizes a pseudo-random binary sig-
nal (PRBS) supplied to the modal shaker, which has been itnroduced in
7.2.6.2. This PRBS signal assumes two voltage levels, adjusted in order for
the shaker to drive system states to levels where the quadratic programming
MPC algorithm requires execution times closely matching but not exceeding
the sampling period of the controller.

Periodogram of the beam tip deflection signal for each examined MPC con-
troller is demonstrated in Fig. 7.9. Saturated LQ controller and free response
is indicated as well. Again, there is no significant difference between the vi-
bration damping performance of these methods. The analysis given for the
chirp signal test in 7.2.6.2 is valid here as well. Maximal signal amplitudes
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and resonant frequencies, including maximal deflections for the individual
controller schemes are featured in Table 7.4.

Fig. 7.10 shows a sample portion of the task execution times for the indi-
vidually investigated controllers. A computational time summary for a 100
second long pseudo-random test is indicated in Table 7.3. Execution times
are very similar to the experiments featured in 7.2.6.1 and 7.2.6.2, therefore
the analysis is not repeated here.

Table 7.3 Task execution time summary for a 100 second long pseudo-random test
in micro seconds.

tmin (µs) tmax (µs) tavg (µs) ±tstd (µs)

QP 722 9789 2784 2603
MP 24 76 26 5
NR 24 29 25 1
LQ 23 28 24 <1
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Fig. 7.9 Periodogram of the beam tip deflection signal subject to a pseudo-random
binary signal.

7.2.7 Conclusion

This subsection has demonstrated practical implementation properties and
experimental verification of damping performance and cycle execution timing
of various stable MPC algorithms with guaranteed stability and feasibility;
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Fig. 7.10 Sample portion of a typical on-line computational time requirement.

Table 7.4 Summary of the damping performance analysis of the tests performed
using both the chirp and PRB signal excitation. Amplitude is represented as signal
power / frequency and is denoted by A (dB/Hz), first mode resonance frequency is
denoted by f (Hz) and the absolute maximal beam tip deflection is marked by d (mm)
in the table.

A(dB/Hz) f(Hz) d(mm) A(dB/Hz) f(Hz) d(mm)

Chirp test PRBS test
Free -2.29 8.82 4.3 8.60 8.67 5.6
QP -5.82 9.13 3.4 4.76 9.11 4.7
MP -5.94 9.09 3.3 4.41 9.12 4.4
NR -6.25 9.08 3.3 4.70 9.14 4.7
LQ -5.87 9.094 3.4 4.41 9.15 4.3

applied to lightly damped flexible vibrating structures. Results of experi-
ments performed on the laboratory device demonstrated no substantial dif-
ference between the vibration damping performance of the four considered
stable MPC algorithms. This not only true for the theoretically identical
dual-mode QP MPC and optimal MP MPC, but also in the case where op-
timality has been traded for simplicity and in turn computational efficiency.
The damping performance comparison suggests that in practice, the com-
putationally efficient but sub-optimal methods like minimum - time explicit
MPC or Newton-Raphson’s MPC may be implemented without a consider-
able loss of performance.

The main practical distinction between the four algorithms is the compu-
tational time required to complete one cycle. From the performed tests it is
evident that QP based MPC has been on the verge of implementability even
for this fairly simple case. Despite the fact that the solver utilized in this
algorithm realization claims to be specifically designed for the needs of MPC,
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it is highly unlikely to be usable for problems of increased dimensionality
or shortened sampling periods. On the other hand, the optimal and in its
outputs theoretically identical pre-computed explicit MP MPC requires ex-
tensive calculations in the off-line regime. Problems of higher dimensionality
are unlikely to be successfully implemented due to the likely failure of the
off-line computations.

In short we may conclude that given their current algorithmic formula-
tion neither QP nor MP based optimal MPC with stability and feasibility
guarantees may be recommended for the active vibration damping of lightly
damped structures.

Alternatively the small loss of theoretical performance does not present
problems in practice, therefore the sub-optimal stable NR MPC method con-
sidered in this article may be recommended for vibration attenuation pur-
poses. NR MPC showed damping capabilities comparable to its truly opti-
mal counterparts. The on-line execution times featured in the experimental
results suggest that there is a reserve for either increasing problem dimen-
sionality or shortening sampling time. Nevertheless, let us not forget about
the possible drawbacks of NRMPC, namely that optimality decreases steeply
in Newton-Raphson’s MPC if the order of the prediction model is increased.
This is due to the fact that in higher dimensions the true polytopic region of
attraction respectively the target set can not be effectively approximated by
a hyper-ellipsoidal shape.

7.3 Pre-Filtered Moving Horizon Observer for Vibration
Dynamics

7.3.1 Introduction

High-performance embedded controllers open the possibilities for applica-
tion of numerical methods to solve the problems of modeling and control
of vibrating systems. Fast vibration dynamics is an interesting challenge for
computing hardware, software and mechanical design of beam and cantilever
mechatronics (Fuller et al, 1996). Algorithms based on a model of the dy-
namics are becoming the standard approach for control and monitoring of vi-
brating systems. One of the most applied model structures is the state-space
model. If the full state vector is not completely measurable it is necessary to
estimate it using a state observer. The observer algorithms do not need to be
restricted only to the state estimation problem. With a standard augmenta-
tion of the model one can estimate the parameters of the model by declaring
them as states. Through this approach, the problem of joint estimation of
system states and parameters is considered.
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The classical approach to determine the state and parameters is in vibra-
tion mechanics the Kalman filter and its modified version for nonlinear sys-
tems, the Extended Kalman Filter (EKF) (Gelb et al, 2001). The foundation
of such filtration is the model of vibrating structure based on the lumped pa-
rameter assumption of rigid, shape invariable mass (Corigliano and Mariani,
2004; Ghosh et al, 2007). The application of a dynamic model for the purpose
of filtration based on the principles of continuum mechanics is proposed by
Ohsumi and Nakano (2002). The typical filtration application of state and
parameters is the control (Gao and Lu, 2006), diagnostics and monitoring of
vibrating system (Hoa and Ma, 2007). The above mentioned EKF method
uses a linearized model to approximate nonlinear vibration dynamics with
the assumption of sequentially uncorrelated Gaussian noise distribution. If
the noise is correlated or does not have the Gaussian distribution, applica-
tion of the Extended Kalman filter can cause divergence of the estimated
states and parameters. Moreover, the method is sensitive to initial condition
of the estimate. In this case the approaches based on probabilistic Bayesian
Particle Filter (PF) methods with the application of stochastic Monte Carlo
simulations lead to more accurate estimates of state and parameters of the
nonlinear vibration dynamics (Ching et al, 2006; Namdeo and Manohar, 2007;
Sajeeb et al, 2009).

The objective and novel contribution of this study is the numerical applica-
tion of least-squares estimation of state and parameters of vibrating system by
combining a pre-filtering EKF with an Moving Horizon Observer (MHO). The
MHO is the alternative to statistical methods (PF) and minimum-variance
(EKF) methods though it needs no statistical assumption about the sources of
uncertainty (Moraal and Grizzle, 1995; Alessandri et al, 2008). Pre-filtration
in the arrival cost using variants of the Kalman filter (Rao et al, 2003; López-
Negrete et al, 2009; Qu and Hahn, 2009; Ungarala, 2009) is shown to improve
the accuracy of the observer.

The physical wave equation of a one-mode oscillator (mass-spring-damper
system) is further considered to represent the model which the MHO uses
for estimation. The lumped parameter model often describes the vibration
dynamics sufficiently where this model was experimentally applied in relation
to EKF and PF in Jones et al (1995) and Namdeo and Manohar (2007);
Uchino and Ohta (1986) respectively.

7.3.2 Basic Model Formulation

The structural vibration model can be written as

M0q̈ + C0q̇ +K0q = L0u (7.38)
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where M0 is the mass matrix, C0 is the damping matrix, K0 is the stiffness
matrix, L0 is the transition matrix, q is the displacement vector and u is the
excitation force. Conventionally, the state-space equation of the problem can
be represented as

ẋs = Axs +Bu (7.39)

where xs =

[
q
q̇

]

, A =

[
0 I

−M−1
0 K0 −M−1

0 C0

]

,

B =

[
0

M−1
0 L0

]

An augmented state vector x ∈ R2nq+np can be defined

x =

[
xs
p

]

=





q
q̇
p



 (7.40)

where p ∈ Rnp is the vector of uncertain model parameters (e.g. stiffness,
damping). The number of modes is nq, and np is the total number of model
parameters to be identified. For the purpose of parameter identification the
vibration dynamics (7.38) is described by a general time-invariant state-space
equations

ẋs = f̃c(xs, p, u) (7.41)

ṗ = 0 (7.42)

where f̃c : R
2nq×Rnp×Rnu → R2nq represents the augmented dynamics. The

model which was linear-in-the-parameters becomes nonlinear by declaring the
unknown model parameters as additional states of the system. Even a system
without any mechanical nonlinearity leads to a nonlinear filtering problem.

Eq. (7.41) and (7.42) can be combined as

ẋ = fc(x, u) (7.43)

where fc : R2nq+np × Rnu → R2nq+np . The observation equation may be
written as

y = hc(x, u) + v (7.44)

where y ∈ Rny is a vector of measurements and hc : R2nq+np × Rnu → Rny

is a continuous measurement function. The measurement errors are modeled
with the noise term v ∈ Rny . The most frequent situation encountered in
practice is when the system is governed by continuous-time dynamics and
the measurements are obtained at discrete time instances. For the problem
formulation we consider the numerically discretized dynamic nonlinear sys-
tem described by the equations
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xt+1 = f(xt, ut) (7.45)

yt = h(xt, ut) + vt (7.46)

for t = 0, 1, . . ., where xt ∈ Rnx is the state vector and ut ∈ Rnu is the control
vector. The state vector is observed through the measurement equation (7.46)
where yt ∈ Rny is the observation vector and vt ∈ Rny is a measurement noise
vector.

The state dynamics given by Eq. (7.43) (or discretized by Eq. (7.45)) is
a deterministic formulation. A common procedure is to include the process
noise vector in Eq. (7.43) which would account for the stochastic behav-
ior. For a sake of simplicity the process noise will not be considered in this
study, however in practical situations this might be an important part of the
dynamic equations to account for uncertainty in the inputs or unmodeled
dynamics.

7.3.3 Extended Kalman Filter

The EKF is perhaps the most often applied algorithm for the estimation of
state and parameters of nonlinear dynamic systems (Gelb et al, 2001) and it
will be here considered as the benchmark algorithm. The following algorithm
is in the literature known as continuous-discrete or hybrid EKF (Gelb et al,
2001). The dynamic system is given by (7.45) and (7.46) where the white noise
has the normal Gaussian distribution vt ∼ N(0, Rt). The initial condition of
the state vector is x0 ∼ N(x̂+0 , P

+
0 ). The estimate of the state vector at t = 0

begins with the initial state vector estimate and with the initial covariance
matrix of the initial state vector estimate error

x̂+0 = E[x0] (7.47)

P+
0 = E[(x0 − x̂+0 )(x0 − x̂+0 )

T ] (7.48)

From time instance t − 1, the dynamic system (7.43) is simulatively propa-
gated one step ahead as

x̂−t = f(x̂+t−1, ut−1) (7.49)

where t = 1, 2, . . .. This one step computation gives an a priori state estimate.
The time update of the covariance matrix estimate is given by

Ṗ = Z(x̂)P + PZT (x̂) (7.50)

where

Z(x̂) =
∂fc(x)

∂x

∣
∣
∣
∣
x=x̂

(7.51)
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The covariance matrix estimate of state vector x̂−t estimation error is achieved
by simulative propagation of Eq. (7.50)

P−
t = g(P+

t−1, Z(x̂
+
t−1)) (7.52)

The EKF gain matrix is in time instant t

Kt = P−
t L

T
t [LtP

−
t L

T
t +MtRtM

T
t ]−1 (7.53)

and the measurement yt is used for updating the a posteriori estimate

x̂+t = x̂−t +Kt[yt − h(x̂−t )] (7.54)

The covariance matrix a posteriori estimate is updated as

P+
t = [I −KtLt]P

−
t [I −KtLt]

T +KtMtRtM
T
t K

T
t (7.55)

where

Lt =
∂h(xt)
∂xt

∣
∣
∣
xt=x̂−

t

(7.56)

Mt =
∂h(xt)
∂vt

∣
∣
∣
xt=x̂−

t

(7.57)

7.3.4 Moving Horizon Estimation Algorithm

The statistics of the measurement noise vt is assumed unknown. The function
composition as the application of one function to the results of another like
f(f(xt−N , ut−N ), ut−N+1) and h(f(xt−N , ut−N ), ut−N+1) can be written as
fut−N+1 ◦ fut−N (xt−N ) and hut−N+1 ◦ fut−N (xt−N ) respectively, where “◦”
denotes function composition. The N + 1 subsequent measurements of the
outputs Yt and inputs Ut up to time t are

Yt =








yt−N

yt−N+1

...
yt







, Ut =








ut−N

ut−N+1

...
ut







. (7.58)

where t = N + 1,+2, . . .. For Yt the following algebraic map is defined

Yt = Ht(xt−N , Ut) =








hut−N (xt−N )
hut−N+1 ◦ fut−N (xt−N )

...
hut ◦ fut−1 ◦ . . . ◦ fut−N (xt−N )








(7.59)
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The a priori state estimate used in the arrival cost at the beginning of the
horizon is declared as x̄t−N |t, for which two alternatives are considered.

7.3.4.1 Simulative Propagation (Alt. 1)

The x̄t−N |t vector in a time instant t is computed for the time instance t−N
by simulative propagation (Butcher, 2003; Pytlak, 1999) of function f . The
initial condition of such one-step simulation is given by the last optimal state
vector estimate x̂t−N−1|t−1 that is not a part of a receding window anymore

x̄t−N |t = f(x̂t−N−1|t−1, ut−N−1) (7.60)

7.3.4.2 Pre-filtration (Alt. 2)

The x̄t−N |t vector is computed in a time instant t for the time instance t−N
by pre-filtration with EKF (Rao et al, 2003). The EKF is running at the
beginning of horizon on the output data yt−N which were measured in t−N
time instance. This is the information which corrects the one-step simulation

x̂−t−N |t = f(x̂t−N−1|t−1, ut−N−1) (7.61)

The a priori state estimate at the beginning of the horizon is computed as

x̄t−N |t = x̂−t−N |t +Kt−N |t[yt−N − h(x̂−t−N |t)] (7.62)

The covariance matrix is computed as

P+
t−N |t = [I −Kt−N |tLt−N |t]P

−
t−N |t[I −Kt−N |tLt−N |t]

T+

+Kt−N |tMt−N |tRtM
T
t−N |tK

T
t−N |t

(7.63)

The other matrix computations necessary for the pre-filtration are done via
regular EKF equations as explained in Section 7.3.3 (index t changes to t−N |t
and index t − 1 changes to t − N − 1|t − 1). The only difference is that the
EKF equations here are applied for the first time instance t−N of receding
window.

Define the N -information vector at time t

It = [yTt−N , . . . , y
T
t , u

T
t−N , . . . , u

T
t ]

T (7.64)

The observer design problem is to reconstruct the vector xt−N based on the
information vector It. The basic formulation of such a problem is defined as
the inverse mapping of Eq. (7.59). The unique existence and continuity of
solution depends on the function Ht. If the Eq. (7.59) does not have unique
solution, the problem is ill-posed according to definitions of Tikhonov and
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Arsenin (1977). The solution of vector xt−N is in the case of uniform observ-
ability formulated on an over-determined set of algebraic equations where
there are more equations than unknowns for which nx ≤ Nny. The formula-
tion can be also under-determined if there is no persistence of excitation or
the system is not observable. From the existence point of view of solution for
vector xt−N under noisy measurements, the computation is formulated as an
optimization problem.

The cost function of the optimization problem is in the meaning of the
least-squares method defined as

JLS(x̂t−N |t, It) = ‖x̂t−N |t − x̄t−N |t‖2Q + ‖Ŷt − Yt‖2 (7.65)

with

Ŷt = Ht(x̂t−N , Ut) =








hut−N (x̂t−N )
hut−N+1 ◦ fut−N (x̂t−N )

...
hut ◦ fut−1 ◦ . . . ◦ fut−N (x̂t−N )








(7.66)

The cost function (7.65) comprises of two squared norms where the first norm
is weighted by the Q matrix. The given formulation contains an arrival cost
(Alessandri et al, 2008; Rao et al, 2003). The schematic time sequence of
the a priori state estimate vector, state estimate vectors, output estimate
vectors, input and output vectors on N -horizon are in Fig. 7.11. The MHO
algorithm, schematically shown in Fig. 7.12 consists of three main compu-
tation parts: Datapool, Simulative propagation (if Alt. 1) or Pre-filtration
(if Alt. 2) and Optimizer with N -step Model Simulation and Cost function
minimization blocks. The main computation engine is the optimization algo-
rithm that performs the cost function minimizations. The MHO algorithm

x̄t−N|t

x̂t|tx̂t−1|tx̂t−2|tx̂t−N|tx̂t−N−1|t−1

utut−1ut−2ut−Nut−N−1

ytyt−1yt−2yt−N

ŷt|tŷt−1|tŷt−2|tŷt−N|t

N + 1-window

N-step model simulation

Fig. 7.11 Time sequences of state, input and output variables in N + 1 Moving
Horizon window

with pre-filtration can be summarized into following steps:
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ut yt

Dynamical system

x̂t−N−1|t−1

Datapool

Yt

Ut

Sim. propagation/
Pre-filtrationUt−1

x̄t−N|t

x̂t|t

N-step
model simulation

Cost function
minimization

x̂t−N|t

Ŷt

x̂t−N|t

z−1

z−1

Optimizer

-

-

Fig. 7.12 Algorithm scheme of Moving Horizon Observer where z−1 is a one sample
delay operator

Step 0. Do the initial Datapool loading with measurement data and input
data

Step 1. Obtain the actual output measurement yt and update the Datapool
Step 2. If the current time instance is t = N + 1, set the initial values for
x̂+0|N and P+

0|N (as in the case of EKF Eq. (7.47),(7.48)). Then according

to Fig. 7.11: x̂+0|N = x̂0|N (this value is set by the user)

Else for t > N + 1: x̂+t−N−1|t−1 = x̂t−N−1|t−1 (this value is set from the

last optimization run)
Step 3. Compute the a priori estimate with Eq. (7.61)
Step 4. Numerically integrate P−

t−N |t (as in the case of EKF Eq. (7.50)

through Eq. (7.52))
Step 5. Compute the EKF gain matrix Kt−N |t (as in the case of EKF ac-

cording to Eq. (7.53))
Step 6. Compute the a posteriori state estimate x̂+t−N |t with Eq. (7.62)

where x̂+t−N |t = x̄t−N |t (Block in Fig. 7.12: Pre-filtration)

Step 7. Minimize the cost function (7.65) to compute the optimal state vec-
tor at the very beginning of receding window x̂t−N |t. In the minimization
routine the model is used through the Eq. (7.66)

Step 8. Use the model to simulatively propagate the state from the begin-
ning of receding window to the end of receding window as
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x̂t|t = fut−1 ◦ fut−2 ◦ . . . ◦ fut−N (x̂t−N |t)

End of loop; Go to Step 1.

7.3.5 Simulations

In the following section the simulation of MHO and EKF described in
above sections for oscillating mass-spring-damper system with one-degree-
of-freedom will be presented. In both studied approaches (EKF, MHO), the
propagation of filter dynamics in Eq. (7.49), (7.52) and the propagation of
observer dynamics in Eq. (7.60), (7.61), (7.66) is required through the numer-
ical simulation. In this experiment the Matlab function ode23 is used which
is explicit Runge-Kutta method (Pytlak, 1999; Butcher, 2003).

7.3.5.1 Model of Mass-Spring-Damper System

For an SDOF vibration system, the equation of motion may be represented
as follows

mq̈(t) + bq̇(t) + kq(t) = F (t) (7.67)

The state-space model consists of an ordinary differential equation system
with the displacement q = x1, the speed q̇ = x2 and no external force (free
vibration)

[
ẋ1
ẋ2

]

=

[
0 1

− k
m − b

m

] [
x1
x2

]

(7.68)

Denoting x = [x1, x2, x3, x4]
T , with k = x3 and b = x4, (7.68) can be rewrit-

ten in the augmented form

ẋ1 = x2

ẋ2 = − 1

m
x3x1 −

1

m
x4x2

ẋ3 = 0

ẋ4 = 0 (7.69)

where only the displacement is measurable

yt =
[
1 0 0 0

] [
x1 x2 x3 x4

]T
+ vt (7.70)
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7.3.5.2 Initialization of Simulation, MHO and EKF

The system described by Eq. (7.68) is simulated to generate data. The noisy
measurement of displacement is generated through Eq. (7.70). The true pa-
rameters considered in simulation are m = 1, k = 1, b = 0.01. The initial
true joint state and parameter vector at the beginning of simulation is then
[x1, x2, x3, x4]

T = [1, 0, 1, 0.01]T .The initial MHO state estimate x̂0|N , which
is not a part of a receding window, has the first displacement term set directly
from measurement. The other terms are considered as initially unknown and
are set to 0.5. Considering the initial datapool loading with N + 1 measure-
ments, the first estimated state vector with the MHO in t = N + 1 is at the
beginning of receding window (x̂t−N |t) and further computed for the end of re-
ceding window (x̂t|t). The horizon size N is heuristically chosen long enough
to capture at least one full oscillation period. The initial state estimate of
EKF x̂+0 has the first displacement term set directly from measurement. The
other terms of x̂+0 are considered as initially unknown and are set to 0.5. The
EKF is N -times pre-iterated in order to use the access to the same data in-
formation as the MHO has in datapool buffer. With this initial conditions the
MHO and EKF qualitatively compare their first state estimates for the same
time instance t = N + 1. The other possibility (not applied in this paper) to
compare the EKF and MHO from very first measurement instance would be
to apply the MHO with growing horizon until t = N+

7.3.5.3 Gaussian White Noise Experiment (Exp. 1.):

In this first experiment, the noise is generated with Gaussian distribution
(band-limited-white-noise) with the variance Rt = σ2 = 0.01

vt ∼ N(0, σ2) (7.71)

The measured noisy data have overall signal-to-noise ratio SNR = 10.

7.3.5.4 Correlated Noise Experiments (Exp. 2a., Exp. 2b.):

In the second and third experiment sequentially correlated, sometimes re-
ferred as colored noise, will be assumed. The noise is given by the filtration
of band-limited-white-noise input et ∼ N(0, σ2), σ2 = 0.01 with the filter
(Hansen and Snyder, 1997)

vt =
0.5

1.0− 1.75z−1 + 0.81z−2
et (7.72)

This filter produces the colored noise which in addition to the base displace-
ment signal produces the signal with average signal-to-noise ratio SNR = 5.
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Two different noise realization sequences are produced by the filter, given by
Eq. (7.72). The first realization is used in Exp. 2a. and the second realization
in Exp. 2b.

7.3.6 Extended Kalman Filter Setup

In order to compute the continuous part of the EKF (7.50), the Jacobian
matrix (7.51) is required to propagate Eq. (7.50) through Eq. (7.52). The
partial derivative matrices for the mass-spring-damper system are

Z(x̂) = ∂fc(x)
∂x

∣
∣
∣
x=x̂

=







0 1 0 0
− 1

mx3 − 1
mx4 − 1

mx1 − 1
mx2

0 0 0 0
0 0 0 0







x=x̂

Lt = ∂h(xt)
∂xt

∣
∣
∣
xt=x̂−

t

=
[
1 0 0 0

]

Mt = ∂h(xt)
∂vt

∣
∣
∣
xt=x̂−

t

= 1

(7.73)

In the numerical simulation with Eq. (7.52), the argument of the Jacobian
matrix Z(x̂) “continuously”changes the values from x̂ = x̂+t−1 to x̂ = x̂−t . The
values of the argument x̂ are changed within the simulative propagation step
which is much smaller than the filter sampling interval. The initial conditions
as explained in section 7.3.5.2 are set as follows.

7.3.6.1 Exp. 1.

The vector x̂+0 = [1.052, 0.5, 0.5, 0.5]T is the initial state estimate and the ini-
tial covariance matrix with the measurement variance is P+

0 = diag(0.1, 0.1, 0.1, 0.1),
R = 0.01. The pre-iterated covariance matrix after N = 10 steps is

P+
10 =







0.0062 0.0053 0.0024 −0.0039
0.0053 0.0142 −0.0017 −0.0107
0.0024 −0.0017 0.0038 0.0015

−0.0039 −0.0107 0.0015 0.0086







(7.74)

7.3.6.2 Exp. 2a., 2b.

The initial covariance matrix with the measurement variance is P+
0 =

diag(0.3, 0.3, 0.3, 0.3), R = 0.1. The initial state estimate for Exp. 2a. is
x̂+0 = [1.352, 0.5, 0.5, 0.5]T . The pre-iterated covariance matrix for Exp. 2a.
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after N = 10 steps is

P+
10 =







0.0182 −0.0051 0.0287 0.0145
−0.0051 0.0187 −0.0000 −0.0375
0.0287 −0.0000 0.0627 0.0095
0.0145 −0.0375 0.0095 0.0873







(7.75)

The vector x̂+0 = [0.892, 0.5, 0.5, 0.5]T is the initial state estimate for Exp. 2b.

7.3.7 Moving Horizon Observer Setup

To minimize the cost function (7.65) Matlab unconstrained optimization func-
tion fminunc is called. The following equation for the Q matrix is motivated
by Rao et al (2003)

Q = RP−1 (7.76)

7.3.7.1 Exp 1./Simulative Propagation (Alt. 1)

The moving horizon window is set to N = 10. The Q matrix is time-invariant
since P = P+

10 (Eq. (7.74)) during the whole simulation, R = 0.01. The initial
value of a priori state vector for t = N + 1 is x̂0|N = [1.052, 0.5, 0.5, 0.5]T .

7.3.7.2 Exp 1./Pre-filtration (Alt. 2)

The Q matrix is time-varying since P = P+
t−N |t according to Eq. (7.63),

R = 0.01. The initial value of a priori state vector for t = N + 1 is x̂0|N =

[1.052, 0.5, 0.5, 0.5]T and P+
0|N = diag(0.1, 0.1, 0.1, 0.1).

7.3.7.3 Exp. 2a., 2b./Simulative Propagation (Alt. 1)

This method was not applied for the correlated noise experiments, due to its
poor slow convergence for the Gaussian noise experiment.

7.3.7.4 Exp. 2a., 2b./Pre-filtration (Alt. 2)

The moving horizon window is set to N = 10. The Q matrix is time-varying
since P = P+

t−N |t, Eq. (7.63), with the initial value P+
0|N = diag(0.3, 0.3, 0.3, 0.3)

and R = 0.1. The initial value of a priori state vector for t = N+1 for Exp. 2a.
is x̂0|N = [1.352, 0.5, 0.5, 0.5]T and for Exp. 2b. is x̂0|N = [0.892, 0.5, 0.5, 0.5]T .
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7.3.8 Simulation Results and Discussion

The system dynamics is perturbed by the initial state deviation from its equi-
librium without any external force input leaving the system to respond freely.
Such free oscillatory response with decaying trend is providing sufficient self
excitation needed for the observer to successfully converge. The quality of the
algorithms is evaluated by the Root Mean Square Error (RMSE) computed
for each state and parameter as

RMSExj =

√
√
√
√

n∑

i=1

(xj − x̂j,i)2

n
(7.77)

where j = 1, 2, 3, 4 and n = 100.

7.3.8.1 Gaussian White Noise Experiment (Exp. 1.):

The MHO observer estimation is run with two different settings for the a
priori state vector computation according to the Simulative propagation (Alt.
1) and Pre-filtration (Alt. 2) procedures. For better distinction of the different
settings, the estimated states of the system are presented by their error from
the true states. The displacement error is shown in Fig. 7.13 and the speed
error is shown in Fig. 7.14. The estimation of spring and damping constants is
in Fig. 7.15 and 7.16 respectively. The results show comparable convergence
of states and parameters for the Pre-filtered MHO and the EKF with pre-
iterations. The Simulative propagation did not give satisfactory results mainly
due to its non-adaptivity of theQmatrix, which is given by (7.76). The results
for different MHO settings and the results of EKF are summarized in Table
7.5.

RMSE.10−2 x1 x2 x3 x4

EKF 0.2953 0.3616 0.1466 0.1520
Pre-filtered MHO 0.4392 0.4895 0.1234 0.1382

Sim. propag. MHO 2.2722 1.9598 1.3277 3.6531

Table 7.5 Root Mean Square Error in Exp. 1.

7.3.8.2 Correlated Noise Experiments (Exp. 2a., Exp. 2b):

The magnitude of noise is slightly higher to what one can expect from regular
sensor dynamics, however the correlated character sets a challenging problem
for the EKF and the MHO. The magnitude and character of colored noise
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Fig. 7.13 Exp. 1.: Displacement error between true state and the estimate
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Fig. 7.14 Exp. 1.: Speed error between true state and the estimate
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Fig. 7.16 Exp. 1.: Estimation of damping constant

may cause disturbance to the estimation algorithms to successfully converge.
In this experiment the Pre-filtered MHO algorithm showed improved robust
convergence ability compared to the EKF. The EKF turned out to be very
sensitive to converge from the initial estimate or from reasonable surrounding
set of initial estimates, compared to the more robust MHO algorithm where
even large initial state estimate error can be corrected at the very beginning
by the measured information contained in the Datapool. The displacement
estimate is shown in Fig. 7.17 and the speed estimate is shown in Fig. 7.18.
The estimation of spring and damping constants is in Fig. 7.19 and 7.20
respectively. The sensitivity of the pre-iterated EKF is demonstrated on these
figures where the method eventually diverges on noisy data and identifies
incorrect states in Exp. 2a.. The RMSE results are summarized in Table 7.6.
The results of the Exp. 2b. are shown in Figs. 7.21–7.24 and summarized in
Table 7.7.

RMSE.10−2 x1 x2 x3 x4

EKF 5.8142 6.0577 1.8004 4.3752
Pre-filtered MHO 2.0800 3.6054 1.5023 1.4773

Table 7.6 Root Mean Square Error in Exp. 2a.

RMSE.10−2 x1 x2 x3 x4

EKF 3.0661 3.5506 1.2009 0.7403

Pre-filtered MHO 2.7170 3.2849 0.8892 0.9224

Table 7.7 Root Mean Square Error in Exp. 2b.
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Fig. 7.17 Exp. 2a.: True state of displacement and the estimate
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Fig. 7.18 Exp. 2a.: True state of speed and the estimate
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Fig. 7.19 Exp. 2a.: Estimation of spring constant
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Fig. 7.20 Exp. 2a.: Estimation of damping constant

0 10 20 30 40 50 60 70 80 90 100
−1.5

−1

−0.5

0

0.5

1

1.5

 

 

sampling intervals

D
is
p
la
ce
m
en

t
x
1
,
x̂
1

EKF
Pre-filtered MHO
true state

Fig. 7.21 Exp. 2b.: True state of displacement and the estimate
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Fig. 7.22 Exp. 2b.: True state of speed and the estimate
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Fig. 7.23 Exp. 2b.: Estimation of spring constant
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Fig. 7.24 Exp. 2b.: Estimation of damping constant

7.3.9 Conclusion

The MHO and EKF estimation algorithms are tested in three different nu-
merical experiments. In the first experiment the white noise and in the second
and third experiment the correlated noise are assumed to superpose on the
true displacement signal. The corrupted displacement is the on-line measured
information used by the MHO and EKF to compute the estimation of states:
displacement, speed and parameters: spring constant, damping constant. The
experiments indicate that no method is always better. In the second exper-
iment the MHO demonstrates robustness with an ability to safely converge
and extract the dynamic information about states and parameters. The fur-
ther advantage of MHO is that it can directly handle constraints on states and
parameters. This was not applied here (although x4 > 0 is evident), but the
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application of constraints is straightforward and would improve the perfor-
mance. Also modeling the colored noise would further improve the estimates.
The recursive Prediction Error Methods could in this case be considered as
suitable alternative to the EKF. The application of proposed algorithms in
embedded controllers depends on reliable function minimization routines. The
recent computationally fast and efficient methods of function minimization
based on Sequential Quadratic Programming for real-time applications are
proposed in Diehl et al (2009).

7.4 Predictive Control of Air-Fuel Ratio in Spark
Ignition Engines

7.4.1 Introduction

The problem of air-fuel ratio (AFR) control is one of the main parts of the
more complex emission reduction strategy for combustion engines. The mix-
ture quality is essential for efficiency of a three-way catalytic converter and
therefore proper control techniques are needed to fulfil emission legislations.
During the last twenty years different control methodologies were developed
from simple to more sophisticated“model (observer)-based”ones. In advanced
control methods the model plays the most important role in the control strat-
egy (Muske, 2006). A classical approach to modeling problem of AFR is based
on linear observer theory where physical models of the process are part of
state estimator (Powell et al, 1998; Guzzella and Onder, 2010). A review of
observers based on physical laws related to“gray-box”models can be found in
(Hendricks and Luther, 2001). Another promising branch of control model-
based strategies relies on “black-box” modeling principles where identified
models are used. From the field of nonlinear approximation theory many
different nonlinear model structures have been applied to engine emission
control problems. One of the most popular approaches to combustion engine
modeling is based on neural network principles for their flexibility (Nelles,
2001). Especially, the AFR modeling problem was solved by radial basis func-
tion observer in Manzie et al (2002), by Chebyshev polynomial network in
Gorinevsky et al (2003) and recently a simulator of AFR dynamics based on
recurrent neural network was proposed by Arsie et al (2006). The purpose
of this study is to design the AFR predictive controller based on linear pa-
rameter varying model (LPV) of the AFR and a simulative verification of
its ability to maintain stoichiometric mixture during transients throughout
different operating regimes of the 2.8 liter engine.
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7.4.2 Model Structure

This section describes the model structure. First, a general weighted lin-
ear local model with single input single output (SISO) structure is pre-
sented. Specifically, composite local linear ARXmodels with weighted validity
(Murray-Smith and Johansen, 1997) are identified to model AFR nonlinear
dynamics. The global AFR model is then validated against measured data
(Polóni et al, 2008). Weighted linear local models (LLM) have already been
used in engine emission NOx control applications as an extension of radial
basis function network sometime referred to as local linear neuro-fuzzy tree
network (Hafner et al, 1999; Isermann and Müller, 2003) and also in diesel
engine drivetrain modeling (Johansen et al, 1998). Below it is shown how this
structure can be applied for modeling of AFR dynamics of the engine.

7.4.2.1 Weighted Linear Local Model Network Structure

The basic principle of this nonlinear modeling technique is partitioning the
operating regimes. For these operating regimes LLMs are defined. The tran-
sition between particular local models is fluent due to smooth interpolation
(weighting) functions. In this case the local models will be linear ARX models
with weighted parameters in an operating point φ ∈ Φ ⊂ Rnφ ,

nM∑

h=1

ρh(φ(k))Ah(q)y(k) =

nM∑

h=1

ρh(φ(k))Bh(q)u(k) +

+

nM∑

h=1

ρh(φ(k))ch + e(k) (7.78)

defining polynomials Ah and Bh

Ah(q) = 1 + ah,1q
−1 + . . .+ ah,nyq

−ny

Bh(q) = bh,1+dh
q−1−dh + . . .+ bh,nu+dh

q−nu−dh
(7.79)

where ah,i,bh,(j+dh),ch are the h-th local function parameters and dh is the
delay. The parameters nM and nγ stand for the number of local models and
size of the regression vector (7.85) respectively. Here q−1 is the time shift
operator, i.e. q−iy(k) = y(k− i). The Gaussian local model validity function
{ρ̃h : Φ→ (0, 1)}nM

h=1 is defined by the vector of center cc,h ∈ Rnφ and by the
scaling matrix Mh

ρ̃h(φ(k)) = e−(φ(k)−cc,h)
TMh(φ(k)−cc,h) (7.80)
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Mh =










1
σ2
h,1

0 · · · 0

0 1
σ2
h,2

· · · 0

...
...

. . .
...

0 0 · · · 1
σ2
h,nφ










(7.81)

The function ρ̃h can be considered as degree of fulfilment (even though it is
not a combination of antecedent fuzzy sets). To achieve a partition of unity,
local model validity functions are normalized to get the weighting functions
used which is based on Takagi-Sugeno fuzzy inference (Takagi and Sugeno,
1985).

ρh(φ(k)) =
ρ̃h(φ(k))

∑nM

h=1 ρ̃h(φ(k))
(7.82)

That means in any operating point
∑nM

h=1 ρh(φ(k)) = 1. For simulation of the
model (7.78) following equation has to be considered

ys(k) =
∑nM

h=1 ρh(φ(k))

(

−∑ny
i=1 âh,iq

−iys(k)+

+
∑nu

j=1 b̂h,(j+dh)q
−j−dhu(k) + ĉh

) (7.83)

Introducing the estimated parameter vector θ̂h and the regression vector γ(k)
with dmax = max{dh}nM

h=1

θ̂h = [âh,1, âh,2, . . . , âh,ny, {0, 0, . . . , 0}dh
,

b̂h,1+dh
, b̂h,2+dh

, . . . , b̂h,nu+dh
,

{0, 0, . . . , 0}dmax−dh
]T

(7.84)

γ(k) = [−ys(k − 1),−ys(k − 2), . . . ,−ys(k − ny),
u(k − 1), u(k − 2), . . . , u(k − nu− dmax)]

T (7.85)

equation (7.83) becomes,

ys(k) = γT (k)

nM∑

h=1

ρh(φ(k))θ̂h +

nM∑

h=1

ρh(φ(k))ĉh (7.86)

The offset term ch of the local ARX model can be computed from the system’s
steady state values ye,h, ue,h. Given a parameter estimate θ̂h, the estimate of
ch is defined as follows

ĉh = ye,h + ye,h

ny
∑

i=1

âh,i − ue,h

nu∑

j=1

b̂h,j (7.87)

A block diagram illustrating Eq. (7.86) can be seen in Fig. 7.25. There are
several possibilities how to estimate the parameters and weights of model
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Fig. 7.25 Weighted ARX local model network structure

(7.78). This is discussed in Johansen and Foss (1993) and Takagi and Sugeno
(1985).

7.4.2.2 Air-Fuel Ratio Model Structure

In this section we briefly introduce the AF ratio model structure, see Polóni
et al (2008) for further details. The nonlinear (parameter varying) model is
needed mainly due to nonlinear throttle characteristic Heywood (1988) and
delay-varying AFR dynamics. The dynamic model of AFR is based on a def-
inition of a mixture as a ratio of air and fuel quantities in time instance
(k). Since λ(k) is a non-dimensional ratio the air and fuel quantities can be
expressed in any physical units, even relative ones. It is convenient to ex-
press these quantities in the meaning of relative mass densities ([g/cylinder])
telling us how much mass of air (or fuel) is concentrated per volume of one
cylinder. The relative mass density of the mixture consists of relative air den-
sity ma(k) and relative fuel density mf (k) that define the mixture quality in
a time instance (k). The effect of mixture formation is transformed from the
discrete event process (one combustion cycle) to continuous changes of AFR
information due to mixing dynamics in the exhaust manifold. To scale the
AFR at one for stoichiometric mixture (λst = 1), we divide the ratio by the
value of theoretical stoichiometric coefficient for gasoline fuel Lth ≈ 14.64, so
the ratio is defined

λ(k) =
1

Lth

ma(k)

mf (k)
[−] (7.88)

The ma(k) and mf (k) information can be indirectly measured with a delay
at the confluence point (Fig. 7.26). To model λ(k), two different subsystems
with independent inputs are considered. The air-path subsystem (ma) with a
throttle position (tr) input as a disturbance variable (DV) and the fuel-path
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Fig. 7.26 Engine setup with input/output relations; dashed arrows - inputs, solid
arrows - outputs

subsystem (mf ) with an injection pulse width (uf ) input as a manipulated
variable (MV). The other DV is the engine speed (ne) which is implicitly
included in the model to define the operating point together with tr. In
accordance with the general model structure presented in Section 7.4.2.1 the
key variables are defined in Table 7.8. In the operating point vector φ(k)

Table 7.8 Symbol connection between general expression and the model

general air-path fuel-path operating
symbol model model point
y(k) ma(k) mf (k)
u(k) tr(k) uf (k)
γ(k) γa(k) γf (k)

θ̂h θ̂a,h θ̂f,h
ρh(φ(k)) ρa,h(φ(k)) ρf,h(φ(k))
ĉh ĉa,h ĉf,h
φ(k) [ne(k), tr(k − δ)]T

the parameter δ represents the throttle position delay. To simulate the AFR
dynamics we combine (7.86) with (7.88)

λs(k) =
1

Lth

[

γTa (k)
∑nA

h=1 ρa,h(φ(k))θ̂a,h +
∑nA

h=1 ρa,h(φ(k))ĉa,h

γTf (k)
∑nF

h=1 ρf,h(φ(k))θ̂f,h +
∑nF

h=1 ρf,h(φ(k))ĉf,h

]

(7.89)

The weighting functions considered for the global AFR model are shown in
Fig.s 7.27 and 7.28.
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Fig. 7.28 Weighting function - fuel path

7.4.3 Predictive Controller Design

The applied control strategy is based on the knowledge of an internal model1

(IM) of air-path, predicting the change of air flow through cylinders, and
consequently, setting the profile of desired values of the objective function on
the control horizon. The second modelled subsystem of the fuel-path is an
explicit component of the objective function where the amount of the fuel is
a function of optimized control action.

1 Implying from IM strategy, we write ys in (7.85) and (7.95) as internally simulated
outputs
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7.4.3.1 Linear Predictive Model

The predictive control can come out from several model structures of the
system that lead to different computation algorithms of the control action
(Maciejowski, 2002). The proposed MPC stands on linearised process model
similarly used in Roubos et al (1999) and Mollov et al (2004). In this case we
will consider the state space (SS) formulation of the system, therefore it is
necessary to express linear local ARX models in parameter varying realigned
SS model

x(a,f)(k + 1) = A(a,f)(φ)x(a,f)(k) +B(a,f)(φ)u(a,f)(k)

ms,(a,f)(k) = C(a,f)x(a,f)(k) (7.90)

This is a non-minimal SS representation whose advantage is, that no state
observer is needed. The individual vectors and matrices of equation (7.90)
are defined as follows2

A(a,f)(φ(k)) =





















−a1(φ(k)) −a2(φ(k)) · · · −any−1(φ(k)) −any(φ(k)) b2(φ(k)) · · ·
1 0 · · · 0 0 0 · · ·
0 1 · · · 0 0 0 · · ·
...

...
. . .

...
...

...
. . .

0 0 · · · 1 0 0 · · ·
0 0 · · · 0 0 0 · · ·
0 0 · · · 0 0 1 · · ·
...

...
. . .

...
...

...
. . .

0 0 · · · 0 0 0 · · ·
0 0 · · · 0 0 0 · · ·

· · · bnu−1+dmax(φ(k)) bnu+dmax(φ(k)) c(φ(k))
· · · 0 0 0
· · · 0 0 0
. . .

...
...

...
· · · 0 0 0
· · · 0 0 0
· · · 0 0 0
. . .

...
...

...
· · · 1 0 0
· · · 0 0 1





















(a,f)

(7.91)

2 For a more compact notification we write φ instead of φ(k) in all the equations
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x(a,f)(k) =



















ys(k)
ys(k − 1)

...
ys(k − ny + 1)

u(k − 1)
u(k − 2)

...
u(k − nu− dmax)

1



















(a,f)

(7.92)

B(a,f)(φ) =
(
b1(φ) 0 0 . . . 0 1 0 . . . 0 0

)T

(a,f)
(7.93)

C(a,f) =
(
1 0 . . . 0 0 0 . . . 0 0 0

)

(a,f) (7.94)

The parameters of multi-ARX models are scheduled by operating point φ(k)
according to (7.86) and final weighted parameters are displayed in matrices
A(a,f) and B(a,f) for both subsystems. The control of the fuel pulse width
is tracking of the air mass changing profile on a prediction horizon from
IM of the air-path, with the amount of injected fuel mass. Due to tracking
offset elimination, the SS model of the fuel-path (7.90) (index f ) is written
in augmented SS model form to incorporate integral action

x̃f (k + 1) = Ãf (φ)x̃f (k) + B̃f (φ)∆uf (k) (7.95)

or
[
xf (k + 1)
uf (k)

]

=

[
Af (φ) Bf (φ)

0 1

] [
xf (k)

uf(k − 1)

]

+

+

[
Bf (φ)

1

]

∆uf(k)

ms,f (k) = C̃f x̃f (k) +Df∆uf (k) (7.96)

or

ms,f (k) =
[
Cf Df

]
x̃f (k) +Df∆uf (k)

Prediction of the air mass (m−→a) on the prediction horizon (N) is solely de-

pendent on the throttle position ( t−→r) and is computed as

m−→a(k) = Γa(φ)xa(k) +Ωa(φ) t−→r(k − 1) (7.97)

Due to unprecise modeling (IM strategy), biased predictions of the air mass
future trajectory and consequently fuel mass might occur. This error can be
compensated by the term L[m̂f(k)−ms,f (k)] in fuel mass prediction equation
(m−→f )
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m−→f (k) = Γf (φ)x̃f (k) +Ωf (φ)∆ u−→f (k − 1)+

+ L[m̂f(k)−ms,f (k)]
(7.98)

The matrices of free response Γa, Γf and forced responseΩa,Ωf are computed
from models (7.90) and (7.95) respectively (Maciejowski, 2002). Since there
is only λ(k) measurable in equation (7.88), the value of ma(k) needs to be
substituted using IM of the air-path, then

m̂f (k) =
1

Lth

ms,a(k)

λ(k)
(7.99)

The estimate m̂f (k) is used to compensate for possible bias errors of predicted
m−→f (k) in (7.98).

7.4.3.2 Computation of the Control Action

The controller indirect setpoint is λ = λst = 1, and from (7.88) we define the
control objective

mf (k)−
ma(k)

Lth
= 0 (7.100)

The objective function for the AFR problem is then defined and written for
chosen prediction horizon N in matrix formulation

J =

[

m−→f −
m−→a

Lth

]T

Q

[

m−→f −
m−→a

Lth

]

+∆ u−→
T
f R∆u−→f (7.101)

The control action computation stands on a minimization of the objective
function

∆ u−→f = arg min
∆u
−→f

J (7.102)

subject to (7.95) and (7.98). For the sake of simplicity, the correction of
the bias in (7.98) is omitted and analytical solution for constraint free case
(Rossiter, 2003) is

∆ u−→f = −
[

ΩT
f QΩf +R

]−1

·

·
[

x̃Tf Γ
T
f QΩf −

[
m
−→a

Lth

]T

QΩf

]T (7.103)

Incremental controller can be expressed in the meaning of receding horizon
as

uf (k) = uf (k − 1) +∆uf (k) (7.104)
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7.4.4 Simulation

The ability to control the mixture concentration at stoichiometric level is
demonstrated through the simulation of an experimentally validated model
Polóni et al (2008). The control scheme is shown in Fig. 7.29. In the simulation
the sudden changes of throttle position with changing load (see engine speed
(ne)) were considered to shift the operating regime. The nonlinear character
mainly caused by the throttle can be seen atma, especially on different system
gain in speed regimes around 1000 and 2000min−1. Simulation results are
displayed in Fig. 7.30. The predicted λ−→(k) computed from the prediction of

setpoint profile
m
−→a

Lth
(k), tracked by predicted fuel mass m−→f (k), are depicted in

Fig. 7.31. The middle graph in Fig. 7.31 also shows the record of all computed
λ predictions, from the beginning to the (k) period of AFR control simulation.

Combustion
Engine

(Simulation)

MPC

Controller

tr

uf

ne

λ

Fig. 7.29 Control scheme

7.4.5 Conclusion

In this article, we present preliminary design of a predictive controller for
SI-engine air-fuel ratio. The control as well as the prediction are based on an
ARX model network where the knowledge of physical phenomena is included
a priori into assumptions that are utilized to design the model structure. The
results are acceptable from the simulation point of view. However one has
to expect worse results in real situation, particularly in λ peak overshoots.
The control is based on internal model (IM) simulation strategy, with throt-
tle position measurement, without mass air flow sensor or intake manifold
pressure sensor. For future real time applications the algorithm is expressed
in a simple analytical form (without constraints) which brings rather lower
computational demands on hardware.
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Takács G, Rohal’-Ilkiv B (2009b) MPC with guaranteed stability and constraint feasi-
bility on flexible vibrating active structures: a comparative study. In: Proceedings
of The eleventh IASTED International Conference on Control and Applications,
Cambridge, United Kingdom.

Takagi T, Sugeno M (1985) Fuzzy identification of systems and its application to
modeling and control. IEEE Trans Systems, Man and Cybernetics 15:116–132

Tikhonov AN, Arsenin VY (1977) Solutions of Ill-posed Problems. Wiley
Uchino E, Ohta M (1986) A new methodological trial on state estimation of lin-

ear structure vibration model with noisy power observation mechanism of non-
gaussian type. In: IEEE International Conference on Acoustics, Speech and Signal
Processing, ICASSP

Ungarala S (2009) Computing arrival cost parameters in moving horizon estimation
using sampling based filters. Journal of Process Control 19(9):1576 – 1588, DOI
10.1016/j.jprocont.2009.08.002

Wills AG, Bates D, Fleming AJ, Ninness B, Moheimani SOR (2008) Model predictive
control applied to constraint handling in active noise and vibration control. IEEE
Transactions on Control Systems Technology 16(1):3–12




