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Chapter 1

Introduction

In this report we make a summary of the research activities in the framework of the program
“Accueil de chercheur étranger de haut niveau” of the “Ministère de la recherche”. The research
subject was dynamic optimisation of small-size wastewater treatment plants. This subject has
been chosen for its importance arising from both regulation fulfillment and cost aspects of the
plant operation.

During the last decade, new stricter EU directives came out for nitrogen removal in waste-
water treatment. Before, only an effluent standard of 20 mg/l of nitrogen in the summer period
was imposed. The new EU directive is yearly averaged effluent N-total of 10mg/l for larger plants
over 20,000 p.e. (population equivalents) and 15 mg/l for smaller plants.

A widely used system for biological wastewater treatment is the activated sludge process (ASP).
Removal of N requires two biological processes: nitrification and denitrification. Nitrification takes
place under aerobic conditions, whereas denitrification requires anoxic environment. For small-size
plants, usually a single basin is used where oxygen is supplied by surface turbines in the aeration
periods and non-aeration is realised by simply switching the aeration off.

The principal energy consumption (and subsequently total operation costs) is caused by aer-
ation. Therefore, oxygen control is of great importance and lowering the total period of aeration
reduces the operation costs significantly. On the other hand, it has been shown, that the oxygen
control is quite flexible in influencing the N-removal (Hao and Huang, 1996).

The main challenge for control of the ASP is disturbances rejection – to avoid excessive aeration
and to maximise the conversion rates of the biological processes. The main source of disturbances
is the influent. Its characteristics are large diurnal variations both in the influent flow rate and
composition (result of the characteristic life patterns of households). Even if the large reactor
volume dampens this diurnal cycle just by dilution, there remains a significant task for active
control. The other principal sources of disturbances are rain/storm events that may cause serious
overloading incidents or winter time when growth rate of the biomass is severely inhibited.

The aim of the work is to determine an optimal duration of the aeration and non-aeration
sequence which will minimise the operational costs as well as satisfy the constraints specified by
the EU directives.

In the second chapter, a typical model of a small-size wastewater treatment plant is described.
The model consists of a single aeration basin where oxygen is supplied by surface turbines. The
initial model has been described as a hybrid discrete/continuous system. Such systems are tradi-
tionally more difficult to optimise and control and therefore one of the aims was to reformulate
the model so that it is described as a continuous system only.

In the third chapter, the dynamic optimisation problem is formulated. Basically, as the aim is
to reduce the energy consumption, mathematical definition of this aim is presented and possible
difficulties in the solution are discussed.

The Chapter 4 describes in more detail the implementation issues of the optimisation, trans-
formation of the original dynamic optimisation to a static optimisation as well as an approach of
gradient calculations needed in the nonlinear programming problem.
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Chapter 5 presents simulation results obtained and Chapter 6 draws conclusions and gives
future perspectives.

A user manual to the dynamic optimisation package DYNO is given in the Appendix, together
with some examples.

Nomenclature

Roman symbols

AO = oxygen transfer rate from the turbines
(

mg.L−1.day−1
)

BOD5 = biochemical oxygen demand
(

mg.L−1
)

COD = chemical oxygen demand
(

mg.L−1
)

E = energy consumption (J)
Hi = Hamiltonian of the i-th constraint (−)
J0 = performance index (−)
Ji = i-th constraint (cost if i = 0) (−)

kLa = oxygen transfer coefficient
(

h−1
)

Nc = number of cycles (−)
Nd = number of days (−)
P = nominal power of the turbines (kWh)
p = parameter vector (−)

p.e. = population-equivalent

Q = flowrate
(

m3.day−1
)

SI = soluble inert COD concentration
(

mg.L−1
)

SND = soluble organic nitrogen concentration
(

mg.L−1
)

SNH = ammonium concentration
(

mg.L−1
)

SNO = nitrate and nitrite nitrogen concentration
(

mg.L−1
)

SO = dissolved oxygen concentration
(

mg.L−1
)

SsatO = saturated dissolved oxygen concentration
(

mg.L−1
)

SS = readily biodegradable COD concentration
(

mg.L−1
)

SS = suspended solids
(

mg.L−1
)

TN = total nitrogen
(

mg.L−1
)

∆tj = aeration/non-aeration time (s)
toffmin = minimum length of air-off periods (s)
toffmax = maximum length of air-off periods (s)
tonmin = minimum length of air-on periods (s)
tonmax = maximum length of air-on periods (s)
V rb = bioreactor volume

(

m3
)

XB,H = heterotrophic biomass concentration
(

mg.L−1
)

XB,A = autotrophic biomass concentration
(

mg.L−1
)

XI = particulate inert COD concentration
(

mg.L−1
)

XND = particulate organic nitrogen concentration
(

mg.L−1
)

XS = slowly biodegradable COD concentration
(

mg.L−1
)

u = control vector (−)
x = state vector (−)
y = vector of optimised variables (−)

Greek letters
λ = vector of adjoint variables (−)

τCOD = influent COD concentration variation (−)
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τQ = influent flowrate variation (−)

Subscripts and superscripts
in = influent

max = maximum value
rs = recycled sludge
w = excess sludge

= mean value
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Chapter 2

Wastewater Treatment Plant

Model

At first, we describe the original model used at the start of the work (Chachuat et al., 2001). The
original model can be characterised as a hybrid discrete/continuous dynamic system. As such
systems are known to be difficult to optimise, the model has been modified so that it is described
as a standard continuous-time process characterised by a set of ordinary differential equations.

2.1 Process

A real small-size treatment facility is considered (15, 000 p.e.). The process consists of a unique aer-
ation tank (V rb = 2, 050m3) equipped with mechanical surface aerators (turbines) which provide
oxygen (P = 30 kW, kLa = 4.5 h−1) and mix the incoming wastewater with biomass (Fig. 2.1).
The settler is a cylindrical tank where the solids are either recirculated to the aeration tank
(Qrs = 7, 600m3/day) or extracted from the system (Qw = 75m3/day).
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Figure 2.1: Typical small-size activated sludge treatment plant.

The influent average flow
(

Qin
)

is about 3, 050m3/day and average organic
(

CODin
)

and

nitrogen
(

TN in
)

loads are 343mg/L and 33mg/L, respectively (after primary treatment). The

daily variations of dry weather conditions are based on measured data from the plant. It is
accounted for by defining weighting functions for both influent flowrate and organic load variations,
τQ (t) and τCOD (t), (Fig. 2.2):
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• influent flowrate variation:

Qin (t) = τQ (t) Qin (2.1)

where τQ (t) =
3
∑

k=1

[ak cos (2kπt) + bk sin (2kπt)]

with







a1 = −0.32 ; b1 = −0.18
a2 = 0.23 ; b2 = −0.01
a3 = −0.06 ; b3 = −0.01

• organic load variation:

CODin (t) = τCOD (t) CODin , ∀t (2.2)

where τCOD (t) =

3
∑

k=1

[ck cos (2kπt) + dk sin (2kπt)]

with







c1 = 0.24 ; d1 = −0.20
c2 = −0.09 ; d2 = 0.07
c3 = 0.04 ; d3 = −0.02

• total nitrogen load variation: since the concentration of total nitrogen in the influent exhibits
small variations, it is assumed constant. Thus:

TN in (t) = TN in , ∀t
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Figure 2.2: Influent flowrate and organic load variations.

The average wastewater composition is shown in Table 2.1. The fractions f are related to
the state variables presented in Table 2.2 and defined as the ratio between the corresponding
concentration and CODin or TN in.

2.2 Original Model

The application of dynamic optimisation methods requires the knowledge of a sufficiently accurate
mathematical model. Among both scientists and practitioners a reasonable consensus exists upon
the statement that the Activated Sludge Model No.1 (ASM 1) by Henze et al. (1987) is the most
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Table 2.1: Average inlet composition

CODin fractions TN in fractions

fSI 5% fSNH 66%

fSS 35% fSNO 0%

fXI 10% fSND 2%

fXS 35% fXND 32%

fXBH 15%

fXBA 0%

popular mathematical description of the biochemical processes in the reactors for N-removal. Two
restrictions are however brought to the original ASM 1 model: (i) the state variable describing
total alkalinity is not included, and (ii) inert particulate material from influent and from biomass
decay are combined into a single variable (XI) since they are of minor interest. The resulting
biodegradation model consists of 11 state variables and 20 parameters, respectively described in
Table 2.2 and Table 2.3. The kinetic and stoichiometric parameter values considered are those
defined for the simulation benchmark (Alex et al., 1999). They can be found, for instance, on the
European COST action 624 website (http://www.ensic.u-nancy.fr/COSTWWTP). In addition, the
limitations induced on the heterotrophic biomass growth process by low concentration of ammonia
in the reactor are taken into account by adding the factor SNH

KNH,H+SNH
in the corresponding kinetic

rate equation (2.4). This modification requires an additional stoichiometric parameter KNH,H , its
value is set to 0.05 g.m−3 as suggested by Julien (1997) (Table 2.3).

The degradation rates from the ASM 1 model are incorporated into the mass balance equation
for each component, assuming perfect mixing in the reactor:

dxbri
dt

=
Qinxini +Qrsxrsi −

(

Qin +Qrs
)

xbri
V br

+ ri , i = 1, 2, . . . , 11 (2.3)

where xin, xbr and xrs are 11-dimensional vectors related to the concentration in the influent, in
the reactor and in the recycled sludge respectively ; their components are (SI SS XI XS XB,H

XB,A SNO SNH SND XND SO)
T . The model initial conditions are given in Table 2.4.

r is an 11-dimensional vector formed by the degradation rates of each component. To derive
its form, kinetic rates ρj for degradation process j = 1, . . . , 8 are defined as:

ρ =





































µH
Sbr

S

KS+Sbr
S

Sbr
NH

KNH,H+Sbr
NH

Sbr
O

KO,H+Sbr
O

Xbr
B,H

µH
Sbr

S

KS+Sbr
S

Sbr
NH

KNH,H+Sbr
NH

KO,H

KO,H+Sbr
O

Sbr
NO

KNO+Sbr
NO

ηNOgX
br
B,H

µA
Sbr

NH

KNH,A+Sbr
NH

Sbr
O

KO,A+Sbr
O

Xbr
B,A

bHXbr
B,H

bAX
br
B,A

κhS
br
NDXbr

B,H

Ka
Xbr

S /Xbr
B,H

KX+Xbr
S
/Xbr

B,H

(

Sbr
O

KO,H+Sbr
O

+ ηNO,h
KO,H

KO,H+Sbr
O

Sbr
NO

KNO+Sbr
NO

)

Xbr
B,H

Ka
Xbr

ND/X
br
B,H

KX+Xbr
S
/Xbr

B,H

(

Sbr
O

KO,H+Sbr
O

+ ηNO,h
KO,H

KO,H+Sbr
O

Sbr
NO

KNO+Sbr
NO

)

Xbr
B,H





































(2.4)
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Table 2.2: Model state variables

1. Inert soluble organic matter, SI

[

gCOD.m−3
]

2. Readily biodegradable substrate, SS

[

gCOD.m−3
]

3. Inert particulate organic matter and products, XI

[

gCOD.m−3
]

4. Slowly biodegradable substrate, XS

[

gCOD.m−3
]

5. Active heterotrophic biomass, XB,H

[

gCOD.m−3
]

6. Active autotrophic biomass, XB,A

[

gCOD.m−3
]

7. Nitrate and nitrite nitrogen, SNO

[

gN.m−3
]

8. Ammonium nitrogen, SNH

[

gN.m−3
]

9. Soluble biodegradable organic nitrogen, SND

[

gN.m−3
]

10. Particulate biodegradable organic nitrogen, XND

[

gN.m−3
]

11. Dissolved oxygen, SO

[

gO2.m
−3

]

Table 2.3: Model parameters

Stoichiometric parameters

YH 0.67 Yield for heterotrophic biomass [−]

YA 0.24 Yield for autotrophic biomass [−]

frXI 0.08 Fraction of biomass leading to particulate products [−]

iNBM 0.08 Mass of biomass per mass of COD in biomass
[

gN.gCOD−1
]

iNXI 0.06 Mass of biomass per mass of COD in products from biomass decay
[

gN.gCOD−1
]

Kinetic parameters

µH 4.0 Maximum specific growth rate for heterotrophic biomass
[

day−1
]

bH 0.3 Decay rate coefficient for heterotrophic biomass
[

day−1
]

KS 10.0 Half-saturation coefficient for heterotrophic biomass
[

gCOD.m−3
]

KNH,H 0.05 Ammonia half-saturation coefficient for heterotrophic biomass
[

gN.m−3
]

KO,H 0.2 Oxygen half-saturation coefficient for heterotrophic biomass
[

gO2.m
−3

]

KNO 0.5 Nitrate half-saturation coefficient for denitrifying heterotrophic biomass
[

gN.m−3
]

µA 0.5 Maximum specific growth rate for autotrophic biomass
[

day−1
]

bA 0.05 Decay rate coefficient for autotrophic biomass
[

day−1
]

KNH,A 1.0 Ammonia half-saturation coefficient for autotrophic biomass
[

gN.m−3
]

KO,A 0.4 Oxygen half-saturation coefficient for autotrophic biomass
[

gO2.m
−3

]

ηNOg 0.8 Correction factor for µH under anoxic conditions [−]

ηNOh 0.8 Correction factor for hydrolysis under anoxic conditions [−]

κh 3.0 Maximum specific hydrolysis rate
[

day−1
]

KX 0.1 Half-saturation coefficient for hydrolysis of slowly biodegradable substrate [−]

κa 0.05 Ammonification rate
[

m3.gCOD−1.day−1
]

Table 2.4: Initial concentrations in the aeration tank

SI SS XI XS XB,H XB,A SNO SNH SND XND SO

Conc. (mg/L) 17.98 2.27 2120.15 79.55 2238.65 115.18 0.02 9.70 0.14 6.29 0.00
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The apparent reaction rates ri for components i = 1, . . . , 11 are then given by:

r =







































0
− 1
YH

(ρ1 + ρ2) + ρ7
frXI (ρ4 + ρ5)

(1− frXI) (ρ4 + ρ5)− ρ7
ρ1 + ρ2 − ρ4

ρ3 − ρ5
− 1−YH

2.86YH
ρ2 +

1
YA

ρ3

−iNBM (ρ1 + ρ2)−
(

iNBM + 1
YA

)

ρ3 + ρ6

−ρ6 + ρ8
(iNBM − frXI iNXI) (ρ4 + ρ5)− ρ8

− 1−YH

YH
ρ1 −

4.57−YA

YA
ρ3







































(2.5)

The separation of liquid and solid phases which takes place in the settler is assumed to be
perfect: (i) the sum of the two outflows (outlet and recycled sludge flowrates) equals the settler
influent flowrate and (ii) the effluent is exclusively constituted by soluble components, i.e.

• Effluent concentration:

Seffi = Sbri (2.6)

Xeff
i = 0 (2.7)

• Recycled sludge concentration:

Srsi = Sbri (2.8)

Xrs
i =

Qin +Qrs

Qrs +Qw
Xbr
i (2.9)

By incorporating the rates in the mass balance equation for each component and assuming
that the biological reactor is perfectly stirred, the model of the system can be stated as:

ẋ = f (1) (x) (aeration periods) (2.10)

ẋ = f (2) (x) (non-aeration periods) (2.11)

where f (1) and f (2) are right hand sides of the differential equations given by:

• For soluble components (i = 1, 2, 7, 8, 9):

f
(1)
i (x) = f

(2)
i (x) =

Qin

V br

(

xini − xbri
)

+ ri (2.12)

• For particulate components (i = 3, 4, 5, 6, 10):

f
(1)
i (x) = f

(2)
i (x) =

1

V br

[

Qin
(

xini − xbri
)

+Qrs Qin −Qw

Qrs +Qw
xbri

]

+ ri (2.13)

• For dissolved oxygen concentration (i = 11):

f
(1)
11 (x) =

Qin

V br

(

xin11 − xbr11
)

+ r11 +AO (2.14)

f
(2)
11 (x) =

Qin

V br

(

xin11 − xbr11
)

+ r11 (2.15)
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As we can see, the mass balance equation related to the concentration of dissolved oxygen may
contain an additional term AO which describes the oxygen transfer from the turbines:

AO = kLa
(

SsatO − SO
)

(2.16)

where kLa is the oxygen transfer coefficient and SsatO is the dissolved oxygen saturation concen-
tration (SsatO = 10mg/L). Hence, the process is described by two models depending on whether
the aeration system is on or off. Such systems are known as hybrid discrete/continuous dynamic
systems (Barton and Pantelides, 1994).

2.3 Modified Model

The original model is described by two sets of differential equations (2.10), (2.11) that are switched
depending on whether the aeration is on or off. Such a model is not directly suitable for a general
purpose simulation or dynamic optimisation packages and it is necessary to implement a specialised
code that is able to handle this situation.

In order to apply standard simulation or optimisation packages, it was necessary to modify
the original model. Although that seems to be difficult, in fact, only a minor modifications had
to be done. It can be observed, that the first ten differential equations are the same and only the
equation (2.14) that describes the mass balance related to the concentration of dissolved oxygen
is different. This suggest the introduction of the following modified equation

f11 (x) =
Qin

V br

(

xin11 − xbr11
)

+R11 +AOu1 (2.17)

where a new input variable u1 has been introduced to the model. This variable is piece-wise
constant and has values 0 and 1.

Therefore, the modified model can be written as

ẋ = f (x, u1) (2.18)
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Chapter 3

Control Problem Definition

Organic and nitrogen removal is achieved by switching the turbines on and off, resulting in al-
ternated aerobic-anoxic conditions in the aeration basin. Hence, the process can be seen as a
succession of cycles where each cycle consists of an aeration period followed by a non-aeration
period, i.e. the period between two consecutive starts of the turbines. Each cycle is then com-
pletely determined by means of two parameters - time of aeration and time of non-aeration. Thus,
for a specified number Nc of cycles, the total number of parameters involved in optimisation is
2 × Nc and these are denoted by ∆tj . We will assume that at the beginning, the first operation
will be aeration, therefore the odd times ∆tj will correspond to aeration and the even times to
non-aeration.

3.1 Performance index

The objective of this study is to determine the aeration strategy that minimizes the operating
costs of the process. The energy induced by the aeration process represents a significant part
(60–80%) of the operating costs of the wastewater treatment plant. Therefore, the optimisation
of the aeration process can result in significant costs savings. Other costs such as those associated
with pumping are neglected.

The energy E which is dissipated by the aeration system is defined as:

E =

∫ tf

t0

P (t) dt (3.1)

where P denotes the power consumption. Here, oxygen is provided in the reactor by means
of surface turbines with fixed rotating speed. For typical values of the sludge concentration in
the reactor (e.g. between 1 g/L and 5 g/L), the flow is shown to be turbulent and the power
consumption is therefore independent on the sludge concentration:

P = Np ρN
3 d5 (3.2)

where Np is the power number (Np = Cte), ρ the liquid density, N the aerator rotation speed and
d the aerator diameter.

It is noteworthy that extra-power consumption induced by the starting process of the turbines
is not accounted for in this work. Therefore, the energy consumption is directly proportional to
the aeration time and for a given number Nc of cycles, one can express the energy consumption
as:

E = P

Nc
∑

j=1

∆t2j−1 (3.3)
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The performance index J0 is here defined as the total aeration period divided by the time horizon:

J0 =

∑Nc

j=1∆t2j−1
∑2Nc

j=1∆tj
(3.4)

J0 is a dimensionless variable and can be seen as the aeration rate over the optimisation horizon:
the smaller the aeration rate, the larger the reduction of energy consumption.

3.2 Constraints

Two different sets of constraints are considered in order (i) to satisfy the requirements imposed
on the residual concentrations in the effluent, and (ii) to ensure the feasibility of the computed
aeration profiles.

3.2.1 Effluent requirements

Stricter regulations have been imposed during the last decade by the European Union on the
effluent of wastewater treatment plants. Agglomeration effluents with a population-equivalent
greater than 2, 000 should respect a minimum of secondary treatment (biological treatment with
a secondary settler). The standards in terms of COD, BOD5 and SS (suspended solids) are given
by:

CODmax = 125mg/L (3.5)

BOD5max = 25mg/L (3.6)

SSmax = 35mg/L (3.7)

The limit values for nitrogen are 15 mg/L (measured as N) for smaller agglomerations. However,
it is worth noticing that an objective of 10 mg/L is often aimed at making the plant operation
more flexible:

TNmax = 10mg/L (3.8)

3.2.2 Operating constraints

Operating constraints are imposed along with the aforementioned constraints on maximum residual
concentrations. The objective of these additional constraints is (i) to prevent the turbines from
damaging and (ii) to include aspects which are not described by the model.

Two operating constraints deal with minimum air-on (tonmin) and air-off (toffmin) cycle time. These
lower limits are defined to avoid too frequent cycling of the turbines. Moreover, the minimum air-
on time must be long enough to re-aerate most of the activated sludge after anoxic periods and
to ensure that biomass and substrate are conveniently mixed in the aeration tank. In this work,
both air-on and air-off times are set to 15 minutes.

A maximum air-on time (tonmax) is also defined to prevent the propellers from early wear or
from damaging. The upper limit is set to 120 minutes. At last, it is worth noticing that too long
non-stirring and non-aeration periods can induce floc sedimentation in the aeration tank as well
as anaerobic conditions, hence modifying the degradation performances. In addition, the CSTR
assumption may be no longer valid for too long non-stirring periods. Therefore, a maximum air-off
(toffmax) time of 120 minutes is considered.

3.3 Optimisation Problem

Rigorously speaking, although the model has been modified for not to be hybrid discrete/continuous,
the computation of aeration and non-aeration sequences which minimize the energy consumption
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is still stated as a mixed-integer dynamic optimisation (MIDO) problem since the optimal number
of cycles Nc must be determined as well as the times ∆tj . However, (non-convex) MIDO problems
are known to be difficult to solve (Allgor and Barton, 1997) and are currently under investigation.
In this study, it has been chosen to keep the number of cycles constant in order to deal with a
more regular optimisation problem. The computation of optimal aeration strategies for a varying
number of cycles will be the topic for further research.

The dynamic optimisation problem on a given time horizon tf can be stated as:

min∆t1,...,∆t2Nc
J0 =

∑Nc
j=1 ∆t2j−1

∑2Nc
j=1 ∆tj

subject to : ẋ = f (x, u1)
0 ≤ TNmax −

[

SbrNO (t) + SbrNH (t) + SbrND (t)
]

, ∀t
0 ≤ CODmax −

[

SbrI (t) + SbrS (t)
]

, ∀t
0 ≤ BOD5max − 0.25

[

SbrI (t) + SbrS (t)
]

, ∀t
tonmax ≥ ∆t2j−1 ≥ tonmin , j = 1, Nc

toffmax ≥ ∆t2j ≥ toffmin , j = 1, Nc

tf =
∑2Nc

j=1∆tj

(3.9)

Note that the limitation on the residual concentration of suspended solids is not included in
the optimisation problem, since dynamic model (2.18) does not deal with particulate material in
the effluent (the settler is assumed to work perfectly). The three remaining effluent requirements
on COD, BOD5 and TN are inequality path constraints that can be written in a general form as:

N (x)−Nmax ≤ 0 (3.10)

To solve the dynamic optimisation problem, these constraints are converted into integral path
constraints defined as :

J =

∫ tf

t0

F (x)dt =

∫ tf

t0

max [N (x)−Nmax ; 0]
2
dt (3.11)
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Chapter 4

Description of the Optimisation

Method

4.1 System and Cost Description

Consider an ordinary differential system (ODE) system described by the following equations

ẋ = f(t,x,u,p) (4.1)

where t denotes time, x∈ Rnx
is the vector of differential variables, u∈ Rnu

is the vector of
controls, and p∈ Rnp

is the vector of parameters. The vector valued function f∈ Rnx
describes

right hand sides of differential equations.
Consider now the criterion to be minimised and constraints of the form

J0 = G0(tj ,x(tf ),p) +

∫ tf

0

F0(t,x,u,p)dt (4.2)

Ji = Gi(tj ,x(tf ),p) +

∫ tf

0

Fi(t,x,u,p)dt (4.3)

where the constraints are for i = 1, . . . ,m, (m is the number of constraints). The commutation
times (times when the piece-wise control changes) are denoted by tj , j = 1, . . . , P

As it will be shown below, this formulation is general enough for the purposes needed.

4.2 Optimised Variables

The optimised variables y are parameters p, piece-wise constant parametrisation of control

u(t) = uj , tj−1 ≤ t < tj (4.4)

and the time increments ∆tj = tj − tj−1.
Hence the vector y∈ Rq of optimised variables is given as

yT = (∆t1, . . . ,∆tP ,u
T
1 , . . . ,u

T
P ,p

T ). (4.5)

where P is the number of piece-wise constant control segments.
Although the piece-wise control approximation seems to be rather restrictive, actually any other

control parametrisation can be described by its means - for example piece-wise linear control given
as

u(t) = a0 + a1t (4.6)

can be seen as a piece-wise constant strategy with controls a0, a1.
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4.3 Static Optimisation Problem

As the control trajectory is considered to be piece-wise constant, the original problem of dynamic
optimisation has been converted into static optimisation – non-linear programming.

We then utilise static non-linear optimisation solver (NLP) of the form:

min
y

g0(y) subject to:

gi(y) = 0 i = 1 . . .me

gi(y) ≥ 0 i = me + 1 . . .mi

(4.7)

In addition to the cost function and constraints, their gradients with respect to optimised variables
y must be given. Their calculation can be based on several methods. We have implemented two
methods: adjoint approach based on optimality conditions, and finite differences.

4.4 Gradient Derivation

When the dynamic optimisation problem is to be solved, the nonlinear programming (NLP) solver
needs to know gradients of the cost (and the constraints) with respect to the vector y of the
optimised variables.

The equation (4.1) is a constraint to the cost function Ji and is adjoined to it by a vector of
non-determined adjoint variables λi(t)∈ Rnx

, thus

Ji = Gi +

∫ tf

0

(Fi + λTi (f − ẋ))dt (4.8)

For any Ji we can form a Hamiltonian Hi defined as

Hi(t,x,u,p,λ) = Fi + λTi f (4.9)

Substituting for Fi in (4.2) yields for Ji

Ji = Gi +

∫ tf

0

(Hi − λTi ẋ)dt (4.10)

In order to derive the necessary optimality conditions, variation of the cost is to be found.
Taking a variation of the cost (see Bryson and Ho (1975)) and using integration by parts gives

dJi =
∂Gi

∂xT (tf )
dx(tf ) +

∂Gi

∂pT
dp+

P
∑

j=1

∂Gi

∂tj
dtj

+
P
∑

j=1

[

Hi − λTi ẋ
]

t=t−j
dtj −

[

Hi − λTi ẋ
]

t=t+j−1

dtj−1

+
P
∑

j=1

[

−λT δx
]t−j

t+j−1

+
P
∑

j=1

∫ t−j

t+j−1

[(

λ̇Ti +
∂Hi

∂xT

)

δx+
∂Hi

∂uT
δu

]

dt

+

∫ tf

0

[

∂Hi

∂pT
δp

]

dt (4.11)

where t−j signifies the time just before t = tj and t+j is the time just after t = tj .
Eliminating δx(tj) using the relations

dx(tj) = δx(t±j ) + ẋ(t±j )dtj (4.12)
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we get

dJi =

[

∂Gi

∂xT (tf )
− λT (tf )

]

dx(tf ) +
∂Gi

∂pT
dp

+

P
∑

j=1

[

∂Gi

∂tj
+Hj(t

−
j )−Hj+1(t

+
j )

]

dtj

+

P−1
∑

j=1

[

λT (t+j )− λT (t−j )
]

dx(tj)

+
P
∑

j=1

∫ t−j

t+j−1

[(

λ̇Ti +
∂Hi

∂xT

)

δx+
∂Hi

∂uT
δu

]

dt

+

∫ tf

0

[

∂Hi

∂pT
δp

]

dt (4.13)

where is to be noted that HP+1 = H(t+f ) = 0.
In order to simplify the expressions, we choose the vector λ(t) such that

λ̇Ti = −
∂Hi

∂xT
(4.14)

λT (tf ) =
∂Gi

∂xT (tf )
(4.15)

λT (t+j ) = λT (t−j ), j = 1, . . . , P − 1 (4.16)

The variation of Ji can finally be expressed as

dJi =

P
∑

j=1

[

∂Gi

∂tj
+Hj(t

−
j )−Hj+1(t

+
j )

]

dtj

+

[

∂Gi

∂pT
+

∫ tf

0

∂Hi

∂pT
dt

]

δp

+

P
∑

j=1

[

∫ t−j

t+j−1

∂Hi

∂uT
dt

]

δu (4.17)

The conditions of optimality follow directly from the last equation. As it is required, that the
variation of the cost Ji should be zero at the optimum, all terms in brackets have to be zero.

4.4.1 Procedure

Assume that functions Gi, Fi and their partial derivatives with respect to tj ,x,u,p are specified.
Also needed is the function f and its derivatives with respect to x,u,p.

The actual algorithm can briefly be given as follows :

1. Integrate the system (4.1) and integral terms Fi together from t = 0 to t = tf ,

2. For i = 0, . . . ,m repeat

(a) Initialise adjoint variables λi(tf ) as

λ(tf ) =
∂Gi

∂xT (tf )
(4.18)

(b) Initialise the intermediate variables Ju, Jp as zero
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(c) Integrate backwards from t = tf to t = 0 the adjoint system and intermediate variables

λ̇Ti = −
∂Hi

∂xT
(4.19)

J̇Tu =
∂Hi

∂uT
(4.20)

J̇Tp =
∂Hi

∂pT
(4.21)

(d) Calculate the gradients of Ji with respect to times tj , control u and parameters p

∂Ji
∂tj

=
∂Gi

∂tj
+Hj(t

−
j )−Hj+1(t

+
j ) (4.22)

∂Ji
∂p

=
∂Gi

∂pT
+ Jp(0) (4.23)

∂Ji
∂uj

= Ju(tj−1)− Ju(tj) (4.24)

In this manner, the values of Ji are obtained in the step 1 and the values of gradients in the
step 2d. This is all what is needed as input to non-linear programming routines – in our case
NLPQL Schittkowski (1985).

Notes

Gradients with respect to times

The expressions (4.22) for the calculation of the gradient of the cost with respect to time did not
take into account that the time increments rather than times are optimised. The relations between
times and their increments are given as

t1 = ∆t1
t2 = ∆t1 +∆t2

...

tP =
∑P

j=1∆tj

(4.25)

As the following holds for the derivatives

∂Ji
∂∆tj

=

P
∑

k=1

∂Ji
∂tk

∂tk
∂∆tj

(4.26)

we finally get the desired expressions

∂Ji
∂∆tj

=
P
∑

k=j

∂Ji
∂tk

(4.27)

Integration of adjoint equations

When the adjoint equations are integrated backwards in time, the knowledge of states x(t) is
needed. There are several ways to supply this information. For example, the state equations
can be integrated together with adjoint equations backwards. Although this is certainly a correct
approach, there may be numerical problems as the backward integration of states can be unstable.
In Rosen and Luus (1991), the states are stored in equidistant intervals and integration of both
states and adjoint equations is corrected at the begin of each interval. We have adopted another
approach : stored the state vector in every integration step in forward pass and interpolated states
in backward pass. The drawback of this approach is large memory requirement. It can be modified
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to store only certain number of integration steps. Several types of interpolation have been tested,
the best results have been obtained with the approximations having continuous first derivatives.
Although the time needed for calculation of such approximations is longer, the adjoint equations
are easier to integrate and the overall time of gradient calculations has been greatly reduced.

It is always recommended to implement at least two methods of gradients calculation. In this
manner, a user can cross-check if the gradients are correct. Also, if there is a problem in NLP
algorithm, the gradient method can be changed.

Therefore, we have also implemented the method of finite differences: The system (4.1) is
integrated q times and at each time one yi is slightly perturbed. After the integrations, the
gradients are given as

∇yj
gi =

gi(y1, . . . ,∆yj , . . . , yq)− gi(y)

∆yj
, i = 0, . . . ,me +mi (4.28)

4.5 Implementation

The above described algorithm of dynamic optimisation has been implemented in a rather general
form in programming language FORTRAN. Its short user manual can be found in the Appendix A.
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Chapter 5

Simulation Results

To find the optimal aeration profiles over a period of one day, the number of cycles per day Nc has
to be specified. Although it may be treated as a variable of optimisation, the resulting problem is
not to be solved easily, as it contains integer variables. Therefore, we have fixed Nc and tried to
find in several optimisation runs, which value of Nc gives the smallest aeration rate. This optimum
has been found at Nc = 29 (see also Chachuat et al. (2001)).

The solution statistics shown in the Table 5.1 reports IVP precision, which is the integration
tolerance. NLP precision was used for the NLP solver. The number of iterations is a measure
how difficult the problem is to solve, as about 90% of the computational time is spent for the
integration. Several tolerance levels are given and the initial guess at the tighter tolerances was the
final solution in the previous line. This is called the sequenced initial guess method. The rationale
behind is that at the looser tolerances, the integration of the system and adjoint equations is much
faster as at the tighter tolerances. The start of the optimisation is far away from the optimum
and thus the precision of gradients is not so crucial. The required time for one iteration varies
between 3 seconds with the loosest tolerances to several minutes with the tightest tolerances.

Iterations IVP precision NLP precision Minimum
484 10−7 10−7 32.200436
323 10−8 10−8 31.922180
401 10−9 10−9 31.388008
1019 10−10 10−10 31.145038
402 10−11 10−11 31.137528

Table 5.1: Summary of the results for 29 cycles per day

We can see from Table 5.1 that an approximate minimum can be found very quickly with
loose tolerances. However, to find the neighbourhood of the true optimum, several thousands of
iterations have to be performed. The results at the tightest precisions are shown in Fig. 5.1 where
the nitrogen concentration during the whole day is plotted as well as the corresponding state of the
turbines. Although three effluent constraints have been specified in the problem formulation, only
the nitrogen concentration is plotted, as the others were satisfactorily satisfied. The trajectory of
aeration rates through the day is shown in Fig. 5.2.

These results give the minimum possible aeration rates for the given plant and provide several
outcomes. The aeration rate can be compared with the actually used rates and helps to determine
whether there is a room for an improvement over the existing aeration strategies and whether it
is reasonable to make investments. Moreover, the aeration rates per day can serve as setpoint
trajectories at the existing plant.

The drawback of the previous solution is the large amount of the computational time required
to find the solution. The further aim of this study is to determine, whether it is possible to simplify
the original problem and to obtain the comparable results with much less computations.
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Figure 5.1: Concentration of the nitrogen during the day and the corresponding state of the
turbines for 29 cycles per day

0 2 4 6 8 10 12 14 16 18 20 22 24
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7
Aeration rates for 29 cycles

Cycle index

A
er

at
io

n 
ra

te
 [−

]

Figure 5.2: Optimal aeration rates for 29 cycles per day
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Large number of iterations can by attributed to the number of variables that are to be opti-
mised. When this number is reduced, the optimum can be found more rapidly.

Therefore, we will make the following modifications: the number of cycles per day will be re-
duced and it will be assumed that the cycles have the same time durations. The second assumption
introduces the following equality constraints into the problem (3.9)

∆t2j−1 +∆t2j =
tf
Nc

, j = 1, . . . , Nc (5.1)

Two optimisation problems with 12 and 15 cycles per day have been treated. The results are
shown in Figures 5.3, 5.4 for 12 cycles and in Figures 5.5, 5.6 for 15 cycles. Optimal aeration rate
of 31.75 has been achieved after 209 iterations with 12 cycles and the optimum rate of 31.63 after
190 iterations with 15 cycles and the same initial conditions and precisions.

As we can see from the graphs, the optimum aeration rate for 12 cycles is not very similar to
the optimum with 29 cycles. On the other hand, the 15 cycles per day strategy resembles better
the 29 cycles strategy and can be thought as a good approximation of the optimum.
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Figure 5.3: Concentration of the nitrogen during the day and the corresponding state of the
turbines for 12 equal cycles per day
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Figure 5.4: Optimal aeration rates for 12 equal cycles per day
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Figure 5.5: Concentration of the nitrogen during the day and the corresponding state of the
turbines for 15 equal cycles per day
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Figure 5.6: Optimal aeration rates for 15 equal cycles per day
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Chapter 6

Conclusions

This report dealt with the determination of the optimal aeration strategies for small-size activated
sludge plants and with the implementation of the dynamic optimisation.

In the first part, the importance of the problem was stated – as the new EU directives for the
wastewater quality are specified, many existing wastewater plants have to be redesigned or their
aeration strategies changed.

The approach to the solution that was undertaken here consisted in modelling of the plant and
using the results from optimal control theory to give answers to some possible questions concerning
reduction of the operational costs as well as specification of the optimal aeration profiles.

The implemented package DYNO enables to optimise a large class of processes described by
ordinary differential equations. With the aid of this package, we are in position to solve the
problems dealing with dynamic properties of the wastewater plants.
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l’azote des eaux résiduaires urbaines. PhD thesis, Institut National Polytechnique de Toulouse,
1997.

O. Rosen and R. Luus. Evaluation of gradients for piecewise constant optimal control. Computers
chem. Engng., 15(4):273–281, 1991.

K. Schittkowski. NLPQL : A FORTRAN subroutine solving constrained nonlinear programming
problems. Annals of Operations Research, 5:485–500, 1985.

25



Appendix A

DYNO - A User Manual

This chapter describes features implemented in the dynamic optimisation package DYNO. In gen-
eral, the package finds optimal control trajectory with variable time segments and with unknown
parameters given the description of the process, the cost to be minimised, subject to equality and
inequality constraints.

A.1 Required Files

The minimum set of files/subroutines required is follows:

dyno.f – dynamic optimisation,

nlpql.f – NLP solver,

vodedo.f – modified ODE solver dvode.f. Modifications include additional parameters passed
to all relevant subroutines. The additional parameters are rwmifi, iwmifi and serve for
communication between dvode.f and dyno.f,

main.f – main program,

process.f – definition of the optimised process,

cost.f – definition of the cost and constraints.

Probably the best way to explain the implementation is by the means of a simple example.

A.2 Batch Reactor Optimisation

Consider a simple batch reactor with reactions A → B → C and problem of its dynamic op-
timisation as described in Crescitelli and Nicoletti (1973). The parameters of the reactor are
k10 = 0.535e11, k20 = 0.461e18, e1 = 18000, e2 = 30000, r = 2.0, final time tf = 8.0, β1 = 0.53,
β2 = 0.43, α = e2/e1, c = k20/k

α
10. For more detailed description of the parameters see Crescitelli

and Nicoletti (1973).
The differential equations describing the process are as follows

ẋ1 = f1 = −ux1 (A.1)

ẋ2 = f2 = ux1 − cuαx2 (A.2)

with the initial state

x1(0) = β1, x2(0) = β2 (A.3)
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The control variable u is related to the reactor temperature T via the relation

T = −
e1

r log u
k10

(A.4)

The objective of the optimisation is to maximise the yield of product B at time tf : x2(tf ) sub-
ject to piece-wise constant control. In the original article, 3 piece-wise constant control segments
are considered, with segment lenghts being also optimised variables. We will assume P segments.
The package DYNO assumes minimisation of some cost, therefore

J0 = −x2(tf ) (A.5)

subject to the constraint imposed on the final time

−tf +

P
∑

j=1

∆tj = 0 (A.6)

The information needed by DYNO consists of all what has been described above as well as various
partial derivatives:

Process f

• partial derivative of the process f with respect to states x:

∂f

∂xT
=

(

−u 0
u −cuα

)

(A.7)

• partial derivative of the process f with respect to control u:

∂f

∂uT
=

(

−x1
x1 − cx2αu

α−1

)

(A.8)

• partial derivative of the process f with respect to parameters p:

∂f

∂pT
= 0 (A.9)

Cost J0 = G0 +
∫

F0

• partial derivative of the cost with respect to states x(tf ):

∂G0

∂xT
=

(

0
−1

)

,
∂F0
∂xT

= 0 (A.10)

• partial derivative of cost with respect to control u(tf ) (last segment of control):

∂G0

∂uT
= 0,

∂F0
∂uT

= 0 (A.11)

• partial derivative of the cost with respect to parameters p:

∂G0

∂pT
= 0,

∂F0
∂pT

= 0 (A.12)

• partial derivative of the cost with respect to times ∆tj :

∂G0

∂∆tj
= 0,

∂F0
∂∆tj

= 0 (A.13)

Constraint J1 = G1 +
∫

F1 : Only derivatives with respect to times are non-zero, thus

∂G1

∂∆tj
= 1, j = 1, . . . , P (A.14)
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A.2.1 Subroutine process

The information about the optimised process is collected in the subroutine process with the
following syntax:

subroutine process(t, x, nsta, u, ncont, p, npar, sys, nsys, dsys,

& ndsys1, ndsys2, ipar, rpar, flag, iout)

integer nsta, ncont, npar, nsys, ndsys1, ndsys2, ipar, flag, iout

double precision t, x, u, p, sys, dsys, rpar

dimension x(nsta), u(ncont), p(npar),

& sys(nsys), dsys(ndsys1, ndsys2), rpar(*), ipar(*)

The inputs to the routine are actual time t, actual state vector x(nsta), actual control vector
u(ncont), vector of parameters p(npar), user defined parameters rpar(*), ipar(*), output
channel number iout as well as flag that decides what kind of information is to be returned from
the subroutine either in the vector sys(nsys) or in the matrix dsys(ndsys1,ndsys2).

flag can have the following values:

0 – return the vector f of differential equations in sys(nsta),

1 – return the Jacobian matrix ∂f/∂xT in dsys(nsta,nsta),

2 – return the Jacobian matrix ∂f/∂uT in dsys(nsta,ncont),

3 – return the Jacobian matrix ∂f/∂pT in dsys(nsta,npar),

-1 – return the initial state and control at time t = 0 in x(nsta) and u(ncont).

-3 – print information about the process using the values of input arguments

In our particular case the body of this subroutine is as follows:

double precision k10, k20, e1, e2, r, tf, beta1, beta2, c, alpha

k10 = 0.535d11

k20 = 0.461d18

e1 = 18000d0

e2=30000e0

r=2.0d0

tf=8.0d0

beta1 = 0.53d0

beta2 = 0.43d0

alpha = e2/e1

c = k20/(k10**alpha)

if (flag .eq. -1) then

u(1) = 0.0d0

x(1) = beta1

x(2) = beta2

return

end if

if (flag .eq. 0) then

sys(1) = -u(1) * x(1)

sys(2) = u(1) * x(1) - c * (u(1)**alpha) * x(2)

return

end if
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if (flag .eq. 1) then

dsys(1,1) =-u(1)

dsys(2,1) = u(1)

dsys(2,2) = - c * (u(1)**alpha)

return

end if

if (flag .eq. 2) then

dsys(1,1) = -x(1)

dsys(2,1) = x(1) - c * x(2) * alpha * (u(1)**(alpha-1))

return

end if

if (flag .eq. 3) then

return

end if

if (flag .eq. -3) then

write(*,100) t/tf, -e1/(r*dlog(u(1)/k10)),u(1), x(1), x(2)

100 format(f6.3,3X,2f16.6,2X,2f8.4)

return

end if

A.2.2 Subroutine cost

The information about the cost and constraints is collected in the subroutine cost with the
following syntax:

subroutine cost(t, x, nsta, u, ncont, p, npar, ti, ntime, sys,

& nsys, ipar, rpar, flag, xupt, Ncst, Ncste )

integer nsta, ncont, npar, ntime, ipar, flag, Ncst, Ncste, xupt,

& nsys

double precision t, x, u, p, ti, sys, rpar

dimension x(nsta), u(ncont), p(npar), ti(ntime), sys(nsys),

& ipar(*), rpar(*)

The inputs to the routine are actual time t, actual state vector x(nsta), actual control vector
u(ncont), vector of parameters p(npar), vector of optimised times ti(ntime), user defined pa-
rameters rpar(*), ipar(*), number of constraints Ncst, number of equality constraints Ncste
as well as flag and xupt that together decide what kind of information is to be returned from
the subroutine in the vector sys(nsys).

flag can have the following values:

1 – return all non-integral terms G of the cost and constraints together at t = tf in sys(ncst+1),

2 – return all integral terms F of the cost and constraints together at any time in sys(ncst+1),

-10-i – return the non-integral term ∂Gi/∂z
T (i = 0, . . . ,ncst) in sys(*), where z can be x

(xupt=1), u (xupt=2), p (xupt=3), or ∆t (xupt=4),

10+i – return the integral term ∂Fi/∂z
T (i = 0, . . . ,ncst) in sys(*), where z can be x (xupt=1),

u (xupt=2), or p (xupt=3),

In our particular case the body of this subroutine is as follows:
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integer i

if (flag .eq. 1) then

sys(1) = -x(2)

sys(2) = -8.0d0

do i=1, ntime

sys(2) = sys(2) + ti(i)

end do

return

end if

if (flag .eq. 2) then

sys(1) = 0.0d0

sys(2) = 0.0d0

return

end if

if (flag .eq. -10) then

if (xupt .eq. 1) then

sys(2) = -1.0d0

end if

return

end if

if (flag .eq. 10) then

return

end if

if (flag .eq. -11) then

if (xupt .eq. 4) then

do i=1, ntime

sys(i) = 1.0d0

end do

end if

return

end if

if (flag .eq. 11) then

return

end if

A.2.3 Subroutine dyno

After having set up the process and cost/constraints, it suffices to call the main routine dyno. The
syntax of the call is as follows:

call dyno(nsta, ncont, npar, ntime, ncst, ncste, ul, u, uu,

& pl, p, pu, tl, t, tu, ista, rwork, nrwork, iwork, niwork,

& lwork, nlwork, rpar, ipar, ifail)

where

nsta, ncont, npar, ntime – dimension of states, control, parameters, times,

ncst, ncste – total number of constraints and number of equality constraints,
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ul, u, uu – matrices (dimension ncont, ntimes): lower, initial, and upper bound on control
trajectory,

pl, p, pu – vectors (dimension npar): lower, initial, and upper bound on parameters,

tl, t, tu – vectors (dimension ntimes): lower, initial, and upper bound on optimised time
intervals,

ista – integer vector (dimension ncst+1) describing type of a constraint: 0 - does not contain
states, 1 - contains states, but it is not a path constraint, 3 - path constraint,

rwork(nrwork) – double precision work array,

iwork(niwork) – integer work array,

lwork(nlwork) – logical work array,

rpar, ipar – user defined parameters,

ifail – status of the optimisation result.

In addition to this, the first positions of rwork and iwork should contain various switches, preci-
sions, etc.

The length of the work arrays nrwork, niwork, and nlwork can be determined by specifying
some small values and the program will return the correct values.

For our particular case, the main program with 6 time intervals of control is given as

PROGRAM SIM

implicit none

integer nsta, ncont, npar, ntime, ncst

c nsta - dimension of states

c ncont - dimension of control

c npar - dimension of parameters

c ntime - number of time segments

c ncst - number of constraints

parameter (nsta = 2, ncont = 1, npar = 0, ntime = 6, ncst = 1)

integer ncste, ista, nrwork, iwork, niwork, nlwork, ipar, ifail

double precision ul, u, uu, pl, p, pu, tl, t, tu, rwork, rpar

logical lwork

dimension ul(ncont, ntime), u(ncont, ntime), uu(ncont, ntime)

dimension pl(npar), p(npar), pu(npar)

dimension tl(ntime), t(ntime), tu(ntime)

dimension ista(ncst+1)

parameter (niwork=400, nrwork=60000, nlwork = 50)

dimension iwork(niwork), rwork(nrwork), lwork(nlwork)

dimension ipar(10), rpar(50)

integer i

double precision tf

tf=8.0d0

c number of equality constraints

ncste = ncst

c constraints are: without/with states (0/1)

c path constraints (0/2)
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c difficult constraints (0/4)

ista(1) = 1

ista(2) = 0

c rtol for DVODE

rwork(1) = 1d-11

c atol for DVODE

rwork(2) = 1d-15

c acc for NLP

rwork(3) = 1d-13

c minimum rtol for DVODE

rwork(4) = 1d-3

c maxfun ! max number of function call evaluations in NLP/line search

iwork(1) = 250

c maxit ! max number of iterations in NLP

iwork(2) = 300

c iprint ! level of information printed by the subroutine

iwork(3) = 2

c iout ! number of output routine

iwork(4) = 6

c maximum number of time instants related to one

c control/time segment when state is to be saved

iwork(5) = 50

c method of state interpolation

c 0 - none(left one), 1-linear, 2-poly 2rd order with

c cont. derivative at the beginning, 3-poly 3rd order with cont.

c derivative everywhere

iwork(6) = 3

c optimise what: 0/1-ti, 0/2-ui, 0/4-p

c all 1+2+4 = 7

iwork(7) = 3

c gradients via 0 - adjoint equations, 1 - finite differences

iwork(8) = 0

c choice of the optimising strategy

c 0 - standard, 1 - mesh refining, 2 - multirate

iwork(9) = 0

c starting number of time intervals for iwork(9)=1,2

iwork(10) = ntime

c number of master NLP problems for iwork(9)=1,2

iwork(11) = 1

c periodicity

iwork(12) = 1

c initial values of the optimised parameters

c upper, lower bounds

c control and time

do i=1, ntime

u(1,i) = 0.1707

ul(1,i) = 0.0d0

uu(1,i) = 1.00d0

t(i) = tf/ntime

tl(i) = 0.01d0

tu(i) = tf

end do

c parameters p_i
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Figure A.1: Optimal trajectories of the batch reactor

c IFAIL : 0 - normal execution, -1: initial trajectory simulation

c -2: gradients check

ifail =0

call DYNO(nsta, ncont, npar, ntime, ncst, ncste, ul, u, uu,

& pl, p, pu, tl, t, tu, ista, rwork, nrwork, iwork, niwork,

& lwork, nlwork, rpar, ipar, ifail)

END

A.2.4 Results

The program returns the following results

min: -0.67941937D+00

ti: 0.72811700D+00 0.90152518D+00 0.11137054D+01 0.13780938D+01

0.17158681D+01 0.21626905D+01

ui: 0.17417489D+00 0.16100402D+00 0.15001159D+00 0.14076614D+00

0.13295177D+00 0.12633420D+00

and the simulation with recalculated control variable (see eq. (A.4)) produces trajectories shown
in Fig. A.1.
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