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Abstract: In this article a general framework for stable predictive controllers is derived.
The basis for the unification are closed-loop poles. It is shown that many existing
stabilising predictive controllers can be obtained for particular settings. Several kinds
of the quadratic cost function can be minimised. It is shown that for a special
cost function it is possible to construct a predictive controller with the following
features: (i) it produces the same control actions as a given known controller in the
unconstrained case, (ii) it introduces a new degrees of freedom that can be used for
constraints handling.
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1. INTRODUCTION

Generalised Predictive Control (GPC) proposed
by Clarke et al. (1987) has been accepted in
academia and also applied widely in industry. For
safety reasons, stability of the closed-loop has to
be assured.

A suitable way to achieve stability of the receding
horizon minimisation is to invoke the constraint
on terminal states. The first generation of stable
predictive control methods have used this with
finite-time responses (Clarke and Scattolini, 1991;
Mosca and Zhang, 1992; Rossiter and Kouvari-
takis, 1993) where it is required that both the con-
trol and tracking error are finite-time responses.
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To improve feasibility properties, stable infinite-
time responses have been used at first for output
predictions (Rawlings and Muske, 1993), then also
for input predictions (Rossiter et al., 1996; Fikar
and Engell, 1997).

All approaches guarantee stable closed-loop be-
haviour and there are some user parameters that
are used for final tuning for the desired behaviour.
These are for example horizon lengths, penalisa-
tion factors, number of degrees of freedom, etc.
While this may be considered as an advantage, the
result is, that the closed-loop specifications that
may have been given before, are somewhat lost.
The ideal predictive controller should provide the
same behaviour as specified before its implemen-
tation.

The main idea of this paper is to develop a scheme
for “predictification” of an existing controller.
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Fig. 1. 2DoF control configuration with explicit
integral action

Given a controller that generates the closed-loop
with stable poles, the corresponding predictive
controller is developed. If additional degrees of
freedom are introduced, several possible cost func-
tions can be minimised. Among others, it is possi-
ble to construct such a predictive controller that
produces the same control actions as the original
controller. The second aim is to provide a unified
framework for stable predictive control strategies
and to show that several approaches in the litera-
ture can be recast in the proposed scheme.

This approach tries to reduce the gap between
two existing approaches that are able to handle
constraints: anti-windup and predictive strategies.
It is predictive, but the controller may be designed
without the knowledge of constraints.

1.1 Notation

All systems in this contribution are assumed to be
single input single output, linear, time-invariant,
and discrete-time. The systems are described by
means of fractions of polynomials in an indeter-
minate z−1, used in the z-transform and normally
interpreted as delay operator.

For simplicity, the arguments of polynomials are
omitted whenever possible - a polynomial X(z−1)
is denoted by X. We define the adjoint of a poly-
nomial X as X∗(z−1) = X(z). Further, for any
polynomial X, we define 〈X〉 as the coefficient of
z0, i.e. the constant term. Any polynomial X can
be factored asX+X− whereX+ denotes its stable
and X− its totally unstable (anti-stable) part.
The greatest common divisor of two polynomials
X,Y is denoted by (X,Y ).

2. CLOSED-LOOP SYSTEM

Let us consider a discrete-time plant with input-
output representation of the form

Ay = Bu, (1)

where y, u are the process output and manipu-
lated input sequences, respectively. A and B are
polynomials in z−1 that describe the input-output
properties of the plant and (A,B) = 1. It is
assumed that A(0) 6= 0 and B(0) = 0 (all delays
are included in B).

We assume that the reference w is generated via

Fw = G, (2)

where (F,G) = 1. A further assumption is that
(A,F ) are coprime, thus (A,F ) = 1.

The 2DoF controller is another dynamical system
described by the equations

Pũ = Rw −Qy, ũ = Fu (3)

where P,Q,R are controller polynomials that are
coprime and P (0) is nonzero. In addition, an inte-
grator forms a part of the controller to track the
class of references given above. For the purpose of
predictive control, the usual class of references –
step changes will be assumed. Then F = 1− z−1,
G = 1 and the signal ũ = ∆u is a sequence of
control increments.

This description of the closed-loop configuration
is shown in Fig. 1.

Given a stable closed-loop polynomial M , the
minimum degree controller that internally sta-
bilises the closed-loop system is defined uniquely
and is given as follows:

Theorem 1. The minimum degree controller P ,Q,
R is given as a solution of two pairs of Diophantine
equations that minimise the degrees Q,R

AFP +BQ = M,
FS +BR = M.

(4)

PROOF. Kučera (1979). 2

The general controller is uniquely characterised by
the choice of the closed-loop poles. Some choices
of M that are important in time optimal control
are given below:

Theorem 2. Consider step changes in references
and the following closed-loop time optimal con-
trol problems for which BIBO stability is to be
guaranteed:

(1) State dead-beat: Control error is a polyno-
mial of the smallest degree, polynomial con-
trol increments,

(2) Control dead-beat: Control increments are
polynomial of the smallest degree, control
error is a stable sequence,



(3) Control error dead-beat: Control error is a
polynomial of the smallest degree, control
increments are a stable sequence.

The corresponding closed-loop poles and mini-
mum degrees of relevant signals with 2DoF con-
troller are

M1 = 1, deg(e) = deg(B)− 1,

deg(ũ) = deg(A), (5)

M2 =A+, deg(ũ) = deg(A−), (6)

M3 =B+, deg(e) = deg(B−)− 1. (7)

PROOF.

(1) (Kučera, 1979),
(2) (Fikar and Kučera, 2000),
(3) (Fikar and Unbehauen, 1999). 2

The optimal pole locations are important in pre-
dictive control and have close relation to minimum
possible horizons that produce stable closed-loop.
It is well known that the predictive controllers
have the structure of 2DoF controller. IfM = A+,
the minimum control horizon is equal to the num-
ber of unstable system poles. Correspondingly,
the minimum output horizon cannot be smaller
than the number of unstable system zeros which
corresponds to the case M = B+.

3. PREDICTIVE CONTROLLER

Predictive controllers usually operate on the sig-
nals ũ, e = w − y. These are given from (1)–(4)
as

ũ=
ARG

M
, e =

SG

M
. (8)

If the predictive controller is to be equivalent
to the nominal controller it has to generate the
signals ũ, e from its internal signals ū, ē by filtering
through the term 1/M . Moreover, the requirement
of closed-loop stability invoked with the concept of
state terminal constraints requires that the signals
ū, ē are polynomials of finite length. This suggests
the relations

ũ=
ū

M
, deg(ū) = deg(A), (9)

e=
ē

M
, deg(ē) = deg(B)− 1. (10)

Here, the degrees of ū, ē are related to the state
dead-beat controller. However, further reduction
of ū, ē is possible. This can be achieved by decom-
posing the controlled system to stable and anti-
stable parts. Next, state dead-beat is applied to
the unstable part. The result is given in Fig. 2

G1 G2 G3
ũ ū ȳ y- - - -

Fig. 2. System decomposition

with G1 = M/A+, G2 = B−/FA−, G3 = B+/M ,
hence we have the following result:

Theorem 3. Let us define the following signals

ũ=
A+

M
ū, deg(ū) = Nu, (11)

y =
B+

M
ȳ, ē = w̄ − ȳ, deg(ē) = N. (12)

and horizons

Nu = deg(A−), (13)

N = deg(B−)− 1, (14)

m=max(deg(A−) + 1,deg(B−)). (15)

The nominal controller given by the poles M is
equivalent to the predictive controller with no
degrees of freedom given by the set of equality
constraints

ȳt+N+j = w̄t+N , j = 1, . . . ,m (16)

ūt+Nu+j = 0, j = 1, . . . , N −Nu +m, (17)

The internal sequence of control increments ū is
calculated from

G1ū = w̄1 − f̄1, (18)

where

ȳ1 =G1ū + f̄1, (19)

ūT = (ūt, ūt+1, . . . , ūt+Nu−1), (20)

ȳT
1 = (ȳt+N , ȳt+N+1, . . . , ȳt+N+m−1), (21)

f̄T
1 = (f̄t+N , f̄t+N+1, . . . , f̄t+N+m−1), (22)

w̄T
1 = (1, . . . , 1)M(1)/B+(1) (23)

G1 =







gN . . . gN−m+1

...
. . .

...
gN+m−1 . . . gN






. (24)

The actual control increment ũ(t) is calculated
from (11) and applied to the controlled system
in the receding horizon manner.

PROOF. (Fikar and Unbehauen, 1999) 2

3.1 Relation to other stabilising predictive strategies

A comparison of stable predictive control methods
can be performed for the same conditions. One



useful way is to consider all methods without any
degrees of freedom. The incorporation of the cost
function and its minimisation changes only the
properties of such nominal controller.

We have the following results:

Authors G1 G2 G3

(Clarke and
Scattolini, 1991; Mosca
and Zhang, 1992)

1
B

AF
1

(Rossiter and Kouvari-
takis, 1993)

1

AF
1 B

(Rawlings and Muske,
1993)

1
B

FA−

1

A+

(Rossiter et al., 1996)
B+

FA−
1

B−

A+

This approach
M

A+

B−

FA−

B+

M

The proposed controller can be turned into any
other stable predictive controller given in the table
by a suitable choice of the closed-loop poles M
given in the next theorem.

Theorem 4. Consider the scheme in Fig. 2 where

G1 =
G1N

G1D

, G2 =
G2N

G2D

, G3 =
G3N

G3D

. (25)

Assume that (G1N , G3D) = M0, thus

G1N = M0Ḡ1N , G3D = M0Ḡ3D. (26)

Then any predictive controller with no degrees of
freedom and constraints (16), (17) is equivalent to
the pole placement controller with poles

M = M0Ḡ1N Ḡ3D. (27)

The predictive controller is stable if and only if M
is stable.

PROOF. (Fikar and Unbehauen, 1999) 2

4. COST MINIMISATION

The natural way of obtaining the necessary de-
grees of freedom to minimise a cost function and
to handle constraints is an assumption that the
controller can act in more than Nu steps given
by (13).

Let us define the following vectors and matrices

ē= w̄ − ȳ, (28)

ȳT = (ȳt+1, ȳt+2, . . . , ȳt+N−1), (29)

f̄T = (f̄t+1, f̄t+2, . . . , f̄t+N−1), (30)

w̄T = (w̄t+1, w̄t+2, . . . , w̄t+N−1), (31)

G=







g1 . . . 0
...

. . .
...

gN−1 . . . g1






, (32)

with
ȳ = Gū + f̄ . (33)

Theorem 5. Consider the predictive controller de-
scribed in the Theorem 3. Introduce the number of
degrees of freedom n > 0 and define the horizons

N̄u = Nu + n, N̄ = N + n. (34)

Let us minimise the following cost function with
W e > 0 and/or W u > 0

J = ēT W eē + ūT W uū (35)

subject to the equality constraints (16), (17) and
possible inequality constraints

Aū ≥ b. (36)

If the optimisation problem is feasible then the
predictive controller is stabilising for any n.

PROOF. Provided the signals ū, ē are polyno-
mials, the cost function J forms the standard
Lyapunov function for which stability proofs are
available. 2

If n > 0 the future reference signal w(t), . . . , w(t+
n) is assumed to be known in advance. If this is
not the case, one may simply set w(t+ k) = w(t).

For the actual implementation of the controller
consider constrained optimisation problem with
inequality constraints on (ũ, e, . . .). At first, it is
necessary to transform the real signals into the
internal ones. Their relation is given in polynomial
form in (11), (12). This can be rewritten to matrix
notation as

T M,ee = T B+ ē, T M,uũ = T A+ū (37)

where T X is a Toeplitz matrix containing the
coefficients of the polynomial X. The dimensions
are T M,e[N + n+ k ×N + n+ k], T B+ [N + n+
k ×N + n], T M,u[Nu + n+ k ×Nu + n+ k], and
T A+ [Nu + n+ k ×Nu + n].

The resulting quadratic programming problem is
defined as

min
ū

J = −2(w̄ − f̄)T W eGū

+ ūT
(

GT W eG + W u

)

ū

subject to
G1ū = w̄1 − f̄1

Aū ≥ b

(38)



4.1 LQ cost

Let us consider the following cost

J1 =

∞
∑

i=1

e2t+i + λ

∞
∑

i=1

ũ2
t+i−1. (39)

The cost function can be rewritten by substitut-
ing (11), (12) as

J1 = 〈e
∗e〉+ λ〈ũ∗ũ〉

= 〈ē∗
B∗

+B+

M∗M
ē〉+ λ〈ū∗

A∗
+A+

M∗M
ū〉. (40)

The polynomials ē, ū can be transformed into
constant column vectors by

ē(z−1) = (1 z−1 . . . z−(N+n))ē

=P N+n(z
−1)ē, (41)

ū(z−1) =P Nu+n(z
−1)ū. (42)

This gives the standard form of (35)

J1 = ēT 〈
B∗

+B+

M∗M
P ∗

N+nP N+n〉ē

+ ūT 〈λ
A∗

+A+

M∗M
P ∗

Nu+nP Nu+n〉ū. (43)

For the calculation of the weighting matrices con-
sider the following separation into causal and
strictly uncausal terms (consider W e only)

B∗
+B+

M∗M
P ∗

N+nP N+n =
Xe

M
+

Y ∗
e

M∗
, 〈Y ∗

e〉 = 0,

(44)
which can be rewritten as a bilateral Diophantine
equation

M∗Xe +MY ∗
e = B∗

+B+P ∗
N+nP N+n, 〈Y

∗
e〉 = 0.

(45)
Hence, the weight W e (and analogously also for
W u) is given as

W e = 〈Xe〉. (46)

Although the choice of the polynomial M can be
arbitrary, the preferred approach is to calculate it
as closed-loop poles minimising J1. Hence

λ(AF )∗(AF ) +B∗B = M∗M. (47)

4.2 Cost function for nominal controller

Let us now consider the “constant” predictive
controller, e.g. the task is to construct a controller
with n > 0 such that in the unconstrained case its
control actions are those of the nominal controller
with n = 0. To make both controllers compatible,
it is assumed that the future setpoint is constant.

To force the controller with n > 0 to be the same
as with n = 0, the equality constraints ē(t +
N + i + 1) = 0 have to be respected. However,

this must be the property of the unconstrained
optimum rather than strict requirement in the
design. One possibility of the conversion of the
equality constraints to an optimisation problem is

J̄ =

N+n
∑

i=N+1

ē2t+i, ⇒ W e =

(

0N

I

)

. (48)

The weighting matrix is positive definite (W e =
I) and equivalently the corresponding predictive
controller stable only if N = 0. According to The-
orem 3 this applies to minimum phase systems.

To retain positive definiteness also for non-
minimum phase systems consider at first the
“cheap control” ISE cost

J̄ =

∞
∑

i=1

e2(t+ i). (49)

It is well known that its minimisation corresponds
to the closed-loop poles M1 given by the spectral
factorisation equation

B∗B = M∗
1M1. (50)

To counteract their effect, the following signal is
created

ẽ =
B+

M1
ē (51)

and the cost minimised is

J2 =

∞
∑

i=1

ẽ2(t+ i). (52)

Notice that ẽ = ē for minimum phase systems.
The weighting matrix W e is obtained from the
Diophantine equation

B∗
+B+

M∗
1M1

P ∗
N+nP N+n =

Xe

M1
+

Y ∗
e

M∗
1

, 〈Y ∗
e〉 = 0

(53)
and

W e = 〈Xe〉,W u = 0. (54)

5. DISCUSSION

In this section we will show some of the properties
of the proposed algorithm by means of simula-
tions. Control of the following discrete system is
considered

G =
B+B−

A+A−
=

[(1 + 0.25z−1)][z−1(1 + 4z−1)]
[

(1 + 0.2z−1)2
]

(1 + 5z−1)
.

(55)

The simulation example shows the comparison
between known and unknown setpoint trajectory.
The closed-loop poles were set to minimise the LQ
cost with λ = 0.5. Figure 3 shows the results of the
nominal LQ controller with n = 0 and predictive
controller minimising LQ cost J1 with n = 8
and with knowledge about the setpoint change at
t = 10. Compare also the results in Fig. 4 where
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Fig. 3. LQ control with minimisation of J1
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Fig. 4. LQ control with minimisation of J2

the cost minimised was J2. If the future setpoints
are not known, any trajectory for n > 0 is the
same as for n = 0 (solid line). If the future setpoint
trajectory is known, the trajectories for n > 0
differ and are shown with dash-dotted line (n =
1). For n > 1 the trajectories are practically the
same as for n = 8 (dotted line). Here, the effort
of the optimisation is to improve the nominal
LQ controller as if the setpoint trajectory was
unknown. It depends on concrete conditions to
choose the preferred approach.

6. CONCLUSIONS

This article discusses some new results in linear
predictive control. At first, a general framework
for stable predictive controllers was derived and
it was shown that several predictive methods
can be obtained for special choice of closed-loop
poles. This general framework is based on the
problem formulation with no degrees of freedom.
The minimal horizons for stable predictive control
were related to the number of unstable poles and
zeros of the controlled system.

Next, it was discussed how to add degrees of
freedom that may be used in the cost minimisation
and constraint handling. This is implemented in
the standard way by enlarging the number of
available future control increments. As the num-
ber of optimised variables is finite, several possible

cost function formulations were proposed. Here,
we solved infinite LQ cost as well as the cost
that forces the predictive controller to be equal to
nominal pole placement controller in the uncon-
strained case, thus effectively provides a mecha-
nism for transforming an existing controller into
corresponding predictive controller with ability to
handle the constraints. Such mechanism has a
close relationship to anti-windup strategies.
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Fikar, M. and V. Kučera (2000). On minimum
finite length control problem. Int. J. Control
73(2), 152 – 158.
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