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Abstract

This report considers an introduction to predictive control methology and methods.
Basic principles of Model Based Predictive Control (MBPC) are discussed. Some of the
best known approaches are given. Generalised Predictive Control (GPC) is derived in
unconstrained and constrained cases. Some stability results are presented. Last part of
the report deals with tuning of the algorithm and with simulation and real-time examples.
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Figure 1: Principle of MBPC

1 Introduction

Model Based Predictive Control (MBPC) or only Predictive Control is a broad variety of
control methods that comprise certain common ideas:

• a process model that is explicitly used to predicts the process output for a fixed number
of steps into future,

• a known future reference trajectory,

• calculation of a future control sequence minimising a certain objective function (usually
quadratic, that involves future process output errors and control increments),

• receding strategy: at each sampling period only the first control signal of the sequence
calculated is applied to a process controlled.

Among many useful features of MBPC, there is one that has created extensive industrial
interest: the process constraints can easily be incorporated into the method at the design
stage.

MBPC algorithms are reported to be very versatile and robust in process control appli-
cations. They usually outperform PID controllers and are applicable to non-minimum phase,
open-loop unstable, time delay, and multivariable processes.

The principle of MBPC is shown in Fig. 1 and is as follows:

1. The process model is used to predict the future outputs ŷ over some horizon N . The
predictions are calculated based on information up to time t and on the future control
actions that are to be determined.

2. The future control trajectory is calculated as a solution of an optimisation problem
consisting of a cost function and possibly some constraints. The cost function comprises
future output predictions, future reference trajectory, and future control actions.

3. Although the whole future control trajectory was calculated in the previous step, only
its first element u(t) is actually applied to the process. At the next sampling time the
procedure is repeated. This is known as Receding Horizon concept.
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1.1 Some Important References

Begin: Richalet (MAC) [40], Cutler and Ramaker (DMC) [10].

GPC: [6, 7, 47].

Survey papers: [19].

Useful books: [1, 4, 9, 38, 51].

Stable predictive control: CRHPC [8], SIORHC [35], SGPC [20, 24, 25, 43, 44, 45],
YKPC [15, 16, 17].

Kwon et. al.: [27, 29].

Morari et. al.: [5, 28, 55, 56].

Rawlings et. al.: [32, 36, 37, 39, 48].

Zafiriou et. al.: [52, 53, 54].

Tuning: [31, 49, 50].

Others [12, 18, 22, 23, 30, 34].

1.2 Abbreviations

AGPC Adaptive Generalised Predictive Control
ANN Artificial Neural Network
ARE Algebraic Riccati Equation
ARIMAX AutoRegressive Integrated Moving Average eXogenous
ARMA AutoRegressive Moving Average
ARX AutoRegressive eXogenous
CARIMA Controlled AutoRegressive Integrated Moving Average
CRHPC Constrained Receding Horizon Predictive Control
DMC Dynamic Matrix Control
EHAC Extended Horizon Adaptive Control
EPSAC Extended Prediction Self-Adaptive Control
FIR Finite Impulse Response
GMV Generalised Minimum Variance
GPC Generalised Predictive Control
GPCNN Generalised Predictive Control + Neural Networks
LQ Linear Quadratic
MAC Model Algorithmic Control
MBPC Model Based Predictive Control
MIMO Multi Input Multi Output
MV Minimum Variance
QP Quadratic Programming
RLS Recursive Least Squares
SIORHC Stabilising Input/Output Receding Horizon Control
SISO Single Input Single Output
SGPC Stable Generalised Predictive Control
YKPC Youla-Kučera Predictive Control
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2 Ingredients of MBPC

2.1 Models

MBPC enables to plug-in directly any type of the process model. Of course, linear models
are most often used. This is caused by the possibility of an analytic solution for the future
control trajectory in unconstrained case.

The model should capture the process dynamics and to permit theoretical analysis. The
process model is required to calculate predicted future output trajectory. Some of the models
incorporate directly disturbance model, in others it is simply assumed that disturbance is
constant.

2.1.1 Impulse Response

The theoretical impulse sequence is usually truncated for practical reasons. The output is
related to the input by the equation

y(t) =
N
∑

i=1

hiu(t − i) = H(q−1)u(t) (1)

where H(q−1) = h1q
−1 + h2q

−2 + · · · hNq−N and q−1 is the backward shift operator defined
as y(t)q−1 = y(t − 1).

The drawbacks of this model are:

• high value of N needed ≈ 50,

• only stable processes can be represented.

2.1.2 Step Response

The step response model is very similar to the FIR model with the same drawbacks. Again,
truncated step response is used for stable systems

y(t) =
N
∑

i=1

gi∆u(t − i) = G(q−1)(1 − q−1)u(t) (2)

As the step and impulse responses are easily collected, the methods based on them gained
large popularity in the industry. The step model is for example used in DMC.

2.1.3 Transfer Function

This model is used in GPC, EHAC, EPSAC, and others. The output is modelled by the
equation

A(q−1)y(t) = B(q−1)u(t) (3)

The advantage of this representation is that is also valid for unstable models. On the other
side, order of the A,B polynomials is needed.
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2.1.4 State Space

The representation of the state-space model is as follows:

x(t + 1) = Ax(t) + Bu(t) (4)

y(t) = Cx(t) (5)

It advantage is uncomplicated way of dealing with multivariable processes. However, the state
observer is often needed [3].

2.1.5 Others

As it was stated before, any other process model is acceptable. Continuous nonlinear model
in the form of ordinary differential equations are often used. Their drawbacks are large
simulation times. The area of dynamic optimisation usually covers them.

Recently, neural and fuzzy models have gained its popularity. Two approaches have
emerged. The model is either directly used, or it only generates some process characteristics:
step or impulse responses.

2.1.6 Disturbances

The most general disturbance model is an ARMA process given by

n(t) =
C(q−1)

D(q−1)
ξ(t) (6)

with ξ(t) being white noise. Within the MBPC framework, the D = ∆A polynomial includes
the integrator ∆ = 1− q−1 to cover random-walk disturbances. Another pleasing property of
the integrator is set-point tracking (integral action).

The overall model is then called CARIMA (or ARIMAX) and is given as

∆Ay(t) = B∆u(t) + Cξ(t) (7)

2.2 Objective Function

The different MBPC algorithm propose various cost functions that lead to optimal future
control trajectory. All approaches deal with a finite horizon quadratic objective function that
usually contains penalisation of (possibly filtered) future control errors and future control
increments. Thus, a general form that can include all variants may be given as [51]

J =
N2
∑

i=N1

[P ŷ(k + i) − Rw(k + i)]2 + ρ
Nu
∑

i=1

[

Qn

Qd

u(k + i − 1)

]2

(8)

where ŷ(k + i) is the predicted output i steps into the future and based upon information
available at time t, w(k + i) is the reference signal, and u(k + i − 1) is the sequence of future
control actions that is to be determined.

However, this cost function might often be regarded as too complicated. The standard
cost function can be written as

J =
N2
∑

i=N1

[P ŷ(k + i) − w(k + i)]2 + λ
Nu
∑

i=1

[∆u(k + i − 1)]2 (9)
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Here, the sequence of control increments ∆u(k+i) = u(k+i) = u(k+i−1) is to be determined
rather than the sequence of u(k + i). In both cases, implicit constraints on ∆u are placed
between Nu and N2 as

∆u(k + i − 1) = 0, Nu < i ≤ N2 (10)

The cost function parameters are following:

• Horizons N1, N2, and Nu called minimum, maximum, and control horizon, respectively.
The horizons N1 and N2 mark the future time interval where it is desirable to follow the
reference trajectory. N1 should be at least equal to d + 1 where d is the assumed value
of process time delay. Also, the non-minimum phase behaviour of the process can be
eliminated from the cost by letting N1 to be sufficiently large. The value of N2 should
cover the important part of the step response curve, usually is chosen to be about the
settling time of the plant. The use of the control horizon Nu reduces computational
load of the methods.

• Reference trajectory w(k + i) is assumed to be known beforehand. Several approaches
are possible. The most simple is to assume that the future reference is constant and
equal to the desired setpoint w∞. The preferred approach is to use smooth reference
trajectory that begins from the actual output value and approaches asymptotically via
the first order filter the desired setpoint w∞. It is thus given as

w(k) = y(k) (11)

w(k + i) = αw(k + i − 1) + (1 − α)w∞ (12)

The parameter α determines smoothness of the trajectory with α → 0 being the fastest
and α → 1 being the slowest trajectory.

The same effect can be achieved with the use of the filter polynomial P (q−1). The
output y follows the model trajectory 1

P
w. The corresponding filter to the previous first

order trajectory is given as

P (q−1) =
1 − αq−1

1 − α
(13)

3 Overview of Existing Algorithms

In this section some MBPC algorithms will be briefly discussed, highlighting their distinguish-
ing features and their comparative advantages and disadvantages.

3.1 The Model Algorithmic Controller

The MAC algorithm utilises FIR model (impulse response). Its cost function is given by

J =
N2
∑

i=1

[

e2 + λ∆u(k + i − 1)2
]

(14)

with e defined as

e = w(k + i) − ŷ(k + i) − H∆u(k + i − 1) (15)
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where the matrix H contains the plant impulse coefficients

H =



















h1 0 . . . . . . 0
h2 h1 0 . . . 0
...

. . .
. . .

...
...

. . . 0
hN2

. . . . . . h1



















(16)

Thus, MAC approach fixes the values of the horizons N1 = 1 and Nu = N2.

3.2 The Dynamic Matrix Controller

The DMC algorithm uses an truncated step response model. The cost function is given as

J =
N2
∑

i=N1

[ŷ(k + i) − w(k + i)]2 + λ
Nu
∑

i=1

[∆u(k + i − 1)]2 (17)

Advantages:

• No assumption about the order of the process is required,

• simple implementation,

• attractive for use in industry by personnel without extensive training.

Disadvantage:

• Open-loop unstable processes cannot be modeled or controlled.

The DMC algorithm has been developed into a very successful commercial package with
many applications, mainly in the petrochemical industry.

3.3 The Extended Self-Adaptive Controller

This method uses a CARIMA model for prediction purposes. The optimal control law is
found by minimizing the cost function that does not contain control penalisation term:

J =
N2
∑

i=1

ρi [ŷ(k + i) − Pw(k + i)]2 (18)

where P (q−1) is a design polynomial and ρi an exponential weighting factor. Three factors
are worth noting:

• The prefilter P can be used as a predesign parameter to affect the disturbance rejection
properties.

• Open-loop unstable plants can be controlled by appropriately selecting P , N2, ρi, how-
ever, the tuning is more involved.

• The absence of the control signal from the cost function implies that undesired large
control signal variations cannot be suppressed.
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3.4 The Extended-Horizon Adaptive Controller

The EHAC algorithm assumes an ARX model of the form

A(q−1)y(t) = B(q−1)u(t − d) (19)

where d is time delay. The cost function is given as

J = [ŷ(k + N2) − w(t − N2)]
2 (20)

In this approach, a sequence of inputs [u(t), u(t + 1), . . . , u(t + N2 − d)], is computed. Of
course, the cost must attain its minimum at zero and the control trajectory computed is not
unique unless N2 = d, resulting in a number of different ways to finding the control sequence.
Possible approaches include assumption that the control is constant over the whole interval
or that control effort is minimised.

EHAC Disadvantages

• Because only one tuning parameter is involved, a compromise between closed-loop per-
formance and stability must be made.

• Finding the optimal control law is more involved when compared to the other MBPC
methods.

3.5 The Generalized Predictive Controller

The GPC controller uses prediction based upon a CARIMA model. The cost function is given
as

J =
N2
∑

i=N1

[P (q−1)ŷ(k + i) − w(k + i)]2 + λ
Nu
∑

i=1

[∆u(k + i − 1)]2 (21)

GPC Advantages

• The GPC is normally able to stabilize and control non-minimum phase, dead time,
and open-loop unstable processes through judicious choice of the tuning parameters
N1, N2, λ,Nu, P .

• The properties of GPC and LQ approaches are closely related.

• Stability proofs exist for a number of cases.

• A number of well-known controllers may be created by GPC (mean level, deadbeat
control).

Disadvantages

• Some choice of the parameters and controlled systems may destabilise the closed-loop
system.

4 Derivation and Implementation of GPC

The GPC method is in the principle applicable to both SISO and MIMO processes. We begin
the derivation for SISO systems for simplicity and show in the actual implementation of the
method, how to treat MIMO systems.
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4.1 Derivation of the Predictor

The first step in the development of MBPC is derivation of the optimal predictor. We start
with the CARIMA model (7) of the form

A(q−1)y(t) = B(q−1)u(t − 1) +
C(q−1)

∆
ξ(t) (22)

Note that we use explicitly u(t − 1) and thus the polynomial B has non-zero absolute coeffi-
cient. We use u(t − 1) because u(t) will constitute one element of the optimised variables.

Now let us think about this equation j steps in the future. This is accomplished by
multiplication of this equation by qj and yields

y(t + j) =
B

A
u(t + j − 1) +

C

∆A
ξ(t + j) (23)

The last term of this equation contains past and future values of ξ. We may separate them by
performing long division on the term C/(∆A) and by separating the first j terms (quotient)
with positive powers of q. This yields

C(q−1)

∆A(q−1)
= Ej(q

−1) + q−j Fj(q
−1)

∆A(q−1)
(24)

where the polynomial Ej has degree j − 1. Inserting back into (23) gives

y(t + j) =
B

A
u(t + j − 1) + Ejξ(t + j) +

Fj

∆A
ξ(t) (25)

The last term contains actual value of the disturbance ξ(t). This can be calculated from (22)
and inserted back into the last equation and gives

y(t + j) =
B

A
u(t + j − 1) −

FjB

∆AC
∆u(t − 1) +

Fj

C
y(t) + Ejξ(t + j)

=

[

B

∆A
− q−j FjB

∆AC

]

∆u(t + j − 1) +
Fj

C
y(t) + Ejξ(t + j)

=
B

C

[

C

∆A
− q−j Fj

∆A

]

∆u(t + j − 1) +
Fj

C
y(t) + Ejξ(t + j) (26)

and finally substituting (24) into the term containing ∆u(t + j − 1) yields

y(t + j) =
BEj

C
∆u(t + j − 1) +

Fj

C
y(t) + Ejξ(t + j) (27)

Again, we separate unknown (future and present) control actions from the known (past) ones
by the means of the polynomial division

B(q−1)Ej(q
−1)

C(q−1)
= Gj(q

−1) + q−j Γj(q
−1)

C(q−1)
(28)

This gives the final form for the future value of the system output

y(t + j) = Gj∆u(t + j − 1) +
Γj

C
∆u(t − 1) +

Fj

C
y(t) + Ejξ(t + j) (29)

It is obvious that the minimum variance prediction of y(t + j) for given data up to time t is
obtained by replacing the last term containing future disturbances by zero and yields

ŷ(t + j) = Gj∆u(t + j − 1) +
Γj

C
∆u(t − 1) +

Fj

C
y(t) (30)

ŷ(t + j) = Gj∆u(t + j − 1) + y0(t + j) (31)
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Thus, to obtain the j step predictor, two polynomial divisions (or equivalently Diophantine
equations) are to be solved

C = Ej∆A + q−jFj (32)

BEj = GjC + q−jΓj (33)

To implement calculation of the predictor efficiently, it is necessary to understand correctly
the rôle of the equation (31) and the terms involved in it.

Let us at first assume that all future control increments are zero. Equation (31) gives

ŷ(t + j) = y0(t + j) (34)

Hence, the term y0 can be determined by the free response of the system if the input remains
to be constant at the last computed value u(t − 1).

Similarly, let us assume that the system is at the time t in the steady-state and we may
without loss of generality assume that the steady-state is zero. This gives zero free response
y0(t + j). If at time t the system is subject to unit step in input the system output is given
from (31) as

ŷ(t + j) = Gj(q
−1)∆u(t + j − 1)

= gj0∆u(t + j − 1) + gj1∆u(t + j − 2) + · · · + gj,j−1∆u(t)

= gj,j−1 (35)

Thus, the polynomial Gj(q
−1) contains the system step response coefficients. As an alternative

way to show this consider (24) multiplied by B/C :

B

∆A
=

BEj

C
+ q−j BFj

∆AC

= Gj + +q−j Γj

C
+ q−j BFj

∆AC
(36)

which shown that Gj is the quotient from the division B/(∆A).
This also shows equivalence between DMC and GPC methods, as both use the same

information about the process.

4.2 Calculation of the Optimal Control

The GPC cost function is given by (21). Let us now assume for simplicity that N1 = 1, Nu =
N2, P = 1. It follows that all output prediction up to time t + N2 are needed. Let us stack
individual output predictions, future control increments, future reference trajectory, and free
responses into corresponding vectors

ŷT = [ŷ(t + 1), ŷ(t + 2), . . . , ŷ(t + N2)] (37)

yT
0 = [y0(t + 1), y0(t + 2), . . . , y0(t + N2)] (38)

ũT = [∆u(t),∆u(t + 1), , . . . ,∆u(t + N2 − 1)] (39)

wT = [w(t + 1), w(t + 2), . . . , w(t + N2)] (40)

(41)
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To vectorise the predictor (31), let us form a matrix containing step response coefficients
given as

G =



















g0 0 . . . . . . 0
g1 g0 0 . . . 0
...

. . .
. . .

...
... g0 0

gN2−1 . . . . . . g0



















(42)

If we take into effect real value of N1, then the first N1 − 1 rows of the matrix G should be
deleted. Similarly, only the first Nu columns are retained. Thus, the real matrix G has the
dimension [N2 − N1 + 1 × Nu].

Hence, the predictor in the vector notation can be written as

ŷ = Gũ + y0 (43)

and the cost function (21) as

J = (ŷ − w)T (ŷ − w) + λũT ũ

= (Gũ + y0 − w)T (Gũ + y0 − w) + λũT ũ

= c0 + 2gT ũ + ũT Hũ (44)

where the gradient g and Hessian H are defined as

gT = GT (y0 − w) (45)

H = GT G + λI (46)

Minimisation of the cost function (44) now becomes a direct problem of linear algebra.
The solution in the unconstrained case can be found by setting partial derivative of J with
respect to ũ to zero and yields

ũ = −H−1g (47)

This equation gives the whole trajectory of the future control increments and as such it
is an open-loop strategy. To close the loop, only the first element of ũ, e.g. ∆u(t) is applied
to the system and the whole algorithm is recomputed at time t + 1. This strategy is called
Receding Horizon Principle and is one of the key issues in the MBPC concept.

To summarise the procedure, it should be noticed, that only two plant characteristics are
needed: free response y0 that is changing at each sampling time and step response G(z−1)
which is in the case of time invariant system needed only once. Moreover, also the Hessian
matrix H that should be inverted, contains only information from the step response and
can also be calculated beforehand. The calculation of the actual control increment is thus
dependent only on weighted sum of past inputs and outputs contained in y0 and forms
therefore a linear control law.

4.3 An Example

To make the derivation more clear, let us consider a simple SISO plant with numerator and
denominator polynomials given as

B(z−1) = 0.4 + 0.1z−1, A(z−1) = 1 − 0.5z−1

12



and assume that C(z−1) = 1. The CARIMA description of the system is of the form

∆A(q−1)y(t) = B∆u(t − 1) + ξ(t)

or

y(t) = 1.5y(t − 1) − 0.5y(t − 2) + 0.4∆u(t − 1) + 0.1∆u(t − 2) + ξ(t)

Let us now assume the cost function (21) with the parameters N1 = 1, N2 = 3, Nu = 2.
The predictions of future output can be obtained if ξ(t + i) = 0 and are as follows:

ŷ(t + 1) = 1.5y(t) − 0.5y(t − 1) + 0.4∆u(t) + 0.1∆u(t − 1)

ŷ(t + 2) = 1.5y(t + 1) − 0.5y(t) + 0.4∆u(t + 1) + 0.1∆u(t)

ŷ(t + 3) = 1.5y(t + 2) − 0.5y(t + 1) + 0.4∆u(t + 2) + 0.1∆u(t + 1)

According to the assumptions, the term ∆u(t + 2) is equal to zero. The higher output
predictions contain the lower output predictions that can be back substituted an yield

ŷ(t + 1) = 1.5y(t) − 0.5y(t − 1) + 0.4∆u(t) + 0.1∆u(t − 1)

ŷ(t + 2) = 1.75y(t) − 0.75y(t − 1) + 0.4∆u(t + 1) + 0.7∆u(t) + 0.15∆u(t − 1)

ŷ(t + 3) = 1.875y(t) − 0.875y(t − 1)

+ 0.7∆u(t + 1) + 0.85∆u(t) + 0.175∆u(t − 1)

Stacking all predictions into a vector and separating the terms unknown at time t from the
known ones gives







ŷ(t + 1)
ŷ(t + 2)
ŷ(t + 3)






=







0.4 0
0.7 0.4
0.85 0.7







(

∆u(t)
∆u(t + 1)

)

+







1.5y(t) − 0.5y(t − 1) + 0.1∆u(t − 1)
1.75y(t) − 0.75y(t − 1) + 0.15∆u(t − 1)

1.875y(t) − 0.875y(t − 1) + 0.175∆u(t − 1)







An alternative to obtain the matrix G would be to perform the long division

B

∆A
=

0.4 + 0.1z−1

1 − 1.5z−1 + 0.5z−2
= 0.4 + 0.7z−1 + 0.85z−2 + · · ·

Now let us assume that the weighting coefficient λ is equal to zero. Inversion of the Hessian
matrix gives

H−1 =

(

5.1383 −6.9170
−6.9170 10.8498

)

Finally, multiplication with g yields the closed-loop expression for the element ∆u(t)

∆u(t) = −3.6461y(t) + 1.2351y(t − 1) − 0.2470∆u(t − 1)

+ 2.0553w(t + 1) + 0.8300w(t + 2) − 0.4743w(t + 3)

Simulation results show the behaviour of the closed-loop system in the Fig. 2.
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Figure 2: Closed-loop response of the controlled system

4.4 Multivariable GPC

In the same line of thought as in the SISO case, the multivariable GPC algorithm can de
derived via Diophantine equations. From the practical point of view, the multivariable con-
troller can come from the prediction equation (31) that holds exactly as before, only the
vector and matrix elements are not scalar, but vectors and matrices. If m-input and n-output
system is considered, then the matrix G is of the form

G =



















G0 0 . . . . . . 0
G1 G0 0 . . . 0

...
. . .

. . .
...

... G0 0
GN2−1 . . . . . . G0



















(48)

with Gi being matrices of dimensions [n×m] and the overall G has dimensions [n(N2 −N1 +
1) × mNu].

The vectors y0i and matrices Gi can be obtained analogously as in the singlevariable case
from free and step responses of the system.

The drawback of the proposed multivariable derivation are increased dimensions of the
matrices involved in matrix inversion routines. The multivariable formulation can be broken
into series of SISO GPC calculations if the system denominator matrix A(z−1) is diagonal.

4.5 Implementation

As it was stated before, for the actual implementation of the linear GPC algorithm only two
process characteristics are needed: step and free responses. The step response can be obtained
directly from the process by performing a small step change in one of the manipulated inputs
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at a time if the process was before in a steady state. The magnitude of the step change
is important if the process is non-linear. If the process steady-state gain is approximately
known then the magnitude of the input step change should be chosen such that it produces
step response approaching desired setpoint value. This strategy may be applied if a non-linear
model is used for predictions.

If the polynomials A,B are estimated on-line by the means of a RLS algorithm, the step
response is obtained from the polynomial division

B

A∆
= g0 + g1z

−1 + · · · + gN1
z−N1 + · · · + gN2

z−N2 + · · · (49)

The matrix G can be formed from the coefficients of the step response and it is given by the
last N2 − N1 + 1 rows and the first Nu columns of the Toeplitz matrix (42).

The free response is calculated as the process response from the actual initial conditions
if the input is fixed to u(t − 1). At time t is should hold

y(t) = y0(t) (50)

However, the assumption about random-walk disturbance usually results in non-zero distur-
bance at time t and holds

y(t) = y0(t) + d(t) (51)

This disturbance is assumed to be constant in all future predictions. The disturbance and
the free responses are thus calculated as

d =

deg(A)
∑

i=0

aiyf (t − i) −

deg(B)
∑

i=0

biuf (t − i − 1) (52)

y0(t + j) = yf (t + j) = d −

deg(A)
∑

i=1

aiyf (t − i + j) +

deg(B)
∑

i=0

biū(t − i + j − 1) (53)

where

ū(t − i + j) =

{

uf (t − 1) j ≥ i
uf (t − i + j) otherwise

(54)

Note: if polynomial P is assumed to be non-unity, then the above is valid if the system
denominator A is changed for PA.

To ensure offset-free setpoint following, the polynomial P should be specified subject to
condition P (1) = 1.

Note: The polynomial C is normally not estimated on-line, but used as a user-design pa-
rameter. From relation between state-space and input-oputput approaches, it can be shown
that it acts as a observer polynomial and is used for disturbance rejection. More about its
choice is given on the page 26.

4.6 Relation to Other Approaches

One of the features of GPC approach is its generality. With different values of its parameters
it can be reduced to some well-known controllers:

Mean level control

N1 = 1, N2 → ∞, Nu = 1, P = 1, λ = 0

15



Exact model following (GMV controller)

N1 = 1, N2 = D + 1, Nu = D + 1, P = 1, λ = 0

or

N1 = 1, N2 > D, Nu = N2 − D, P = 1, λ = 0

Deat-beat control

N1 ≥ deg(B) + 1, N2 ≥ Nu + N1 − 1, Nu ≥ deg(A) + 1, P = 1, λ = 0

Pole placement Deat-beat + P . Poles are placed at zeros of P .

N1 ≥ deg(B) + 1, N2 ≥ Nu + N1 − 1, Nu ≥ deg(A) + 1, P 6= 1, λ = 0

4.7 Continuous-time approaches

Predictive Control is developed in discrete-time domain. The discrete formulation allows for
easy prediction generation, because time response of discrete systems can be obtained from
polynomial division of the system numerator and denominator.

The analogical formulation for continuous-time systems is by no means so simple. The first
serious attempt is given in [11]. The authors show, that the principial polynomial equations
remain the same, however, their interpretation is different. For the signal predictions, the
Taylor expansion is used. However, the main advantage of MBPC - constraints handling, is
lost with this approach.

The approach, that is more realistic while still allowing the constraints is presented in [42].
The main principle is to approximate the future control and output signals as a linear combi-
nation of selected continuous-time base functions – in this case B-splines. The real optimised
variables become parameters of the splines. It can be shown that both input and output signal
approximations are affine functions of these parameters and thus constrained continuous-time
predictive control can be solved as a Quadratic Programming task.

The advantage of this approach is truly continuous-control where the choice of the sam-
pling time is not so crucial as in the discrete time case. For the disadvantages, we mention
larger number of user parameters and not very clear stability properties.

The real-time results of comparison of this method with GPC and CRHPC in [41] show
a very good performance and robustness of this method.

5 Constrained Control

The GPC algorithm derived in the preceding section did not consider presence of constraints.
This is not very realistic, as in practice, some kind of constraints is usually present in process
control. Most often, inputs are constrained to be between some minimal and maximal values
(flows cannot be negative, valves can be opened at 100% maximally) or input rate changes
are limited. Usually, there also exist some recommended values of process outputs; these are
often formulated as soft constraints as opposed to hard input constraints.

The ability to handle constraints is one of the key properties of MBPC and caused its
spread and popularity also in industry. Nowadays, most of the industrial processes run at the
constraints, if not, the process is unnecessarily overdesigned.
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One might argue that input constraints can be respected if the calculated control by some
control method is subsequently clipped to be within limits. There are at least two reasons not
to do so: (i) there is a loss of anticipating action. If the algorithm predicts future behaviour
of the system, it might be more correct not to go fully at the constraints at the moment.
Otherwise, after some time the process may go totally unstable, out of limits of safety, to an
emergency mode. This usually causes heavy economic losses connected with emergency stop
and start-up procedures, (ii) if multivariable control is considered, certain influence between
input vector elements must be respected. Clipping one input element may cause entirely
different transient responses. This phenomenon is called directionality of a multivariable
plant [5].

The cost function used in GPC is quadratic and of the form (44). If we assume only con-
straints that are linear with respect to the optimised vector ũ then the resulting optimisation
problem may be casted as the Quadratic Programming problem which is known to be convex
and for which efficient programming codes exist. The general constrained GPC formulation
is thus given as

min
ũ

2gT ũ + ũT Hũ subject to: Aũ ≥ b (55)

Several types of the constraints may be written in the general form:

Input rate limits ∆umin ≤ ∆u ≤ ∆umax:

A =

(

I

−I

)

, b =

(

1∆umin

−1∆umax

)

where 1 is a vector whose entries are ones.

Input amplitude limits umin ≤ u ≤ umax:

A =

(

L

−L

)

, b =

(

1umin − 1u(t − 1)
−1umax + 1u(t − 1)

)

where L is a lower triagonal matrix whose entries are ones.

Output constraints ymin ≤ y ≤ ymax:

A =

(

G

−G

)

, b =

(

ymin − y0

−ymax + y0

)

Several other types of output constraints can be handled similarly: overshoot, undershoot,
monotonicity, etc.

Although input constraints can always be met, presence of output constraints can cause
infeasibility of the Quadratic Programming. Therefore from practical point of view, hard out-
put constraints should be changed to soft constraints where amount ε of constraint violation
is penalised. In such a case the output constraints are of the form

− ε + ymin ≤ y ≤ ymax − ε, ε > 0 (56)

and the cost function (44) is of the form

J = 2gT ũ + ũT Hũ + εT H̄ε (57)

and the variables ε are added to optimised variables.
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6 Stability Results

Any predictive method minimising finite horizon cost function may become unstable in some
cases. This can easily be imagined if the system controlled contains right half plane zeros, the
output horizon is equal to one, and control penalisation is equal to zero. Inevitably, predictive
controller that minimises only output error, is able to set it to zero at each sampling time.
The price however is, that the control signals are increasing in magnitude and the system will
be unstable.

This is one of the main issues against MBPC. Although the methods may work well in
practice, some systems exists in theory for which the methods are highly sensitive [1]. Even
more significant is, that there is no clear theory which predicts closed-loop behaviour for
arbitrary horizons and control penalisations.

Therefore, two main streams toward stability have been developed. In the first case, some
combinations of GPC parameters have been proven to be stabilising. The second line of
research has been devoted to methods that overcome the basic GPC drawbacks.

6.1 Stability Results in GPC

Theorem 1 ([6]) The closed-loop system is stable if the system is stabilisable and detectable
and if:

• N2 → ∞, Nu = N2, and λ > 0 or

• N2 → ∞, Nu → ∞, Nu ≤ N2−n+1, and λ = 0 where n is the system state dimension.

Theorem 2 ([6]) For open-loop stable processes the closed-loop system is stable and the con-
trol tends to a mean level law for Nu = 1 and λ = 0 as N2 → ∞.

Theorem 3 ([6]) The closed-loop system is equivalent to a stable state deat-beat controller
if

1. the system is observable and controllable and

2. N1 = n, N2 ≥ 2n − 1, Nu = n, and λ = 0 where n is the system state dimension.

For more thorough discussion on stability properties of GPC and its relations to LQ
control see [1].

6.2 Terminal Constraints

The first approach that forces MBPC methods to be stable is based on the state terminal
constraints. The methods use the results given in [22, 27] where stability of time-varying
discrete linear systems is discussed if the MBPC receding horizon quadratic cost is minimised.
Roughly speaking, the system is stable if it is subject to the moving-terminal constraint on
final states

x(t + N2) = 0 (58)

Several different algorithm have emerged that are based on this result:
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6.2.1 CRHPC

SIORHC [35] and CRHPC [8] were developed independently, but are in fact equivalent.
The idea behind these techniques is an equivalent of the state terminal constraint within
input/output system description. Hence, these methods optimise the usual quadratic function
over finite horizons subject to condition that the output exactly matches a reference value
over a future constraint range (after t + N2). Some degrees of freedom force the output to
stay at setpoints while the remaining degrees of freedom are available to minimise the cost
function. The output constraint description is

y(t + N2 + i) = w(t + N2), i = 1, . . . , n (59)

and n is the dimension of the system state vector.
Although the output constraints are added to the original formulation, the solution in the

unconstrained case can still be found analytically.

Theorem 4 (SIORHC [35]) Let the system polynomials ∆A and B are coprime. If λ > 0
and deg(B) ≤ deg(A) + 1 then provided that

N2 ≥ n = max(deg(A) + 1,deg(B))

• the SIORHC control law is unique;

• SIORHC stabilises the plant, and, irrespective of deg(A),deg(B), λ, for

N2 = n

yields a state deat-beat closed-loop system;

• whenever stabilising, SIORHC yields asymptotic rejection of constant disturbances and
offset free closed-loop system.

Derivation As usual in GPC, consider predicted output to be of the form

ŷ = Gũ + y0 (60)

where all vectors are stacked from t + 1 to t + N2. After this time, up to t + N2 + n, output
predictions are constrained to be equal to setpoint and future control increments to zero

w̄ = Ḡũ + ȳ0 (61)

where the vector ȳ0 denotes free response between t + N2 + 1 and t + N2 + n and w̄ is vector
of w(t + N2) of corresponding dimension.

The cost function is as usual of the form

J = (ŷ − w)T (ŷ − w) + λũT ũ (62)

subject to the constraint (61). This is solved analytically by the Lagrange multipliers. Let
us denote h̄ = w̄ − ȳ0 and h = w − y0. Hence

J = (Gũ − h)T (Gũ − h) + λũT ũ + xT (Ḡũ − h̄) (63)

Partial derivatives of J with respect to ũ,x (x are the Lagrange multipliers) are zero. We
obtain a system linear equations as follows

(

2(GT G + λI) ḠT

Ḡ 0

)(

ũ

x

)

=

(

2GT h

h̄

)

(64)
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The block matrix inversion formula from [21] states

(

A−1 D
C B

)

−1

=

(

A + AD∆CA −AD∆
−∆CA −∆

)

, ∆−1 = B − CAD (65)

Therefore, the future control increment vector is given as

ũ = G̃(I − ḠT QḠG̃)GT h + G̃ḠT Qh̄ (66)

where

G̃ =
(

GT G + λI
)

−1
(67)

Q =
(

ḠG̃ḠT
)

−1
(68)

6.2.2 SGPC

Another method that can be shown to be equivalent to the preceding methods is SGPC [24].
Its advantages are more efficient computational implementation and better numerical robust-
ness.

In this approach is GPC invoked after the application of the stabilising feedback control
law

Y (q−1)∆u(t) = c(t) − X(q−1)y(t) (69)

where the polynomials X,Y are calculated as deat-beat controller from the Diophantine
equation

∆AY + BX = 1 (70)

and where c(t) denoted the reference signal for the closed-loop system that forms the vector
of optimised variables. The deat-beat controller results in the control and output predictions
of the form

y(t) = B(q−1)c(t) (71)

u(t) = A(q−1)c(t) (72)

These can be simulated forward in time to give the vectors of future output and control
predictions and treated in the same way as in GPC.

Hence, this methods optimises future reference trajectory subject to (terminal) constraint
that this trajectory should be equal to the desired setpoint after some horizon.

It can be shown that SGPC is equivalent to pole-placement method with the controller
polynomials Yr, Xr given from the Diophantine equation

∆AYr + BXr = Pr (73)

and its stability depends on the roots of the Pr polynomial.

Theorem 5 (SGPC [24]) For N2 ≥ deg(A) + 1 + Nc, where Nc is the number of reference
points optimised, is SGPC stable for any Nc.
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6.2.3 YKPC

The last approach within finite horizon formulation is the predictive control algorithm based
on Youla Kučera parametrisation of all stabilising controllers (YKPC [17]).

As in the previous approach, in the first step a nominal controller with pole-placement
technique is calculated and a nominal controller is given as a solution of 2 Diophantine
equations

P0∆A + Q0B = M (74)

∆S0 + BR0 = M (75)

where M is the desired closed-loop polynomial and a two degree of freedom controller with
integral action is defined as Q/∆P (feedback) and R/∆P (feedforward).

The minimum degree controller P0, Q0, R0 only serves as a basis to find an expression for
the set of all stabilizing controllers. Among these controllers the one is chosen, that minimises
the GPC cost function.

The expression of such controllers (Youla-Kučera parametrisation) is as follows:

Theorem 6 (YK Controllers [17]) A controller (P (z), Q(z), R(z)) gives rise to the closed-
loop denominator matrix M(z) if and only if it can be expressed as

P = P0 + ZB (76)

Q = Q0 − ZA∆ (77)

R = R0 + ∆X (78)

X,Z are assumed to be polynomials for simplicity. Their coefficients form the vector of
the optimised parameters.

Stability is proved as in the previous approaches via terminal constraint. It is interesting
to note, that in this approach the state terminal constraint need not to be specified and is
implicitly assured.

Theorem 7 (Choice of horizons [17]) Let n = max(deg(X),deg(Z)), N1 = 1 and let the
horizons be equal or greater than

N2 = deg(B) + n (79)

Nu = deg(A∆) + n (80)

Further assume that the sequences w, d (reference, disturbance) are bounded. Then uncon-
strained YKPC is uniformly asymptotically stable.

This controller is time-varying in spite of the fact that the system is assumed to be time-
invariant.

6.3 Infinite Horizons

Another line of research has been focused into reformulation of the basic GPC method when
N2, Nu are infinity. Of course, if such a method can be implemented, stability problems
disappear. However, number of the optimised parameters (future control moves) is also
infinity and the original problem is untractable. Therefore, several suboptimal algorithms
have emerged. The basic principle of all of them is to leave N2 = ∞ but to play with Nu or
with its equivalents.

Rawlings and Muske [39] developed a method in state-space formulation where the number
of control moves Nu is finite. The feedback gain is calculated via recursive ARE.
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Theorem 8 (Stable plants [39]) For stable system matrix A and Nu ≥ 1 is the receding
horizon controller stabilising.

Theorem 9 (Unstable plants [39]) For stabilisable plant (A,B) with r unstable modes
and Nu ≥ r is the receding horizon controller stabilising.

Constrained control is also dealt with in their approach. The requirement added to the
previous theorems is that the initial state at time t is feasible (within constraints).

The SGPC and YKPC methods can be modified to use both input and output horizons
infinite [15, 16, 43]. The SGPC approach utilises finite reference sequence as the vector of
optimised variables. The solution if found via Lyapunov equation.

The YKPC method utilises as the optimised variables coefficients of the Youla-Kučera
polynomials. It is shown that in the unconstrained case the optimal predictive controller
coincides with the nominal pole-placement controller whose poles are calculated via spectral
factorisation equation - hence it is the standard LQ controller. If the constraints are active,
piece-wise linear controller results.

6.4 Finite Terminal Penalty

The third approach to MBPC stability is to adopt a finite input and state horizon with a
finite terminal weighting matrix [29]. With a state-space formulation

x(t + 1) = A(t)x(t) + B(t)u(t) (81)

is the cost given given as

J = xT (t + N)W (t + N)x(t + N)

+
N
∑

i=0

(

xT (t + i)Q(t + i)x(t + i) + uT (t + i)R(t + i)u(t + i)
)

(82)

If W (t + N) → ∞ then the terminal state constraint approach result. However, also some
“smaller” terminal penalty matrix W can give a stabilising receding horizon control.

Theorem 10 ([29]) Assume that the terminal weighting matrix P (t + k) satisfies the fol-
lowing matrix difference inequality for some matrix H(t)

P (k) ≥ F T (k)P (k + 1)F (k) + Q(k) + HT (k)R(k + 1)H(k), ∀k ∈ [N,∞) (83)

where

F (k) = A(k) + B(k)H(k) (84)

Further suppose that Q(k) is positive definite. Then the receding horizon control which stems
from the optimisation problem minimising the performance index J , asymptotically stabilises
the system. In addition, if A(k),Q(k), and P (k) are bounded above ∀k ≥ 0, then the receding
horizon control exponentially stabilises the system.

7 Tuning

Let us recall the GPC parameters: horizons N1, N2, Nu, control weighting λ, and output
weighting polynomial P . The effects of a change of the parameters are strongly coupled and
the strategies dealing with adjustment of GPC parameters usually adjust only one parameter
while all others are at some default values.

Several researchers have devoted their attention to different tuning strategies. Here we
consider results given in [31, 49, 50].
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7.1 Tuning based on First Order Model

The tuning strategy in [49] is based on the analysis of the first order system with time delay
and proposed for DMC. However, it is also applicable to GPC if P = 1.

The strategy is given as follows:

1. Approximate the process dynamics with a first order plus dead time model:

F (s) =
K

Ts + 1
e−Ds (85)

2. If the sampling time has not yet been specified, select it as the larger value that satisfies

Ts ≤ 0.1T, Ts ≤ 0.5D (86)

3. Calculate the discrete dead time Dd (rounded to the next integer)

Dd = D/Ts + 1 (87)

4. Set N1 = 1, and

N2 = 5T/Ts + Dd (88)

5. Select the control horizon Nu (usually between 1–6) and calculate the control weighting
λ as

f =

{

0 Nu = 1
Nu

500

(

3.5T
Ts

+ 2 − Nu−1
2

)

Nu > 1
(89)

λ = fK2 (90)

7.2 Multivariable Tuning based on First Order Model

The tuning strategy in [50] is a generalisation of the previous approach to multivariable
systems with R outputs and S inputs. It is based on the analysis of the first order system
with time delay.

The strategy is given as follows:

1. Approximate the process dynamics of all controller output-process variable pairs with
first order plus dead time models:

yr(s)

us(s)
=

Krs

Trss + 1
e−Drss (91)

2. Select the sampling time as close as possible to:

T s
rs = max(0.1Trs, 0.5Drs), Ts = min(T s

rs) (92)

3. Set N1 = 1, compute the prediction horizon N2:

N2 = max

(

5Trs

Ts

+ krs

)

, krs =
Drs

Ts

+ 1 (93)
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4. Select a control horizon Nu, equal to 63.2% of the settling time of the slowest sub-process
in the multivariable system:

Nu = max

(

Trs

Ts
+ krs

)

(94)

5. Select the controlled variable weights γr, to scale process variable measurements to
similar magnitudes

6. Compute the control weightings λs as

λs =
M

500

R
∑

r=1

[

γrK
2
rs

{

N2 − krs −
3

2

Trs

Ts

+ 2 −
M − 1

2

}]

(95)

Fine tuning of the method is performed by increasing the corresponding γr of the process
variable for which tighter control is desired and increasing the corresponding λs of the ma-
nipulated variable for which less aggressive moves are desired.

7.3 Output Horizon Tuning

This tuning strategy assumes active tuning parameter to be the output horizon N2 with all
other fixed at the values

N1 = 1, Nu = 1, P = 1, λ = 0 (96)

It is well known that if N2 → ∞, mean-level controller results. This controller is rather
conservative as its speed is the same as step responses.

The other limit for N2 is the value of process dead time. If N2 = D+1, where D represents
process dead time, then we have Minimum Variance (MV) controller known to be unstable
for non-minimum phase plants.

The practical range for N2 can be specified as

D + 1 < N2 ≤ tr/Ts (97)

where tr is the time when process reaches after input step change about 90% of its final value
and Ts is the sampling time.

If the process is uncertain, it is better to start with larger value of N2. The minimum
value of N2 for non-minimum phase plants should be such that

∑

i gi has the same sign as
the process gain.

7.4 λ Tuning

In this case is the active tuning parameter penalisation of control moves λ. All other param-
eters are fixed as

N1 = deg(B) + 1, Nu = deg(A) + 1, N2 ≥ Nu + N1 − 1 ≈ tr/Ts, P = 1 (98)

With λ equal to zero, deat-beat controller results. This is in majority of cases too rapid.
Hence, with increasing value of λ is the controller made more conservative. It might be shown
that the closed-loop poles converge to the open loop poles if λ → ∞. Thus λ tuning is not
recommended for unstable plants.
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It has been found that to desensitise the closed-loop system to changes in process dynam-
ics, the actual λ should be proportional to B(1)2:

λ = λ0B(1)2 (99)

with λ0 being a constant.
To determine a starting value of λ, the following relation can be used:

λ =
m tr(GT G)

Nu
(100)

and m is a factor of detuning the controller relative to deat-beat control. The control in-
crements are approximately reduced by a factor m + 1 compared to that of the deat-beat
strategy.

From this starting value of λ, an initial guess for λ0 can be determined from (99).

7.5 Tuning based on Model Following

As it has been shown before, the P polynomial can be used to generate reference trajectory
w/P . GPC can be set up to follow this trajectory exactly and so to place the closed-loop
poles at the process zeros. In order to have a more practical controller, the model following
can be detuned. This may be accomplished by either increasing N2 or λ.

The fixed parameters are as follows:

N1 = 1, Nu = deg(A) + 1, N2 ≥ Nu + D ≈ tr/Ts, λ = 0 (101)

Most often, the models M = 1/P are of the first and the second order. If the first order
closed-loop model is assumed to be of the form

M(s) =
1

Ts + 1
(102)

then its discrete equivalent is

M(z−1) =
(1 − p1)z

−1

1 − p1z
−1 (103)

where p1 = exp(−Ts/T ). The polynomial P can thus be chosen as (cf. equation (13))

P (z−1) =
1 − p1z

−1

1 − p1
(104)

and P (1) is equal to 1 to ensure offset-free behaviour. This model is applicable mainly for
simpler plants as the first order trajectory may sometimes generate excessive control actions.

The second order model can be of the form

M(s) =
1

T 2s2 + 2Tξs + 1
(105)

Its discrete time equivalent is

M(z−1) =
n1z

−1 + n2z
−2

1 + p1z
−1 + p2z−2

(106)

where

p1 = −2 exp

(

−ξTs

T

)

cos

[(

Ts

T

)

√

1 − ξ2

]

(107)

p2 = exp

(

−2ξTs

T

)

(108)
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Ignoring the numerator dynamics, the polynomial P may be specified as

P (z−1) =
1 + p1z

−1 + p2z
−2

1 + p1 + p2
(109)

The dominant time constant of the closed-loop system is approximately 2T and the fractional
overshoot is solely a function of the damping factor ξ:

ov = exp

[

−πξ
√

1 − ξ2

]

(110)

and thus the user can then specify desired rise time and overshoot and translate these settings
into an appropriate P polynomial.

7.6 The C polynomial

The CARIMA model includes knowledge about the disturbance properties in the polynomial
C. This can be estimated on-line using a suitable recursive identification algorithm. However,
this is rather difficult in practice, because the convergence of the C polynomial coefficients is
rather slow.

Therefore, a more realistic approach is to set C by user directly. The value that has been
suggested as a default in the literature is of the form

C = (1 − 0.8z−1)2 (111)

Another possibility that follows from optimal LQ theory is to calculate it as a stable
polynomial from spectral factorisation of the denominator polynomial A as

C∗C = A∗A (112)

8 Examples

In this section are shown some examples of the GPC control algorithm. The first examples
show some effects of the tuning parameters that have been described in the previous sections.

The example dealing with control of a tubular chemical reactor describes adaptive imple-
mentation of GPC. A linear model is estimated on-line with a RLS algorithm and successively
controlled.

The bioreactor control example demonstrates possibility of using a non-linear model for
predictions. Here, an artificial neural network model is used. Comparison with adaptive
control based on a linear model shows some drawbacks of adaptive methods applied to non-
linear processes.

Finally, the pH control example shows a real-time control problem. It is demonstrated
that GPC is able to control such a strongly non-linear process.

8.1 A Linear Example

Let us consider a linear continuous-time system with transfer function

F (s) =
1

(s + 1)2

that is discretised with the sampling time Ts = 1.
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Figure 3: Increasing value of N2 towards mean-level control

Two simulation runs were performed. In the first one, mean level settings were given. The
GPC parameters were N1 = 1, Nu = 1, λ = 0, and N2 varied between 2–20. The results are
shown in Fig. 3 and illustrate that with increasing N2 are the control action smoother, more
conservative and approach input step change.

In the second simulation was λ given as the varying parameter. The settings of other
parameters were N1 = 3, Nu = 3, N2 = 5 which for λ = 0 gives deat-beat controller.
Increasing λ makes more weight on control increments and slows down the controller. The
results are shown in Fig. 4.

8.2 Adaptive Control of a Tubular Reactor

This example is in full length described in [13]. An ideal plug-flow tubular chemical reactor
with an exothermic consecutive reaction A → B → C in the liquid phase and with counter-
current cooling is considered. It is assumed that A is the educt, B is the desired product and
C the unwanted by-product of the reaction. Such reactors are central components of many
plants in the chemical industry and exhibit highly nonlinear dynamics.

Mathematical model of this reactor is given as

∂cA

∂t
= −v

∂cA

∂z
− k1cA (113)

∂cB

∂t
= −v

∂cB

∂z
k1cA − k1cB (114)

∂T

∂t
= −v

∂T

∂z
+

qr

ρcp

−
4U1

d1ρcp

(T − Tw) (115)

∂Tw

∂t
=

4

(d2
2 − d2

1)ρwcpw

[d1U1(T − Tw) + d2U2(Tc − Tw)] (116)
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Figure 4: Increasing value of λ - detuned deat-beat control

∂Tc

∂t
= v

∂Tc

∂z
+

4n1d2U2

(d2
3 − n1d

2
2)ρccpc

(Tw − Tc) (117)

with initial conditions

cA(z, 0) = cs
A(z), T (z, 0) = T s(z), Tc(z, 0) = T s

c (z)
cB(z, 0) = cs

B(z), Tw(z, 0) = T s
w(z)

(118)

and with boundary conditions

cA(0, t) = cA0(t), T (0, t) = T0(t)
cB(0, t) = cB0(t), Tc(L, t) = TcL(t).

(119)

Here t is time, z space variable along the reactor, c are concentrations, T are temperatures,
v are fluid velocities, d are diameters, ρ are densities, cp are specific heat capacities, and U
are heat transfer coefficients. The subscripts are (.)w for metal wall of tubes, (.)c for coolant,
and (.)s for steady-state values. The reaction rates k and the heat of reactions are expressed
as

kj = k0j exp(−Ej/RT ) , j = 1, 2 (120)

qr = h1k1cA + h2k2cB (121)

where k0 are exponential factors, E are activation energies and h are reaction enthalpies.
Assuming the reactant temperature measurement along the reactor at points zj, the mean

temperature profile can be expressed as

Tm(t) =
1

n

n
∑

j=1

T (zj , t) (122)

where n is the number of measured temperatures along the reactor.
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Figure 5: Comparison of deat-beat (db) and mean-level (ml) control strategy

The input variable the value of qc has been assumed to be constrained in the interval

0.2 ≤ qc ≤ 0.35 (123)

For the control purposes both the manipulated input and the controlled output were
defined as scaled deviations from their steady-state values

u(t) =
qc(t) − qs

c

qs
c

, y(t) =
Tm(t) − T s

m

T s
m

. (124)

This scaling helps to obtain variables with approximately same magnitude and reduces the
possibility of ill-conditioned control problem and round-off errors.

The sampling time was chosen Ts = 3s and the reactor was on-line identified as SISO
discrete system with deg(A) = 2, deg(B) = 3 of the form

y(t) = −a1y(t − 1) − a2y(t − 2) + b1u(t − 1) + b2u(t − 2) + b3u(t − 3) + dc + ξ

The estimation method used is the recursive least-squares algorithm LDDIF with exponential
and directional forgetting [2, 26]. The value of exponential forgetting was set to 0.8 and the
minimum of the covariance matrix was constrained to 0.01I . The purpose of these settings
was to improve tracking properties of the estimation algorithm.

The result of the first simulation is shown in Fig. 5. It shows comparison of two GPC
settings: mean-level (ml) and deat-beat (db) control.

Upper graph represents behaviour of the controlled variable Tm together with its reference
value and the lower graph manipulated variable qc.

The values of GPC tuning parameters [N1, N2, Nu, λ] were [1, 15, 1, 10−1 ] for mean-level
and [3, 7, 3, 10−5 ] for deat-beat, respectively. These values correspond to slow open loop
response (ml) and the fastest deat-beat response. The polynomials P,C were set to 1 as the
effect of disturbances is very small. One can notice that the deat-beat control strategy uses
actively constraints on manipulated variable defined by Eq. (123).

The purpose of the second simulation was to investigate the behaviour of GPC with respect
to unmeasured disturbances. The output variable was corrupted by measurement noise with
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Figure 6: Effect of step disturbances in inlet concentration.

variance 0.1K. The inlet concentration cA0 of the component A varied in steps and was given
as

t 0 100 300 500
cA0 − cs

A0 0 0.1 0 0.1
Due to the presence of disturbances, the design polynomials P,C were used. The poly-

nomial C attenuates effects of measurement noise and the polynomial P shapes responses of
the closed-loop system subject to load disturbances in cA0 and also to reference step changes.
The degrees of the polynomials were chosen 1 and their values as

P = 0.6 −
2

3
z−1, C = 1 − 0.8z−1.

The GPC controller was implemented with the mean-level strategy and had the values of the
tuning parameters given as [1, 15, 1, 10−1 ].

The result of the simulation is shown if Fig. 6. One can notice that the behaviour of
GPC controller was very good and no abrupt control actions can be observed. Also the
controlled variable tracks the reference temperature fast and the effects of load changes in
cA0 are suppressed very well.

8.3 Neural Network based GPC

This example is in full length described in [46]. It compares adaptive GPC based on linear
model (AGPC) and implemented in the same way as in the previous example and GPC based
on non-linear neural network model (GPCNN).

The process studied was a bioprocess that describes the growth of Saccharomyces cere-
visiae on glucose. The oxygen concentration co and the dilution rate Dg have been selected
as the controlled and the manipulated variables, respectively.

A feedforward ANN plant model with third order input dynamics and one hidden layer
was used. This means six neurons in the input layer with signals

y(t − 1), y(t − 2), y(t − 3), u(t − 1), u(t − 2), u(t − 3)
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Figure 7: Trajectories of the oxygen concentration (the process output)

For the calculation of the step response, the ANN inputs are

y(t − 1), y(t − 1), y(t − 1), un, u(t − 1), u(t − 1)

where the step change magnitude un was specified as

un = u(t − 1) +
w − y(t − 1)

k

and the process static gain k was determined from the step response estimated in the previous
sampling period. The static gain k was initially set equal to 1. To take into account the fact
that the initial conditions are not equal to zero and the step input is not of unit value, the
ANN approximation of the step response is subsequently normalised.

For the free response the ANN inputs are

u(t − 1), u(t − 2), u(t − 3), y(t − 1), y(t − 2), y(t − 3)

and it is assumed that the input is constant in the future.
The sampling period was set equal to 0.5 h. A training and validation data sets (800

input-output pair samples) were obtained using a pseudo random binary sequence input.
The conjugate gradients algorithm was used as a learning method and a genetic algorithm
was used for the initialization of the ANN weights.

For the AGPC, a third order discrete model has been considered for process modelling.
The model parameters have been estimated using the parameters estimation algorithm LD-
DIF [26].

The GPC parameters were N1 = 1, N2 = 14, Nu = 4, λ = 0.1. The obtained profiles of the
process output controlled by the AGPC (dashed line) and the GPCNN (solid line) are shown
in Fig. 7. Figure 8 shows the profiles of the control actions generated by AGPC (dashed line)
and GPCNN (solid line), respectively. As it can be seen from these figures, both algorithms
achieve good results. When a large change of the setpoint occurs (see Fig. 8, t=50 h), the
GPC based on linear model leads to a generation of a bad transient behaviour. Unlike the
AGPC, the GPC based on ANN generates a smooth control action which leads to a good
control behaviour. This behaviour was expected as the AGPC is based on linear model.
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Figure 8: Trajectories of the dilution rate (the manipulated variable)

Owing to the nonlinear characteristic of the bioprocess, a large change of the setpoint or
some disturbance can bring the process into other operating points with different dynamical
properties.

8.4 pH Control

This example is in full length given in [14]. The experimental pH control has been studied at
University of Dortmund.

The neutralisation plant to be controlled consists of a laboratory-scale continuous stirred
tank with two inlets and one outlet (see Fig. 9), in which acetic acid is neutralized with
sodium hydroxide.

The hold-up of the tank is 5.57 l, the concentrations of the acid and the sodium hydroxide
solution streams are approximately 0.01 mol/l. The acid flow rate FA is fixed at 0.33 l min−1,
whereas the NaOH flow FB is manipulated by the controller. In order to obtain the necessary
precision of the flow rates diaphragm pumps were chosen. All control actions are performed
by a PC-based control system. The flow FB is controlled by the modulation of an impulse
frequency f , which leads to a quantisation of the control amplitude because the frequency
can assume only certain discrete values.

In the tank, the following reaction takes place:

NaOH + CH3COOH ⇀↽ CH3COONa + H2O (125)

Due to the incomplete dissociation of acetic acid in water and the equilibrium reaction
with sodium hydroxide the system behaves like a buffer solution between pH 4 and 6.5.
Consequently, the process gain varies extremely over the range of pH-values that can be
controlled.

The controlled variable pH and the control variable FB have been scaled for control and
identification purposes as

y =
pH − 7

7
u =

FB − F s
B

F s
B

(126)
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where F s
B denotes the approximate steady state value of FB corresponding to pH = 7.

The parameters for the GPC controller were chosen as N = 50, Nu = 4, λ = 1, α = 0.3.
Several model orders have been tried, the best results have been obtained with the third order
model. The sampling time was set to 5s.

The tuning of the predictive algorithm was performed at pH = 9 with the requirement,
that the deviations from the steady-state have to be within ±0.1pH. It was observed, that the
small values of Nu led to rather active control actions and the final value Nu = 4 was chosen
as the result of trade-off between the performance and the complexity of the calculations.
The parameter λ influenced the penalisation of the future control increments. Very large
values caused limit cycles of pH as the control was unable to compensate satisfactorily the
disturbances, therefore the smallest possible value was chosen.

For the final tuning of the algorithm, the P polynomial was used. Only first order poly-
nomial of the form P (z−1) = (1−αz−1)/(1−α) was assumed. The smaller values resulted in
increased steady-state deviations and the larger values in very slow and oscillatory response
to setpoint changes. The value α = 0.3 was chosen as a compromise.

The experimental results of the adaptive GPC controller were compared with a carefully
tuned PI controller [33]. All experiments were carried out with the same pattern of setpoint
changes. At first the reactor was stabilised at pH = 7 and then controlled to pH = 9, 7, 8.3
(Fig. 10). Finally, the disturbance rejection performance has been studied. As a disturbance,
a 20% decrease of the acid flow was performed at t = 0 and held constant afterwards (see
Fig. 11).

The experiments have been confirmed, that the adaptive GPC method is able to control
the strongly nonlinear plant and that it behaves much better compared to linear PI control.
However the tuning of the controller parameters must have been done with some care and only
the parameters which slowed down the closed-loop system substantially, gave good results.
This is because a neutralisation reactor control is known to be not very succesful with linear
controllers.

9 Conclusions

This report has dealt with Model Based Predictive Control. Its aim was to explain the
principles of predictive control on one of the most used method - GPC. The derivation of
the method was based on two process characteristics - step and free responses and avoided
to solve recursively Diophantine equations. With this approach, non-linear models can easily
be included. This, however, leads to control based on linearised models. If full non-linear
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Figure 11: Disturbance rejection

models are to be used, analytical solution for future control increments is no longer possible
to obtain.

Various other approaches have also been discussed - the methods that have been developed
on the same principles as well as the methods that try to overcome the main drawback -
stability problem. Within these, three mayor streams of research have been identified and
shortly described.

The second part of the report has dealt with more practical issues. Some of the tuning
strategies for GPC have been mentioned. The selected simulation and real-time examples were
chosen to highlight some of the GPC features as well as some useful hints for implementation.
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