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Abstract

This report investigates the problem of optimal handling of the constraints on signals.
Their presence usually lowers performance of the closed-loop system and may even lead to
instability. Assuming that the plant model and the controller are given, the task studied is: (i)
to find a control sequence satisfying the constraints that minimises the degree of the process
output degradation, (ii) to determine optimal transfer from nonlinear constrained mode back
to linear controller, (iii) to guarantee stability of the overall scheme.
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1 Introduction

Constraints are ubiquitous in real world control systems. Typical constraints are for example finite
capacity of pumps, limited speed of motors. As these devices are used as actuators in process
control, these constraints are called inputs constraints. The output constraints may include safety
requirements as temperature limits in reactors, pressure and liquid level limits in distillation
columns.

When the knowledge about the constraints is neglected degradation of performance and in
some cases even instability may occur. To counteract this, several techniques of controller design
with constraint handling capabilities emerged recently:

1. Anti-windup and bumpless transfer (AWBT) design (Kothare et al. 1994, and references
therein): This is a two stage procedure. In the first stage a controller is designed ignoring
the constraints. In the second stage an additional feedback loop is designed that acts against
constraints so that the control signal is within constraints. The resulting controller remains
linear.
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2. Reference governor (RG) (Bemporad 1998): The approach consists in adding a discrete-time
device (RG) to nominal stable closed-loop which filters the desired reference trajectory. The
result is that no constraint violation occurs and the compensated control system can operate
in a stable way.

3. Model based predictive control (MBPC) (Clarke et al. 1987): This approach comprises
prediction of the controlled plant into future based on assumptions about future control
actions and minimisation of a given cost function. Input and/or output constraints can easily
be added to the problem formulation and the resulting closed-loop control law is solved as
an optimisation problem in each sampling step using the receding-horizon strategy. If the
controlled plant is linear and no constraints are active, the controller is linear.

The approaches are sorted in order of increasing complexity and computational load. In all cases,
it is assumed that the plant model is known. In the first two approaches it is additionally assumed
that the controller is known whereas predictive control actually synthesises the controller and
thus combines the two steps (nominal controller design + constraints handling) into one step.
Moreover, predictive control exploits the plant model for the future predictions and therefore uses
more information than the first two methods.

The design criteria imposed on the overall closed-loop system in the AWBT framework and
also used here are as follows (Kothare et al. 1994):

1. closed-loop stability,

2. linear performance recovery - when no constraints are active, the nominal controller should
act on the system,

3. graceful performance degradation in case of active constraints.

In this report a combined strategy to deal with constraints is proposed. It is assumed that the
model of the plant and the controller are known and that the closed-loop without constraints is
stable (as in AWBT and RG). The model of the plant is used actively for predictions and thus
the whole problem is posed in MBPC framework. As a consequence, the third design criterion
of Kothare et al. (1994) can be strengthened to: optimal performance degradation in case of active
constraints.

1.1 Motivation

The motivation for this work comes from two directions. Both family of methods (AWBT, MBPC)
have some advantages and drawbacks. In MBPC the procedure is equivalent to a controller design.
However, in many cases a controller is already designed - for example by the use of robust control
design for a plant unprecisely known.

AWBT techniques observe only a current state of a plant/controller. The unability to predict
the plant behaviour into the future may cause inferiour performance of ABWT compared to MBPC
techniques. This claim is illustrated by the means of a simple example.

Consider the controlled system (unstable) of the form

y(t) = −2.5y(t− 1) + 1.5y(t− 2) + 3u(t− 1)− u(t− 2) (1)

where y(t) it the output of the process and u(t) is the manipulated variable. As a controller
consider a state dead-beat controller with integral action

u(t) = 1.3u(t− 1) + 0.3u(t− 2) + 0.5w(t) + 0.4y(t)− 1.35y(t− 1) + 0.45y(t− 2) (2)

where w(t) is the setpoint. Simulations of the unconstrained and constrained system with 0 ≤
u(t) ≤ 3.15 are given in Fig. 1 and show that the constrained system is unstable.

As it will be shown later, instability can be prevented in this case if the control action is at
t = 1 reduced from 1.5 to approximately 0.8. However, at time t = 1 nothing shows that the
closed-loop will be unstable from t ≥ 2 because the control signal is within limits. Hence, AWBT
controller cannot adjust its gain. The information about possible performance degradation can
only be gained if the prediction at t = 1 is calculated for future output and input signals.
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Figure 1: Motivating example, uu, yu - unconstrained simulation, uc, yc - constrained simulation
with 0 ≤ u(t) ≤ 3.15
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Figure 2: Closed-loop control system

2 The basic setup

Let us consider a time-invariant, single input single output plant expressed in discrete-time form

Ay = Bu, (3)

where y, u are the process output and manipulated input sequences, respectively. A and B are
polynomials in z−1 that describe the input-output properties of the plant.

We assume that a class of references w is generated via

Fw = G, (4)

where (F,G) = 1. Here, F specifies desired class of references (steps, ramps, harmonic signals,. . . ,)
and G represents initial conditions of the concrete reference.

In order to track the class of references given above (and to reject disturbances of the same
class), an integrator is symbolically added to the controlled system

ũ = Fu. (5)

3



If we assume step changes in references, which is most often the case in predictive control, then
F = 1 − z−1, G = 1 and the signal ũ = ∆u is a sequence of control increments. However, other
specifications for F can also be considered.

Hence, the plant with the integrator is described by the transfer function B/AF and y, ũ are
its output and input sequences, respectively. It is assumed that this plant is free of hidden modes,
thus (AF,B) = 1.

As a controller, we consider a two-degree-of-freedom (2DoF) configuration described by the
equation

Pũ = Rw −Qy, (6)

where P,Q,R are controller polynomials that are coprime and P (0) is nonzero. The 2DoF con-
troller has been chosen due to its flexibility. However, any other controller structure could have
been chosen.

2.1 Predictive control

The prediction of the plant behaviour into future will be needed. As the plant (3) is linear, its
future output response will consist of two parts: forced response due to future control signals and
free response resulting from the initial conditions. Choosing the number of predicted outputs into
the future being equal N (prediction horizon) yields (Clarke et al. 1987)

y = Gu + f , (7)

where

y = [yt+1 . . . yt+N ]T , (8)
u = [ũt . . . ũt+N−1]T , (9)
f = [ft+1 . . . ft+N ]T , (10)

G =

 g1 . . . 0
...

. . .
...

gN−1 . . . g1

 . (11)

The matrix G and vector f can be calculated as usual from recursive Diophantine equa-
tions (Clarke et al. 1987) or by simulating the system recursively (Fikar 1998). The latter possi-
bility is as follows.

When all future control increments are zero (u = 0) then y = f . Hence, simulating the
system (3) with given yt−i, i ≥ 0, ut−i, i > 0, and assuming ut+i = ut−1, i ≥ 0 gives ft+i =
yt+i, i > 0.

To obtain the matrix of forced responses G consider the case when all initial conditions are
zero, i.e. f = 0. Assume further that the future control increments are the Kronecker delta
function, i.e. ũt+j = δkj where

δkj =
{

1 k = j
0 k 6= j

. (12)

Then, by simulating the system (3) with yt−i = 0, i ≥ 0, ut−i = 0, i > 0, and assuming ũt+j = δkj

gives the column k of G as Gk,j = yt+j , k > 0.

The cost function that is to be minimised has to take into consideration the three goals defined
in the Section 1. Several definitions are possible. Here we will utilise the optimisation of the
surface between constrained and unconstrained output trajectories

J =
N∑

i=1

(yu(t + i)− y(t + i))2 = (yu − y)T (yu − y) (13)

where yu = [yu
t+1 . . . yu

t+N ]T is the trajectory of the unconstrained closed-loop plant output, i. e.
future trajectory of the signal y based on equations (3), (5), (6).
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3 Methods

In the unconstrained case minimisation of the cost function (13) leads to the optimum with
yu(t + i) = y(t + i) and J∗ = 0. This can easily be proved as the sequence yu is calculated for the
controlled plant and given controller and hence is admissible.

Consider now the constrained case. In general, the constraints on the signals can correspond to
lower and upper hard constraints on the control signal, on the rate of change of the control signal,
and to recommended lower and upper limits on the output signal. All these can be transformed
into linear inequality constraints on the vector u and generally written as

Au ≥ b (14)

where the matrix A and the vector b are of appropriate dimensions.

3.1 GPC

Perhaps the most simple solution within the framework of predictive control is to assume GPC
settings taking no penalty on the control increments λ = 0 and the control horizon Nu = N .
Substituting (6) into (13) gives quadratic programming problem

minu J = −2
(
GT (yu − f)

)T
u + uT GT Gu

subject to Au ≥ b
(15)

The difficulty with this method is lack of stability properties in the constrained case. However,
even with this drawback, GPC is actively used in academia and in industry due to its easy
implementation and tuning.

3.2 GPC with linear controller

To assure stability also in the constrained case, constraints on terminal states can be used (Fikar
and Unbehauen 2000). This is usually accomplished by adding the constraints

y(t + N + i−m + 1) = w(t + N + i), i = 1, . . . ,m (16)

where m is the state dimension of the controlled system, in our case m = max(deg(AF ),deg(B)).
This removes m degrees of freedom from the optimisation problem, hence the prediction horizon
N must be greater than m.

However, such a terminal constraint does not comply with the linear controller specification
that is to be used after the constrained part of the trajectory. Therefore, as a more appropriate
strategy, we propose to optimise only the first Nu control increments and to constrain the last
N −Nu ≥ m steps to be generated by the controller (6).

The sequence of the control increments to be determined can be divided accordingly into
optimised and linear part

u =
(

uo

ul

)
(17)

uo = [ũt . . . ũt+Nu−1]T (18)
ul = [ũt+Nu

. . . ũt+N−1]T (19)

The linear part ul can be determined from the controller equation (6). Careful inspection of
terms in (6) shows that ul is a linear combination of y,uo, and w = [wt+Nu−deg(R) . . . wt+N−1]T .
Hence, it can be written in the matrix form as a sum of free and forced responses

ul = Glww + Glyy + Glouo + f lu, (20)

The free and forced responses can be obtained with the procedure described in Section 2.1 applied
to the controller equation (6).
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Combining (20) with (7) and eliminating intermediate variables yields for y

y = Gu + f

= G1uo + G2ul + f

= Gyuo + fy, (21)

where

Gy = (I −G2Gly)−1(G1 + G2Glo), (22)
fy = (I −G2Gly)−1(G2[Glww + f lu] + f). (23)

As G2 is zero on and above the main diagonal, the inverse matrix exists.
In the same manner for ul yields

ul = (Glo + GlyGy)uo + (Glyfy + f lu)
= Guuo + fu. (24)

The constraint description (14) holds for both components uo,ul. Substituting for ul from (24)
gives

Au ≥ b

(A1 A2)
(

uo

ul

)
≥ b

(A1 + A2Gu)uo ≥ b−A2fu (25)

The resulting quadratic programming problem will be obtained by substituting (21) into (13).
Neglecting the constant term and using the inequality constraint (25) yields

minuo
J = −2 (yu − fy)T

Gyuo + uT
o GT

y Gyuo

subject to (A1 + A2Gu)uo ≥ b−A2fu
(26)

3.3 Implementation

Unconstrained output trajectory

There are two principal ways how to calculate the desired unconstrained output trajectory yu

1. receding horizon approach - yu is calculated based on actual initial conditions, i.e. the whole
unconstrained output trajectory is recalculated in each sample,

2. model reference approach - yu is determined by simulating the unconstrained closed-loop
system in parallel and only yu

t+N is pushed to the trajectory stack in each sample.

Clearly, in the unconstrained case both approaches coincide. In the constrained case the receding
horizon approach may calculate unrealistic trajectories, because during active constraints the linear
controller will not be active. Moreover, model reference approach will better capture the original
goal - to minimise the surface between constrained and unconstrained trajectories.

Output horizon

The choice of the output horizon N depends on how long the constraint handling is active. It
must be chosen sufficiently large so that infeasibility problems do not occur with the stabilising
GPC method. Here, stability constraint dictates its lower bound as

N ≥ Nu + m, m = max(deg(AF ),deg(B)) (27)

The same rule can be used for the basic GPC method as otherwise instability could happen.
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Figure 3: Proposed constrained controller for the motivating example

Control horizon

In general, the calculated constrained control trajectory consists of two parts - at first the con-
strained part followed by the unconstrained part that brings the controlled system to the desired
setpoint value. It would be most natural if this division would correspond to the division of uo

and ul, given by the choice of the control horizon Nu. This makes Nu variable and results in a
mixed integer quadratic programming problem that can be solved as follows:

Start with Nu = 0 and test whether the constraints are satisfied. If not, increase Nu until
feasibility is attained with the upper bound given by (27).

Another possibility is to fix Nu at a constant value. The larger its value, the lower the value of
the cost function can be obtained. However, after returning back from the constrained part of the
control trajectory, the plant will still be for some steps under optimisation instead of the desired
linear controller. As the optimising controller and linear controller design criteria differ (error
surface minimisation versus nominal controller design) this may not be wanted. Theoretically,
with an asymptotically stabilising controller, optimising phase will take infinitely long. Practically
however, after some steps in the unconstrained regime, the control actions will coincide as the
trajectory yu will be matched reasonably well. We note that a compromise has to be found
whether one should insist on the linear controller actions as soon as possible or the performance
degradation due to constraints should be minimised. It may happen that a very early transfer to
the linear controller may cause undesirable behaviour of the closed-loop system.

4 Discussion and simulation results

The role of the user parameters will be illustrated by the means of simulation examples with the
system from the motivating example in the Section 1.1. We consider step changes in the references.

Fig. 3 shows clearly that stability is restored in the constrained case during the first setpoint
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Figure 4: Comparison of different strategies for the choice of Nu. See explanation of the legend
in the text.

change. During the second setpoint change actions of the nominal and constrained controller
coincide as no constraint violation occurs. Stabilising GPC method was used. The parameters
were N = 10 and the control horizon Nu was minimised. The nominal controller was the state
dead-beat controller generated by equation (2). The desired output trajectory was generated with
the model reference approach.

Minimised Nu = 4 was found at time t = 1 and corresponds to the number of sampling times
after which the manipulated input is within constraints. After that, it decreased each sample and
at t = 5 the nominal controller control law took over.

Four different strategies for the choice of Nu were investigated in Fig. 4 showing the output
trajectory for the first setpoint change. Here, y0, y1 represent strategies that optimise only if the
unconstrained problems violate the limits. The scenario with y0 solves also minimisation of Nu

(as in the previous simulation) whereas y1 is calculated using fixed Nu = 4. Similarly, y2, y3 are
strategies that optimise always. In the case of y2, minimum Nu is searched with the constraint
Nu > 0 whereas for y3 fixed Nu = 4 is used. We note that all four strategies produced the same
control actions for the second setpoint change that did not violate the constraints.

The comparison of trajectories and computation of the run-time cost function values showed
that all trajectories are the same during active constraints and differ only in the way how the
unconstrained output trajectory is approached. y2, y3 produce slightly lower value of the cost
function and the controlled output tracks sooner the unconstrained trajectory. This was expected
and explained in the previous section. It is on the user whether the smallest cost value is desired
or the nominal controller performance is preferred.

The constrained part of the trajectory is dependent on the choice of the nominal controller.
Consider for example the case when the closed-loop poles are set to 1−1/3z−1. These settings rep-
resent the so-called tracking error dead-beat when the closed-loop poles are placed on the locations
of stable numerator zeros of the system. The result is the fastest possible output tracking (Fikar
and Unbehauen 2000).
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Figure 5: Choice of a different controller with M = 1− 1/3z−1

The results shown in Fig. 5 indicate that in the unconstrained case one step is needed to reach
desired setpoint. The constrained trajectories differ significantly from those in Fig. 3. For example
the control signal is on the upper level constraint during the first four samples whereas in the first
simulation it moved up and down at t = 3.

Several experiments were performed to compare the basic and stabilising GPC strategies. It
was observed that as long as the parameters for the basic GPC are “suitably” chosen (prediction
horizon N sufficiently large), the results were practically identical. Of course, the differences would
be bigger for “difficult” systems (as in (Bitmead et al. 1990, p. 102)).

5 Conclusions

This report has investigated a problem of optimal handling of the constraints on input/output
signals. Predictive control framework was used as the basis for the proposed technique and three
design criteria on the overall closed-loop were imposed: stability, nominal linear controller recovery
in unconstrained case, and minimisation of the performance degradation in the constrained case.

It is shown that the design criteria can be respected by a very simple change of the well-known
GPC method. The modification consists in preparation of the desired trajectory to be followed
being the output of the unconstrained closed-loop system. Further, the cost function minimises
only squared tracking error.

If a formal requirement of the constrained stability is desired, a modified method has been
proposed. It consists of the combination of the GPC method followed by the linear controller.
This not only assures stability, but also reduces the number of the optimised variables with a
compromise of slightly more complex implementation.

If one wishes that the linear controller should take over as soon as possible after the constrained
part of the trajectory, the problem is defined as mixed integer quadratic program that can be solved
iteratively by increasing the number of the optimised variables and checking feasibility of the linear
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constraints. This can be done effectively with interior-point methods developed in the framework
of linear programming.

If the computational load for such an algorithm is considered as too heavy, one can specify
conservatively a fixed number of optimised variables that makes the problem feasible. An ad-
vantage of this approach is lower degree of performance degradation. On the other hand, the
nominal controller actions will be generated only after the unconstrained and constrained output
trajectories are sufficiently close.

For simplicity, only singlevariable case was considered here. However, generalisation of this
idea to multivariable systems is straightforward.
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A Symbolic derivation for the example

Forced and free responses for the controlled system

At first, the equation (3) is rewritten in so that the input is ũ rather than u

FAy = Bũ (28)

hence

y(t) = −1.5y(t− 1) + 4y(t− 2)− 1.5y(t− 3) + 3ũ(t− 1)− ũ(t− 2) (29)

Let us specify N = 4. For the predictions follows

yt+1 = −1.5yt + 4yt−1 − 1.5yt−2 + 3ũt − ũt−1

yt+2 = −1.5yt+1 + 4yt − 1.5yt−1 + 3ũt+1 − ũt

yt+3 = −1.5yt+2 + 4yt+1 − 1.5yt + 3ũt+2 − ũt+1

yt+4 = −1.5yt+3 + 4yt+2 − 1.5yt+1 + 3ũt+3 − ũt+2

(30)
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Now, substitute in the right hand sides of the predictions for yt+i

yt+1 = 3ũt − ũt−1 − 1.5yt + 4yt−1 − 1.5yt−2

yt+2 = −5.5ũt + 3ũt+1 + 1.5ũt−1 + 6.25yt − 7.5yt−1 + 2.25yt−2

yt+3 = 20.25ũt − 5.5ũt+1 + 3ũt+2

−6.25ũt−1 − 16.875yt + 27.25yt−1 − 9.375yt−2

yt+4 = −56.875ũt + 20.25ũt+1 − 5.5ũt+2 + 3ũt+3

+16.875ũt−1 + 52.5625yt − 76.875yt−1 + 25.3125yt−2

(31)

Therefore

y =


3 0 0 0
−5.5 3 0 0
20.25 −5.5 3 0
−56.875 20.25 −5.5 3

 u

+


−ũt−1 − 1.5yt + 4yt−1 − 1.5yt−2

1.5ũt−1 + 6.25yt − 7.5yt−1 + 2.25yt−2

−6.25ũt−1 − 16.875yt + 27.25yt−1 − 9.375yt−2

16.875ũt−1 + 52.5625yt − 76.875yt−1 + 25.3125yt−2

 (32)

Symbolic derivation of the equations (20)–(24)

Consider Nu = 1. From (2) follows

ũt+1 = 0.3ũt + 0.5wt+1 + 0.4yt+1 − 1.35yt + 0.45yt−1

ũt+2 = 0.3ũt+1 + 0.5wt+2 + 0.4yt+2 − 1.35yt+1 + 0.45yt

ũt+3 = 0.3ũt+2 + 0.5wt+3 + 0.4yt+3 − 1.35yt+2 + 0.45yt+1

(33)

Note that expression for ũt was not given as it is assumed that it is optimised.
Now, substitute in the right hand sides of the predictions for ũt+i

ũt+1 = 0.3ũt + 0.5wt+1 + 0.4yt+1 − 1.35yt + 0.45yt−1

ũt+2 = 0.09ũt + 0.15wt+1 + 0.5wt+2

−1.23yt+1 + 0.4yt+2 + 0.045yt + 0.135yt−1

ũt+3 = 0.027ũt + 0.045wt+1 + 0.15wt+2 + 0.5wt+3

+0.081yt+1 − 1.23yt+2 + 0.4yt+3 + 0.0135yt + 0.0405yt−1

(34)

Grouping the terms yields

ul =

 0.3
0.09
0.027

 ũt +

 0.5 0 0
0.15 0.5 0
0.045 0.15 0.5

 wt+1

wt+2

wt+3



+

 0.4 0 0 0
−1.23 0.4 0 0
0.081 −1.23 0.4 0




yt+1

yt+2

yt+3

yt+4

 +

 −1.35yt + 0.45yt−1

0.045yt + 0.135yt−1

0.0135yt + 0.0405yt−1

 (35)

Introducing this equation into (21), (24) gives
yt+1

yt+2

yt+3

yt+4

 =


3
−1
0
0

 ũt +


−ũt−1 − 1.5yt + 4yt−1 − 1.5yt−2

0.3ũt−1 + 1.5wt+1 + 0.4yt − 1.35yt−1 + 0.45yt−2

−0.5wt+1 + 1.5wt+2

−0.5wt+2 + 1.5wt+3


ũt+1

ũt+2

ũt+3

 =

 1.5
−4.0
1.5

 ũt

+

 −0.4ũt−1 + 0.5wt+1 − 1.95yt + 2.05yt−1 − 0.6yt−2

1.35ũt−1 + 0.75wt+1 + 0.5wt+2 + 2.05yt − 5.325yt−1 + 2.025yt−2

−0.45ũt−1 − 2wt+1 + 0.75wt+2 + 0.5wt+3 − 0.6yt + 2.025yt−1 − 0.675yt−2


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