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Abstract: The article discusses a possible approach to the reduction of the computa-
tional load of a nonlinear model predictive controller. In principle, the sufficiently large
output horizon is divided into only a few equidistant intervals with piece-wise constant
control actions. After finding a solution of this dynamic optimisation problem, the
control horizon is halved keeping parts of the first solution fixed, the sampling rate is
doubled and the whole procedure is repeated until the length of the first time interval
is reasonable. This procedure is repeated using the receding horizon principle.
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1. INTRODUCTION

The success of model predictive control (MPC)
framework is based on its relatively simple idea
as well as on its practical properties, namely its
ability to cope with constraints and nonlinearities.
In principle, in each sampling interval, a finite
horizon optimisation problem is solved and the
first element of the control trajectory is applied
to the controlled process.

Nowadays, properties of MPC are well understood
in the linear case. However, less results are avail-
able for the nonlinear case. Therefore, this paper
is focused onto the nonlinear case. Also here, sta-
bility properties can be proven by the use of dif-
ferent strategies. A survey can be found for exam-
ple in (De Nicolao et al. 2000) showing concepts
of zero-state terminal constraint (Keerthi and
Gilbert 1988), dual mode controller (Michalska
and Mayne 1993), quasi-infinite controller (Chen
and Allgöwer 1998), etc.

However, the main obstacle in practical applica-
tions of nonlinear MPC (NMPC) is not stability,

but the computational burden. A stable predic-
tive controller has to guarantee, that the origin
or some defined region is reached at the end of
the horizon. Feasibility of this type of problems
increases with horizon length. On the other hand,
the horizon length increases the computational
efforts exponentially.

There are only a few methods that address the
“curse of dimensionality”. Most often, some part
of the problem is treated as linear. The approaches
include the use of a bank of linear models (Foss
et al. 1995), linearisation at the current operation
point (Banerjee and Arkun 1998), or optimisation
of only the actual control move and supposing
that all other future moves are calculated by a
saturated linear controller (Zheng 2000).

The aim of this contribution is to present a com-
pletely different approach to reduce the computa-
tional complexity of NMPC. The developed new
approach assumes a nonlinear model in all cal-
culation steps. The reduction of the computa-
tional load is achieved by sampling the control



trajectory in a non-equidistant way, placing the
shortest sampling intervals at the beginning of
the horizon and increasing the following intervals
exponentially with time.

2. PROBLEM SETUP

Consider a time-invariant nonlinear continuous-
time system

ẋ(t) = f(x(t), u(t)), (1)

where x(t) ∈ Rx is the state, u(t) ∈ Ru is
the input, f is a nonlinear function satisfying
f (xs, us) = 0. xs, us are the desired states and
the hereto corresponding control. The state and
input vectors are subject to the constraints

x(t) ∈ X, u(t) ∈ U, t ≥ 0, (2)

where X and U are compact sets of Rx and Ru

respectively, with xs ∈ Rx and us ∈ Ru.

The cost function at sampling time k is defined as
follows:

J =

∫ T

0

(

||xs − x(t|k)||2W x

+ ||us − u(t)||2W u

)

dt,

(3)
where T is the prediction horizon and W u >
0, W x > 0 are weighting matrices. Piece-wise
constant control steps are applied, whereas states
are continuous.

Assumption 1 (feasibility): For a given T > 0 and
a number of control steps n > 0, there exists a
nonempty neighbourhood X(T ) of the state xs

such that ∀x(0) ∈ X(T ) there exists a control
sequence u(k), k = 1, . . . , n that drives the state
of (1) to xs, i.e. x(T ) = xs, and such that the
constraints (2) are satisfied on the interval [0, T ].

3. DESCRIPTION OF THE METHOD

One of the main issues in NMPC is that of
computational load. If stability is to be assured, a
long horizon T has to be chosen which corresponds
to a large number of optimised control variables.
On the other side, only the first element of the
calculated control trajectory is used and all others
are discarded even if they were calculated. This
suggest the idea to sample the optimised control
trajectory exponentially.

We consider the number of optimised control seg-
ments to be equal to n and specify the horizon
T such that the feasibility assumption is satisfied.
A possible approach is then to divide the control
trajectory into m ≥ n exponentially growing sam-
pling intervals ∆1, ∆2 = 2∆1, . . . , ∆m = 2m−1∆1.
Using this pattern for the predicted control trajec-
tory of the optimisation will lower the calculation

costs considerably, compared with the classical
methods using equidistant intervals. However, in
this contribution, a different recursive multirate
approach has been adopted which simplifies the
optimisation task furthermore:

Consider the desired end time te = T . Set the
iteration counter i = 1 and the desired number of
the recursions nr. The approach is then based on
the following steps:

(1) Divide the time interval [0, te] into an even
number m of sampled time intervals, each of
length ∆ = te/m, with piece-wise constant
control actions and optimise the cost function

min
u[0,te]

J i =

∫ T

0

(

||xs − x(t|k)||2W x

+ ||us − u(t)||2W u

)

dt
subject to
u(te, T ] = min J i−1

x(T ) = xs

x ∈ X, u ∈ U,

(4)

where the notation u(te, T ] = min J i−1 cor-
responds to the optimal control trajectory in
the time interval (te, T ] from the previous
iteration.

(2) Define the new endpoint as te := te/2 (in the
middle).

(3) Increase the iteration counter by one and go
to Step 1 if i < nr.

The main features of this procedure are:

• The optimisation problem is solved nr times
with only m control variables.

• The smallest sampling interval used in the
predictive control settings at time t = 0 is
∆1 = 2−nr+1T/m.

The principle is illustrated in Fig. 1 where it was
assumed that two control segments are optimised
in each recursion and the first three recursions are
shown (m = 2, nr = 3, T = 8). The smallest
sampling interval is thus ∆1 = 1. For comparison,
the classical equidistantly sampled approach to
NMPC would require one optimisation with 8
optimised variables solved simultaneously. The
difference would be more striking if the number
of recursions is increased.

Clearly, the exponential growth of the sampling
interval length makes it easier to define an overall
horizon T large enough to satisfy the feasibility
(and thus also stability) assumption.

The main differences between the direct choice
of the exponentially growing sampling intervals
and the proposed approach lies in the number
of optimised variables and the complexity of the
optimisation task. With the proposed approach,
the number of optimised variables in each re-
cursive step is less than for one static optimisa-
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Fig. 1. Principle of the multirate approach

tion problem and therefore, better convergence
properties can be expected. Moreover, using small
intervals at the beginning of the control trajectory
inevitably leads to excessive control actions, viola-
tion of the constraints, and represents a more diffi-
cult task for the optimiser. On the other hand, the
proposed multirate approach requires a recursive
series of optimisation problems to be solved. As
in the first recursion large time intervals occur, a
feasible solution can easily be found which is more
unlikely to violate the constraints. Initialisation of
the subsequent recursive problems is straightfor-
ward due to the knowledge of the solution from
the preceding recursion, which is also a possible
solution of all subsequent problems. This, the so
called feasible path iterative procedure enables at
any time either to stop the optimisation and use
the actual solution or to use the available com-
putational time to improve the predicted control
strategy furthermore. The results of any recursive
step represents a control strategy that satisfies
the terminal state constraint condition and will
therefore also guarantee stability.

The practical implementation of this procedure
has been solved using the orthogonal colloca-
tion technique on finite elements (Villadsen and
Michelsen 1978). The state trajectory has been
approximated by the orthogonal Lagrange poly-
nomials piecewise on the intervals corresponding
to the control intervals.

The polynomial approximations for state variables
at one interval can be expressed as

x(t) =
N

∑

j=1

x̄jφj(t), φj(t) =
N
∏

i=1,j

t − ti
tj − ti

, (5)

and N − 1 is the degree of the Lagrange polyno-
mial. The notation i = 1, j denotes i starting from
one but excluding i 6= j. The times ti are given as
the roots of the Legendre polynomials (Villadsen
and Michelsen 1978). It is worth noticing that

x(ti) = x̄i (6)

and thus the unknown coefficients x̄j are physi-
cally meaningful quantities. This becomes useful
when initialising the state variable profile.

4. SIMULATION RESULTS

The properties of the procedure described in the
previous section are studied by means of simula-
tions. As a controlled system we consider a double
integrator described by the state-space represen-
tation

ẋ1 = u, x1(0) = 1, (7)

ẋ2 = x1, x2(0) = 0, (8)

which is to be steered to the state [−1, 0] with
the constraint on minimum value of the control
variable umin = −0.5 and the cost function

J =

∫ T

0

[(x1 + 1)2 + x2
2 + λu2]dt. (9)

Unless otherwise stated, the number of optimised
control segments was set to m = 4. The first simu-
lation shown in Fig. 2 illustrates properties of the
algorithm for several values of number of recur-
sions nr. The output horizon and the weighting
coefficient were set to T = 16s and λ = 8 respec-
tively. If only one recursion is allowed, the sam-
pling time for the predictive control is T/m = 4s.
One can notice that in this case the control does
not hit the lower constraint. Increasing nr quickly
leads to an asymptotic continuous-time control
trajectory. The sampling time with nr = 6 is
∆1 = 0.125s and the corresponding optimisation
problem with 4 variables has to be solved 6 times
per sampling time.

In the second simulation (Fig. 3), the results using
different values of the weighting coefficient are
shown for T = 8s and nr = 4. The variation of
the penalisation coefficient has the desired effect
of influencing the speed of the controller and can
be considered as the tuning knob of the method.

Finally, the last simulation (Fig. 4) compares the
proposed predictive controller with a classical pre-
dictive controller using the same sampling time
0.5s, output horizon T = 8s and weighting coeffi-
cient λ = 1. We can see only a small difference in
the control trajectories. However, the comparison
of the number of optimised variables shows 16
variables for the classical NMPC case against 3
recursions with 4 optimised variables using the
proposed approach. The simulation showed that
approximately 30 times more floating point oper-
ations were needed for the classical case compared
with the multirate approach, although only 3 re-
cursion steps were calculated. This difference in
speed will grow rapidly with increased number of
recursions.
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5. CONCLUSIONS

This contribution has proposed a new multirate
recursive approach for the design of a new non-
linear model predictive controller. The aim was
to reduce the computational effort needed in the
classical approach, without violating stability con-
ditions. The main idea is to give the control trajec-
tory the most precision at the present time since
the quality of prediction will decay with increased
horizon lengths. The assumption was made that
the control trajectory can be approximated with
exponentially increasing sampling lengths. This

approximation approach can be justified since
only the first part of the future control trajectory
is used for control and the rest is discarded.

To calculate the control trajectory, a multirate
recursive approach has been proposed. This con-
sists of optimising at each recursion m control
actions equidistantly sampled, but halving the
output horizon in each recursion.

At present, the guarantee of stabilising feature of
the procedure is based on the terminal constraint
approach. Future research is focused onto gener-
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Fig. 4. Comparison with a standard predictive controller

alising this idea to terminal regions and thus en-
larging the feasibility properties of the algorithm.
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